Higher order attribute grammars: a merge
between functional and

object oriented programming

S.D. Swierstra, H.H. Vogt

RUU-CS-90-12
March 1990

Utrecht University

Y .
.8,
5 " Q’_ Department of Computer Science
X - .
Cr 5 Padualaan 14, P.O. Box 80.089,
Kb g

3508 T8 Utrecht, The Nétherlands,
Tel. : ... +31-30- 531454




1888:0924~3275



Higher Order Attribute Grammars: a Merge between
Functional and Object Oriented Programming

S.D. Swierstra, H.H. Vogt

Department of Computer Science, Utrecht University
P.0.Box 80.089, 3508 TB Utrecht, The Netherlands
E-Mail:swierstra@cs.ruu.nl, harald@cs.ruu.nl

March 30, 1990

Abstract

Using incrementally evaluated attribute grammars as a programming language en-
tails the advantanges of both the functional programming style and the object oriented
programming style. On the one hand there is a complete absence of the need to ex-
plicitely schedule computations in order to maintain functional dependencies between
data, whereas on the other hand the underlying syntax trees being edited, capture the
concept of a state. In this paper we identify the underlying principles of this dual view
and propose extensions to the standard attribute grammar formalisms. A delegation
mechanism is introduced in order to deal with the user interface management part of
incrementally evaluated attribute grammars. Finally we discuss the use of structure
sharing in the efficient implementation of the proposed extensions.

1 Introduction

In this paper we show that attribute grammars are in principle widely applicable, offering
a uniform solution to many problems in the area of purely functional systems, in the area
of object oriented systems and in the systematic construction of user interfaces.

In the first section we discuss the relationship between the functional and ob ject ori-
ented programming paradigms and attribute grammars. In further sections we describe
the extension of the conventional attribute grammar formalism to higher order attribute
grammars. This extension makes the formalism more widely applicable. Next we introduce
a delegation mechanism, which will be instrumental in the description of user interfaces.
In the last section we will give an indication of how these extensions might be implemented
at reasonable costs.

Attribute grammars were originally introduced to describe the transduction of pro-
gramming languages into machine code[Knu68, Knu71]. As such they may, together with
affix-grammars and logical programming languages like Prolog, be considered as machine
implementable approximations to so-called two-level grammars, which were succesfully
used in the description of Algol-68[Wea75, CU77).
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In the past two decades the emphasis on research on attribute grammars has been
on the automatic construction of compilers, of which the efficiency approximates that
of hand-written ones. Because most widely used programming languages however were
designed with the construction of an efficient hand written compiler in mind, it has in
practice proved especially hard to attain similar efficiencies with automatically constructed
compilers. This has been the main cause that a lot of actual compiler writers still view
attribute grammars as a tool of mainly theoretical relevance, whereas most programmers
consider attribute grammars mainly as a compiler construction tool.

In recent years incrementally evaluated attribute grammars have become increasingly
popular[RTD83, RT89]. In these systems the user of the system performs editing op-
erations on an underlying abstract syntax tree and the system automatically maintains
the attributes corresponding to the nodes of these trees and the functional dependencies
between them. Being originally introduced as a means for the automatic construction of
language based editors out of language specifications based on attribute grammars, these
systems have appeared to be much wider appliccable[vE8S, VBF90, KBHG+ 87]. Currently
systems containing a lot of data from different types, and with complicated relationships
between these data, are routinely constructed using e.g. the Synthesizer Generator[RT89).

2 Relation to Other Formalisms

2.1 Attribute Grammars from a Functional Programming View

One of the main advantages of the use of attribute grammars is the static (or equational)
character of the specification. The description of relations between data is purely func-
tional, and thus completely void of any sequencing of computations and of explicit garbage
collection (i.e. use of assignments). We demonstrate this by giving two formulations for
the same problem: take a labelled binary tree and compute the front of the largest com-
plete subtree which shares its top with the original tree. A sketch of the computation and
the role of some of the identifiers is given in figure 1

The correspondence with functional programming languages is demonstrated by the
grammar in figure 2, which has been transcribed into a Miranda[Tur85] program in figure
3. To make the similarity even more striking we have introduced a compact notation for
attribute grammars, showing the nonterminals, their functionality (i.e. the set of inherited
an synthesized attributes), the various productions and the semantic functions in one single
formula.
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LTREE(int dist—int* front, int lcf)
(1)::=LTREE, integer, LTREE
LTREE,.dist := LTREE,.dist := LTREE,.dist-1
LTREEy.lcf := min(LTREE,.Icf, LTREE,.lcf)+1
LTREE,.front := if LTREE,.dist=1— [integer.val]
[] LTREE,.dist>1— LTREE,.front ++ LTREE,.front

fi
(2)| EMPTY
LTREE.lef:= 0
LTREE.front := undefined
ROOT(—int* front)
(3)::=LTREE

LTREFE.dist := LTREE.Icf
ROOT.front := LTREE . front

Figure 2: Attribute Grammar

ltree ::= NODE ltree int ltree | EMPTY
ROOT ::= ltree

eval ltree(NODE left i right) dist = (min(leftlcf, rightlcf)+1, front)
where  (leftlcf, leftfront) = evalltree left (dist-1)
(rightlcf, rightfront)= eval ltree rigth (dist-1)
front = dist=1— [i]
dist>1— leftfront++rightfront

eval ltree EMPTY dist = (0, undefined)

ROOT v = front
where (front, Icf) = eval v Icf

Figure 3: Miranda Program



In the program texts lcf stands for level of complete front, and dist is used to locate
the level of the complete front in the original tree. Note that inherited attributes in the at-
tribute grammar correspond directly to parameters and synthesized attributes correspond
to a field in the result of eval. The underlying tree on which the computation is performed
is implicit in the attribute grammar description and explicitely present in the Miranda de-
scription. The lazy evaluation of the Miranda program allows the use of so-called circular
definitions, roughly corresponding to multiple visits in attribute grammars.

