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Abstract

We study a routing scheme on dynamic networks called Prefix Routing
scheme. The scheme is an abstraction of source routing. It assigns fixed
addresses to the nodes and one address per link. Routing of messages is done
by sending the messages out via the link with maximum common prefix with
the destination node. Arbitrary insertions of links and nodes are feasible with
constant adaptation cost. It is shown that any dynamic growing network
can be assigned such a scheme. We characterize completely the type of fixed
networks with dynamic links (i.e. the cost of the links can vary over time)
and dynamic networks with arbitrary insertion and deletion of nodes and
links (without disconnecting the network) that allow optimum routing in this
scheme. A hierarchical routing scheme where each link may carry more than
one address is also introduced and the connections between Prefix Routing
and static Interval Routing are presented.

1 Introduction

In a network such as UUCP, source or path routing is used [NL83, QHS6, MMSsS].
This type of routing assumes that each message explicitly or implicitly contains
an address that specifies a particular path that it wants to follow, for example,
ruuinf!hp4nlimcsuntuunet/samsunglthink!yale!..... Thus the address of a node in a

*This work was partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no. 3075 (project ALCOM).



message is a sequence of names consisting of strings of characters with suitable sep-
arators. A routing table is kept at each node, consisting of O(n) or fewer addresses,
where n is the number of nodes in the network. The next name in the sequence,
1.e. a prefix of the address, is then extracted and the routing table is consulted for
this address. It is a relatively simple scheme, easy to implement and allows for easy
updates upon expansion of the network.

We study an abstract version of this routing scheme and call it the Prefiz Routing
scheme. Basically, each node is labeled with a unique address consisting of a string
of symbols. As a node receives a message that needs to be routed, it checks for
a prefix of the destination address and consults its routing table for this prefix
address. It then routes the message accordingly to the next node. We would like
to keep the local routing table relatively small, say of the order of the degree of the
node. Furthermore we would like the scheme to be dynamic.

In a dynamic environment, networks evolve with topological changes like the
insertion and deletion of nodes and links. The cost of sending messages via a link
may also vary over time, so even with no change in the topology of the networks, the
routing tables may need to be updated. The known schemes for changing the routing
tables per topological or link cost change based on a broadcasting of updates to the
whole network, involve considerable adaptation time and message costs. Even the
simple case of just inserting a node requires O(D) time and O(e) messages, where D
is the diameter and e is the number of links of the network. This explains the current
interest for simpler and /or faster algorithms, based on a suitable combination of the
naming and routing regimes.

It turns out that Prefix Routing is a natural dynamic scheme. Insertion of nodes
and links can be done quite easily. We present various algorithms that assign fixed
labels to the nodes and links of any network (graph) such that a Prefix Routing
scheme is possible. They all have an optimum adaptation cost of O(1). Not all
networks can have a Prefix Routing scheme with optimum routes, no matter how
we label the nodes and the links. We show that only networks with biconnected
components of size 3 or less can have an optimum Prefix Routing scheme, in the
case that arbitrary insertions and deletions of nodes and links (without disconnecting
the network) are allowed. If the networks are fixed, so that there are no insertions
or deletions of nodes and links, then the networks that have an optimum Prefix
Routing scheme are precisely those with biconnected components of size 4 or less.
There are also limitations on the size of the address for any Prefix Routing scheme.
For some networks, the address size of some nodes can be as high as O(Dlog A),
where A is the maximum degree among the nodes of the network.

There is a natural connection between the Prefix Routing scheme and the ” com-
pact” Interval Routing scheme. Interval Routing schemes have been studied and
applied in [SK85, vLT86, vLT87, FJ88, FJ86, PU88, ABLPS9, AGRA89)], in the de-
sign of compact routing tables. In an Interval Routing scheme, a suitable address is
selected from the interval [1..n] for each node and each link is assigned a label which
represents a unique interval from [1..n] (viewed as a cyclic name space). The routing
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table at each node consists of a table of the address intervals of the links, thus of
O(A) addresses. At each node a message with destination s will be routed via the
link that contains s in its interval. It is shown in [vLT86] that every fixed graph can
be assigned a cycle-free, hence valid Interval Routing scheme, though not necessarily
with optimum routes. Optimum routing schemes have been designed with unit cost
links for e.g. fixed trees, rings, grids and complete bipartite graphs [SK85, vLT87].
For fixed networks with arbitrary link costs, outerplanar graphs and c-composable
graphs also have optimum Interval Routing schemes [FJ86, FJ88]. Furthermore, the
Interval Routing scheme has been adapted for dynamically growing trees [AAPS87,
AGR89]. In [AGR89] a dynamic routing scheme is given for trees with O(log n) ad-
dresses per link with address size of O(log?n) bits. Its adaptation cost is O(log n),
amortized over the number of changes in the network.

The rest of the paper is organized as follows. In Section 2 we describe the Prefix
Routing scheme and show that any network can be assigned a Prefix Routing scheme
that guarantees message-delivery. We show how arbitrary insertions of nodes and
links can be performed on the network with optimum adaptation cost. In Section
3 we give a complete characterization of the types of fixed and dynamic networks
with dynamic links that have optimum Prefix Routing schemes. In Section 4 we
introduce hierarchical Prefix Routing schemes, where each link may have more than
one address. We also give the connection between the Prefix Routing scheme and
the Interval Routing scheme. Finally, we state some open problems and suggestions
for future research in Section 5.

2 Prefix Routing Scheme

2.1 Preliminaries

The model we use is the point-to-point communication model. The network is con-
nected and asynchronous. Each node (site) can only communicate with its direct
neighbors via the bidirectional links. We assume that links and nodes do not fail.
When costs are considered, the cost of every link is non-negative and dynamic, i.e.,
costs can vary over time. Moreover, links and nodes can be inserted and deleted
arbitrarily at any point in the network. In this section we only consider growing or
semi-dynamic networks, i.e., only insertions of nodes and links are allowed. In gen-
eral, deletions of links or nodes are more part of the study of faulty networks which
can destroy the validity of the routing scheme and may require some restructuring
of the scheme. However in the next section on optimum routing, we do consider
arbitrary deletions of nodes and links for special types of networks.

