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Abstract

A Minimal Rectilinear Steiner Tree (RMST) for a set V of n points in the plane is a tree
which connects the points of V' using line segments parallel to the horizontal and vertical
coordinate axes that has the shortest possible total length.

In this article, techniques are presented identifying connections that will be used in some
RMST. These connections serve as a basis for an approximation algorithm. The identification
methods are called contraction and clustering. Contractions identify line segments connected
to the points on the enclosing rectangle of V and are totally independent of the further
construction of the RMST. Clustering identifies connections that can also be internal to the

enclosing rectangle, but which are subject to restrictions posed by the further construction of
the RMST.

The approximation algorithm is a modified version of the Rectilinear Minimal Spanning
Tree (RMSpT) algorithm, which uses dynamized Rectilinear Voronoi Diagrams defined on
points and line segments. Even without contractions or clustering, it produces an approxima-
tion of shorter total length than the Minimal Rectilinear Spanning Tree, improving on a result
by Hwang. Furthermore, the worst-case situation where the approximation based on MRSpTs
could have a length of 3 times the length of the RMST is identified.

The approximation yields minimal Steiner trees for any set V of n < 5 points, and trees
with a length that is strictly less than ;- times the length of the RMST for larger n. The
complexity of the constructing algorithms is O(n?).

Acknowledgement

The authors wish to thank Dr. M. Overmars and especially Dr. M. Veldhorst for their conti-
nuous support. Dr. M. Veldhorst improved our proof of the Complex Contraction Theorem
using induction.

1 Introduction

Let V be a finite set of n points in the plane. A Rectilinear Steiner Tree (RST) for V is a tree
structure, composed solely of horizontal and vertical line segments, which interconnects all the
points in V. A Minimal RST (RMST) for V is one in which the line segments used have the shortest
possible total length. In contrast to the usual notion of a spanning tree, a RST is permitted to
have three or more line segments meeting at a point that does not belong to V, called a Steiner
point.

Applications of RST’s can be found in wire layout for VLSI and printed circuit boards.

Garey and Johnson [GarJo77] proved the problem to be NP-complete. As a consequence,
polynomial algorithms can only be expected to obtain results with a constant performance ratio.
The Rectilinear Steiner Ratio (RSR) for a set V of points in the plane is defined as {ﬂ, where | A |

denotes the length of an approximation for a RMST T for V. As was shown by Hanan [Hanan66],
the problem is easily solved for n € 4. Hanan also mentioned the existence of an algorithm to
implement his ideas, and conjectured that the case n = 5 is solvable without the use of exhaustive
search. A carrier [Hanan66)] is a line (horizontal or vertical) through one or more points of V.
Hanan proved that for every set V, a RMST T exists whose line segments overlap some carrier,
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which reduces the number of RMSTs possible for V. Hwang [Hwang76] proved the RSR to be at
most % when A = M, a Rectilinear Minimal Spanning Tree (RMSpT) for V. In [Hwang79)], it is
shown that the Rectilinear Voronoi Diagram (RVD) for V, and subsequently M, can be computed
in O(nlogn) time. Kou et al. [KouMaBe81] obtained a RSR of 2(1 — 1), in which A denotes the
number of leaves in a RMST, which is probably unknown. Their algorithm has been improved
by Mehlhorn [Mehlhorn88]. For other heuristics, the authors refer to [Richards89] and [Bern84j.
Polynomial-time special case algorithms have been designed by [AGH77] and [GeorPap87]. As
for exhaustive search, the best algorithm known to the authors has a complexity of O(n\/(")'°9")
[ThomDeSh87). '

In this paper we will give a O(n2?) approximation which yields RMST’s for all sets V of n < 5
points and which yields trees with a RSR of less than % for larger n. Furthermore techniques
identifying connections that will be used or need (can) not be used in some RMST, will be presented.
These connections serve as a basis for an approximation. The identification methods are called
contraction and clustering. Contractions identify line segments connected to the points on R(V'),
the smallest enclosing rectangle of V, and are totally independant of the further construction of
the RMST. Reduce Carriers is a technique which brings a certain part of a RST A for V into a
canonical form. The specified part of A will then consist of vertical (or analogously horizontal)
line segments only (with possibly one exception). This canonical form will serve as a basis for
the transformations applied in the correctness proofs of the various clusterings. Clustering certifies
that the path from vertex p; to vertex pz, denoted p;e~ep;, can be embedded within R({p;, p2}).
The RICH(V) defines a Convex Hull-like area for V. Proof will be given that a RMST for V exists
embedded in RICH(V).

The paper is based on the following techniques: a dynamized version of Rectilinear Generali-
zed Voronoi Diagrams in combination with RICH and the mentioned contraction and clustering
techniques.

In this paper, the following terminology will be used: E denotes the set of line segments used
in a tree. #V denotes the number of elements in V. A vertex in a RST T for V is a node of T,
which is an element of V. A Steiner point in a RST T for V is a node in T with degree > 3, which
is not in V. A corner point in a RST T for V is a node of T with degree 2, which is not in V. A
virtual point in a RST T for V is a Steiner point or a corner point. A leaf of a RST for V is a node
with degree one. Necessarily a leaf in a RMST is a vertex. An edge is a connection between two
points, that can be virtual, containing either one line segment or two perpendicular line segments,
which share a corner point. A line segment between two points, for example p, and p2, will be
denoted by p;e-ep,. A path between p, and p, will be denoted by p;erveps. A L-shape is an edge
consisting of two perpendicular line segments. A forest for a set V of vertices is a set of pairwise
disjoint RST’s for subsets of V. R(F) is the smallest enclosing rectangle of a forest F, W(F) is the
width of R(F) and I'(F) is the height of ®(F). Let R be the number of contractions performed on
V.

2 Contractions

2.1 Introduction

In this section the concept of contractions is introduced. Proof will be given that all RMSTs for a set
'V of points satisfying certain conditions, consist of a RMST for a reduced set V' C V and a unique
set of line segments connecting the RMST for V' to the points in V — V’. The NP-completeness of
the RMST problem implies that it is resistant to a recursive approach. Nevertheless, the RMST
for V can be shown not to contain any line segment in p, so the problem is reduced to a RMST
problem for a smaller set of points V/, where #V’ < #V, and its search space is reduced.

Definition 1 A contraction is a transformation of the set of points V into a set V' by projecting a
set p C V of one or more points on an outermost carrier on the carrier ¢ adjacent to and parallel
with p.
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Contractions do not depend on the grid in which V is placed, but solely on V. So an algorithm
can be produced that is proportional in time to #V instead of proportional to the grid size. These
transformations (possibly) reduce the search space and the number of points in a provable save
way.

An algorithm implementing contractions and routing the reduced set V' consists of two stages.
The first one contracts the collection of points, using minimal line length. The purpose of con-
tractions is, to present a reduced set with the least number of points possible to the second stage,

which will then try to find a near-optimal solution. Ideally, the reduced set of points contains only
one element, for this can be handled trivially.

. [ — L1

° °

AsetV Contraction to V’ RMST for V' RMST for V
Figure 1: Contraction principle

To maintain minimality, the newly formed set V' of points must have a RMST T, which can be
covered by some RMST T for V that also covers the paths over which the points of V' were moved
to their new locations entirely. We refer to figure 1 for a brief explanation. Here, a downward
contraction is performed. Notice the leftmost point clashing with the one immediately below it,
while the right one is moved to a grid point not in V.

Property 1 When two points clash during a contraction, one of them can safely be deleted during
future operations.

Returning to figure 1 and comparing the RMSTs for the set V of points and its subset V’, it
is immediately clear that the performed contraction was a legal one; the line segments drawn with
the contraction can be extended into a RMST for V.

The leftmost picture shows a situation that is definitely not optimal. It
was constructed using downward contractions only. The open dot is not in
V, but is used as intermediate point during some stage of the contraction.

The rightmost picture shows the mistake made even clearer. A T-—shape
uses less line length than the proposed U-shape.

In the following, a simple rule will be presented that distinguishes legal contractions from illegal
ones. Unfortunately, this rule restrains the possibility of contraction more than would be desirable.
For example, the contraction performed in figure 1 is a legal one, but does not satisfy the conditions
of the rule, and is therefore marked as illegal.

The contractions are classified according to their complexity: Simple contractions that affect
exactly one point, Complex contractions that affect more than one point, and Global contractions,
an extension to Complex contractions but affecting exactly two points.

2.2 Simple contractions

Definition 2 (Simple contraction) Let V be a set of points, #V > 1. Then point p of V is
simple contractable if p is a unique ertreme with respect io ils z-, or y-coordinate. Let c be the
nonempty carrier that would be ezxtreme in the same sense as p if p would not ezist. A simple
contraction of a simple contractable point p is the projection of point p over one of p’s carriers to
c.

Lemma 1 (Simple contraction) Let pointt € V be simple contractable to the carrier q. Then
there is a RMST T for V that conlains line segment te-eu, where u is the orthogonal projection of
tongqg.
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Proof: This follows from the Complex Contraction Theorem in the next subsection. O

Corollary 1 Ift is a simple contractable point of a set V, then t is a leaf in all Rectilinear Minimal
Steiner Trees T for V.

Definition 3 A set V is Simple Contractable if and only if use of the simple contraction theorem
applies and its application produces a Simple Contractable set V' or a set V! where #V' = 1.

Let U(V) denote the shortest possible total length of a Rectilinear Steiner Tree for V. (This is
an abstract notion and does not depict any particular tree.)

Lemma 2 (Simple Reduction) Apply simple contractions as many times as possible on V, yiel-
ding a set V' of points and a set E of line segments. Then:

1. UV)=UV')+3 cglength(l).

2. $V/ S HV.

3. Either #V’' =1 or each side of R(V') contains at least 2 points of V.
Proof:

1. This follows from the Simple Contraction Lemma.

2. A point is either contracted onto another point, thus reducing the number of points by one,
or it does not collide with another point, so the number of points remains the same. This
reasoning holds for all contracted points.

3. If V is a simple contractable set, then #V’ = 1, otherwise (#V’ > 3) suppose that ®(V’) has
a side containing exactly one point. Then V' is contractable, contradicting the assumption
that as many simple contractions as possible have been executed.

0O

Corollary 2 If V is a non-contractable set, #V > 1, and s is a side of R(V), then #V > 4,
#5NV > 2 and V has at least two horizontal and two vertical nonidentical carriers.

2.3 Complex Contractions

The conditions that a contraction R must satisfy to be legal will be defined. Informally, a legal
contraction R of a set V of points is a contraction of V' that does not affect the minimality of the
RMST T for V if T is constructed by combining the tree 7Y, which is a RMST for V’, the set of
points after the contraction, with the line segments between the original locations of the contracted
points and their new locations.

Let p be an extreme carrier. In the following the direction of the contraction is denoted by one
of the arrows |, «—,1 or —. For example, if the contraction direction is downward, denoted by |,
then p is the uppermost carrier. The black triangle « is used to impose an ordering depending on
the direction of the contraction. In the definitions and the theorems, it is assumed that p is the
uppermost carrier, as depicted below. Let g denote the carrier parallel and adjacent to p.

x (k) denotes the number of vertices on p (g). For all i € {1,---,7}, ¢i denotes the projection of
p; on ¢q. X; denotes the triangle below or on ¢ covering the area reachable using a path from p; of

length less than or equal to min(2i2, 41).
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Formally,
Vv = {v,vg,---, 0} ERZREN _ ‘
dir € {lﬁ_) T’_')} o i pH.lP

dir=— = (v 4v$& w, vg) i it}

q
b ’ dir=t = (w<€v&wy 2y Xi td.' i+
dir=— =>(w4v & w,>v;) A

p = {vEV |Vyevw 4 v}

w = #pe{l---n—-1} 4=8i-0

p = {p1,p2, -, px} (clockwise)

q = {IU €EV-p I VweV—pw < v}

K = #qefl--n-1}

q = {q1,92, -, 4x} (clockwise) . .
v = (vz, Uy) Pi ~ Pit1 Pi+2
w = (ws,wy) . ! t!p
() = |te = te |+ ]y — | D " D
q = D= illegal(C,dir)

i = piseg

L = f:lli

Without loss of generality, assume dir =|.
For i € {1---7}, define:

q = {(piosqe,) 1 €{L---7}}
A = Py, P,

© = DPey — sy

z; € X;

do = o0

dx = 00

d; = &Bi-Oforie{l.xr—1}

{veV|veagA{v,g) < min(di-y,d;)}

In the rest of this section, z; will denote a point chosen arbitrarily from X;. This choice remains
invariant throughout the construction of the tree.

So, for a direction dir, call the outermost carrier p and the one alongside p ¢. The projection of
pon g forms ¢’, and the line segment p;e-eg} is called l;. For all pairs (p;, pi4+1) on p, the triangular
areas X; are defined depending on A;, the distance between the pair of points on p, and ©, the
distance between the p- and g-carrier.

The total length of line on p used by a RST T is defined as pl(T) :=|pn T |.

Definition 4 A RST T for V is in canonical form with respect to the direction dir, denoted
CF(T,dir), if p, the outermost carrier with respect to dir, does not contain any line segment or
corner of an L-shape that can be shifted or reversed to ¢, the nearest carrier parallel to p.

The canonical form of the RST T is denoted by CF(T,, dir).

Because only shifts and reversions are used to create CF(T',dir), | CF(T, dir) |<| T | and p}(CF(T,dir))
< pKT).

Corollary 3 Let T' be a RST for the set V and p an extreme carrier, say upper, If pl(T’) > 0
and there is a subscript i such that p;e-ep;,;and p;;1eep;y2 both have 2 downward connections,
of which none overlap, then T is not a RMST for V.
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Proof. Trivial, as | CF(T", dir) |<| T" |. O

Corollary 4 Let T' be a RST for the set V and p an extreme carrier, say upper, If pl(T") > 0

and there is a subscript i such that p;e-ep; . supporis more than 2 downward connections, of which
none overlap, then T' is not a RMST for V.

Theorem 1 (Complex Contraction Theorem) Let T’ be a RST for the set V such that CF(T", dir)
and pl(T") > 0 and (Vig(1-.x} Xi # D) Aq# D. Then T' is not a RMST.

First the above conditions will be shown a little too strong: there are sets V that do not satisfy the
conditions of the Complex Contraction Theorem, while being solvable by such transformations.

solvable by such transformations. For example, consider the five point dice shape with width 2
and height 2.

e o Clearly, a downward contraction is legal in this example. But dy = -451 -0 = % -1=0,
®  and because no points lie on the locations ¢; and ¢5, X; and X, are empty.

® Later, the above conditions will in some special cases be weakened.
Without loss of generality, assume that the direction of the contraction is downward (dir =), and
p is the upper carrier.