Having a single set of synthesized attributes is in direct correspondence with the result
of a program transformation called tupling. In [KS86) it is shown that this correspondence
can be used in transforming functional programs into more efficient ones, thus avoid-
ing the use of e.g. memo-functions{Hug85). Often inherited attributes dependencies are
threaded through an abstract syntax tree, which corresponds closely to another functional
programming optimisation called accumulations[BW8S8, Birg4].

As a consequence the result of many program transformations which are performed
on functional programs in order to increase efficiency, are automatically achieved when
using attribute grammars as the starting formalism. This is mainly caused by the fact
that in attribute grammars the underlying data structures play a more central role than
the associated attributes and functions, whereas in the functional programming case the
emphasis is reversed.

From this correspondence it follows that attribute grammars may basically be consid-
ered as a functional programming language, without however providing the advantages of
many such languages as higher order functions and polymorphism.

2.2 AG’s from an Object Oriented View

With the advent of incrementally evaluated attribute grammars the concept of state has
entered the arena. Basically the state can be split into two parts:

e initial part
the abstract syntax tree and the initial atiributes, representing that part of the state
which can be manipulated from outside of the system

e derived part
the rest of the attributes, which describe an extension of the state which is (either
directly or indirectly) functionally dependent on the initial part of the state

The term initial attribute may need some further explanation. In most attribute grammar
systems it is assumed that the root of the abstract syntax tree has its inherited attributes
filled in by the rest of the system, whereas the synthesized attributes of the terminal
symbols are being provided by the scanner. Because we will need a more general class of
attributes, i.e. those attributes which do not depend on other attributes, we will introduce
so-called initial attributes.

When comparing an attribute grammar with an ob ject oriented system we may note
the following correspondencies:

grammar object oriented program
individual nodes set of objects
tree structure references between objects

tree transformations outside messages to objects
attribute updating  inter-object messages
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The main difference with most object oriented systems however is that propagating up-
dating information is done implicitely by the system as e.g. in the Higgins[HK88] system,
and not explicitely, as in e.g. the Andrew[ea86] system or Smalltalk.

The advantage of this implicit approach is that the extra code associated with correctly
scheduling the updating process has not to be provided. Because in object oriented systems
this part of the code is extremely hard to get both correct and efficient, this is considered
a great advantage.

In conventional object oriented systems there are basically two ways which may be
used in maintaining functional dependencies:

¢ maintaining view relations
In this case an object notifies its so-called observers that its value has been changed,
and leaves it up to some scheduling mechanism to initiate the updating of those
observers. Because of the absence of a formal description of the dependencies under-
lying a specific system, such a scheduler has to be of a fairly general nature: either
the observation relations have to be restricted to a fairly simple form, e.g. simple
hierarchies, or potentially very inefficient scheduling has to be accepted.

¢ sending difference messages
In this case an object sends updating messages to objects depending on it. Thus
not only an object has to explicitely maintain which other objects depend on it,
but it can also be gleaned from the code on which parts another object depends.
Furthermore but it has also to be known in which way that other object depends
on it. A major disadvantage of this approach is thus that whenever a new object

class B is introduced, depending on objects of class A, also the code of A has to be
updated.

An advantage from this approach is that by introducing a large set of messages it
can be precisely indicated which arguments of which functional dependencies have
changed in which way, and probably costly complete reévaluations may be avoided.
Although this fact is not often noticed, such systems contain a condiderable amount
of user programmed finite differencing [PK82] or strength reduction. As a conse-
quence these systems are sometimes hard to understand and maintain.

In the sequel we will show how we may achieve some of the efficiencies of hard-hand-coded
object oriented programs, without having to provide all the scheduling details and with
maintaining readability, by using an extended attribute grammar formalism.

2.3 Higher Order Attribute Grammars

One of the main shortcomings of attribute grammars has been that often a computation
has to be specified which is not easily expressable by some form of induction over the
abstract syntax tree. The cause for this shortcoming has been the fact that often the
grammar used for parsing the input into a data structure dictates the form of the syntax
tree. It is however in no way obvious why especially that form of abstract syntax tree
would be the optimal form for performing the rest of the computations. Some attempts
have been made to alleviate this problem.