In this section we develop a number of basic schemes and discuss some of their
properties. Let ¥ be a set of symbols and ©* the corresponding set of strings over
the alphabet ¥ . We assume throughout that ¥ contains at least two symbols.

Definition 2.1 A T*-labeling scheme for a network G is a scheme for labeling all
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the nodes and links in G such that (a) all nodes get unique labels from £* and (b)
at every node the links get distinct labels from X*.

Thus the Interval Labeling scheme is just a *-labeling scheme, where & =
{1,2,...}, satisfying the Interval Property: at every node and for every destination
address there is a link with label z such that the interval specified by z contains
the destination address. Wraparound of intervals is allowed. The message with the
specified destination address is then routed over that special link to the next node.
The corresponding Prefiz Property is: at every node u of the network G and for any
node v there is a link label z at u that is a prefix of the address label a(v) of v. Any
T*-labeling scheme that satisfies the Prefix Property is called a ¥*-Prefiz Labeling
Scheme.

The basic idea of the Prefix Labeling scheme is to assign a label consisting of a
string, over some alphabet ¥ , to each node. For each link of a node, a distinct label
l; consisting of a string of symbols is attached. All these informations are stored in a
local routing table. When a message arrives at a node u with destination v (distinct
from u), the routing table of labels Iy, ..., 1; is searched for the maximum string [;
such that J; is a prefix of a(v). For example, if a(v) = 0110 and I, = € (the empty
string), l, = 0 and I3 = 0111 then I, is the label that matches the requirement. The
message is then routed via the link labeled by I,.

Formally, we have the following recursive routine that models the routing at each
node.

Procedure SEND(source,dest,m)
{ m a message to be sent from the node labeled source to the node labeled dest }
if source = dest
then process m
else
find maximum link label z such that z is a prefix of dest ;
send m over the link labeled z ;
source := label of node arrived at over link z ;
SEND(source,dest,m)
endif
end. { SEND }

Definition 2.2 A T*-Prefiz Labeling scheme for a network G that, for any v, routes
a message from any node u to v in G correctly by using the link with mazimum label
that is a prefix of the address of v, (i.e. as prescribed by the procedure SEND) is
called a valid X*-Prefix Labeling scheme or simply a £*- Prefix Routing scheme.

We often drop the ¥* if no confusion can arise.



2.2 Tree Labeling Scheme

There is a simple way of labeling a dynamically growing network using a spanning
tree. We call this a Tree Labeling scheme. Assume that ¥ has at least two symbols,
say 0 and 1. Start at an arbitrary node u and label it with 1. A neighboring node
v that is to be attached to u will be named with address 101. The link from u
to v is labeled 701 and that from v to u is labeled e. At the same time node u
keeps a count of the number of nodes that requested insertion so far. The next
node to be attached to u will be named with address 1001 and the corresponding
links will be labeled with 1001 and e respectively. In the meantime the counter of
insertions is again incremented by one. Thus the succeeding neighbors of u will have
as addresses 101, 1001, 10001, 100001, ... i.e., the address of u, followed by a list
of 0’s specified by the counter at the moment of insertion, and a 1. Now apply this
process recursively to all the neighbors of u. In general, if a(v) is the address of a
node v and w is an unlabeled node that needs to be attached to v, then w will get an
address consisting of a(v), followed by a number of 0’s specified by the counter at
v, and a 1. The corresponding link labels will be a(w) and ¢, respectively. However,
if wis a labeled node and a link is created that attaches it to a previously labeled
node v, then the link (v, w) is labeled with a(w) and link (w, v) with a(v). We call
such a link a bypass link. The above procedure can be easily made precise.

Initialization:
Pick a node u and label it 1 ;
c(u) :=1

end;

Procedure INSERT (v,u)
{ Insert a link from node v to node u . Node u has address afu)

and a counter value of c(u) initialized at 1. I(v,u) is the label for link (v,u) }
if vis a new node

then
a(v) = ou)0™1 ;
l(v,u) :==¢;
l(u,v) ;== a(v) ;
c(v):=1;

c(u) :==c(u) +1;
else { bypass link }

I(v,u) := a(u) ;
l(u,v) := a(v)
endif

end. { INSERT }



The validity of this Labeling scheme for routing is expressed in the following
result.

Theorem 2.3 There is a valid Prefiz Labeling scheme for any dynamically growing
network.

Proof. Observe that in the labeling procedure above, every node has an e-labeled
link, except the root node 1. In fact the e-labeled links give a spanning tree of the

network with root 1. Suppose node u needs to send a message to node v. There are
3 cases:

1. u is an ancestor of v: Then there must be a link incident to u with a unique
non-e label that is a prefix of a(v) in the spanning tree or, a bypass link to a
descendant that is an ancestor of v or to v directly labeled with a longer prefix
of a(v). This condition is true for every node that is on the path from u to »
in the spanning tree. Thus a message to v will be routed correctly.

2. u 15 a descendant of v : Then none of the links in the spanning tree at u will
have a label that is a prefix of a(v) except the e-link to the ancestor. Thus
the message will follow the e-links up the tree in the absence of a bypass link.
If there is a bypass link up to v directly or to some ancestor of v higher up the
tree, the message will be routed either to v directly or to its closest ancestor
up the tree due to the maximum prefix condition. From there we get Case 1
again.