Because pl(T') > 0, T' contains at least one line segment s on p, with | s |> 0. Let I be the
leftmost point of s and r the rightmost point. Line segment s contains one or more downward
connections, which will be referred to as dcs;, dcs,..., dcs,, enumerated from left to right.

Proof of the Complex Contraction Theorem.
Suppose T is a RMST. Then I,r € V Np, so s contains at least p;e-ep;,;, where p; = I. (Claims
1,2)

Claim 1 degree(l), degree(r) ¢ {3,4}.

Proof.

Trivial from the assumption that p is the upper carrier, I,r € p and that [, r are the outermost
points of s. [0

Claim 2 Ifl,r ¢ V Np, then degree(l),degree(r) ¢ {1,2}.

Proof.
Suppose degree(l) = 1 (analogously for r). Then a positive length of line connects I to the right
without downward connections. Because [ ¢ V/, this line segment is obsolete.
Suppose degree(l) = 2 (analogously for r). As [ is the leftmost point of s and I ¢ V, [ is a corner
point and the L-shape with ! as corner can be reversed. Contradiction to CF(T",dir). O

The cases that remain to be considered are the ones where p consists only of (possibly several
disjoint sets of) adjacent line segments between points in p. Consider such a collection of adjacent
line segments | = p;e-ep;.1e-e...p;_je-ep; = r. From the above, it can be assumed that each of
these line segments supports at most one downward connection.
If p;e-ep;1contains no downward connections, p;e-eqie~wez; can be constructed at a cost |p;e-eg;
ooz di + O < -4._;1. The resulting cycle can then be broken by deleting p;e-ep;;1, where
|pio-epit1]= Ai. Therefore, | T |<|T" |, so T is not a RMST. Contradiction. This transformation
is illustrated in figure 2.

Pi Pi+1 Pi Pi+1 i i+1 Pi i4+1 {

p Pi+ Di+ P Pi+1
z; |=>|z,- l morl:ksorl:k;orl

Figure 2: No downward connection or a rightmost downward connection

If p;e-ep;,1contains a downward connection dc; where dc;, >}-’1‘i§'il-‘, pie-egie~ez; can be con-
structed at a cost |p;e-egie~wez; |< di+© < 4i. The resulting cycle can then be broken by deleting
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pie-edc;, where | p;e-edc; |> 4i. Therefore, | T |<| T’ |. Contradiction. This transformation is
illustrated in figure 2.

The only remaining possibility is the one where p;e-ep;,;contains exactly one downward connec-
tion, de;, and de;_ sﬂﬁi’lﬂt.
Let dc; denote the projection in the direction dir of de; on g.

Claim 3 dcie-edc, C z;omep;.

, it1
Proof. Suppose dc;e-edc} [ z;e~wep;. Then p;e-eg/enwez; can be constructed bi i+
at a cost |p;e-egierez;| < d; +© < —Aii. The resulting cycle can then be

broken by deleting dc;e-ep;,1, where | dc;e-ep; 1 |> 4. Zi

Reversing the remaining L-shape produces an overlap of length ©. Therefore, | T |<| T’ |. Con-
tradiction. This transformation is illustrated in figure 3.
O

Pi Di+1 Di Pi+1 Ds Di+1
T l = Ea‘ l = %,- '

Figure 3: dc; e-e dc; C z;e~ep;

Claim 4 Viegs,j—1)dcro-odc) C ziorep,, and dey, < Zﬁii'ﬁlﬂi.

Proof. The claim holds for ¥’ = i. Suppose that it holds for k' € {i,---,k — 1}. Then it must be

shown that it holds for ¥’ = k as well. Therefore, assume Vire(i, - k—11dcrro-odcy, T zyionmepy

Pt +p)
and de‘l' < _h&_;—"'l_’_.

The proof of this claim will be subdivided as follows:

Pr41 T zpomep;
Pr®-epi+1 has no downward connections
Pr®-®pi 41 has one downward connection
de, > zs;iguh.
dcp,, < PrgHPrg1
Pi+1 L zporvep;
dcg_.10-ep C zienvep,
dcx_10-epi[f zrenwep;
Dir®-opi4+1 has no downward connections
Pr®-epi41 has one downward connection
dch, > Pag+Prg1;

dck, < Prp+Pry1;

If pr41 C zpo~~ep; and ppe-epii1 has no downward connections, add ppe-egje~wez; and
delete pye-ep;i1. Because |pre-eg,onezi|< di +© < G& < A =| prooprsar |, | T I<| T |,
contradiction. This transformation is the same as in figure 2.

If py41 T zie~wep; and deci, > ﬁi—tg—"ik, add pre-eg,e~wez; and delete pye-edc,. Because
|pro-eg,onezi|< dr + © < 4 <| pre-eder |, | T |<| T' |, contradiction. This transformation is
analogous to the previous.

If ppy1 C zierep, and deg, < ’lfi”"f’—‘f-, add prpe-eg,enez;, delete dcye-epry1 and reverse
the L-shape with dc; as its corner, creating an overlap of ©. Because |pie-egjerez;|< di + © <
8k | dego-opi4r |, | T | +© <| T' |, contradiction. This transformation is the same as in figure 3.
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Hence, one can assume that py41Z z;ervep,.

If deg.r0-ep; T zpe~ep;, add pro-eg,e~ez; and delete dcy_je-ep;.
Because |ppe-egjorezi|< dp + © < —A,‘r- < | deg—1oep; |, | T |<| T’ |. This transformation
is illustrated in figure 4. The only situation when the above transformation does not reduce
| T | arises when dey_;, = ﬁﬁﬁi’&t. Assume this to be the case, for otherwise the reduc-
tion of | T | would contradict . When de;_;, = P"—“r#'u., add pi_je-eq)_,e~wz;_; and
delete p;_je-edci_jeedc)_;. Because |p,_j0-eq,_ erez;_1|< dioy+O < -A—!‘{—‘- < ﬁ"r‘ +06c=

| Pe-19-edci_1e-edc,_, |, | T |<| T’ |, contradiction. This additional transformation is illustrated
in figure 5.

Figure 5: dei_ oo pi T zorwep; and deg_y, = Be=igtPie

Hence, one can assume that dci_je-ep,[f z,e~vep;.

Furthermore, pye-ep;; must possess downward connections, otherwise py41 C zje~vep;, contra-
dicting the above.

If dex, > M,"Lﬂt, add piye-egiervezr; and delete pye-edc;. Because |[pre-eg,orez;|< di +
© < 4% <| pre-edcy |, | T |<| T’ |, contradictoin. This transformation is illustrated in figure 6.

Pr-2 Pk-1 Pr  Di+41 Pk-2 Pr-1 Pk Pk+1

JJ s =T J kS

Figure 6: py41 fzie~ep; and dci, > &:iilﬂ;

The remaining possibility satisfies the claim. The correctness of the claim follows using natural
induction.
O

From the above, it is clear that the line segment p;e-ep; consists of line segments pre-ep;,;
for k € {i,---,j — 1} which all possess a downward connection dc; with de;, < BatPrtle  and
dcye-edc), is part of pye-ez;. The point z;, however, must also be connected to p;e-ep;. It is
obvious that the connection can not connect to p; or use any second downward connection to some
DPL®®Pk41, SO 23 must connect to some z;., where k' € {i,---, j—1}. Now observe the line segment
pj—10-ep;. Using the above claim, dc;_;, < Biztg¥Pis

Ifdej_1, < ’-’Ji‘-’zﬂ’ii— then add pje-eg)e~wez; and delete dc;_,e-ep;. Because |pje-eg)emez;]
< dj +© < 242 <| dcj_1e-p; |, | T |<| T' |, contradiction. This transformation is illustrated in
figure 7.

Otherwise, dc;_1, Add Pj-1Hq;-_1mzj-1 and pje-egie~vez; and delete
pj—19-ep; and dc;j_1e-edc;_,. Because |pj_10-0¢;_,orez;_1| + |pje-egienez;|< 2-(dj +0©) <

— Pi=: +Pp;
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Pi-1 Pj Pj-1 Dj
@‘”ﬁ'—* @j
Figure 7: dc;_y, > BizlgtPis

Aj-1<Aj-1+6 =|p;_10ep; |+ | dcj_1eedc|_, |, | T |<| T' |, contradiction. This transforma-
tion is illustrated in figure 8.

Figure 8: dcj_;, = BizigtPiz

This concludes the proof of the Complex Contraction Theorem.
O

Thus, no Rectilinear Minimal Steiner Tree for a set V satisfying the conditions of the contraction
theorem for a direction dir and an outermost carrier p need contain a line segment p;e-ep; ., for
any i € {1..r — 1}. Hence, all points p; can be leaves of T'.

Recall that for all i € {1..x} the lines /; are defined by p;e-eq!, and that L is defined by
Uie{1..x}li- Then, a Rectilinear Minimal Steiner Tree T for a set V satisfying the conditions of the
Complex Contraction Theorem for a direction dir and a outermost carrier p can be constructed
by T :=T'U L, where T" is a RMST for V' =V —pU¢’, and L is the set of line segments formed
during the contraction.

The above immediately justifies the use of simple (one-point) contractions, for if p = {p1},
do = dr = oo implies that the condition (Vie(1...x} X; # D) A ¢ # @ is always true, and the above
construction can be used to show that p; can always be contracted downward.

0

2.3.1 Consequences of the Complex Contraction Theorem

As was shown above, contractions are always legal if * = 1. So there is a RMST T which contains
the line p; e-eg}. Because p, e-eg} serves as a connection of p; to the rest of V only, TV = T—p;e-e¢}
is a RMST for V’/ = V — p, Ug{. This can be generalized for larger . Therefore a contraction can
be regarded as a transformation T : R? — R2 and can be defined by V ++ V —pUg¢’. As was shown
earlier, this transformation, when satisfying the conditions of the Complex Contraction Theorem,
preserves minimality: if | T |=t and | T' |= ¢/, then t — t/ = O7.

Definition 5 A set V is Complex Contractable if and only if use of the Complex Coniraction

theorem applies and its application produces a Complex Contraclable set V' or a set V' where
#V' =1.

Definition 6 (legal(R,dir)) A contraction R in a direction dir is legal if there is a RMST T’ for
V' such that for some RMSTT forV: T=T'UL.

Lemma 3 legal(R,dir)= (Viep1, n Xi # D) N # D
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Proof.
Follows almost directly from the Complex Contraction Theorem: Situations not yet considered:

e CF(T',dir) does not hold. Then consider T” = CF(T',dir). As | CF(T',dir) || T' |,
proceed with T7.

e CF(T',dir), but pl(T') = 0, trivial.
s
2.4 Global contractability
2.4.1 Introduction

Notice that for n < 4, no set V with #V = n exists that has more than one point on each side, so
V is simple contractable to V/, where #V' = 1.

Consider n 2> 4. The four point square evidently does not satisty the conditions of the Complex
Contraction Theorem (A; = © < 26), but could be solved using a contraction nevertheless.
Suppose T, the RMST for this four point square contains p;e-ep;, then some vertical line segment
must exist connecting pye-ep; to V — p. This implies that in this case, the rule d; = 4i — © can
be weakened to d; = A; — ©. This is called a Global Contraction.

Definition 7 A Global Contraction of a set V is a Compler Contraction of a carrier p of V
containing ezactly two points, where the definition of d; in the rules that the Compler Contraction
has to satisfy, has been modified to d; = A; — ©.

2.4.2 Correctness

Corollary § For n £ 4, all cases can be solved minimally, using Global Contractions.

Using the same reasoning, the rule d; = A; — © proves to be sufficient for n = 5, where, up to
isomorphisms, four different shapes exist after applying simple contractions.

If Complex Contractions are applied to aset V, #V =5, a set V' is produced for which (V')
is degenerate or has at least two points of V’ on each of its sides. That means that four of the
five points are on the border of this smallest enclosing rectangle. The fifth point could be on the

border also or it is in the interior. This means that the configurations, as depicted in figure 9 are
possible.

Figure 9: Possible five point shapes

Corollary 6 For n < 5, all cases can be solved minimally, using Global Contractions.

Definition 8 A set V is Global Contractable if and only if use of the Global contraction corollary
applies and its application produces ¢ Global Coniractable set V' or a set V' where #V' = 1.

Corollary 7 Every set V with #V < 5 is global contractable.

10
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2.5 General Contractions

A General Contraction is either a Global or a Complex contraction.

Theorem 2 (General Contraction Theorem)

Mier-m}Xi #9D) A ¢# D where di:=4i-0,

or
legal(R,dir) < § (Vig(1-.m}Xi #D) A ¢# D where #V <5

A =2

A di =A;—©

The correctness of this Theorem follows immediately from the correctness of Complex and Global
Contractions.

Definition 9 A set V is General Contractable if and only if use of the General Contraction Theo-
rem applies and ils application produces a General Contractable set V' or a set V' where #V' = 1.

3 The implementation of the contractions

3.1 The data structure

The structure containing the coordinates consists of grid elements, implemented as Pascal records
with x and y coordinates, a boolean d and four pointers: up, rt, dn and 1t. The illustrating
figure also shows four additional linear lists, providing access to the rows and columns of points,
earlier referred to as carriers, which are implemented as linear lists. This frame of access points
simplifies the contraction procedure considerably, as will be shown below. The construction is
straightforward, provided that the points are available sorted lexicographically on (x,y) as well as
on (y,x)-tuple. Finally, the four linear lists are named xcoslo, ycoslo, xcoshi and ycoshi, meaning
“the list which provides access to the rows of points, sorted on x-coordinate first in ascending
order” etc.

u
T A —
1t d rt —» [ *
dn '_‘ ¢
l } * *
e

I
yeos o'—o—o——o—o—xcoshi

Figure 10: The data structure for ycoshi

3.2 Detecting a contractable side

The search for a contractable side proceeds counterclockwise around the set of points, until a round
of four sides provides no further possibilities for contraction of any side. Without loss of generality,

11
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assume that the side considered is the upper one, which is checked for the possibility of a down-
contraction. The first aspect to check is the eristence of a lower carrier, which will be referred to
as ¢. If this test fails, no contraction is possible and the procedure terminates. Proceeding along
the upper carrier p, each pair of points (p;,pi4+1) on p is checked for a point in X;. During the
walk over the p-carrier, all points of V must be checked for membership of the defined triangles.
Because the triangles do not overlap, a simple linear algorithm performs this task, provided that
the points are available ordered both horizontally and vertically.

If these conditions are met, the contraction can be performed. A cheap test revealing whether
a side is non-contractable is possible 1. The data structure is illustrated in figure 10.

Figure 11: The merge step

Once the legality of a contraction is established, it can be performed by projecting p on ¢, that
is, merging them. Because the data structure is, in essence, a linear list, the merging will not be
discussed. The side-effects of the merge step, as shown in figure 11, are more interesting.