Attribute coupled grammars[gG84] allow multi-pass compilers to be elegantly described:
the result of an attribute evaluation can be an abstract syntax tree again, which is then
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used as a starting point for the next pass. In a limited sense this solution has also been
chosen in the Synthesizer Generator, where a special attribute computed from the parse
tree as delivered by the parser of the input, is taken as the initial tree to perform the
attribute computations upon. Furthermore the way in which the attribute representing
the unparsed tree is computed may be considered as another attribute coupled grammar.
As afurther, probably more esthetical than factual, shortcoming of attribute grammars
is that there is usually no correspondence between the grammar part of the system and the
functional language which is used to decribe the semantic functions. A direct consequence
of this dual-formalism approach is that a lot of properties present in one of the two
formalisms is totally absent in the other one, resulting in the following anomalities:

e often at the semantic function level considerable computations are being performed
which could be more easily expressed by an attribute grammar. It is not uncommon
to find descriptions of semantic function which are several pages long, and which are
directly describable by an attribute grammar.

e in the case of an incrementally evaluated system the semantic functions do not profit
from this incrementality property, and are, in the case of re-evaluation completely
re-evaluated.

Higher order attribute grammars[VSK89] were introduced by promoting abstract syn-
tax trees (i.e. recursive data structures) to first class citizens:

¢ they can be the result of a semantic function
o they can be passed as attributes

o they can be grafted into the current tree, and then be attributed themselves, prob-
ably resulting in further trees being computed and inserted into the original tree.

In the previous section we have seen that partially parametrising an evaluation function
with a tree results in a function mapping inherited to synthesized attributes. Because of
this close correspondence between trees and functions the term higher-order was coined
for grammars allowing this kind of attributes.

In [VSK89] an example is given in which a multi-pass compiler is being described
using higher order attributes. Here we will demonstrate another use of such attributes:
the possibility to avoid the use of separate semantic functions. In figure 4 a grammar
is given which describes the mapping of a structure consisting of a sequence of defining
identifier occurrences and a sequence of applied identifier occurrences onto a sequence of
integers containg the index positions of the applied occurences in the defining sequence.
Thus the program:

let a,b,cin a, c, ¢, b ni

is mapped onto the sequence [1, 3, 3, 2].
In the example the following can be noted:

e The attribute env is a higher order attribute. The tree structure is built using the
constructor functions ENVs and ENV;, which correspond to the respective produc-
tions for ENV. The attribute envis instantiated (i.e. a copy of the tree is attributed)
in the occurences of the first production of APPS, and takes the role of a semantic
function.



ROOT( — int* seq)

(1)::= let DECLS in APPS ni
APPS.env := DECLS.env
ROOT.seq := APPS.seq

DECLS( — int number, ENV env)
(2)::= DECLS, identifier
DECLSq.number := DECLS, .number

DECLSp.env := ENVg([identifier.id, DECLS, .number](DECLS;.env))
(3)] EMPTY

DECLS.env := ENV,
DECLS.number := 1

APPS(ENV env — int* seq)

(4)::= APPS, identifier, env
APPSp.seq := APPS).seq ++ [env.indez]
env.param := identifier.id

(5)] EMPTY
APPS.seq := []

ENV(ID param — int indez)
(6)::= [ID id, int number], ENV
ENVy.indez := if ENVy.param=id — number
[] ENVy.param#id — ENV,.indez
fi

ENYV,.param := ENVy.param

(7)) EMPTY
ENV.indez := errorvalue

Figure 4: A Higher Order Attribute Grammar



o The first alternative of the nonterminal ENV contains two initial attributes. At-

tributes from this class are initialised by the constructor functions, to which they
are passed as an extra set of parameters.

o Notice that there may exist many instantiations of the env-tree, all with different at-
tributes. There thus does not any longer exist an one-to-one correspondence between
attributes and abstract syntax trees. As we will see in the last section this brings
many consequences for the implementation, and some opportunities for optimisation.

We finish this section by noticing that this grammar too may be directly transcribed
into a functional language. For the representation of the higher order attribute we have
two choices: ‘

1. either we construct a recursive data structure, and at the place of the instatiation
we place a call of a function eval_env to which this data structure and the inherited
attributes are passed

2. or we partially parameterize a function eval_ent’ with the two initial attributes and

the function representing its descendant, and use this function at the place of the
instantiation.

3 Handling User Interaction and Message Passing

In most incrementally evaluated attribute grammar systems the handling of user interac-
tion is not described using the formalism itself. In the Synthesizer Generator the unparsing
of a tree closely reflects the structure of the abstract syntax tree, and for good reasons.
Because there is no general way for describing which characters on the screen refer to
which nodes in the tree a simple, invertable unparsing scheme had to be chosen.

The problem that one needs more flexibility in unparsing than merely giving some
flattened form of the tree has been widely recognised[HT86] and solving this problem in
a wider sense is one of the main research topics in the area of user interface management
systems. Considering language based editing it might be desirable e.g. to have separate
windows representing:

e the nesting structure of the procedures

e the text of a specific procedure

e the text documenting that procedure

¢ a number of program fragments containing calls to that procedure

In such a system one might imagine that the contents of the last three windows is auto-
matically updated, when a specific procedure is selected in the first window.

In [FZ88] a two-dimensional unparsing scheme is introduced, using a preprocessor
which adds a number of hidden attributes to the tree used to represent the position of
the boxes on the screen which correspond to the nodes in the tree. However the hierar-
chical structure of the parse tree still dictates the hierarchical structure of the unparsed
representation.