3. Neither of the above cases : Then v belongs to a different subtree in the
spanning tree, so the message will be routed up the spanning tree as in Case

2 until an ancestor or a bypass link to v or to an ancestor of v is encountered.
Finally the path as in Case 1 will be followed.

a

The above routing scheme has fixed addressing with names consisting of at most
O(DA) bits and constant adaptation cost (only the routing tables of two neighboring
nodes need to be adjusted at every insertion). The space requirement for each
routing table is O(DA?) bits.

2.3 Path Labeling Scheme

There are several variants of the basic Prefix Routing scheme. One of them is as
follows. As the addresses of the nodes can be quite long, it would be nice if we could
shorten them as the message is being routed. The idea is to strip off a prefix of the
destination address as the message passes through a node. The destination address
can get shorter and shorter until eventually it becomes €. Thus the routing is done



as follows. If a node receives a message with a destination address that is its own
address or an empty address (€) then it knows the message is for it. Otherwise,
it tries to strip off its own address from the destination address and then also the
maximum link label that is a prefix of the remaining address. It then routes the
message with the reduced address via that link to the next node, as before. The
procedure SEND can be modified as follows.

Procedure SEND2(source,dest,m)
{ m is a message to be sent from node source to node dest.
\ denotes the operation of prefix stripping, i.e. a\ b=z, if a = br else a \ b = a. }
if source = dest or €
then process m
else
dest := dest \ source ; { strip off source from prefix of dest if possible }
find maximum link label z at source such that z is a prefix of dest ;

source := label of node arrived at over link z ;
send m over the link labeled z ;

dest 1= dest \ ¢ ; { strip off the link label too }
SEND2(source,dest,m)
endif

end. { SEND2 }

Similar to Prefix Labeling scheme, we can define a Path Labeling scheme as a
labeling scheme that allows us to use the procedure SEND2 and a Path Routing
scheme as a valid Path Labeling scheme if we use procedure SEND2.

The idea of Path Labeling approximates the practice of specifying a path by the
sequence of names of the consecutive nodes and links along the path. It appears that
we only need to slightly modify the Tree Labeling scheme to obtain a Path Labeling
scheme. Again assume that ¥ has at least two symbols: 0 and 1. Then the nodes
are labeled just as before, but the link labels are changed. The link from a son to its
father in the underlying spanning tree is still labeled by ¢, but the downward link is
now labeled by a sequence of 0’s appended by a 1. The number of 0’s is specified by
the counter value. The label of a bypass link from an ancestor down to a descendant
also needs to be modified accordingly, by stripping off the ancestor’s address from
the descendant’s name. Otherwise, everything remains identical. Formally, the
procedure INSERT2 for a Path Labeling scheme is given as follows.

Initialization:
Pick a node v and label it 1 ;
c(u) =1

end;



Procedure INSERT2(v,u)

{ Insert a link from node v to node u . Node u has name a(u)

and a counter value of c(u) initialized at 1. I(v,u) is the label for link (v,u) }
if vis a new node

then
a(v) = a(u)0™1 ;
l(vu) ;== €;
l(u,v) := 01 ;
c(v):=1;

c(u) :=c(u) +1;
else { bypass link }
I(v,u) := a(u) \ a(v)
l(u,v) := a(v) \ a(u)
endif
end. { INSERT? }

Theorem 2.4 There is a valid Path Labeling scheme for any dynamic growing net-

work.

Proof. Suppose node u needs to send a message to node v. Again there are 3

cases:

1. u is an ancestor of v : Then it is possible for u to strip off its address from

the address of v, as a(u) is a prefix of a(v). Note that the reduced address
cannot have I as a prefix. Now, there must be a link with a unique non-¢ label
that is the prefix of the reduced address, a(v) \ a(u), in the spanning tree or,
a bypass link if u is directly connected to a descendant that is an ancestor of
vor to v directly with a longer matching prefix as a label. After stripping off
this link label, the destination address gets shorter again but still cannot have
1 as a prefix. This condition is true for every node that is on the path from
t to v in the spanning tree until the reduced address becomes e. The message
has then arrived at its destination.

. u 15 a descendant of v : Then it is not possible for u to strip off its address
from o(v), since a(u) is longer than a(v) and thus not a prefix. Thus the
destination address of v remains intact with 1 as a prefix. None of the links
in the spanning tree will have a label that is a prefix of a(v) because they all
have 0 as a prefix, except the e-link to the ancestor. Thus the message will
follow the e-link up the tree in the abscence of a bypass link. If there is a
bypass link up to v directly or to some ancestor of v higher up the tree that
matches the prefix of a(v) then the strip-off process applies. The address is
reduced and does not have 1 as a prefix anymore. From there we get Case 1
again.



3. Neither of the above cases : Then v belongs to a different subtree in the
spanning tree, so the message will be routed up the spanning tree as in Case
2 until an ancestor or a bypass link to v or to an ancestor of v is encountered.
Finally the path as in Case 1 will be followed.

O

There is another variant of Prefix Labeling schemes. Instead of tagging the
number of 0’s after each name in all the given schemes, one could use the counter
value itself (e.g. in decimal). But then we need to increase the alphabet to include
{1, 2, ... } and separate the counter numbers somehow, say with the symbol !
(as in UUCP). It is then straightforward to implement a more compact form of
the Tree Labeling scheme or the Path Labeling scheme. First label the root with
!. The first son will be labeled with /1, the second son /2 and so on. The sons
of /3 will be named /8/1, !3/2 and so on. In short, we only have to change three
lines in the insertion procedure for the Path Labeling scheme: (a) the first line of
the Initialization becomes Pick a node u and label it !, (b) in Procedure INSERT?,
change the statement a(v) :=a(u)0°)1 to a(v) :=a(u)!c(x) and (c) change the
statement I(u,v) := 041 to I(u,v) :=!c(u). Observe that every name has a ! as a
prefix and so do the link labels except for the e-links. It is easy to see that it gives
a valid Prefix Labeling scheme.