First, by the General Contraction Theorem, a point clashing with an other point during contrac-
tion can be discarded. This is easily done by short-circuiting the incoming and outgoing pointers
and deleting the record that holds the point. More serious is the possibility that important global
data may be disturbed, such as the points accessed by the access list. As rebuilding the data
structure after every update takes too much time, disturbed data will be updated when found.
The cost for this operation never exceeds (exactly) one step, for the access lists are used every
round of contractions, so the cost of maintenance of the data is less than the cost of a merge.

Second, the side effects on the access lists themselves are only noticeable at the head or tail of
the list. For example, the downward contraction in figure 4.2 causes the last element of ycoslo and
the first element of ycoshi, as shown in figure 4.1, to be obsolete. Therefore the first element of
ycoshi is deleted immediately and the last element of ycoslo is deleted when needed.

3.3 Contracting a side

Using the proposed structure, contract can easily be implemented by a standard merge. Consider
the current example in figure 4.2. After establishing the validity of the down-contraction, proceed
by taking the upper row and the one below it, merging them and replacing the lower one with the
combination. Points with equal x-coordinates are deleted (in practice, one is marked by assigning
true to its d(elete) field). The procedure terminates after cleaning up the now obsolete access
points at the head of ycoslo and at the tail of ycoshi.

1 Without loss of generality, assume that the direction of the contraction is downward. Let b = px, — P1,.
Simply check if E::ll pit+1. — Pin < 2(x = 1)0, or equivalently b < 2(w — 1)©. So a contraction can be discarded
immediately if b < 2(x ~ 1)©. In case of a global contraction, the condition is pz, — p1, < .

12
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3.4 Complexity

The implementation of the General Reduce Algorithm consists of five stages, numbered (I) through
(V), which are discussed briefly. R denotes the number of contractions performed.

Algorithm  General Reduce

Input A set V of points with coordinates of the form (z,y)
Output A set V'’ of points
begin sort the points on lexicographically ascending (z,y)-tuple  (I):  O(nlog(n))
sort the points on lexicographically ascending (y, z)-tuple (I): O(nlog(n))
construct the four access lists and the grid structure (I1): O(n)
repeat for all sides do (III): Rx
check if a lower carrier exists O(n)
check if all X; triangles contain a point of V (IV): O(n)
if these conditions are met then
T:=TUulL o(1)
merge the two carriers (V): O(n)
update the access lists and the grid structure O(n)

until no contractable carrier exists
end

(I) 2.n.log(n): To build the proposed data structure, we need to sort the points of V' twice, once
on lexicographically ascending (x,y)-tuple, and once on lexicographically ascending (y,x)-tuple.
(II) 4.n + n: From the sorted data, the four access lists and the grid structure are constructed.
(IIT) 2n: Because there are at most n horizontal and vertical carriers, R < 2n contractions can be
performed. As described above R denotes the number of contractions performed. (IV) Because of
the ordering of the non-overlapping triangles and the points, the implementation of the algorithm
that establishes if every triangle contains at least one point is linear. Each contraction begins by
checking which of the four sides is contractable. (V) n per contraction: Performing a contraction
amounts to a merge of two linear lists.

Adding these results, the total complexity is

(I) 2.n.log(n)
(II) 4n+n
(IIT) Rx

(Iv) n
V) n

It is clear that the time complexity of applying as many contractions as possible on a set V
with #V = n is O(n?), and uses linear memory. More generally, performing R legal contractions
costs O(Rn) if R = Q(logn) and O(nlogn) otherwise.

4 A bound for the area covered by the RMST

Intuitively, a tree that possesses L-shapes pointing outward could benefit from reversion of these
L-shapes. This would increase the probability of a connection to be made to the reversed L-shape,
thereby decreasing the overall length of the tree. In this section, it will be shown that a RMST
exists which does not extend beyond the boundary defined by its Rectilinear Internal Convex Hull
(RICH). Intuitively, the RICH is the tightest contour of a set of objects possible, where all objects
must be reachable using carriers. For example, the RICH of a set X of two points equals its
enclosing rectangle, R(X).

Definition 10

13
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The partial RICH of a set V with respect to the direction dir =|, denoted PRICH(dir,V ), is
defined as the boundary of the area R%-Q, where Q denotes the union of all left upper and right
upper quadrants Q, with QNV = @. The Rectilinear Internal Convez Hull of a set V of poinis in
the plane is the boundary of the area enclosed by line segments of the partial RICH’s of V

Corollary 8
RICH(V )=line segments in PRICH(1,V) U PRICH(|,V) U PRICH(—,V) U PRICH(—,V ).

B

Figure 12: The construction of PRICH(|,V)

.
.

Ny

Lower Hull Right Hull Lef Hull

— —

ALl Hulle Superimposed Rasahing Hull
Figure 13: The construction of the RICH

It is easily seen that the Rectilinear Internal Convex Hull of a set of objects X as described
here is equal to the RICH of the set of points in X together with the set of points that form the
endpoints of the line segments in X.

The RICH for a set X of objects can be calculated in O(nlogn) time by using a simple line
sweep algorithm on the set V of points and endpoints of line segments in X, one in every direction.

The event points are the elements of V. The line segments of the resulting partial hulls form the
RICH.

The Rectilinear Inner Convex Hull of V will prove to be able to contain a RMST for V.

Furthermore, any RMST for V can be transformed to a RMST for V within the boundary defined
by RICH(V).

Theorem 3 (RICH) Let T be a RMST for V. Lett be a structure used in T extending beyond

RICH(V ). Then T can be rebuilt to a tree T' with equal length that lies within the boundary defined
by RICH(V ).

14
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Proof. Let t be a connected structure in 7”7 where T is the forest of subtrees extending
beyond RICH(V). Then ¢ contains no vertices. Let a and b be the points of ¢ that touch RICH(V)
and have maximal distance to each other of all points of ¢ that touch RICH(V). Then the tree ¢
must have a length that is at least equal to the length of the path between a and b over the RICH,
where this path is chosen to be the path aereb where t U aered does not contain a cycle. But
because ¢ contains no vertices, it can safely be replaced by the path ae~~eb, implying that a tree
of shorter or equal total length exists that connects V.

O

Corollary 9 Ift is not an L-shape, then T is suboptimal.

Corollary 10 For all sets V of points in the Rectilinear plane, a RMST T ezists that lies within
RICH(V ).

Definition 11 An articulation point v € V is a point where the boundaries of the RICH touch.

Corollary 11 For every articulation point v € V, V can be separated into two sets of points V;

and Va, where Vi = VN Qy and Vo, = V N Q2 for two gquadranis Q, # Q2 that share v as their
corner.

Corollary 12 For every articulation point v € V that divides V into two subsets Vi and V2 as
described above, the RMST T for V can be constructed by joining T) and Ty, the RMSTs for Vi
and V,, respectively.

The construction used in the above corollary is depicted in figure 14.

T

Figure 14: The construction T by dividing at articulation points

Corollary 13 Simple coniractions are legal.

Proof. If a point is extreme in only one direction, it is easily seen that the RICH will enfold the
point as tightly as possible. This implies that only one line segment within RICH can connect the
point to the rest of the set. This is clear from figure 14. If a point is extreme in two directions, then
the set V must possess an articulation point, and the RICH must possess a rectangle enclosing this
articulation point and the extreme. The RMST is then separable at the articulation point into two
subtrees T; and T, where T} is the RMST for the articulation point and the extreme. Then every
optimal solution for the connection of the two points in Ty will suffice, in particular both possible
L-shapes. Therefore, a contraction in both directions in which the point is extreme is legal.

O
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5 Approximations of RMSTSs

As mentioned in the previous chapter, the length of a RMSpT for a set V is at most % times larger
than the length of the RMST for V[Hwang79).

An optimal algorithm to compute the Euclidean MSpT of for set V constructs a Voronoi
Diagram for V in O(nlogn) time, from which it derives a Delauney Triangulation. Thanks to the
fact that the O(n) edges of this triangulation suffice for the construction of the EMSpT, the total
complexity of EMSpT is O(nlogn). For a detailed discussion, the authors refer to [PrepSha85).

In [Hwang76], a similar construction is applied to obtain a Rectilinear MSpT in O(nlogn)
time. The implementation differs mainly in the separation of the points during recursion. More
important is the difference in shape of the Rectilinear bisectors. The typical bisector of two points
in the Rectilinear plane is not a straight line but a combination of two half-lines and a line segment,
where the half-lines are parallel to either of the coordinate axes and the angle of the line segment
with either the horizontal or vertical axis is 45°. The two half-lines are joined by a degenerate
line segment of length 0 whenever the two points are on the same carrier. There is, however, a
situation in which the bisector cannot be uniquely determined, or, alternatively, contains not only
line segments but regions. This situation arises when the bisector is constructed for two points p;
and p; where | p;, — p;. |=| pi, — pj, |. In this case, the bisector contains a slanted line segment
and two quadrants. The vertical option can (arbitrarily) be chosen.

LY R
R ana

Figure 15: Possible Rectilinear bisectors

5.1 Generalized Voronoi Diagrams

In this section a method will be studied that reduces the suboptimality of an approximate RST
by preventing the connection of a subtree to a vertex of another subtree whenever an edge is
nearer. This method will prove to produce strictly better results than the standard RMSpT-based
approach, although in contrived situations the difference in length of the approximations based on
the two approaches may be arbitrarily small. A trivial algorithm can be used to implement these
ideas. Instead of storing only the possible edges between points, it also stores those between points
and edges. Initially, There are n subtrees that all contain exactly one point of V. The algorithm
connects the nearest unconnected subtrees. The complexity is O(n2logn). It is easily seen that this
" problem subsumes the standard MSpT problem, thus implying at least 2(nlogn) complexity. A far
more elegant approach would use a generalized form of the Voronoi Diagram, where objects cannot
only be points but also edges, that is, line segments. Furthermore, to facilitate construction of the
approximation of the MST, a dynamic version of the algorithm is needed in order to insert newly
constructed edges and virtual points. The Euclidean version of the problem has been solved and
refined consecutively by [LeeDrys81], [?] and [Yap87]. Yap’s article presents a conceptually simple
method solving the problem for points, open line segments and open curve segments in optimal
time ©(nlogn), improving a factor O(logn) over [LeeDrys81], where n represents the total number
of objects in the object set X. The constructed Voronoi Diagram is a so-called Augmented Voronoi

16



April 4, 1990 5. APPROXIMATIONS OF RMSTS

Diagram, meaning that the locus of proximity of connected components (their combined Voronoi
Regions) is subdivided into the loci of proximity of the constitutive objects. Yap’s algorithm for
the construction of the Euclidean (Augmented) Generalized Voronoi Diagram has a complexity of
O(nlogn).

Trivially, the bisector of a point and a line is a parabola. For example, the bisector of the
point with Euclidean coordinates (0,a) and the x-axis with respect to a standard base is given by
{(z,9)|y= i’; + 3}. The rectilinear bisector of the same objects consists of two line segments
and two half-lines, defines as {(+a,y) |y > a} U {(z, % + l%l | z € [~a,ad]}.

Assumptions

The objects considered in the Rectilinear instance of the (A)GVD problem are points or open
line segments parallel to either the horizontal or the vertical axis.

The bisector of a pair of points (p1,p2) and (p; £ r,pz + r) is chosen as in [Hwang76] (the
vertical option).

Using the above assumptions, the construction used by Yap for the Euclidean instance can be
used also in the Rectilinear case. Because the objects considered are line segments and points, the
edges of the GVD are parabola- and line segments. The bisector of two (open) line segments can be
determined in O(1) time, and consists of up to seven segments of parabolas and lines. Therefore,
the EGVD(X) where #X = n can not contain more than 21n-42 line- or parabola segments, and
RGVD(X) can not contain more than 48n-96 line segments.

5.2 Dynamization

The procedure presented in the previous section offers a solution to the question of how to incorpo-
rate results of the Clustering theorems in an algorithm that approximates the Minimal Rectilinear
Steiner Tree. In contrast to the Contraction theorems, that may discard the line segments used in
an already connected set of points when performing another contraction, the connections resulting
from Clustering must be taken into account before constructing other connections. In particu-
lar, the connections resulting from Clustering may offer possibilities for connection themselves.
A contraction always produces line segments of which only the endpoint need be considered. In
particular, no RMST possesses a connection to such a line segment using a Steiner point. Using
this fact, an algorithm can perform contractions without paying any attention to line segments or
L-shapes.

The connection produced by Clustering can be modeled by line segments or by line segments in
combination with a corner point whenever the connection is a L-shape. Connections to corners of
L-shapes can be modeled by inserting additional Steiner points. Applying the RAGVD algorithm
to the set X consisting of these line segments, their Steiner or corner points and the points of V,
an approximate RST A is produced that contains the connections resulting from the Clustering
theorems.

Theorem 4 Construct A’ from the RMSpT M by inserting Steiner poinis and deleting overlapping
line segments. The length of the RST A described above is al most equal to the length of A’, implying
{;}} < 3, where T denotes a RMST for V.

Proof. This follows immediately from the Clustering theorems, which imply that the produced
line segments or L-shapes create a cycle containing a line length or L-shape of greater length when
inserted in A.
O

The RAGVD algorithm can be used to produce an approximation A that is at least as good
as the RMSpT M. Probably, some edge will be connected to a line segment, Steiner point or
corner point resulting from a Clustering. If this is the case, the resulting approximation will be
strictly shorter than the RMSpT. In contrast to the construction of an approximation A’ from
the RMSpT, which may or may not prove to possess overlaps, this method ensures the existence
of overlaps whenever a connection is made to an object from X — V. The authors emphasize
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that the approximation A’ might be shorter that A, but A’ depends on unpredictable construction
sequences.

Corollary 14 If a connection is made to a line segment or virtual point during the construction
of the approzimate RST A for V with RMST T, then iﬂ < %

The approach of connecting to line segments or virtual points resulting from Clustering the-
orems can be perfected by rebuilding the Voronoi Diagram whenever a new edge is determined.
This approach diminishes the area of several Voronoi Regions whenever a line segment is inserted,
causing a shorter connection to be used in the future if the distance of some object to the line
segment will prove to be less than the distance that would have to be covered if the line segment
had not been inserted.

The algorithm implementing the above method could call the RAGVD algorithm and build
a partial approximation from it, and repeat this action until n — 1 connections would be made.
The complexity would then be O(n?logn), mainly because of rebuilding parts of the Voronoi
Diagram that have not changed at all. Fortunately, the various types of Voronoi Diagrams (EVD,

RVD, EGVD, EAGVD, RGVD, RAGVD) all possess a property that allows updates to be made
dynamically.

5.3 Order Decomposable Set Problems

In [Overmars81] a class of problems concerning sets of multidimensional objects is defined. A
method of structuring sets such that the answer to a problem of this class can be maintained with
low worst-case time bounds is given while insertions and deletions are performed. For the problem
described in this section, the dynamization of Voronoi Diagrams to be used for the approximation
of Rectilinear Minimal Steiner Trees, no objects need to be deleted, so the discussion will be
restricted to updates after insertions only.