It is here that higher order attribute grammars may play an important réle in describ-
ing the user interface. Many alternative representations of the initial structure may be
computed in higher order attributes. These attributes may be passed through the tree and
combined in several ways. Finaly these structures will be unparsed into a representation
on the screen. Although this may seem to be quite a step away from normal attribute
computation, actually all most conventional application programs do is computing new
data out of existing data, and using this data as a further basis for computation. The main
difference in our approach is that this is done in a functional style and in an incremental
way.

We make the following assumptions:

e external representations are closely associated with a higher order attribute tree in
the application. Pointing at a screen is easily mapped onto selecting a node in that
tree. We will call the nodes of such a tree visible nodes. Most user interface man-
agement systems (e.g. [SG86]) will provide some form of such an inverse mapping.

¢ for every nonterminal in the grammar a number of transformations is defined. When
a transformation is applied to a specific node such a transformation either changes
the tree at that position, provided the node is part of the initial tree, and/or changes
the value of an initial attribute.

As we have seen the user of the system is presented some external representation,
computed from internal data; a computation which may have gone through several steps
before resulting in the displayed data.

The problem to be solved now (the pointing problem) is that visible nodes may be
selected, whereas initial nodes have to be transformed. As a consequence a mapping from
visible to initial nodes has to be realised, which is achieved as follows:

o for every derived node (and thus for visible nodes), it is maintained at which node
it was constructed. This relation may be used to trace back for each node, and
especially the visible nodes, the initial node from which it finally originated. The
nodes on the chain to that initial node we will call its ancestors.

e when a visible node is selected, all its transformations, and the transformations of
its ancestors, are made selectable.

e when a specific transformation is selected, the transformation is performed, and the
usual update mechanism is started. This will most likely have as a result that the
final external representation is updated, thus giving the user a visible feedback of
the change to the initial data.

In the object oriented terminology one would say that when a node cannot handle a
specific transformation, this transformation is delegated to its ancestor. In figure 5 a chain
of nodes is depicted, together with a set of possible transformations at each node. When
the indicated sub-structure of the external representation is selected, all transformations
associated with nodes A, B and C become available and may be selected.

At first sight it may seem undesirable to allow transformations on non-initial nodes,
because this would break-up the functional dependencies. We allow however transfor-
mations which change initial attributes of intermediate ancestors for the following reason.
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Figure 5: A Node Chain with Transformations

When constructing some form of external representation, it is often not clear how to choose
certain aspects of this external representation. Examples of this are its size or the location
on the screen, or what part of the total data structure should be represented by visible
nodes. Default choices can be made by providing specific values for the initial attributes.
It is however essential to be able to change the value of these initial attributes, without
having to change the initial data.

We finish this section by noting that there is no straightforward way to map this
mechanism onto a purely functional language. This is amongst others caused by the fact
that we now may have different states corresponding to the same initial state.

4 Incremental Evaluation of Higher Order Attribute Gram-
mars

In this section we discuss how structure sharing is used for the efficient implementation of
incrementally evaluated higher order attribute grammars.

Various strategies for incremental evaluation of attribute grammars have been deve-
loped [Rep82, Rep84, Yeh83, Hoo86). It is no surprise that any extension to the basic
attribute grammar formalism comes with its associated increase in complexity of the eval-
uation strategy [RMT86]. Further complicating factors are thus to be expected from
introducing higher order attributes.

We note the following complicating aspects:

® Because a higher order attribute may be instantiated at several positions, as e.g.
the env attribute in the example, several sets of attributes may be associated with
a single syntax tree. This is comparable with the full functional programming case
were a procedure is in general invoked more than once. It is a considerable extension
of the conventional attribute grammar case, in which every tree occurs only once,
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and the incremental updating process is using the original tree as a simple cache
structure.

* It may be the case that during attribute evaluation the structure of the total tree
is changed because new values get assigned to higher order attributes. As a conse-
quence some of the attributes which may be assumed by the updating algorithm to
be affected, may appear to have become inaccessible during the updating process.

e There is ample opportunity for structure sharing[Chr89], because higher order at-
tributes are inherently structural objects.

¢ As demonstrated by the example it may be the case that there are several instan-
tiations of a higher order attribute in existence which have the same inherited
attributes. This is caused by the fact that we use attributes to model semantic
functions. It is desirable to indentify these identical expansions in order to avoid
superfluous computations. When an environment has changed it is desirable that
the consequences of this updating are computed for every distinct identifier, but not
for every identifier occurrence.

In [VSK89] a transformation is given, which maps a higher order grammar onto a
conventional one. The basic step in this mapping is the addition of extra dependencies to
productions in which higher order attributes are instantiated. These dependencies are used
to indicate that the attributes of the instantiation depend on the higher order attribute,
which should thus be evaluated before visiting the tree described by it. All grammar based
dependency analysis may be done on the transformed grammar.

In order to get reasonable efficiency we expect to make extensive use of structure shar-
ing. In order to do so we maintain two heaps, the structure heap SH and the instantiation
heap IH. Higher order attributes are represented by pointers into SH, and the evaluation
of every node-constructing semantic function results in a new structure in SH. From a
functional programming point of view we may consider every pointer into SH as uniquely
identifying an evaluation function, partially parameterised with an abstract syntax tree.