The above scheme has fixed addressing and constant adaptation cost. The size
of the addresses can still be O(D log A) bits for some graphs, but the labels are now
only O(log A) bits for the tree links and can be O(D log A) bits for the bypass links.

2.4 Strict Labeling Scheme

Not all Prefix Routing schemes are necessarily Tree Labeling schemes. For example,
in a fixed complete graph a node can be prefix-labeled by any arbitrary name as long
as the links are labeled with the corresponding names of the nodes it is connected
to. Suppose we are given an arbitrary Prefix Routing scheme on a network and
now wish to insert a node at an arbitrary point. The naive scheme of picking a
name for v and append it to the name of u, as in the Tree Labeling scheme, will not
work. There is no guarantee that this new found name is unique, even if u knows
all the names of its direct neighbors. For instance, suppose v has as name a(u)z
and a(u) = ab. There may be a node somewhere in the network with name abz
which happens to clash with the name of v. One way to get around this problem is
to impose the following extra condition on the Prefix Labeling scheme.

Definition 2.5 A Prefiz Labeling scheme for a network G is Strict if no names are
prefizes of each other.

Thus in a Strict Prefix Routing scheme the names of the nodes together form a
prefiz code.



Lemma 2.6 There is a scheme for insertion of nodes and links to a Strict Prefiz
Routing scheme such that the scheme remains Strict.

Proof. Assume that I contains at least 0 and 1. Let the name of u be a(u) and
suppose v is to be connected to u. Then we can label v with a(u)1 and relabel
with o(u)0. The link (v,u) is labeled with € and (u,v) with a(v) as in the Tree
Labeling scheme. The resulting scheme remains strict since the original name of
is not a prefix of any other name and the current names of u and v are not a prefix
of each other either. Any message to the new node v will be routed via u because
a(v) has as prefix the old address of u. However the current name of » has an extra
0, so whenever u receives a message it needs to strip off all the trailing 0’s from the
destination address and also its own name, then compare them to see if they are
really the same. Note that there cannot possibly be two names that are identical
even after all the trailing 0’s are stripped off, otherwise they are prefix of each other
to begin with. With this slight adjustment, it is easy to see that the new scheme
will route messages properly and is thus valid. -0

Note that the Tree Labeling scheme as given before is not Strict. But if we
append a ! to the name of each node but not the link labels, then it becomes Strict,
since each address will then terminate with a 11 and that is the only place in the
address that actually has two consecutive 1’s. Thus, there is a Strict Prefix Routing
scheme with fixed addressing and constant adaptation cost for any dynamically
growing network.

3 Optimum Prefix Routing Scheme

3.1 Tree Networks

The algorithms for constructing a Prefix Routing scheme as given in the last section
do not take the possibly different costs of the links into account. Thus in general,
they do not give optimum routing schemes, i.e. messages may not follow minimum
cost routes. The algorithms clearly give optimum routing for trees, as the paths
are then unique. In fact, the Path Labeling scheme does give an optimum Prefix
Routing scheme for trees with constant adaptation cost and each link requires only
O(log A) bits. However, the address of a node can still be O(D log A) bits long for
some trees. Thus for a chain of n nodes one can have an address size of O(n). Can
this be improved? Unfortunately, this is not the case, as shown by the following
result.

Lemma 3.1 Any Prefiz Routing scheme for a tree with diameter D requires an
address size of Q(D) for some nodes.

Proof. Consider a path of length D in the tree. Stretch it out as a line of D nodes
with w as the center node. Let the nodes to the left of w be called u;, us, ..., ux and
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those to the right vy, vs,...,vy , where k£ and m are approximately %. Any label
wie st for the left link of the node w can be extended to p(uy,..., ug), the maximum
common prefix of the labels of all the nodes to the left of w, without affecting the
validity of the routing scheme. Thus without loss of generality, we can assume that
the left link label wjes: is equal to p(u1, ..., ux) and that similarly, the right link label
Wyight is equal to p(vy,...,Um). By definition, wiese # Wyrigne. Pick the longer prefix
of the two labels, say wiese. Then wies must contain at least 1 symbol and all the
nodes to the left must have wis: as a prefix. Now consider u;, the second node to
the left of w. Again without loss of generality, the label for the left link of u; is
Ugtest = p(us, ..., ux) and the label for the right link is usrighe = p(u1,Z,v1, ..., Um)-
Now, Uzright = Wright DUt Ugjess > Wiest, otherwise any message to u; from uy would
be routed to the left. This means that all the labels of the nodes to the left of u,
must contain ug.s: as a prefix and thus must have at least 2 symbols. Consider in
turn every other nodes to the left, uy, ug, ... and repeating this argument, it follows
that these nodes must have labels of increasing length (in the given order). The
leftmost node u; must have a label with at least £ symbols, thus is of size Q(D).

O

Thus for a chain of n nodes, we must have {}(n) symbols in the address of some
nodes and the Tree Labeling scheme in the last section provides this lower bound.
For a balanced tree with diameter D = O(log n) and maximum degree A = O(525;)
the address size given by the Path Labeling scheme is only O(log?n). Also any
complete A-ary tree has about AP nodes, thus requiring (D log A) bits for the
names of some nodes already. Thus the Path Labeling scheme actually gives an
optimum address size labeling and optimum routing for such a tree. Are there any
other kind of networks that have optimum Prefix Routing schemes?

3.2 Fixed Networks

We first consider a restricted version of the optimality question for Prefix Routing
where the topology of the network is fized, i.e. there is no further insertion or
deletion of nodes and links. However, we will allow that the cost of the links can
vary over time. Even in this restricted case, optimality is not achievable with Prefix
Routing for certain kind of networks. In this section we will explore this interesting
problem and obtain a characterization theorem that classifies the fixed networks
that do admit fully optimal Prefix Routing schemes.