A set problem P is called C(n)-order decomposable if and only if there exist an ordering ORD
and a function F such that for each set X = {z;,--.,2,} ordered according to ORD and for all
ie{l,---,n—1} P(z1,---,2pn) =F (P(21,-+,2i ), P(zi41, -, Zn)), Where F is a function that
takes at most C(n) time to compute when the set contains n elements and C(O(n)) = O(C(n)).

A set problem P is called order decomposable if and only if it is C(n)-order decomposable for
some C(n).

Let P be a C(n)-order decomposable set problem. There exists a divide-and-conquer solution
to P that takes )

e O(n+ ORD(n)) steps when C(n) = O(nf) for0 < e < 1,
e O(C(n)+ ORD(n)) steps when C(n) = O(n'*+¢) for ¢ > 0 and
e O(logn - C(n) + ORD(n)) steps otherwise,

where n is the number of objects in the set and ORD is the time required to order n points
according to ORD.

Given a C(n)-order decomposable set problem P, a dynamization procedure exists that allows
an update time of O(C(n)) when C(n) = Q(n¢) and O(logn - C(n)) otherwise, where n denotes the
current number of objects in the set.

From the above description, it is clear that the EVD, RVD, EGVD, RGVD, EAGVD and
RAGVD problems are O(n)-decomposable, implying O(n) update time. The corresponding dy-
namic versions of the problem will be refered to as Dynamic, denoted EDVD, RDVD, EDGVD,
RDGVD, EDAGVD and RDAGVD, respectively.

Theorem 5 An algorithm ezisis that constructs an approzimation A of a RMST T for a set X
of objects in the plane where X consists of V, a set of poinis, and open line segments and virtual
points that result from the Clustering theorems, that has a worst-case complezity of O(n?) and

<
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Corollary 15 If Contractions can be applied to V before applying the approzimation algorithm,
then the above result can be improved to iﬂ < 3 while the complezity increases to O(R - n) if the
number of contractions R exceeds logn.

6 RSR <3

In Hwang’s article ’On Steiner Minimal Trees with Rectilinear Distance’ ([Hwang76]) the factor
%‘.]l < £ is proven. In this chapter a factor l-‘;.} < 3will be proven, where A is not a RMSpT for V
but an approximation for a RMST based on Voronoi, | A |<| M |.

The only sets for which the RMSpT M has length exactly 3 | T | are the +-shaped sets.

6.1 Terminology and previous results

As in Hwang’s article two operations on trees are defined: Shifting a line means moving a line,
not containing a vertex, between two parallel lines until it is incident to a certain specified point.

Reversing a L-shape means replacing it by the smallest enclosing rectangle of its endpoints minus
the L-shape itself.

e

Figure 16: Shifting a line segment and reversing a L-shape

After shifts and reversions, the resultant graph is still a tree, and smaller or of the same length.
Moreover the resultant tree is still a spanning tree (Steiner tree) if T was. If T” is obtained through
shifts and reversions, 7" is said to be equivalent to T. Let Z(T’) denote the set of all trees equivalent
to the tree T'. Let S be the set of all Rectilinear Minimal Steiner Trees. Partition S into S; + S
where T € S, if and only if all vertices in T have degree one and T € S; otherwise. Hwang proves
-'#11 < %, by induction on the number of vertices. For T € Sz, T can be split into two components
at a vertex with degree two or more and apply induction on each component independently. Define
=(Sy) as follows: T € E(S2) if a TV € E(T) exists, such that T’ € S;. The 3-bound can be proved
by working on 7’. Hence T ¢ E(S;) is the only case which requires a proof. In §3 of Hwang’s
article it is shown that for any T ¢ =(S2), the induced subgraph of its Steiner points is a chain,
called a Steiner chain. Define a staircase to be a continuous path of alternating vertical lines and

horizontal lines such that their projections on the vertical and horizontal axes have no overlapping
intervals.

Lemma 4 (Hwang) Suppose T ¢ =(S2). Then:

o the Steiner chain is a staircase.

e If the number of Steiner points is greater than two, then either every vertical line segment (on
the Steiner chain) contains more than one Steiner point (ezcept perhaps the first and the last) and
every horizontal line contains ezactly one Steiner point, or vice versa.

Since the problem is not affected by a 90° rotation, assume that if T ¢ =(S2), then the Steiner
chain consists of a set of vertical lines where adjacent vertical lines are connected through a corner.

Label the i** Steiner point on the chain counting from above by ;.

Lemma 5 (Hwang) Suppose T & =(Sz). Then every Steiner point must have a horizontal vertez
line.
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Let v be the number of Steiner points. If T ¢ Z(S2), then T belongs to one of the following three
types.

1. 4 = 1: T is one of the trees in figure 17 with ¢ as the only Steiner point.
ap ap ap

a ! az a1 a: a
<

jas a2

Figure 17: T has only one Steiner point.

2. ¥ > 1 and the Steiner chain is a straight line: the horizontal vertex lines at the sequence
of Steiner points must alternate in the left-right direction (if ¢1 (¢,) has a corner line, we
assume that ¢, is the bottom point of a vertical edge (¢, is the top point of a vertical edge).
Hence each Steiner point has exactly one horizontal vertex line. See figure 18.
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ay <1 §1 a1
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Figure 18: T has a straight Steiner chain.

3. v is even and the Steiner chain is a straight line except the last two Steiner points are
connected by a corner: without loss of generality, assume that ¢, has a horizontal line segment
to its left. Then each Steiner point except ¢, has exactly one horizontal line segment which
is a vertex line. These vertex lines alternate on the left-right direction. ¢; and ¢, both have
vertical edges which are vertex lines. See figure 19.

agp ag
p
a a
1 | S1 1 | S1
< a2 <2 / az
G4 Q4

1.

Figure 19: T has a straight Steiner chain with a corner at the end.

Lemma 6 (Hwang) Suppose T ¢ Z(S:) and #V = n. Then v, the number of Steiner points, is
n — 2 ezcept when n = 4. Then v could be either 1 or 2.

20



April 4, 1990 6. RSR < i-

For T belonging to type (2) or type (3) defined above, let k; be the length of the horizontal vertex
line at ¢; and let a; be the vertex on it. If the vertical edge upward from ¢; (vertical edge downward
from ¢,_2) is the leg of a L-shape, then let hg (h,—1) be the length of the horizontal leg of this
L-shape. Otherwise let ho (h,_1) have length zero. Define v; as the length of the vertical edge
upward from ¢, v; = (G_1,5) for 2 < i < n — 2, and v,_2 as the length of the vertical edge
downward from ¢,_s.

6.2 An approximation A4, with {%} <32

In this subsection A is a RST, denoting an approximation for a RMST for a set V. Let M denote
a RMSpT for V. A is constructed in three steps:

1. apply all possible contractions on the set V yielding a set of line segments L and a set V'

2. construct the RICH for V'’

3. make an approximation A’ for V' using RDAGVD, with the restriction that all edges lie
within the RICH for V".

4. A:=LUA
Theorem 6 (Hwang) lﬁf]l < %, where T is a RMST for V, and M a RMSpT forV.

Corollary 16 i-‘,.‘J[ <3

Corollary 17 If A contains a Steiner point then iﬂ < %

Proof
Suppose A contains a Steiner point ¢. Then A also contains an overlap of length £ > 0, where ¢ is

the length of the shortest line segment connected to ¢. Because | M |>] A | +e,
|A] M- _|M]_3
<=
IT1S 17T S 1T1°2

]
Lemma 7 IfR> 1, then H'lf <3

Proof
Let 7" be a RMST for V’ and T a RMST for V such that T = T'U L. Then 2 | M’ || T |
(Hwang), which implies that 2 |A IS (M’ |+ |LD)=3 M |+ |LI<|T'|+|L|=|T|. O

Corollary 18 VT ¢ E(S2) : fpf < §-

Proof
For all T ¢ =(S;) holds that at least two simple contractions are possible, at @; and an. [J

Corollary 19 #ng:{;}}:%l:1

Lemma8#V=3=>!|¥-||—<§

Proof

Suppose two points of V are extremes in two directions, let M be a RMSpT for

this set V. Then there is a RMST T for this set V such that M = T, satisfying

M| _ 4

m=1<4 —
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So suppose only one point of V is a double-extreme. Then any RMSpT can be hy 2
routed over the rectangle. Without loss of generality assume that the three points

are as depicted in the adjacent figure. Then | T |= hy+ ha+v;+v2 and | M |=

2 | T | — | corner |, where corner is the length of the longest L-shape. Hence

| M|<2(2|T]),s0 | M|< 4|T| This concludes the proof of the lemma.

a

Ly !

Lemma 9 IfT ¢ E(S2) is a RMST for a set V, #V = 4, and T has two Steiner points connected
by a L-shape, then | M |< 3 | T |, where M is a RMSpT for V.

Proof

hy hz hy hy ha+hs
v vy -

Y v
| 1 +v2

v2

vz +vg
vy hy + ha hg| vs

Figure 20: RMST for four vertices, the two Steiner points are connected by an L-shape

The situation has been depicted in figure 20. The worst RMSpT is found when routed over the
boundary of ®(T'). There are four possibilities to create a RMSpT:

e The upper-left corner is not part of the RMSpT M
This implies that | M |= hy + 2hs + 2hs + v1 + 2v5 + 203

and vi+h 2hat+hsatvi+vaShi 2 haths+ve
and vi+h 2vaths
and nvi+h Z2hi+histvatvaevi2hatvatus

Suppose % | M |=| T |, this is true if and only if %(hl + 2hy + 2hg + vy + 2v5 + 2v3) = hy + ha +
hs+vi+va+v3 <> ha+ha+va+vs=hi+v > ha+hs+va+ha+vs+vs & 02 hy+vz which
would mean there is only one Steiner point, contradiction.

e The upper-right corner is not part of the RMSpT M.

e The lower-right corner is not part of the RMSpT M.

o The lower-left corner is not part of the RMSpT M.

These last three cases can be solved in a similar way. [

Theorem 7 (Bound) i-ﬁ <3

Proof
Not using the knowledge that all edges of A lie within the RICH for A, the following can be proved.

1. E T ¢ 5(S) then 2 | A |<|T'|.

2. If T € Z(S>) then if at some point during the induction a subtree T” of T, which will not be
split again, is cut loose for which holds:

e #(T'NV)< 3or
e #(T'NV)>4or
e #(T'NV) = 4 but T" has the configuration of figure 20 or of figure 24

Then 2 | A|<|T|

22
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3. Otherwise T € =(S;) and all subtrees T” of T', which will not be split again, have a plus-shape

as in figure 25: one Steiner point, which is of degree four, all four points have equal distance
to each other, as will be proven in lemma 10.

By induction on #V = n.

In this proof regular use is made of M, a RMSpT instead of A, the approximation. This use is
justified because | A |<| M | as discussed above. This theorem is trivially true for n = 2. Because
of lemma 6.2 the theorem holds for n = 3. Suppose the theorem holds for all V’ with #£V’ < n.
Consider a set V with #V = n. This theorem is true for all V such that a RMST T for V is not
in Z(S2). So let TV € Z(S2). Then T has a vertex z with degree two or more. We can split 7" at
z into two components, both containing z, and apply induction on each.

Now it could be that one of the components is a RMST T such that T ¢ Z(S2). Unfortunately,
corollary 18 can not be applied, for the subgraph T' could lie entirely within the original RMST 7",
implying that no contraction could be applied on the subset of vertices lying in 7. And no part of
the RICH for T is part of the RICH for 7. From lemma 6.2, assume n > 3.

If n = 4 and T has only one Steiner point, as shown in the adjacent picture, a RMSpT +
for this set has the %-bound. This case will be treated later.

The strategy is to partition T at a Steiner point, say ¢,, into two subgraphs T} and T3 such that
T; is the induced subgraph of {ao,as,...,a,-1} plus the edge between ¢,_; and ¢,, and T} is the
induced subgraph of {ag,ag41,...,8n-1}.

In the following h, cannot be added to the length of 7. If h, was added to Ty and to T3,
then h; would be counted twice, therefore 2 | M |<| T; UT: | does not necessarily hold. However,
observe that for the special choice of g that T3 consists of only one vertexand hy > 0, HUT: # T
holds and hence | T} |+ | T2 |=| H VT |<| T .

A path p; on the set of points {ao, ay, ..., a,} will be constructed such that

2
2 Imi<ITy |

Let M be the RMSpT on the set of points {a,,a41,...,an}. Then 2 | Mz |<| T | by the
induction hypothesis. Hence p; and M: together are a spanning tree whose length is less than
3(|T1 | + | T2 [) € 2 | T |. The theorem is then proved.

The selection of p; depends on whether there exists a T such that the total length of its
horizontal lines is sufficiently small in proportion to | T} |. To be exact, suppose there exists a k,
1<k < n—2, such that

g (%1 E E k-1 k
EIPSLE0 3D 31 B oI o8
i=0 i=1 i=1 $=0 i=1
Set ¢ = k. Then p; can be selected as the path connecting aq, ai, ..., a; in that order. The length
of p; is the bracket of the above equation, the length of T} is the right-hand side of the above
equation. Clearly 2 | p; |<| T} |.
Therefore, now assume

k k
oD hit(hi—ho),1<k<n-2.
i=1 i=1

A tree of type (2) or type (3) remains so if we reverse the ordering of its Steiner points (for type (3)
tree, push the corner of the Steiner chain to the other end). Therefore the existence of a subscript
7, 2 < j < [n/2]+1 can be assumed, such that h; > h;_z foralli=1,...,5—1, and h; < hj_>. Set
g = j. Connect (aj,aj_2,a;_4,..., 0, .-, 3j-3,@j—1,8;) in that order, i.e., connect all vertices on
the same side in order before crossing to the other sides. This way a tour ¢ is created on this set
of j + 1 vertices. The length of ¢ equals the periphery (denoted by | R [) of the smallest enclosing
rectangle of the j + 1 vertices in ¢. The desired p; can be obtained by deleting a proper link in ¢.
For all j 2 | py |<| T3 | will be proved.
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ha a2 hy +hy+vy a2
e
v2 v2
ah | a1 { & ho —hy vy +v2
v ho @9 vy ho 8o an
——
ho + hl + v

Figure 21: Part of a Steiner chain containing 3 vertices

If j = 2 then T is as depicted in figure 21. The corner of maximum length must be deleted in
t. Recall here that h; is not added to the cost of Ty. |t |= 2(ho + hy + v1 + v2) =2 | T |. Hence
Ip1I< 2 ]t|=2|T | SoifTi contains three or less vertices the theorem is proved.