Nodes in the attributed tree are represented by four-tuples in IH:

1. A pointer Sinto SH, representing the structure of the attributed tree of which this
node is the top.

2. The values of the inherited attributes IV.
3. The values of the synthesized attributes SV.

4. Pointers SP to the nodes of its sons. These pointers may be nil when the attributes
of the sons have not yet been evaluated.

Finally we maintain a partial mapping M:
(structure-pointerxinherited attributes)—node-pointer.

We will now first consider the simple case of a nonterminal which is only visited once
during an evaluation. When the node with structure s gets scheduled for evaluation the
following steps are taken:

11



1. evaluate the values ik of the inherited attributes
2. if sxth is in the domain of M, then share the attributed tree M(s, ih).
3. if not create a node in IH, containing the values s and ih and visit that node.

In this way we achieve a memo-function implementation[Hug85). Note that in this way
all instantiations of a higher order attribute, when called with the same arguments, are
shared and evaluated only once. An interesting aspect is now the following observation.
When, as a result of reevaluation, a value in the SH changes, the nodes in IH referring to it
will be marked for reevaluation. Because there are only as many nodes existent as there are
different sets of inherited attributes a considerable increase in speed may be achieved. Not
all instantiations, but only all different instantiations have to be reevaluated. Furthermore,
those subtrees for which the reevaluation results in the same synthesized attributes as
before, may be left out from the data structure maintained for rescheduling.

We now consider the case in which multiple visits may be necessary, and assume that
the visits are ordered in some way. The solution is now to consider each visit as not
only returning its associated synthesized attributes, but also the partially parameterised
function corresponding to the as yet unevaluated part of the tree. This function is readily
identified with the node in the IH, containing the inherited and synthesized attributes of
the visit. So by extending the domain of the function M to (SHUEHx IH) and making
the first component of the structures in the IH not only refer to elements in SH but also

to elements in IH, the aforementioned memo-isation can be extended to the multiple visit
case.

5 Conclusions

The correspondence of attribute grammars with functional programs has been indicated.
We have shown how by using higher order attribute grammars, coupled with chaining
nodes in the trees in order to find the appropriate places for performing the indicated
transformations, the application area of attribute grammars can be considerably extended.

We expect that by further pursuing this similarity, and introducing some of the elegance
which functional programs exhibit into the attribute arena, attribute grammars can be
turned into a widely used programming formalism.
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Abstract

Using incrementally evaluated attribute grammars as a programming language en-
tails the advantanges of both the functional programming style and the object oriented
programming style. On the one hand there is a complete absence of the need to ex-
plicitely schedule computations in order to maintain functional dependencies between
data, whereas on the other hand the underlying syntax trees being edited, capture the
concept of a state. In this paper we identify the underlying principles of this dual view
and propose extensions to the standard attribute grammar formalisms. A delegation
mechanism is introduced in order to deal with the user interface management part of
incrementally evaluated attribute grammars. Finally we discuss the use of structure
sharing in the efficient implementation of the proposed extensions.

1 Introduction

In this paper we show that attribute grammars are in principle widely applicable, offering
a uniform solution to many problems in the area of purely functional systems, in the area
of object oriented systems and in the systematic construction of user interfaces.

In the first section we discuss the relationship between the functional and ob ject ori-
ented programming paradigms and attribute grammars. In further sections we describe
the extension of the conventional attribute grammar formalism to higher order attribute
grammars. This extension makes the formalism more widely applicable. Next we introduce
a delegation mechanism, which will be instrumental in the description of user interfaces.
In the last section we will give an indication of how these extensions might be implemented
at reasonable costs.

Attribute grammars were originally introduced to describe the transduction of pro-
gramming languages into machine code[Knu68, Knu71]. As such they may, together with
affix-grammars and logical programming languages like Prolog, be considered as machine
implementable approximations to so-called two-level grammars, which were succesfully
used in the description of Algol-68[Wea75, CU77].
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Figure 1:

In the past two decades the emphasis on research on attribute grammars has been
on the automatic construction of compilers, of which the efficiency approximates that
of hand-written ones. Because most widely used programming languages however were
designed with the construction of an efficient hand written compiler in mind, it has in
practice proved especially hard to attain similar efficiencies with automatically constructed
compilers. This has been the main cause that a lot of actual compiler writers still view
attribute grammars as a tool of mainly theoretical relevance, whereas most programmers
consider attribute grammars mainly as a compiler construction tool.

In recent years incrementally evaluated attribute grammars have become increasingly
popular[RTD83, RT89]. In these systems the user of the system performs editing op-
erations on an underlying abstract syntax tree and the system automatically maintains
the attributes corresponding to the nodes of these trees and the functional dependencies
between them. Being originally introduced as a means for the automatic construction of
language based editors out of language specifications based on attribute grammars, these
systems have appeared to be much wider appliccable[vES8, VBF90, KBHG*87]. Currently
systems containing a lot of data from different types, and with complicated relationships
between these data, are routinely constructed using e.g. the Synthesizer Generator[RT89).