Lemma 3.2 Any ring network Cp of size n > 5 has no optimum Prefir Routing
scheme.

Proof. Consider first the ring of size 5 labeled as in Figure 1.
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Figure 1

Assume all links have unit cost and assume that there is an optimum Prefix
Routing scheme for this ring. We use the following notations: p(i,j) denotes the
maximum common prefix of the labels of nodes i and j, and @ > b, ¢, ... means
that each of the strings b, ¢,... is a strict prefix of string a. Now consider node 1.
It needs to route messages to nodes 2 and 3 via link (1,2) and to nodes 4 and 5 via
link (1,5). Without loss of generality we may assume that link (1,2) is labeled with
p(2,3) and similarly link (1,5) with p(4,5). Since messages to nodes 2 and 3 cannot
be routed via link (1,5), i.e. without using the link label p(4,5), it must be that

1(a):  p(2,3) > p(2:4), P(2,5), P(3,4), P(3,5)
or 1(b):  p(4,5) > p(2:4), p(2,5), p(3,4), P(3,5) .

And considering all the other nodes in turn gives us the following:

2(a):  p(3,4) = p(4,5) or 2(b):  p(1,5) > p(4,5) ,
3(a):  p(4,5) = p(1,5) or 3(b): p(1,2) > p(1,5) ,
say  p(13)=p(L2) oo 4(b)  p(23) > p(L2) |
5(a):  p(1,2) > p(2,3) or 5(b): p(3,4) > p(2,3),

where we have shown only those labels that we shall need in the proof.

Now assume 1(a) is the case. Then we have p(2,3) > p(3,4), which implies 5(b) is
not the case, so we have 5(a): p(1,2) = p(2,3), which in turn makes 4(b) impossible.
Thus we have 4(a) and in turn 3(a) and then 2(a). Summarizing, we now have:

P(2,3) > p(3,4) > p(4,5) > p(1,5) = p(1,2) > p(2,3),

which is a contradiction. Similarly it is not possible that 1(b) is true. Hence a ring
of size 5 cannot possibly have an optimum Prefix Routing scheme.

If the size of a Cy, is an odd number n > 5, then we can insert half of the number
of nodes exceeding 5 between nodes 2 and 3, and the other half between nodes 4
and 5, all with unit cost links. The above argument will then cover this situation
also. If n is 6, then we can insert node 6 between nodes 4 and 5. Assign the cost
of 1 each to link(4,6) and link(5,6). Then each of the five original nodes still has to
route messages the same way, so the argument for the size 5 case applies. The case
of rings of even size > 6 can be handled the same way as for odd sizes. O
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Thus even with fixed link costs a ring of size 5 or more can have no optimum
Prefix Routing scheme. There are networks that contain only cycles of size 4 and
have no optimum Prefix Routing scheme also.

Lemma 3.3 The complete bipartite graph Ka 3 with dynamic link costs has no op-
timum Prefizx Routing scheme.

Proof. Let the network be given as in Figure 2.

(S

Figure 2

Call a link (i,j) of any network forbidden if no optimum path from i to j includes
it. It is clear that any optimum path in the network cannot contain a forbidden link.
Assume there is a labeling scheme such that the Prefix Routing scheme is optimum.
Consider node 3. Suppose the forbidden links are link (1,2) and link (4,5). Then
node 3 must route messages to nodes 1 and 4 via link (1,3), and nodes 2 and 5
via link (3,5). As before, we assume that link (1,3) and link (3,5) might as well be
labeled with p(1,4) and p(2,5), the maximum common prefix of the corresponding
nodes, respectively. Since messages to nodes 1 and 4 cannot be routed via link (3,5)
using the label p(2,5), it must be that

3(a):  p(2,5) > p(1,2), P(2:4), P(1,5), P(4,5)
or  3(b): p(1,4) > p(1,2), p(2,4), P(1,5), P(4:5)-

Suppose the forbidden links now become link (1,4) and link (2,5), as the costs of
the links vary over time. Since the addresses are fixed we can no longer change the
names of the nodes. By the same reasoning as above, we must have

3(A):  p(4,5) = p(1,4), P(2:4), p(L,5), P(2,5)
or  3(B): p(1,2) = p(1,4), p(24); p(1,5), P(2,5)-
If case 3(a) is true, then we have p(2,5) > p(4,5) and this contradicts 3(A): p(4,5)
> p(2,5). So it must be 3(B), which contains p(1,2) > p(2,5), but this is impossible

due to 3(a). Thus 3(a) cannot be the case. Similarly neither can 3(b). So there
is no optimum Prefix Routing scheme for the network under the given constraints.

a

Combining the above two Lemmas, we have the following theorem.

13



Theorem 3.4 If a network with dynamic link costs has an optimum Prefiz Routing
scheme then it cannot contain any subgraph with a cycle of length > 4 or a Ka3.

Before we state the positive results, some preliminaries are needed. We shall
use a construction similar to tree labeling based on some spanning tree, except that
each node of the tree may comprise a special group of nodes. Let us call each group
node a g-node . Each g-node will have one of its member nodes designated as the
root node. Recall that in the construction of the Tree Labeling scheme in section 2,
each descendant node was given an e-labeled link connected to its direct ancestor.
Thus in order for the spanning tree with g-nodes to route messages properly, each
member of a g-node should have an e-link also. There are basically two sizes of
g-nodes : those with 3 or 4 elements. The following lemmas show why they are
important for the scheme.

Lemma 3.5 There is an optimum Prefiz Routing scheme for a fized biconnected

component of 4 nodes with dynamic link costs such that every node in it (except the
root node) has an e-link.

Proof. Label the root node a, for some non-¢ string a, and the other 3 nodes az,
ay , and az, where z, y and z are distinct, and the maximum common prefix of z, y
and z: p(z,y,2) is not e. Note that any biconnected component of 4 nodes can be
obtained from the graph in Figure 3 by assigning prohibitive cost to appropriate
links to make them forbidden.