—

I L

Figure 22: All possible RMST’s T for four vertices, not T € Z(S2)

Suppose j = 3, then T} contains three vertices, two Steiner points and a loose edge, as shown
in the last two pictures of figure 22. In T} the two Steiner points are connected by a L-shape or
they are connected by a straight line segment. If the Steiner points are connected by a L-shape,
then there are two possible configurations for 7;. If it is of the configuration in figure 20 then it
has already been treated.

The other situation with four points and a L-shape between the two Steiner points is the one
depicted in figure 23, the tree is the last part of a Steiner chain.

o b Ty
50-—"% ; o ‘
Y
.J—o deveeemmeen @ onercneeeanen Ot L
hy +K -k, ho+h,

Figure 23: Part of a Steiner chain with a corner between the last two Steiner points

The worst RMSpT is found when routed over the boundary of ®(T"). There are four possibilities
to create a RMSpT: one of the corners is not part of the RMSpT p;. For each of these cases a
proof can be given, similar to that in lemma 9.

hs hy —hs _ha +hs
vs wp
L he vz + vy
v2
L W 4
vy v vij+ vz
h, A h ho - P
Lho o + Ay 2 = fo

Figure 24: part of a Steiner chain containing 4 vertices
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Suppose T; has two Steiner points, which are connected by a straight line segment, as in figure 24.
Note that h3 cannot be added to T} as it will be added to 7>. In this situation a RMSpT M,
could exist such that | M |= % | Ty |. To prove the theorem correct it must be guaranteed that
| M2 |< 2 | T2 |. The only situation giving rise to this problem is the one in figure 24, this situation
cannot be repeated indefinitely. So in the end hj is the uppermost horizontal line segment in 7.
The last partition is then a tree T} containing a3 for which the RMSpT M consists only of az. In
this case Ty UT; # T, s0 | Ty UT; |<| T |. This implies the theorem holds in this situation. Or do
not perform this last partition and add h3 to the remaining tree Tj. Proof, similar to the proof of
lemma 9, can be given of | M{ |< 3 | TV |.

As discussed above h3 was not added to T3, 80 | T} |= ho+hy +ho+ vy +vs +v3. B 2ZRES -':;1 | Ty |
for | py I< %— |tl= 2(h1+h2+01+v2+03)= %(I T | —ho). If hg > 0 then | p; |< % |T1 |, but hg
can be zero, so | py < 3 | T} |.

Suppose j = 3 and T has only one Steiner point, as shown in the first picture in +
figure 22, then not T' ¢ =(S;), contradiction. So the theorem is correct for j = 3.

Now consider j > 4. Let E{;g h; = © | R |> 0. Then the four links Gj_4— Bj_3 — @j — Gj_1 —

a;-3 in the tour ¢ have a total length of

j-4 j-3
IR | —h,-_s—h,-_.;—zv.- —EW

§=1 =1
j—4 -3
2| R|—hj_s—hj_s4— [2 hi + (hj_s— ho)] - [ hi + (hj_s — ho)]
i=1 i=1
j-4 j-3
=|R|=hj_s—hj_a—Y hi—hj_s+ho—Y_ hi—hj_s+ho
i=1 i=1
j-3
=|R| —hj_a - 2hj_4 + 2ho — 22}1‘
i=1
j-3
=| R I +4hg — hj_s - 2hj_4 - 22 h;
i=0

Now suppose j = 4 then this computes

|R|—2(ho+h1)+4ho—2ho—h1 =|R|—-3h1

1
>|R|-4) hi=|R|(1-48).
=0
So the theorem holds for j = 4. The last possibility is j > 4, then the above computes as
ji-3
| R| =2 hi —2hj_s — hj_g+ 4ho >

=0

j-3 i-5
| R|=2) hi—2hj_s—2hj_3~2> h
=0

=0

j-3 j-5
=|R|-3) hi—hj_s—hj_s—Y h;

i=0 i=0
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j-3
=|R|-4) hi=|R|(1-40)
i=0
If the link of maximal length among these four links from ¢ is deleted, a path p; of the j+1 vertices
is obtained with length

1 3
Multiplying this length by % the following is obtained:
2 1, 2
3 Ip1I<|R]| (§+-3—6).
But the length of T) is
j=1 J j-3 1 1
h; i=)>) h+~|R|=|R||[=
Dbt u=T kit g |Ris |(2+e)

Conclusion:
2 1 2 1 1
siml<iRl (3+36) <FIRI40| RIS RIG+0)=ITi .

The remaining situation is item 3 in the glossary of the proof. First the statement in this item will
be proved, see lemma 10. Then H’* < %will be proved for this situation.

Definition 12 A diamond-shaped set of points {) is a set of four points such that there is a point
P = (pz, py) and a real number r, the radius of the diamond-shape, for which O = {(p,+r, py), (pz—
r, Py): (Pz;py + ")’ (Pmpy - r)}

a

b b

b a+tc c
a d a

d

Figure 25: plus-shape

Lemma 10 The only set of four points for which % | M |=| T | is the diamond-shaped set.

Definition 13 The RMST T for a diamond-shaped set of four points { consists of a Steiner point
in the middle of the set and four line segments connecting each point to the Steiner point, and is
called a +-shape.

Proof

Note that contractions are applicable on this set, so 2 | A |<| T |. All configurations of four points,
having 2 Steiner points, have been treated above. So consider all configurations of four points for
which the RMST has one Steiner point. Hwang showed that this Steiner point must have two
vertical and two horizontal vertex lines, as depicted in figure 25.

Suppose there is a RMSpT M for this configuration that is routed over the boundary of the smallest
enclosing rectangle. Then there are four possibilities to create M, for there are three corners of
this rectangle in M. Without loss of generality only one of these cases will be treated.

Suppose the upper-left corner of the rectangle is not used in M.

This implies that | M |= a + b+ 2c + 2d and
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l.a4b2b+cea>ec
2.a+b2c+d
.a+b2at+dsb>d

Moreover £ | M |=| T |, implying that ¢ + d = a + b. With equation 1 it follows that d > b and
hence, using equation 3, b = d. This leads to a = ¢.

So if there is a RMSpT, which is routed over the boundary of the rectangle, then the %-bound
is only reached if all vertices have equal distances to each other.
The remaining case is that all RMSpT’s have an edge through the interior of the rectangle, see
figure 25. Without loss of generality suppose that this edge connects the vertices which have their
horizontal carrier in common. This implies that a- ¢ is less than any of the corners of the rectangle
and less than b+ d. Without loss of generality assume that the upper-left and the lower-left corner
of the rectangle are used in M as well. This implies a < b, ¢ < ba<d,c<danda<ec.

Nowsuppose%IM|=|T|,so%(3a+b+c+d)=a+b+c+d¢3a=b+c+d>a+a+a,

which is a contradiction.
This concludes the proof of the lemma.
(|

If the knowledge that all edges of A lie within the RICH for A, is not used, then the only RMST’s
T for a set V for which -:2; | A |<| T | does not hold, are those trees, which will be split by the
induction into subtrees with four points, where these four points have equal distance to each other.
So #V = 3k + 1 for certain k > 1. The theorem would be proved if each of these trees T could be
contracted at least once. But figure 27 shows an example of a RMST T which does not satisfy the
conditions of the Complex Contraction Theorem and which consists of plus-shapes. To the left of
this RMST T a RMSpT M is shown for the same set of vertices. This RMSpT consists of several

possible RMSpT’s for a single diamond-shape. All possible RMSpT’s for a single diamond-shape
have been depicted in figure 26.

A5 amiL +

Figure 26: All possible RMST’s for a single diamond-shape

The following shows that for the approximation A for a +-shaped set V | A |< % | T' | holds.

The trees A that could be produced where Iﬂ = g can be uniquely partitioned into diamond-

shaped sets of four points where these sets touch at the corners. The algorithm ensures that no
edge extends beyond the RICH of the set V. The behaviour of the edges can be described using
the following notion:

Definition 14 The frame B of a diamond-shaped set of points () is the set containing twelve
closed line segments on the carriers of {), bounded by the corners of the enclosing rectangle of ¢,
the middle of ) and ils points.

As was shown earlier, the construction of a RST A containing a Steiner point proves the
theorem, because then certainly 4 < %. Therefore, assume that it is possible to determine a
construction sequence such that the RDAGVD algorithm produces no Steiner points when applied
to a set where Ml = 2 is described above.

The 3k connections in the tree covering 3k + 1 points in ¥ diamond-shapes that have non-
intersecting frames can be classified as follows:

1. connections that use one or more parts of frames while connecting points in different diamond-
shapes,
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. RNENE . = 1
: STt gy B
c e e e e . ._I_l._ll_J J

ST, it

Figure 27: A non-contractable set that can be partitioned into diamonds

2. connections that use no parts of frames while connecting points in different diamond-shapes,
3. connections that use the inner frame segments of one diamond-shape,
4. connections that use the outer frame segments of one diamond-shape.

Type 3 connections can occur only when the algorithm will not use a shorter connection in the
next step as a result of this construction. This can only be avoided when the point whose minimal
distance is reduced is already connected to either of the points joined by the type 3 connection.
Because only one of these connections is possible within the interior of a frame, at most k type 3
connections are possible in the tree.

Type 2 connections are only possible when the points joined are on empty sides of frames, where
a side of a frame is called empty if no other diamond-shape shares the point. The illustrating
figure 28 shows the two possibilities, and a third connection that uses an L-shape that partly
covers a frame segment. Because this situation is subsumed by the one where no frame segment is
overlapped (because there is no possibility for connection to the corner), it is classified as a type
2 connection. As is easily seen, the number of free sides of frames is equal to 2k + 2, but at least
four of these are outside the RICH, implying that at most 2k — 2 free sides of frames can exist.
Because c free sides of frames can cause at most ¢ — 1 type 2 connections, at most 2k — 3 type 2
connections are posssible in the tree.

Type 1 connections can only be constructed if the point whose minimal distance is reduced is
already connected to either of the points joined by the type 1 connection. Because this is only the
case when the type 1 connection can be replaced by a type 3 connection, and these connections
are mutually exclusive, the total number of type 1 and 3 connections is k.

Type 4 connections can only exist if the two sides of frames covered are free. Therefore, at
most 2k — 3 type 2 and 4 connections are possible.

Summarizing, at most k + 2k — 3 = 3k — 3 of the 3k connections can be constructed by the
RDAGVD algorithm without causing a Steiner point in the next step. Therefore, the RDAGVD
algorithm can only produce RSTs A where H < %.

This concludes the proof of the Bound-theorem. [J

7 Clustering

In section 2, the concept of contractions has been introduced. Contractions are useful in the sense
that part of the RMST can be constructed in advance of making an approximation. Contractions
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Figure 28: Type of connections

reduce the search space as the produced line segments have one endpoint on the boundary of the
smallest enclosing rectangle of the original set V and extend to the adjacent parallel carrier. In
this section the concept of clustering is introduced. Considering the original set V, conditions can
be given under which it is possible to add line segments to the set of line segments of the eventual
approximation tree A. But in contrast to contractions the line segments produced by clustering
do not necessarily have an endpoint on the boundary of R(V). This implies that the search space
is not always reduced.

In this section the clustering is applied to points (which may be virtual) which have a carrier
in common.

In the first subsection of this section a supporting theorem for the theorems in this section will
be proved.

7.1 Reduce Carriers

Definition 15 A horizontal (vertical) slab of width w is a range (—o00,00) x (y, y + w) for certain
y ((z,z + w) x (—o00,00) for certain z).

Definition 16 A horizontal (vertical) half-slab of width w is the left (upper) or right (lower) half
of a horizontal (vertical) slab of width w, including the side formed by the separating line.

Let p and ¢ be two horizontal car- r ; ; ]
riers and r and s two parallel car-  ---i--eees fuceanennnes T ey
riers perpendicular to p. Let r be : o T

the leftmost carrier. Let H be the 2 | ; i 6
half-slab having p and ¢ as sides, s i :
as excluded separator, which con- ----ieeeeeee. | R [ beeeee g
tains r. : EX, fxy i

Consider the set L of horizontal line segments of an arbitrary RMST that are located in H. Let
v1, V2,...,v; denote the vertical lines through the endpoints of elements of L, numbered from left
to right. Obviously j < #L.

Let v;Hv;41 (i € {1,...,j — 1}) denote the vertical slab between v; and v;4,, including v;, but
excluding vi41. Let voHv, denote the half plane to the left of v;, excluding v;.

Theorem 8 (Reducing Carriers)
IfHNV = O, then every RMST T for V can be rebuilt to form a RMST T' for V which uses

at most one carrier parallel to p within H. The paris of T outside H are not affected by this
transformation.

Proof By induction.
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o r : ¢S
.............................. ;..... P
.................................. q

X1 . Ii

Figure 29: Result of "Reduce Carriers’ in the neighbourhood of J

The theorem will be proved by proving the following: For i € {0, ..., j — 2}, no horizontal line
segment within H is needed in v;Hv;4; unless it extends to vi4+2, but then it is the only horizontal
line segment in H. For i = j — 1, at most one horizontal line segment within H is needed to cover
v_,-_le_,- .

The statement holds for { = 0, because voHv; N L = @. No line segment extends to the left of v;.

Now suppose that the statement holds for i = 0, ..., k — 1, k < j — 1. Then voHv; N L contains no
horizontal line segment. Let L; denote the set of endpoints of elements of L.

® v; N L; contains no left endpoints. Then the statement holds for i = 0,..k.

® v; N L; contains one left endpoint I. Using the facts that voH v; N L contains no horizontal line
segments and T is a RMST, ! must possess in v; an upward connection to p and/or a downward
connection to ¢. The case that [ has either an up- or downward connection is solved by a reversion
of the L-shape at 1.

Figure 30: [ has either an up- or downward connection

The remaining possibility is that / must possess an upward and a downward connection.

Either (k = j—1) the horizontal line segment at [ extends through j, or an upward and /or downward
connection exists to the horizontal line segment at I, which will be referred to as h. Without loss of
generality, assume that this connection is upward. The former possibility satisfies the conditions
of the statement. For the latter, suppose there is an upward connection only (analogously for a
downward connection). Suppose this upward connection extends to p.

Then shift A upward to p. This
proves the statement correct for
i=0,..k.

Otherwise, if the upward connection vy
does not extend to p, call the lowest point : : :
at vi4y b. Let I be the intersection of b - -j-rr--r-mrmeciormeens P ) St Fereeene 14
and vg. In this case there is no downward r —
connection so b = I'. If there is a L-shape i
at b, then T is not a RMST, for reversing ~ i o 2 Ty o ?
it reduces | T |. k * ¥ ¥
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So a downward or right connection must
exist as well. Suppose a right connection
exists. The upward connection itself may
have several connections to the right, but
it must have at least one right connection
at its top t.