2 Relation to Other Formalisms

2.1 Attribute Grammars from a Functional Programming View

One of the main advantages of the use of attribute grammars is the static (or equational)
character of the specification. The description of relations between data is purely func-
tional, and thus completely void of any sequencing of computations and of explicit garbage
collection (i.e. use of assignments). We demonstrate this by giving two formulations for
the same problem: take a labelled binary tree and compute the front of the largest com-
plete subtree which shares its top with the original tree. A sketch of the computation and
the rdle of some of the identifiers is given in figure 1

The correspondence with functional programming languages is demonstrated by the
grammar in figure 2, which has been transcribed into a Miranda[Tur85] program in figure
3. To make the similarity even more striking we have introduced a compact notation for
attribute grammars, showing the nonterminals, their functionality (i.e. the set of inherited
an synthesized attributes), the various productions and the semantic functions in one single
formula.
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LTREE(int dist—int* front, int lcf)
(1)::=LTREE, integer, LTREE
LTREE,.dist := LTREE,.dist := LTREE,.dist-1
LTREERy.Icf := min(LTREE,.Icf, LTREE,.lcf)+1
LTRFEEy.front := if LTREPF, .dist=1— [integer.val]
[] LTREE,.dist>1— LTREE,.front ++ LTREE,. front
fi

(2)|] EMPTY
LTREE.lcf := 0
LTREE. front := undefined
ROOT(—int* front)
(8)::=LTREE

LTREE.dist := LTREE.Icf
ROOT.front := LTREE. front

Figure 2: Attribute Grammar

ltree ::= NODE lItree int ltree | EMPTY
ROOT := ltree

eval ltree(NODE left i right) dist = (min(leftlef, rightlcf)+1, front)
where  (leftlcf, leftfront) = eval ltree left (dist-1)
(rightlecf, rightfront)= eval ltree rigth (dist-1)
front = dist=1— [i]
dist>1— leftfront4+rightfront

eval ltree EMPTY dist = (0, undefined)
ROOT v = front

where (front, Icf) = eval v lcf

Figure 3: Miranda Program



In the program texts lcf stands for level of complete front, and dist is used to locate
the level of the complete front in the original tree. Note that inherited attributes in the at-
tribute grammar correspond directly to parameters and synthesized attributes correspond
to a field in the result of eval. The underlying tree on which the computation is performed
is implicit in the attribute grammar description and explicitely present in the Miranda de-
scription. The lazy evaluation of the Miranda program allows the use of so-called circular
definitions, roughly corresponding to multiple visits in attribute grammars.

Having a single set of synthesized attributes is in direct correspondence with the result
of a program transformation called tupling. In [KS86] it is shown that this correspondence
can be used in transforming functional programs into more efficient ones, thus avoid-
ing the use of e.g. memo-functions[Hug85]. Often inherited attributes dependencies are
threaded through an abstract syntax tree, which corresponds closely to another functional
programming optimisation called accumulationsBW88, Bir84].

As a consequence the result of many program transformations which are performed
on functional programs in order to increase efficiency, are automatically achieved when
using attribute grammars as the starting formalism. This is mainly caused by the fact
that in attribute grammars the underlying data structures play a more central role than
the associated attributes and functions, whereas in the functional programming case the
emphasis is reversed.

From this correspondence it follows that attribute grammars may basically be consid-
ered as a functional programming language, without however providing the advantages of
many such languages as higher order functions and polymorphism.

2.2 AG’s from an Object Oriented View

With the advent of incrementally evaluated attribute grammars the concept of state has
entered the arena. Basically the state can be split into two parts:

o initial part
the abstract syntax tree and the initial attributes, representing that part of the state
which can be manipulated from outside of the system

e derived part
the rest of the attributes, which describe an extension of the state which is (either
directly or indirectly) functionally dependent on the initial part of the state

The term initial attribute may need some further explanation. In most attribute grammar
systems it is assumed that the root of the abstract syntax tree has its inherited attributes
filled in by the rest of the system, whereas the synthesized attributes of the terminal
symbols are being provided by the scanner. Because we will need a more general class of
attributes, i.e. those attributes which do not depend on other attributes, we will introduce
so-called initial attributes.

When comparing an attribute grammar with an object oriented system we may note
the following correspondencies:

grammar object oriented program
individual nodes set of objects
tree structure references between objects

tree transformations outside messages to objects
attribute updating  inter-object messages
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The main difference with most object oriented systems however is that propagating up-
dating information is done implicitely by the system as e.g. in the Higgins[HK88] system,
and not explicitely, as in e.g. the Andrew[ea86] system or Smalltalk.

The advantage of this implicit approach is that the extra code associated with correctly
scheduling the updating process has not to be provided. Because in ob ject oriented systems
this part of the code is extremely hard to get both correct and efficient, this is considered
a great advantage.

In conventional object oriented systems there are basically two ways which may be
used in maintaining functional dependencies:

¢ maintaining view relations
In this case an object notifies its so-called observers that its value has been changed,
and leaves it up to some scheduling mechanism to initiate the updating of those
observers. Because of the absence of a formal description of the dependencies under-
lying a specific system, such a scheduler has to be of a fairly general nature: either
the observation relations have to be restricted to a fairly simple form, e.g. simple
hierarchies, or potentially very inefficient scheduling has to be accepted.

e sending difference messages
In this case an object sends updating messages to objects depending on it. Thus
not only an object has to explicitely maintain which other objects depend on it,
but it can also be gleaned from the code on which parts another ob ject depends.
Furthermore but it has also to be known in which way that other ob ject depends
on it. A major disadvantage of this approach is thus that whenever a new object

class B is introduced, depending on objects of class A, also the code of A has to be
updated.