()

Figure 3

Suppose costs have been assigned to the links. Determine a set of shortest paths
P such that every subpath of a path in Pis also in P and for any two nodes u and v
there is a unique shortest path in P from node u to v. Any forbidden link is labeled
by a string b that is not a prefix of any of the labels for the nodes. We label the
links of a node u according to the number of forbidden links that it has, as follows.

1. There are 2 forbidden links: So the only path in P left for u is via link (u,v)
for some v. If u is the root node then label link (u,v) with p(az,ay,az) else
label it with € at u.

14



2. There is only 1 forbidden link: So there are two paths in P that u can use. One
path, say via link (u,v), is of length 1 and the other path, say via link (u,w),
must be of length 2. We label the links using the following routine.

if u is the root node

then
l(u,v) := a(v) ; { label link (u,v) with address of v }
I(uyw) = p(az,ay,az)
else
if v is the root node
then
l(u,v) :==¢;
l(u,w) := p(az,ay,az)
else
I(u,v) := a(v) ;
l(u,w) := ¢ { root node is along this path }
endif
endif.

3. There is no forbidden link: Then u has three available links. If node v is the
root node then label link (u,v) with € otherwise label link (u,v) with a(v).

We claim that the above routine assigns labels correctly and optimally. Suppose
node u sends a message to node v. It is easy to check that if node v is of path length
1 away from u in the shortest path set P then the above routine routes the message
in one hop also. This gives us the correct induction basis. Now assume the routine
routes messages correctly for path length k > 1 and the path length from u to vis
k+1. Then node u cannot be of type 3 above. So node v must have 1 or 2 forbidden
links. If it is of type 1 then there is only one link available and the link label is such
that o(v) satisfies the prefix requirement. If it is of type 2 then there are 2 links
available, but the link labels are such that a(v) satisfies only the prefix requirement
for the link with path length 2. In either case the message is routed to the next

node via the correct link and by induction hypothesis correctly and optimally from
there on.

If the link costs change, then the link labelings can be changed by only local alter-
ations to keep the scheme optimum. O

Lemma 3.6 There is an optimum Prefiz Routing scheme for a biconnected com-
ponent that is a fired Cs (a cycle of 8 elements) with dynamic link costs such that
every node in it (except the root node) has an e-link.

Proof. Let the root node of the Cs be labeled a where a is not € and the other
two nodes az and ay, where z and y are distinct and the maximum common prefix
of z and y: p(z,y) is not e.
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Let a cost be assigned to each link. The forbidden link at any node is labeled
with a string that is not a prefix of any of the labels for the nodes. For any node u
we label the links as follows.

1. u has no forbidden link: Then label any link (u,v) at u with € if node v is the
root node, otherwise with a(v).

2. u has one forbidden link: Then the only available path left is via link (u,v) for

some v. If u is the root node then label link (u,v) with p(az,ay) else label it
with e.

It is now routine to verify that the above labeling scheme gives a valid and optimum
Prefix Routing scheme for the component.
In the case of link cost changes, the link labeling is easily updated accordingly. O

Theorem 3.7 Any fized network with dynamic link costs which contains no cycle of
length greater than 4 and no subgraph K2 3 has an optimum Prefix Routing scheme.

Proof. Consider any (connected) network G that contains no (simple) cycles
of length > 4 and no K33. It is easy to verify that if a biconnected component
of size 5 or more contains only cycles of length 4 or less then it must contain the
subgraph K2 3. Thus biconnected components of G are necessarily of size 4 or less,
and can be viewed as g-nodes, with the remaining edges of G connecting them as
a spanning tree. After choosing a root of this tree, assign the ’root-nodes’ in every
g-node and label the network by the technique used in the Tree Labeling scheme.
Upon encountering a biconnected component of size 3 or 4, label the links inside the
g-node as in Lemma 3.6 or Lemma 3.7. Note that the labels for the nodes satisfy
the conditions in the two lemmas.

We claim that the above routing scheme is optimum. Suppose node u sends a
message to node v. If u and v are in the same component, i.e., g-node, then by
Lemma 3.6 and Lemma 3.7 the message is routed optimally. So suppose they are
in different g-nodes. Call a g-node a a group-ancestor of g-node S if the path from
the root node to B passes through a. We then also call 8 a group-descendant of a.
Observe that if vis in the group-descendant of the g-node u then v must be a proper
descendant of some node w in the g-node u, hence a(w) must be a prefix of a(v). So
a message to v must be routed through w and from there by induction hypothesis
it will be routed optimally. Similarly, if v is in the group-ancestor of the g-node
then the message will be routed through the local root node via the e-link. If neither
of the above is the case then the only link label that will satisfy is the e-link. The
message will travel via e-links until it reaches a group-ancestor of g-node v and then
will travel to v as in the first case.

As the costs of the links change so do the routing tables of the adjacent nodes,
according to Lemma 3.6 and Lemma 3.7. Since the biconnected component are only

16



of size 3 or 4 the adaptation cost is of O(1). The routing tables for nodes that do

not belong to a biconnected component (the tree nodes), need not be changed at
all. a

Combining the above results, we obtain a characterization of the fixed networks
with dynamic link costs that have an optimum Prefix Routing scheme.

Theorem 3.8 (Characterization) A fized network with dynamic link costs has
an optimum Prefiz Routing scheme iff its biconnected components are of size 4 or
less.

3.3 Dynamic Networks

In a fully dynamic network, nodes and links can be inserted and deleted arbitrarily.
Since we require our network to be connected, we do not allow deletion of links
that will cause disconnection of the network. It is clear from the construction of the
schemes for biconnected components of size 3 and 4 that the links of the components
can even be deleted, as long as this causes no disconnection of the network. This is
so, because deletion tantamounts to levying a prohibitive cost on that link. Insertion
of nodes with one link can be done without affecting the optimality of the scheme.
So is the insertion of links such that the cycles formed are of size 3.