% vk’ ]

Shifting te-el’ to the right renders these right connections useless, contradicting the minimality
of T. Unless there is a connection to the left and the right connections at ¢ and at !’ are the

only right connections. But then h can be shifted upward to this left connection, reducing | T |,
contradiction.

well. Using considerations analogously to
the above, the bottom point b of this ver-

Suppose a downward connection exists as l --------- --------- P

Iy -
tical line segment v;: must have a right !
connection. So reversing the L-shapes at | b; ______
t and b renders line segments obsolete. v iy 1
& (4 b+l

This contradicts the minimality of T

e v; N L; contains two left endpoints. Using the facts that voHv; N L contains no horizontal line
segments and T is a RMST, the upper left endpoint ¢ and the lower left endpoint u must connect
upward/downward to p/q respectively. If ¢ and u are connected using vy, then shift te-eu to the
right. Afterwards reverse the two L-shapes. The same reversions are applied when ¢ and u are not
connected. These transformations show that the statement holds for i = 0, ...,k + 1.

e v N L; contains three or more left
endpoints. Using the same reasoning as
above, the upper and lower line segments
must be connected to p and q.

e H : H
Furthermore, because T is a RMST, at least tw:> line segments must be connected via vi. Shifting
these vertical connections to the right produces at least one obsolete line segment, contradicting
the minimality of T'.
This concludes the proof of the induction step, from which the theorem follows trivially.

O
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Figure 33: Three left endpoints at v,

Part of T lying in A is pushed to the boundaries of A by applying 'Reduce Carriers’. The

vertical line segments in A will never be shifted to the left. The horizontal line segments are
moved up or down.

Corollary 20 Suppose H is a horizontal half-slab of width A on which ’Reduce Carriers’ has been
applied in RST T' producing RST T. Let ly,...,l,n, for certain m, be the vertical line segments in
H. Then T is a RMST implies (l;,li11) > A foralli€ {1,..,m—1}.

7.2 Clustering, perpendicular area.

Let p be a carrier with two adjacent vertices, p; and pi41, (pi, pi+1) = A. Let s; and 541 be two
carriers perpendicular to p such, that p; and p;4, are between or on s; and s;4;. Let A be the slab
between s; and s;41.

Figure 34: Clustering, perpendicular area

Lemma 11 If (5i,8i4+1) = A and ANV = O then a RMST T for V exists, which contains
Di®®Di41.

Proof Trivial, for there is no carrier parallel to s; in A.

O

Theorem 9 If (8i,8i41) > A and ANV = {p;, pig1} and --rorrmrepremsessmssssssanennen. s
Pi (Pi+1) 18 not on 8; (5i41), then every RMST for V must
contain p;e-ep;ii0r p; and piy; are both connected to a
line segment | parallelio p in A, such that | p;er~ep; 41 |<
3A. e s,

Proof
Suppose p is a vertical carrier. Let A; (A2) denote the half-slab of A to the left (right) of p.
Suppose the theorem does not hold. Hence consider a RMST T for V, which contradicts the

theorem. We will prove T is not a RMST.
Ifin T” p; and p;41 are both connected to a line segment {

parallel to p in A and | p;erwep;41 |> 3A, then T” isnot a ~777 77 5

RMST, for deleting one of the connections p;e-el, p; ;1 e-el ?p i

and adding p;e-ep;,1will produce a RST of shorter total 4, A
length. Contradiction. Apply 'Reduce Carriers’ to 17 P,

with respect to A; and A,, creating a RMST T" for V. TV """""""""" ')
cannot contain p;e-ep; jor the theorem would hold. P
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The path in T” connecting p; to p;41 cannot contain a vertical line segment without branches in
A, or profit would be made by the transformations in claim ??, proclaiming 7" is not a RMST.
So at least part of a vertical line segment v, with horizontal branch k; in A; or part of a vertical

line segment v, with horizontal branch h, in A, is used in 7" to connect D; to piy1. Three cases
remain to be proved:

e no horizontal branch in A is used to connect p; to Dig1
e one horizontal branch in A is used to connect p; to Dit1
e both horizontal branches in A are used to connect p; to piyi.

¢ No horizontal branch is used to connect p; to p;4;. This implies that neither h; nor h; is attached
to p; or pi;1. As the only two horizontal carriers in A are the ones containing p; and p;41, h; and
hz are not on a carrier. Since only RMST’s are considered whose line segments are on carriers,
this situation will not arise.

® Only h; is used to connect p; to p;y;. (Analogously for hj).

If hy is connected to p; not using vy, then shift v;,, the lower part of vy, to p, else shift vy, the
upper part of vy, to p. Profit will be made, for p; (if vy, is shifted) or p;41 (if vy, is shifted) must
be connected to s; (si41) using p.

Figure 35: Only h; is used to connect p; to p;qi.

So T" is not a RMST, contradiction.

e Both h; and h; are used to connect p; to p;41. Note that the rightmost point hy, of h; must be
pi or piy1. The same holds for the leftmost point hy, of h;. Otherwise 7' would not be a RMST
or h; (h2) would not be on a carrier.

Figure 36: Both k) and h; are used to connect p; to p;41.

Consider h;, = p; and hy, = pi+1. (The case h;, = p;41 and hy, = p; can be treated in a similar
way.) Adding p;e-ep;;icreates a cycle containing vy, or va,. So delete vy, or vy, making profit:
| v1, |> A and | v2, |> A.
This implies T” is not a RMST, contradiction.

This concludes the proof of the theorem.
W]

Corollary 21 Suppose there is no carrier parallel o p within distance A to p. Then every RMST
for V must contain p;eep;;i.
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7.3 Set contraction

Let py be the lowest point of a forest F. Let u; (us) be the horizontal (vertical) carrier containing
P1. Let p2 be a point, which may be a virtual point (pz € I), lying on us, below p;, such that p,

and p; are adjacent points on ug. Define A = (P1,p2). Let u be the horizontal carrier containing
p2.

Frr——frreerrrerere e ————

& -

Figure 37: Set contraction

Let F’ be a forest, such that every element of F' is a subtree of an element of F and such that its
lowest point, on horizontal carrier uo, has distance at least A to u;. Let E(F) (E(F’)) denote the
collection of edges of elements of F (F'). Let K(F) (K(F")) denote the collection of vertices of
elements of F (F'). Let F” denote (E(F)— E(F')) U (K(F) ~ K(F’)). All elements of F” must
lie on ug, so W(F”) = 0.

Let u4 (us) be the vertical carrier containing the leftmost (rightmost) point of F. Let ug (u7) be
the vertical carrier, which lies 2A to the left (right) of us (ug). Let S be the vertical half-slab of
width 4A + W(F), containing F, with u; as excluded separator, and uz and u7 as excluded sides.

Let S’ be the vertical half-slab of width W(F), containing F', with uo as excluded separator, and
u4 and ug as included sides.

Theorem 10 If(S—S')NV = (F”)NV, then | % / E
a RSTT forV exists, which contains pye-ep;, | % % E
and T is minimal among all RST’s containing P28 / s % 28 !
all elements of F. E é % E
Proof Suppose the theorem does not hold. § % é % 4 ;
Consider an arbitrary RST 7™ for V, which S S //////I/////%, _________ E___,o
is minimal among all RST’s containing all ele- ! i e ; :
ments of F'. Let Hy (H3) be the vertical half- --t---—o--—_ [ I S [, iy
slab of width 2A, having u3 and u4 (us and E ; A" ; E
u7) as sides and u; as separator. Apply 'Re- N pe=-=- oo po--=----- reu
duce Carriers’ to H; and H,, creating a RST '3 % 5 -

T for V.

T’ cannot contain p;e-epy, or the theorem would hold. If 7/ contains a vertical edge in H; (H>),
then call this edge, constrained to H; (H2) vy (v2). The uppermost point of v; (v;) is attached
to a horizontal line segment in H; (H2), call this line segment, constrained to Hy (Hz), k1 (h2).
So h; and h; have length 2A. The part of hy (hz) to the left of vy (v2) is called lh; (lhz). The
following holds: | rh; |> A or | lh; |> A for i € {1,2}.

T' cannot have an edge e of length A or more, such that e C p;e~ep,. So T’ must use part of h;
or part of hy to connect p; to pa, or pye~ep, does not enter either H; or Hy. As rh; or lh; has
length A or more, T cannot use all of h; nor all of h;. So T! must use v; or v3. Suppose T' uses
v1 (v2) then T must use the smallest part of h;y (h2).
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So four cases remain to be considered:
1. v, is used, not vy, to connect p; to ps
2. vq is used, not vy, to connect p; to p;
3. v; and vy are used to connect p; to py
4. pye~ep,; does not enter H; or Hs

Case 1 vy is used, not v,, to connect p; to pa.

Then | v1 |< A, otherwise the theorem would hold. So v; lies below u;.

e Suppose pje~ep, contains a line segment above u;. Then lh; can extend to the left only so
far that the edge containing lh; has length less than A. This implies that the edge e; upward
must begin within distance A from the topmost point of v;. The vertical line segment containing
e; cannot have another horizontal line segment to its right between uo and h;, for then T is
not minimal among all RST’s containing all elements of F. If the topmost point of e; lies on or
above ug, then e; would have length A, implying that a tree supporting the theorem does exist,

contradiction. So at the top of e; there must be a connection e to the left, see the first picture in
figure 38. As e; reaches to us, ez C pyerep,.

]
]
]
:
------------ R et TN -y
&% ;
....... —.;’--- -..l---i.---------i.-..’ :.-..,
] 1 i)
1 ] ]
______ . - -
X g »

¥

Figure 38: Set contraction, case 1

Furthermore uo must be reached by the vertical extension e3 of e;, otherwise T/ would not be
minimal among all RST’s containing all elements of F'. In T” all elements of F” below e; must be
in pyerepy. If the other elements of F” are not connected to es via ez, then delete ez and add
a vertical edge from e, to the lowest of the elements of F” which lie above e;. Then reverse the
L-shape at the rightmost point of ez, as py was already connected to the leftmost point of ez, the
reversion of this L-shape reduces the length of T’. Contradiction.

So the elements of F” lying above e; must be connected to e3 via ez, see the second situation in
figure 38. As a result, e; can be shifted to uo creating a tree in which e3 and e; form one edge
of length more than A. This implies that deleting e3 and e;, then adding p1e-ep; creates a tree
supporting the theorem, which is of shorter total length than 7". Contradiction.

‘e No part of p;e~ep, lies above u;.

If (p1,us) < A, then there is no connection between the leftmost point of hy and F'in § —(H,\UH3)
or T" is not minimal among all RST’s containing all elements of F, see figure 39.

This implies that part of pe-ep, already exists with length A— | vy |, or this situation can be
created by reversing a L-shape. This implies that v; can be deleted and p; e-ep; minus the existing
part can be added, creating a tree supporting the theorem.

So (p1,us) > A, but this implies the existence of an edge e of length A or more, such that
€ C pye~ep,, contradiction.

This concludes the proof of case 1.
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Figure 39: Set contraction: case 1, no part of p;e~vep, above u;.

Case 2 (T" uses v, and not vs to connect p; to
P2-)
This case is similar to case 1.

Case 3 (T” uses v; and v, to connect p; to ps.)
In this case | v; | (| v2 |) < A and there must
be a path between the uppermost points of
v; and v, containing neither p; nor p;. Either
the leftmost point of h; or the rightmost point
of h, is connected to p, without using h; or
h3. Suppose p; is connected to the rightmost --
point of hy, then this case is the same as case
1, otherwise this case is the same as case 2.
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Case 4 (pjorep, does not enter H; or Hj.)

There must be several (> 1) edges in p; envep,
and none of these can have length A or more.
This implies there must be two edges, e; and
ea, in pjer~eps to cover the slab between u;
and ua. At their common endpoint a horizon-
tal line segment h must commence, | h |> 2A.
This implies there can be no horizontal edge ~~
on the same side as h within distance 2A above
h. So there must be a horizontal edge h’ wit-
hin distance A on the other side. Suppose h
lies in H;, then A’ lies to the left of e; and es.

»
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There must be a vertical edge es above h’, or the L-shape at the rightmost point of A’ could
be reversed to form part of pjeep2 and e; would have enough length to complete p;e-ep,. The
topmost point of e3 must be on or above up. So h’ can be shifted upward to ue, thus making es part
of pye~ep,. Analogously to case 1 a tree supporting the theorem can be created. Contradiction.
This completes the proof of case 4 and of the theorem.

a

Corollary 22 If the area to the right of ug but above uy and the area to the left of uy but above
uz does not contain any elements of V, then the existence of p2 as an element of V is not needed:
there exists a RST T containing the line segment downward from p; to uz, and T s minimal among
all RST’s containing all elements of F.

The concept of clustering will be extended to points not necessarily having a carrier in common,
this will be called Slanted Clustering.
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7.4 Slanted clustering, I'-shaped area

Let p be any line not parallel to any carrier with two —— ——~ "~ ~ """~ K P
adjacent vertices p; and p;y;. Let A = (pi, pi4+1). Let A P
H, and H; be half-slabs of width A such that Di41 I8 ! e ;+“|
on both their separating lines and p; is on one of their el S
other borders, H; perpendicular to Hs. Let § = H; N Ho, l
including all its sides. Let A; (42) be H; (H3), where all PR :
boundaries are excluded. - |

Theorem 11 If (A1 UA)NV = B, then a RMST T for V exists in which the path from p; to
Dit+1 lies on the boundary of S.

Proof

Suppose H, is a horizontal half-slab and suppose H, is a vertical half-slab which uppermost points
are on its separating line. Suppose the theorem does not hold. Consider an arbitrary RMST for
V, apply 'Reduce Carriers’ first to A; and then to A,. Call the created RMST 7T”. T cannot have
an edge ¢ of length A or more, such that e C p;ervep; ., for then a RMST T can be created which
satisfies the theorem.

In the following h; and v; denote line segments restrained to the region A; U A,.

Four cases remain to be considered:

1. Vertical line segment v; with branch h; in A; is used to connect Di to pis1.
2. Horizontal line segment h; with branch v, in A, is used to connect pi to piqy1.
3. Both a part of v; and a part of h, are used to connect p; to Di41.

4. Conflicts as a result of applying 'Reduce Carriers’ to perpendicular areas.

Case 1 (Part of v; is used in piorep;.)

Suppose v, lies to the left of p;. Then

move the lower part of v; to p; and re- | "4, !

verse the L-shape at the leftmost point I

hy, of h). So this case is reduced to . b p‘*—-\

the case that vy ison p; or vy liesto ____|___ ™™ = ~oAB i+l :

the right of p;. The latter will be dealt (I |

with in case 3 and case 4. : :
_______ -

Consider the case that v; contains p;.

Suppose | h; |< A. If h; is used to con- L b )

nect p; to p;41, then lower A, to piy; to - n 2, :

create a tree, which supports the theo-
rem.