An advantage from this approach is that by introducing a large set of messages it
can be precisely indicated which arguments of which functional dependencies have
changed in which way, and probably costly complete reévaluations may be avoided.
Although this fact is not often noticed, such systems contain a condiderable amount
of user programmed finite differencing [PK82] or strength reduction. As a conse-
quence these systems are sometimes hard to understand and maintain.

In the sequel we will show how we may achieve some of the efficiencies of hard-hand-coded
object oriented programs, without having to provide all the scheduling details and with
maintaining readability, by using an extended attribute grammar formalism.

2.3 Higher Order Attribute Grammars

One of the main shortcomings of attribute grammars has been that often a computation
has to be specified which is not easily expressable by some form of induction over the
abstract syntax tree. The cause for this shortcoming has been the fact that often the
grammar used for parsing the input into a data structure dictates the form of the syntax
tree. It is however in no way obvious why especially that form of abstract syntax tree
would be the optimal form for performing the rest of the computations. Some attempts
have been made to alleviate this problem.

Attribute coupled grammars[gG84] allow multi-pass compilers to be elegantly described:
the result of an attribute evaluation can be an abstract syntax tree again, which is then



used as a starting point for the next pass. In a limited sense this solution has also been
chosen in the Synthesizer Generator, where a special attribute computed from the parse
tree as delivered by the parser of the input, is taken as the initial tree to perform the
attribute computations upon. Furthermore the way in which the attribute representing
the unparsed tree is computed may be considered as another attribute coupled grammar.
As a further, probably more esthetical than factual, shortcoming of attribute grammars
is that there is usually no correspondence between the grammar part of the system and the
functional language which is used to decribe the semantic functions. A direct consequence
of this dual-formalism approach is that a lot of properties present in one of the two
formalisms is totally absent in the other one, resulting in the following anomalities:

e often at the semantic function level considerable computations are being performed
which could be more easily expressed by an attribute grammar. It is not uncommon
to find descriptions of semantic function which are several pages long, and which are
directly describable by an attribute grammar.

e in the case of an incrementally evaluated system the semantic functions do not profit
from this incrementality property, and are, in the case of re-evaluation completely
re-evaluated.

Higher order attribute grammars[VSK89] were introduced by promoting abstract syn-
tax trees (i.e. recursive data structures) to first class citizens:

e they can be the result of a semantic function
e they can be passed as attributes

e they can be grafted into the current tree, and then be attributed themselves, prob-
ably resulting in further trees being computed and inserted into the original tree.

In the previous section we have seen that partially parametrising an evaluation function
with a tree results in a function mapping inherited to synthesized attributes. Because of
this close correspondence between trees and functions the term higher-order was coined
for grammars allowing this kind of attributes.

In [VSK89] an example is given in which a multi-pass compiler is being described
using higher order attributes. Here we will demonstrate another use of such attributes:
the possibility to avoid the use of separate semantic functions. In figure 4 a grammar
is given which describes the mapping of a structure consisting of a sequence of defining
identifier occurrences and a sequence of applied identifier occurrences onto a sequence of
integers containg the index positions of the applied occurences in the defining sequence.
Thus the program:

let a,b,cin a, c, ¢, b ni

is mapped onto the sequence [1, 3, 3, 2].
In the example the following can be noted:

o The attribute env is a higher order attribute. The tree structure is built using the
constructor functions ENVg and ENV;, which correspond to the respective produc-
tions for ENV. The attribute envis instantiated (i.e. a copy of the tree is attributed)
in the occurences of the first production of APPS, and takes the role of a semantic
function.



ROOT( — int* seq)

(1)::=let DECLS in APPS ni
APPS.env := DECLS.env
ROOT.seq := APPS.seq

DECLS( — int number, ENV env)
(2)::= DECLS, identifier
DECLSq.number := DECLS;.number

DECLSy.env := ENVg([identifier.id, DECLS, .number](DECLS).env))
(3)) EMPTY

DECLS.env := ENV-
DECLS.number := 1

APPS(ENV env — int* seq)

(4)::= APPS, identifier, env
APPSy.seq := APPS;.seq ++ [env.indez]
env.param := identifier.id

(5 EMPTY
APPS.seq := []

ENV(ID param — int indez)
(6)::= [ID id, int number], ENV
ENVy.indez := if ENVy.param=id — number
[] ENVy.param#id — ENV,.indez
fi
ENV;.param := ENVy.param
(7)) EMPTY
ENV.indez := errorvalue

Figure 4: A Higher Order Attribute Grammar



o The first alternative of the nonterminal ENV contains two initial attributes. At-
tributes from this class are initialised by the constructor functions, to which they
are passed as an extra set of parameters.

o Notice that there may exist many instantiations of the env-tree, all with different at-
tributes. There thus does not any longer exist an one-to-one correspondence between
attributes and abstract syntax trees. As we will see in the last section this brings
many consequences for the implementation, and some opportunities for optimisation.