Theorem 3.9 Any dynamic network with arbitrary insertion and deletion of nodes
and links, such that there is no disconnection of the network and no cycle of length
greater than 8 is formed at any time, has an optimum Prefizr Routing scheme.

Proof. Consider the network at some moment, with an optimum Prefix Label-
ing in effect according to the Tree Labeling scheme. There are only two ways that
a cycle of length 3 can be formed dynamically.

1. A node u is connected to one of its siblings v : In which case both v and v
have a common father, say with node label a. Then » must have label az for
some non-¢ string z and similarly v must have label ay where y is also non-e
and distinct from 2. The condition for Lemma 3.7 is satisfied, so the routing
tables of the three nodes can be adjusted accordingly to be optimum.

2. A grandson node u is connected to its grandfather v: Then similarly v must
be labeled by some a, u’s father w by az and u by some ay, where z is a strict
prefix of y. Again the condition for Lemma 3.7 is satisfied.

a

The above construction does not work if a cycle of length 4 is formed arbitrarily.
In fact, we have the following.
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Lemma 3.10 There is no optimum Prefizx Routing scheme for dynamic networks of
more than 4 nodes with dynamic link costs that allows arbitrary insertion of nodes
and links such that cycles of length 4 are formed.

Proof. Suppose we have at least 5 nodes and that eventually the connections as
in Figure 4 are made.

Figure 4

Then there are two ways in which a cycle of length 4 can be formed.

1. link (2,5) is connected: Then this is case 1 of K3 3 in Lemma 3.4, if we consider
link (4,5) as forbidden.

2. link (4,5) is connected: This is case 2 of K23 in Lemma 3.4, if we consider
link (2,5) as forbidden.

In either case we have a contradiction as in Lemma 3.4. So it is not possible to label
the graph properly so a robust, optimum Prefix Routing scheme is obtained. O

Note that the above argument does not contradict the result for cycles of length
3, because we then get the situation as in the case of biconnected components of
size 4, which can be done according to Lemma 3.6. We summarize the above results
in the following theorem.

Theorem 3.11 (Characterization) A dynamic graph of more than 4 nodes with
dynamic link costs that allows arbitrary insertion and deletion of nodes and links,
such that there is no disconnection of the network, has an optimum Prefiz Routing
scheme iff it contains no cycle of length > 3.

4 Hierarchical Prefix Routing Scheme

The Prefix Routing schemes introduced so far assume only one label per link. If we
relax this requirement and allow an arbitrary number of labels (up to n) per link
then we obtain a so called multi-label Prefix Routing scheme.
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Definition 4.1 A Routing scheme is called a k-Prefix Routing scheme (or k-PRS

for short), where k > 1, if it employs the prefiz routing technique and there are only
at most k labels per link.

Thus a 1-PRS is the standard Prefix Routing scheme. It is clear that the set
of networks with dynamic link costs that have an optimum k-PRS is contained
in the set of networks with dynamic link costs that have an optimum (k + 1)-PRS
(denotation: k-PRS C (k+1)-PRS), so that we have a hierarchy of Prefix Routing
schemes. As before we implicitly assume that only valid k-Prefix Routing schemes
are considered.

In the last section, we saw that a ring of size > 4 has no optimum 1-PRS.
However, the corresponding situation is more pleasant if we allow a 2-PRS.

Lemma 4.2 Any fized ring with dynamic link costs has an optimum 2-PRS.

Proof. Label the nodes 1, 101, 1001, ... (say) clockwise around the ring and
assume some initial assignment of link costs. For each node u, find the minimum
spanning tree with u as the root. Assume clockwise is right and counterclockwise is
left. Let the leftmost and rightmost leaves of the tree be v and u, respectively (if
they exist); also, let v be the next neighbor to the right (clockwise) from u. Then
the links of u are labeled as follows: If there is no leftmost or rightmost leaf then
label the forbidden link 0 ( since no node has such a prefix) and the other link .
Otherwise, label the right link of u by v and the left link u;. Whenever the rightmost
leaf u, is not a prefix of u (i.e. the tree contains node 1 ) we also need to double-label
the right link with e. Similarly, we double-label the left link by e if the leftmost leaf
is not a prefix of u. Fortunately, these two conditions cannot occur simultaneouly,
otherwise we would have two €’s on the links. It can be shown by induction that
this indeed yields an optimum scheme.

Note that in the case of link cost changes it is possible that almost the entire link
labeling of the ring network has to be updated in order to retain an optimum scheme.

g

In a fixed network, it has been shown in [SK85, vLT86, FJ88] that any ring has an
optimum Interval Routing scheme. Thus in the static case, there seems to be some
connection between 2-PRS and 1-IRS. It turns out that indeed the last lemma is a
special case of the following general condition. For the notion of k-IRS see [vLT87).

Theorem 4.3 Any fired network that has an optimum k-IRS also has an optimum
(k+1)-PRS. '

Proof. Let G be a network that admits a k-IRS, with node labels 1, 2, S, ... .
Then we can relabel the nodes 1, 101, 1001, ... . For each link-label j we relabel it
with a 1 followed by (j—1) 0’s. If there is a special link-label j > 1 that contains 1 as
an interval (i.e. there is a wraparound) then we need to label that link with € also.
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Let the network so labeled be called G'. Then there is a natural correspondence
between G and G': node label a < 10°~'1 if a # 1 and link label 7 < 10°-1. Note
that the link labels satisfy the following property: ¢ < j in G & ¢/ < j' in G/, where
¢/ and j' are the corresponding links for ¢ and j, and < is the prefix relation.