If hy is not used to connect p; to p;y1, then add hl,L-op.-.,.l, w'here hy_ is the right}nost poinL of
h;. Subsequently h; can be lowered to p;4+;. Now the upper part of v; can be deleted. As this
upper part has length >| h;_e-ep;;; |, T’ cannot be a RMST. Contradiction.
So h; must have length A. As h; is not used to connect p; to pi41, h1 # hs.

If h; is used to connect p; to p;4;, then
move the part of h; which is at the left
of pi+1 up to piy1. This way a tree
is created in which p;e~rwep;,; lies on
the boundary of S. Furthermore, the
part of h; not being moved is obsolete,
implying T” is not a RMST. Contradic-
tion.
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N 5
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| ! I !

Figure 40: Slanted clustering, I-shape: case 1, k; is not used and |hi |< A

If h; is not used, then all of v; must
be in the path from p; to p;y;. Move
the part of v, below p;; but above h
to piy1. The part of v, above p;y; is
obsolete, so T” is not a RMST. Contra-
diction. Besides, reversing the L-shape
above p; creates a tree in which p; is
connected to p;;; over the boundary of
S.

Case 2 (Part of h; is used to connect p; to Pi+1.)
This case is proved analogously to case 1.

Case 3 Both a part of v; and a part of h, are used to connect p; to Dis1.
As in case 1, v; does not lie to the left of p; and h, does not lie below p;i- In this case vy = vy or
hy = hs. If vy = vy, then shift the part of v, between h; and h, to Dit1.

1B I
| |

Figure 41: Slanted clustering, I'-shape: case 3, part of h; and v; is used and v; = v,.

If hy = hj, then shift the part of h; between v; and v, to Pi+1. This way the path from p; to p;4,
lies on the boundary of S. Furthermore T" is proved to be not a RMST for a cycle is obtained.
Contradiction.

Case 4 (Conflicts as a result of applying 'Reduce Carriers’ to perpendicular areas.)

After applying ’Reduce Carriers’ to A; there could be no horizontal line segment in A;. Suppose
that after applying ’Reduce Carriers’ to A, there is a vertical line segment v, in Az, then v, cannot
be to the left of piy1. If vo contains p;1, then reversing the L-shape at the leftmost point of ko,
renders a tree satisfying the theorem. The only situation not treated above is that ks is above p;.
This implies that a L-shape has been reversed so that its corner lies in A;. If v is in the connection
from p; to p;41, then shift vs to piy1 and reverse the mentioned L-shape again, creating a tree T
supporting the theorem.

Otherwise add p;;je-eva,, where vy, is the uppermost point of v, then shift v, to p;y;. Subse-
quently delete the part of hy to the right of vy; this part has greater length than vy e-ep;y;. This
implies 7" is not a RMST. Contradiction.

If there is a horizontal line segment in A; after applying 'Reduce Carriers’ to A;, then hl could be
above, below or on p;;;. Suppose h; contains p;y; then T” supports the theorem, contradiction.
So h; is below or above p;;1. First suppose h; is above p;;1, then this configuration can only be
affected by the application of 'Reduce Carriers’ to A2 if v; is to the right of p;. This implies that
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Figure 42: Slanted clustering, I'-shape: case 4, h, is above Di

this application will reverse the L-shape at the bottom point of v; or a configuration is created as
treated in the previous cases.

1

Figure 43: Slanted clustering: case 4, h; is above p;41

B

B

If hy C pie~~ep;;), then lowering k; to piyy will create a tree T supporting the theorem. Con-
tradiction. Otherwise add h; e-ep;;;, where h;_ is the rightmost point of h;, then lower h;.
Now the vertical line segment v/ above p;;1, which is in the created cycle, can be deleted. As
| v |>| h1,0epis1 |, T’ cannot be a RMST. Contradiction.

So suppose h; is below p;4;. The same reasoning as above holds, so v, does not exist. Call the
upper part of the original v, v'.

VB

B WP
Figure 44: Slanted clustering: case 4, h; is below p;;; and h; is used

If h; is used to connect p; to p;41, then delete h; to add a horizontal line segment A’ from Di+1 to
v/. As | hy |>| b’ |, T” is not a RMST. Contradiction.

it |
]
'8 I p ¢ :

B

Figure 45: Slanted clustering: case 4, h; is below p;;; and h; is not used

So v' must be in the connection from p; to p;y;. Shift the part of v’ below p;4+; but above h; to
pi+1. Reverse the L-shape at the leftmost point of h;. This way a tree is created which supports
the theorem. Furthermore the part of v’ that has not been shifted is obsolete. This implies that
T' is not a RMST, contradiction.

This concludes the proof of the theorem. 1
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If the points considered do have a carrier in common a stronger lemma immediately follows from
theorem 11. For the boundary of S is p;e-ep; ;.

Corollary 23 If p; and p;41 have a carrier in common and (A4, UA)NV =@ then a RMST T
Jor V exists, which contains p;e-ep; ;.

7.5 Slanted clustering, #-shaped area

Let p1, p2 be elements of V, such that p; lies to the left and above p, (or rotations over 90°). Let
u; (uz) be the horizontal carrier, which contains p; (p2). Let g1 (g2) be the vertical carrier, which
contains py (pz). Let b = (g1,¢2) and h = (u;, u3). Let ug (u3) be a carrier parallel to u; which
lies b above (below) u; (uz). Let u4 (us) be a carrier parallel to ¢;, which lies b+ h (h) to the left
of g1. Let ug (u7) be a carrier parallel to g, which lies h (b + h) to the right of g2, see figure 46.
Define D to be the vertical half-slab of width b with ¢1 and g as included sides and uj3 as separator,
such that D does not contain p,.

Define B; (B:2) to be the vertical slab of width b or more, which has us and us (ue and u7) as
excluded sides. B, (analogously for B;) is needed, because then the left part of horizontal line
segments in the slab between u4 and ¢; always has length at least b, enough to cross the slab
between ¢; and ¢;. This way the distance between u4 and ¢; can be reduced to b+ h, as. compared
to 2b + h, the distance between u4 and ug in N-shaped slanted clustering.

Define B3 (By) to be the horizontal slab of width b or more, which has uo and u; (us and u3) as
excluded sides.

Define B to be the union of all B;, (1 < i< 4).

Define A to be the vertical half-slab of width 3b + 2k, which has u4 and u; as excluded sides and
uo as excluded separator and which contains p;.

Theorem 12 If (A — D)U B)NV = {p1,p2} then there erists a RMST T for V in which

I
B3 b

w uS ql qu uwé w7
1 } [ i
I T T 1

! |
b h b h T'b1

Figure 46: #-shaped area

Proof

Notice that all slabs B; contain only line segments (of length 5) perpendicular to the sides of the
slabs. Suppose the theorem does not hold. Consider a RMST T’ for V in which | p;e~wep, |> b+h.
Define Hy (H2) to be the vertical half-slab of width b + h having us and q1 (g2 and u7) as sides
and up as separator, which lies in A.

Apply 'Reduce Carriers’ to H; and H. If 77 uses a vertical line segment vy (v2) in Hy (Hj), then
(v1,q1) € h ({v2, ¢2) € h). Let vy (v2) be attached to hy (h2) a horizontal line segment in H; (Hz)
constrained to H; (H3).
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Suppose for T" still holds | pye~weps |> b+ h. Then T” cannot have an edge e of length b+ h or
more, such that e C pje~vep,. Otherwise e can be deleted and a path between p; and p; of length
b+ h can be created, contradiction.

If vy (v2) exists, then | vy |2 b (] v2 |> b), for slab B; has width & or more.
Four cases remain to be considered:

1. no part of either h; or hy is used to connect p, to p2

2. no part of h; is used to connect p; to py, but part of h; is.

3. no part of hy is used to connect p; to ps, but part of h; is.

4. both part of h; as well as part of h; is used to connect p; to p2

Case 1 (No part of either hy or h; is used to connect p; to p;)
T’ did not have a | pye~wep, |= b + h, therefore p; must be connected to ps via D or the area

7 7

Figure 47: Slanted clustering, #-shape: case 1.
In each case there is an edge of length at least b in the path from p; to p». This is enough to create

a path p;er~ep, of length b + h. This contradicts the assumption that no tree with this property
exists.

Case 2 (No part of h; is used to connect p; to ps)

Z

2

Z

Figure 48: Slanted clustering, #-shape: case 2.

7 Z

e hs is below or on us
e h, is above us

o If h; is below or on uz then v is not used in the path p,e~wep, for v, has length at least b + h.
Suppose p; is connected to the leftmost point of h, without use of ha, as depicted in figure 49.
The following transformation will build a tree supporting the theorem. Move the left part of hs
to up. Move v2 to g2 and use the right part of ks which has length at least b to connect p; to the
image of p; on ¢».

So p; must be connected to the leftmost point of ks using hz. This implies that p; is connected to
D using a vertical line segment and p, is connected to the area above ug using a vertical edge e
of length at least b + h, as depicted in figure 50. Delete edge e and add a horizontal edge between
p2 and the vertical line segment downward from p; to create a tree of shorter total length. This
contradicts the fact that 7" is RMST, contradiction.
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Figure 49: Slanted clustering, #-shape: case 2, p; is directly connected to the leftmost point of
hs.

Figure 50: Slanted clustering, #-shape: case 2, p; is directly connected to the leftmost point of
hs.

e So h; must be above u; and the possibility that v, is used in the path p)ervep,, must be
considered.

First suppose vz is not used to connect p; to p;. And suppose p; is connected to the left-
most point of hy via hy, see figure 51. Then p; is connected to the leftmost point of h; using a
vertical edge upward from p,, otherwise 7/ would not be a RMST. This implies that the same
transformation as depicted in figure 49 creates a tree supporting the theorem. Contradiction.

_
W

Figure 51: Slanted clustering, #-shape: case 2, hy above u3, p; is directly connected to the leftmost
point of hs.

So if vz is not used to connect p; to pa, then p; must be connected to the leftmost point of h,
without use of h;. But then p; must be connected to the rightmost point of A, using a horizontal
edge (of length at least b+ h) through H> or using part of h;. The latter will be dealt with in case
4, the first has already been discussed.

So vz must be used to connect p; to p;. For the same reasons as above, p; must be connected
to the leftmost point of Az using hs. So p; is connected to the leftmost point of A, using a vertical
edge e upward from p,, see figure 52.

Move the part of va below u; to g2, then use the rest of v (which has length b) to connect p; to
the image of p; on ¢g2. This way a tree is created which supports the theorem, contradiction.
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Figure 52: Slanted clustering, #-shape: case 2, h; above U3, vg is used.

This concludes the proof of case 2.

case 3 (No part of h; is used to connect p; to p2.)
e hy is below or on u,

e hy is above u,

e suppose h; lies below or on u;. This implies that v, is not part of the path between p; and p,
for vy has length b+ h or more. In this case it is immaterial whether p1 or ps is connected to
the rightmost point of h; using h;. The following transformations will create a tree supporting
the lemma: move the right part of h; to ug, in order to connect to uppermost point of v; to g;.
Then move the part of v; between ug and u; to ¢y, thus connecting the subtree attached to the
uppermost point of the original v; to p;. Now use the left part of h; and the rest of vy, which
together have length at least b + h, to create a path between p1 and p, of length b + h. These
transformations have been depicted in figure 53. Close inspection will show that 7/ cannot be a
RMST, but as this fact is not needed to prove the theorem it was not elaborated upon.

%

Figure 53: Slanted clustering, #-shape: case 3, h; is below or on u,.

e So suppose h; to be above us. Then p, is connected to the rightmost point of k, using h; or p;
is the rightmost point of h;, otherwise 7% would not be a RMST.

If p; is the rightmost point of h;, then p; must be connected to the area above ug using a vertical
line segment upward from p,. This vertical edge contains a part of length b, namely the part that
crosses Bs. This part can be used to connect p; horizontally to the rest of mentioned vertical line
segment. This way a tree is created which supports the theorem, contradiction.

So p; is not the rightmost point of &, and p; is connected to the rightmost point of h; using
h1, see figure 54. Now suppose v; is used to connect p; to p;. Then moving the part of v, below
u; to ¢y connects p; via this part to the rightmost point of h;. If this creates the required tree
then the rest of v; is obsolete, so T is not a RMST. Otherwise the rightmost point of h; must be
connected to p; using a vertical edge downward from k; to D. Part of this edge crosses By, enough
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to create a horizontal connection from the rest of this edge to ps. This renders a tree supporting
the theorem and leaves the upper part of v; obsolete. So 7" is not a RMST, contradiction.

2

Figure 54: Slanted clustering, #-shape: case 3, h; above u,.

The remaining case is that v; is not used to connect p; to p. Then move the right part of h,
to ug, thus connecting p; to the uppermost point of v;. Then move v1 to ¢, this creates vertical
connection between p; and the rightmost point of A;. The left part of h; has become obsolete, so
T’ is not a RMST. Contradiction. Furthermore a tree supporting the theorem can be created in
the same way as in the case v; was used to connect p; to p2.

This concludes the proof of case 3.

case 4 (Both a part of h; and of h; is used to connect p; to p2.)
There are four possibilities to be considered:

e h; and h; below or on u»

h; below or on u; and h, above u,
e hy above uy and h; below or.on u,
e h; and h; above u,

e h; and k2 below or on us;.

In this case neither v; nor v, is used to connect p; to py, for both these edges have length at least
b+ h. The only cases that can arise in a RMST are that the leftmost point lh; of s is connected
to the rightmost point rhy of h; without using either A, or A, or that the leftmost point lk; of hy
is connected to the rightmost point rh; of h, without using either h; or hj, see figure 55.

Figure 55: Slanted clustering, #-shape: case 4, h; and k3 below or on us.

In the first case p; is connected to p; using a vertical edge upward from p; and a vertical
edge upward from p,. In the latter case these vertical edge go downward from p; and p,. In the
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first (latter) case one of these vertical edges crosses Bg (Bg4) and has length b, delete this edge to
connect p; (p2) to the other vertical edge, creating a path between p; and ps of length b + h.

o hy below or on u; and hs above us.

In this case p; must be connected to the leftmost point of h, using h; unless h; lies on u;, for
otherwise 7" would not be a RMST, see figure 56.

_

Figure 56: Slanted clustering, #-shape: case 4, h; below or on u; and h; above u,.

However the transformations given in case 3 are applicable. Contradiction.

%

e h; above us and ks below or on us.

In this case p; must be connected to the leftmost point of hs
using hz, otherwise 7" would contain a cycle, contradiction.
This implies that h; must lie on u; instead of below u,,
otherwise 7" would not be a RMST, see the adjacent picture.
However the transformations given in case 2 are applicable.

i

e h; and hy above u,

For the same reasons as in the subcase above, p; must be connected to the leftmost point of A,
using hs and h; must be on u;. This implies that the transformations used in case 2 are applicable.
Contradiction.

This completes the proof of case 4 and the proof of the theorem.
O

The following lemma is an instance of theorem 12.