We claim that the above translation of schemes is correct. For suppose that node
a sends a message to node b using the k-IRS in G. Then node a looks up its routing
table and find the maximum link label ¢ such that : < b. It then routes the message
via that link. In the corresponding G’, node a’ will look up its routing table also and
find link label ¢’ where ¢/ < ¥'. If there is a wraparound, i.e. there is no link label 2
in G such that : < b, then node a will pick the maximum label ¢ and that interval
will contain 1. But in this case that link will have an extra label in G’ labeled ¢, so
this will be the only link that will satisfy the prefix requirement in G’. In either case
both G and G’ will route message using the same link. Thus if G has an optimum
and valid k-IRS then G’ has an optimum and valid (k + 1)-PRS also. O

Note that in the above construction, only a single link per node requires an extra
label and this causes the k-PRS to jump up to (k + 1)-PRS; the rest of the links
have at most k labels. This is because the idea of wraparound the interval is not
inherent in the Prefix Routing scheme, so we need an extra e-labeled link to handle
this special case.

On the other hand we have the following lemma.

Lemma 4.4 There ezists a fized network with dynamic link costs that has an opti-
mum 1-PRS but no optimum 1-IRS.

Proof. Let the network be given as in Figure 5.

Figure 5

Clearly all the biconnected components of this network are of size 4 or less, hence
by theorem 3.8 it has an optimum 1-PRS.
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Now we will show that there doesn’t exist an optimum 1-IRS for this network with
dynamic link costs. Assume that the names l3,l,,13,14 and l5 are given to nodes of
the network as indicated by figure 5. W.l.o.g. we may assume that | <l < I3 < l,.
Assign link costs such that the links (I1,14), (I2,5), (I3, 1s) become forbidden links.
To route messages from node [; to nodes l; and I4 optimally the label of link (I3, 3)
must be an interval containing the interval [l4, l;]. As messages from node !; to node
Is will not be routed over link (y, l3), it follows that I5 & [l4, l5]. Hence we have two
possible cases: 1) Il < I5 < I3 or 2) I3 < I < l5. We will show that neither of the
two possibilities will allow an optimum 1-IRS.

1. l; < ls < l3: Assign link costs such that links (I3, 5), ({2, l4), and (I3, l4) become
forbidden links. To route messages from node [/; to nodes l; and I3 optimally
link (13, l2) must be labeled with an interval containing the interval [I3, I3]. But
Is € [I2,15], hence this scheme is not valid.

2. I3 < ls < lg: By a very similar argument one shows that there cannot be an
optimum 1-PRS.

a

Thus there is no containment relation between 1-PRS and 1-ZRS. In [FJ88] a
slightly different definition of 1-IRS is used. Here it is required that each link of a
node is labeled with an interval that doesn’t contain the label of the node itself. We
denote this version with 1-IRS’.

In [FJ88] it has been shown that a network with dynamic link costs has an optimum
1-IRS’ iff the network is outerplanar. It is known that a graph is outerplanar iff
it does not contain a subgraph that is a subdivision (i.e. by adding zero or more
nodes into the links of the graph) of K2 s or K4 (See [CH67]). We have seen that the
complete graph of 4 nodes K4 with dynamic link costs has an optimum 1-PRS. Thus
even without lemma 4.4 it is clear that there is no containment relation between
1-PRS and 1-TRS’. On the other hand, it can be shown that 1-PRS C 2-IRS.

Lemma 4.5 Any fized network with dynamic link costs which contains no bicon-
nected components of size > 4 has an optimum 2-IRS.

Proof. Assume a network with no biconnected components of size > 4 is given.
Let n be the size of the network. This network can always be given a dfs-numbering
such that in every biconnected component of size 4 we have the situation shown in
figure 6, where Iy, 13, 13,14, and s are dfs-numberssuchthat l; <l <l3 <y < s < n,
and L1 = [1,11) U (S, 'I'L] = (8, 11), L2 = (12, 13), L3 = (13, 14), and L4 = (14, 3] are the
sets of dfs-numbers of the nodes outside this component that only can be reached
through the nodes with dfs-number [y, I, 13, and I, respectively.
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Ls
Figure 6

Let v be a node of the component. If 0 or 2 links adjacent to v are forbidden
links of the component, then it is easy to see that each non-forbidden link adjacent
to v needs only one interval label to route messages optimally. If exactly 1 link
adjacent to v is forbidden, then one of the two non-forbidden links will need one
interval label only whereas the other will need at most two interval labels to route
messages optimally.

Similarly it can be shown that links in biconnected components of size 3 and links
in the other connected components of the network need only one interval label to
route messages optimally. O

5 Conclusion

There are several open questions. First, concerning the hierarchical Prefix Routing
scheme, only 1-PRS is characterized. What about k-PRS for £ > 1?7 Also, the
containment in the hierarchy k-PRS C (k + 1)-PRS should be strict. For the
containment of k-PRS C (k + 1)-IRS, only the containment 1-PRS C 2-IRS is
known and the proof of this depends on the characterization of 1-PRS.

If node labels can be chosen after the assignment of link costs, the set of networks
with optimum k-PRS (k > 1) will probably be larger than k-PRS. No characteriza-
tions of these sets are known. (In [FJ88] a characterization of the class of networks
is given in the case of 1-Interval Routing.)

Even though dynamic link costs can be considered as link deletion without dis-
connecting the network, we have not considered fault-tolerant networks in general.
In a truly dynamic environment, nodes and links can go down and up rather arbi-
trarily. Can a Prefix Routing scheme be adapted for such a network?

Not all dynamic networks can have a constant adaptation cost regardless of what
schemes we used. For example, a ring of size n with dynamic links require updating
of all the local routing tables of the whole ring. But for trees, is there a dynamic
routing scheme that will give a constant (amortized) adaptation cost but with a
smaller address size than O(Dlog A) as for Prefix Routing schemes?
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