Lemma 12 If p; and p; have a carrier in common and (A— D)NV = {p,}, then a RMST T for
V coniaining p;e-ep; i ezists.

Additional slanted clusterings, in which some of the slabs By, B2, Bs and B4 can be omitted in
exchange for other areas, can be proved in a similar way.
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Let p; be a vertex on horizontal carrier u;

. . 7 727727772
and on vertical carrier us. Let ps be a ver- % 1
tex on horizontal carrier us and on vertical é "
carrier ug. Without loss of generality assume g )
u; to be above uz and us to the left of ug. Let é h =
h = (u1,u3) and let b = (us, ug). Let S denote ﬁ
R({(p1. p1,+), (p2., P2, ~b)}), upper andlo- ; -
wer boundary excluded, the other boundaries é
included. Define ug (ug) as the horizontal car- é
rier 2b below (above) uz (uy). Let uy (u7) be % Z Z
the vertical carrier 2b+ h to the left (right) of = - - -
us (us). et

Let H denote the vertical half-slab of width 5b+ 2h having u4 and u; as sides and u as separator,
which contains p; and in which its separator is excluded. Let H' denote the vertical half-slab of

width b, having us and ug as sides and u3 as separator, which does not contain p1 and in which
all sides are included.

Lemma 13 If (H — H')NV = {py,p;} then a RMST T for V ezists, in which p,e~ep, lies in
S. SoimmT |p1Mp2 |< 3b+h.

Proof The proof of this lemma is similar to the proof of theorem 12. [J

Corollary 24 If uy = uz and (H— H')NV = {py,ps}, then a RMST T for V ezists, such that T
contains pje-ep,.

Let p) be a vertex on horizontal carrier u;

and on vertical carrier us. Let p; be a ver- W 72
tex on horizontal carrier u; and on vertical

a -l

carrier us. Without loss of generality assume ////é i : x
u; be above u; and us to the left of ug. Let ﬁ h “
h = (u1,us) and let b = (us, ug). Let S denote é
R({p1, (P2, p2, — b)}), all boundaries but the g 1 2
lower one included. Define ug (up) as the ho- é
rizontal carrier 2b (b) below (above) uy (u;). é
Let B be the slab with uo and u; as sides. Let 7 . ,
4 (u7) be the vertical carrier 2b+ h to the left - o o v
r ;v 7 p Y 1

(right) of us (ug).

Let H denote the vertical half-slab of width 5b+ 2h having u4 and u7 as sides and ug as separator,
which contains p; and in which its separator is excluded. Let H’ denote the vertical half-slab of

width b, having us and us as sides and u3 as separator, which does not contain p1 and in which
all sides are included.

Lemma 14 If (H — H')UB)NV = {p1,p2} then a RMST T for V ezists, in which pjenwep,
liesin S. So in T | pyenep, |<3b+ h.

Corollary 25 If uy = uz and (H— H')UB)NV = {p1,p2}, then a RMST T for V ezists, such
that T contains pe-ep,.

7.6 Slanted clustering, Z-shaped area

Let p; (p2) be a vertex on horizontal carrier ug (u;) and on vertical carrier u4 (u3). Rotations over
90° are allowed. Suppose p; lies above and to the right of p,. Define b = (us, ug) and h = (uo, uy).
Define uz (us) to be the vertical carrier which lies b+ h to the left (right) of uy (u3). Let Hy (Hz)
be the vertical half-slab of width b + A which has u3 and us (u2 and u4) as excluded sides and uo
(u1) as excluded separator, such that p; (p;) lies on its left (right) side. This situation is depicted
in figure 57.
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&

N\
=

Figure 57: Slanted clustering, Z-shape.

Theorem 13 If (Hy U H2) NV = O then there exists a RMST T for V in which | piemeps |
= (p1,p2)-

Proof

Suppose the theorem does not hold. Consider an arbitrary RMST T” for V. In T' apply 'Reduce
Carriers’ to H; and Ho.
If "Reduce Carriers’ is applied first to H;

and then to Hy, a situation can arise in } :& ;‘ ://'*
which, after the application of "Reduce Catr- % B %/ % %
riers’ to Hy, a L-shape enters H,. The ap- g '5‘{///?5 % LNz L)
plication of 'Reduce Carriers’ to H, will re- é’ ] L g - Z é
verse this L-shape so that it will liein H;. In * ////}.« é 5/@ %
the rest of this proof, the reversed L-shape é H ? % %

. . . i Z i Z
will be considered to be reversed again, whe- . % 74 %

never this is convenient. : . .
After the application of ’'Reduce Carriers’, T cannot contain a path p;e~ep, of length b + h or

the theorem would hold.

If a vertical edge v (v2) is used in Hy (H2), then vy (v;) is attached to a horizontal line segment
hy (hz), constrained to Hy, (H;). The part of h; (hz2) to the left of v; (v2) will be referred to as
lhy (1h2). Analogously rh; (rhs) is the part of hy (hz) which lies to the right of v; (v3). Note that
neither v; nor vz can lie between uz and uq.

T’ cannot contain an edge e of length b + h, such that e C p; e~wep,, otherwise delete e and add a
connection between p; and p; of length b + h, thus creating a tree supporting the theorem. This
implies that at least part of h; or part of h, must be used in 7" to connect p; to ps.

Three cases remain to be considered:

1. no part of h; is used to connect p; to p;
2. no part of hy is used to connect p; to py
3. Both a part of h; and a part of h; is used to connect p; to p2

Case 1 (no part of h; is used to connect p; to p;)
This implies that p; is connected to the leftmost point of k; without using h;.

2 )
Z Z
é éy 7 If hy lies below u;, then moving lk; up to
- % /" u; and reversing the created L-shape at the
-,%» . % lowest point of v;, will create a situation in
Z @ which h; lies on u;.
A7

So h; must lie on or above u;. There are two subcases to be considered:
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® v) C pyervep,

o v [[pre~ep,
e First suppose v; C pje~ep, as depicted in figure 58.

2 : 2 2

Z Z %

7 L - 7 7

ChE I Ve
-
45 s// é‘s 5

Figure 58: Slanted clustering, Z-shape: case 1, v; used
Then move v; to u4 to create a tree supporting the theorem. Contradiction.

® So v; cannot be part of p;erwep,.

2 : 2
o é
~ 2 7 R
5% g Z 5% Z

% % % S
2 2 2 2
K-
R *%-‘ 7

é‘s 5 %5 ?

Figure 59: Slanted clustering, Z-shape: case 1, v; not used

April 4, 1990

Then the following transformations, depicted in figure 59, will create a tree supporting the theorem.
Add pje-ev,,, where v;, denotes the uppermost point of vi. This creates a cycle, such that v, is
part of a connection between p; and p;. Shift v, to uy, now a path pje~ep; of length b + &4 is
created. Delete the part of A; which lies to the right of us. The length of this part is more than
enough to cover the costs of adding p;e-ev,,. This implies that 7" is not a RMST, additional

contradiction.
This concludes the proof of case 1.

Case 2 (no part of h; is used to connect p; to p;)
When rotated over 180° this case is exactly the same as case 1.

Case 3 (both a part of h; and of h; are use to connect p; to p2.)
The following subcases have to be considered:

e h; lies below u; and h. lies above ug
e h, lies above u; and A3 lies above ug

o h; lies below u; and A3 lies below ug
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o h; lies above u; and ks lies below ug

e h; below u; and hs above ug.

This implies that at least vy or v, is in the path from p, to D2, otherwise H; or H, must be crossed
again, so T’ would contain an edge of length b+ A in p; e~vwp,. Suppose lh; is not part of p; ervep,.
The following transformations, depicted in figure 60, create a tree supporting the theorem.

Figure 60: Slanted clustering, Z-shape: case 3, h; below u; and hy above ug.

Move rhy down to ug, this way a tree is created in which no part of h; is used to connect p; to p2-
If the L-shape at the topmost point of v, is reversed, the created tree satisfies case 2. So a tree
supporting the theorem can be created, contradiction.

In figure 60 lh, is not part of p;e~vep, in TV, but rotating the figure over 180° renders the only
other possibility to use k; and h; in p;e~ep, with h; below u; and h, above uy.

e Consider the situation that h, lies above u; and h; lies above uy.
Suppose v, lies on ug, as in the adjacent pic-
ture, then the leftmost point of h; lies on

v2. In this situation lh; cannot be part of é" . ? ; '?
p1e~ep,, for then Hy or H should be crossed é— u é— 277
.. . . / % / 7%
again, implying there is an edge of length b+h Z % ¢ Z Z
in pyerep,. If hy and h; are to be used in this 5%-- & % or 5%-- 4 ?
path, then there must be a connection between % é % g
the rightmost point of k; and either v; or the Z Z i %
rightmost point of A;. In both cases 77 con- ¥ 5 » e
tains a cycle, contradiction.
;: a So v; must lie to the left of uz. As the leftmost point of h; is
% A ; connected to p, without using h;, rh; or v; must be connected
%5 M to the rightmost point of hy, otherwise H; or H, must be crossed
% r.‘—hé again. But then H; or Hz must be crossed again as well to reach
"/////}' % p1- So if both a part of h; and a part of h2 are used in p; enwep,,
Z Z with h; above u; and h; above uo, then an edge e of length b+ h
A; 's// in T" exists, such that e T p; e~wep,. Contradiction.

o h; lies below u; and hs lies below u,.
When rotated over 180°, this subcase is exactly the same as the previous subcase.

® So h; must lie above u; and hy; must lie below ug.

49



7. CLUSTERING April 4, 1990

Suppose h; and h; lie on different horizontal carriers. To ensure
that both h; and h; are used to connect p, to p3, v1 must lie to the
right of u4 and vz must lie to the left of us. Starting at p;, the path
from p; to p; uses lhy or vy, from there it must continue to rh; or
v1. This implies that H; or H2 must be crossed again. So T uses
an edge of length b 4+ h in p;e~wep,, contradiction.

NN
\

N

§:\\\\\m;
IR :L
\\i\\\\\\\ﬁ

-

The only possibility left is that k) and hy are on the same horizontal carrier. Now only one of v;
and v, can lie on u4 c.q. ug, otherwise 7" would support the theorem.

SN\

N
N
e 3
e
‘\\\\\\\w\\jﬁ
%

P ]
&

Figure 61: Slanted clustering, Z-shape: case 3, h; and hs between u; and uq

All possible situation are depicted in figure 61. If v; (or analogously v2) is used in p,e~vep,,
situations a, b and ¢, then move v; to u,. In situation a this creates a tree supporting the theorem.
In situations b, c and d, rh; (or analogously lh,) is used in p; e~vep,. The following transformations
create, for these situations, a tree supporting the theorem. Move the part of h; which lies between

u4 and v; up to up, thus creating p;e-ev;,. Then move v; to us. Furthermore rh; is now obsolete
so 7" is not a RMST. Contradiction.

This completes the proof of case 3 and of the theorem.

O

The following lemma is an instance of theorem 13.

Lemma 15 If p1and p, have a carrier in common and (H, U Ho) NV = @, then a RMST T for
V' exists, which contains p;e-ep; ;.

In this section several theorems have been proved with which line segments can be added before
an approximation algorithm is applied. Note that the placement of one such a line segment can
prohibit the placement of an other line segment. For example consider the four corner points of a
square, see figure 62. Three sides of this square can be added using some of the previous theorems.
Adding the fourth side would imply that one of the other sides would be removed.

® ° [
[ ] [ ] >

Figure 62: Clustering used repeatedly.
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8 Optimizations

The proposed algorithm produces trees A where [l < g- In most cases, there are some optimiza-
tions possible that will reduce this bound further. One of the possibilities is the application of
slanted clustering. This can easily be done by creating the path proposed by the slanted cluster-
ing and checking if the resultant cycle contains a part of length greater than the inserted path.
Trivially, the complexity of checking all possible slanted clusterings is O(n?).

The optimized tree sometimes has a very easily detectable form of suboptimality. This form
of suboptimality occurs when it is possible to reverse one or more L-shapes and delete a resulting
overlap. This can then be solved by replacing one or more corners by Steiner points and deleting
a line segment.

Definition 1 A RST T for a set V is corner-1-optimal if there is no RST T for V with | T’ |
<| T | that can be constructed from T by reversing a L-shape.

Lemma 1 Any RST T for a set V can be made corner-1-optimal in O(n) time.

Proof. A reversal of any L-shape can be accomplished in O(1) and T contains at most n—1 corners.
Definition 2 A RST T for a set V is corner-2-optimal if there is no RST T' for V with | T’ |
<| T | that can be constructed from T by reversing two L-shapes.

Lemma 2 Any RST T for a set V can be made corner-2-optimal in O(n) time.

Proof. A reversal of any L-shape can be accomplished in O(1) and T contains at most n—1 corners.

Figure 1: Corner suboptimality

9 The approximation algorithm

algorithm Main

input A set of points V
output A RST A with li.‘]l < %
begin
sort(V)
build structure to contain RST O(n)
while contraction in some direction legal Rx
do contract in some direction O(n)
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L:=contracted line segments

V:=contracted set
build RVD(V)

for all pairs of neighbouring points in RVD(V)
do for all possible clusterings

do

if corresponding rectangles empty

then add line segment to A

for all pairs of neighbouring points in RVD(V)
do for all possible slanted clusterings

do

if corresponding rectangles empty

then add pair to C

X := A, a set of open line segments and points

construct RICH(X)

construct RDAGVD(X)

while the forest in X still unconnected

do add the shortest edge within RICH(X) to A

update RDAGVD(X)

for every corner in A

do

if corner is 1- or 2-suboptimal
then reverse corner(s)

for every pair in C

do if path between pair shortens A
then replace by path between pair

A=AUL
end

R denotes the number of contractions performed.

algorithm Split
input A set of points V
output A RST A with H < %
begin
compute RICH(V)
split V on its articulation points into V;,---,V,
for each of the sets V;, i € {1,---,a}
do A;:=MAIN(V;,m)
A:=Uieqa,...a) Ai
end

April 4, 1990

o(1)
o(1)
O(nlogn)
O(nx)

O(1x)
O(n)
o(1)

O(nx)

O(1x)
O(n)
oQ)

o(1)
O(nlogn)
O(n?)
O(nx)

O(n)

O(n)

O(nx)
o(1)

o(1)

O(nx)

O(n)
O(n)

O(nlogn)
O(n)
O(n?)

o(1)

Theorem 14 (MAIN) The consiruction of an approzimate RST A for a set V containing n
points in the plane with RMST T, where A is a corner-2-optimal tree and Iﬂ < %can be performed

in O(n?)

10 An example

In this section, the resulting approximate RST for a set of 37 points is presented. With the
exception of the split on articulation points, every construction tool described in this article is

applicable at least once.
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Figure 64: After application of 2-corner-optimality
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