We finish this section by noticing that this grammar too may be directly transcribed
into a functional language. For the representation of the higher order attribute we have
two choices: ‘

1. either we construct a recursive data structure, and at the place of the instatiation
we place a call of a function eval_env to which this data structure and the inherited
attributes are passed

2. or we partially parameterize a function eval_env with the two initial attributes and
the function representing its descendant, and use this function at the place of the
instantiation.

3 Handling User Interaction and Message Passing

In most incrementally evaluated attribute grammar systems the handling of user interac-
tion is not described using the formalism itself. In the Synthesizer Generator the unparsing
of a tree closely reflects the structure of the abstract syntax tree, and for good reasons.
Because there is no general way for describing which characters on the screen refer to
which nodes in the tree a simple, invertable unparsing scheme had to be chosen.

The problem that one needs more flexibility in unparsing than merely giving some
flattened form of the tree has been widely recognised[HT86] and solving this problem in
a wider sense is one of the main research topics in the area of user interface management
systems. Considering language based editing it might be desirable e.g. to have separate
windows representing:

o the nesting structure of the procedures

e the text of a specific procedure

o the text documenting that procedure

¢ a number of program fragments containing calls to that procedure

In such a system one might imagine that the contents of the last three windows is auto-
matically updated, when a specific procedure is selected in the first window.

In [FZ88] a two-dimensional unparsing scheme is introduced, using a preprocessor
which adds a number of hidden attributes to the tree used to represent the position of
the boxes on the screen which correspond to the nodes in the tree. However the hierar-
chical structure of the parse tree still dictates the hierarchical structure of the unparsed
representation.



It is here that higher order attribute grammars may play an important réle in describ-
ing the user interface. Many alternative representations of the initial structure may be
computed in higher order attributes. These attributes may be passed through the tree and
combined in several ways. Finaly these structures will be unparsed into a representation
on the screen. Although this may seem to be quite a step away from normal attribute
computation, actually all most conventional application programs do is computing new
data out of existing data, and using this data as a further basis for computation. The main
difference in our approach is that this is done in a functional style and in an incremental
way.

We make the following assumptions:

o external representations are closely associated with a higher order attribute tree in
the application. Pointing at a screen is easily mapped onto selecting a node in that
tree. We will call the nodes of such a tree visible nodes. Most user interface man-
agement systems (e.g. [SG86]) will provide some form of such an inverse mapping.

o for every nonterminal in the grammar a number of transformationsis defined. When
a transformation is applied to a specific node such a transformation either changes
the tree at that position, provided the node is part of the initial tree, and/or changes
the value of an initial attribute.

As we have seen the user of the system is presented some external representation,
computed from internal data; a computation which may have gone through several steps
before resulting in the displayed data.

The problem to be solved now (the pointing problem) is that visible nodes may be
selected, whereas initial nodes have to be transformed. As a consequence a mapping from
visible to initial nodes has to be realised, which is achieved as follows:

o for every derived node (and thus for visible nodes), it is maintained at which node
it was constructed. This relation may be used to trace back for each node, and
especially the visible nodes, the initial node from which it finally originated. The
nodes on the chain to that initial node we will call its ancestors.

e when a visible node is selected, all its transformations, and the transformations of
its ancestors, are made selectable.

o when a specific transformation is selected, the transformation is performed, and the
usual update mechanism is started. This will most likely have as a result that the

final external representation is updated, thus giving the user a visible feedback of
the change to the initial data.

In the object oriented terminology one would say that when a node cannot handle a
specific transformation, this transformation is delegated to its ancestor. In figure 5 a chain
of nodes is depicted, together with a set of possible transformations at each node. When
the indicated sub-structure of the external representation is selected, all transformations
associated with nodes A, B and C become available and may be selected.

At first sight it may seem undesirable to allow transformations on non-initial nodes,
because this would break-up the functional dependencies. We allow however transfor-
mations which change initial attributes of intermediate ancestors for the following reason.



intermediate tree

e

screen

C1

B1
B2

initial tree visible tree

Al

menu

Figure 5: A Node Chain with Transformations

When constructing some form of external representation, it is often not clear how to choose
certain aspects of this external representation. Examples of this are its size or the location
on the screen, or what part of the total data structure should be represented by visible
nodes. Default choices can be made by providing specific values for the initial attributes.
It is however essential to be able to change the value of these initial attributes, without
having to change the initial data.

We finish this section by noting that there is no straightforward way to map this
mechanism onto a purely functional language. This is amongst others caused by the fact
that we now may have different states corresponding to the same initial state.

4 Incremental Evaluation of Higher Order Attribute Gram-
mars

In this section we discuss how structure sharing is used for the efficient implementation of
incrementally evaluated higher order attribute grammars.

Various strategies for incremental evaluation of attribute grammars have been deve-
loped [Rep82, Rep84, Yeh83, Hoo86]. It is no surprise that any extension to the basic
attribute grammar formalism comes with its associated increase in complexity of the eval-
uation strategy [RMT86]. Further complicating factors are thus to be expected from
introducing higher order attributes.

We note the following complicating aspects:

e Because a higher order attribute may be instantiated at several positions, as e.g.
the env attribute in the example, several sets of attributes may be associated with
a single syntax tree. This is comparable with the full functional programming case
were a procedure is in general invoked more than once. It is a considerable extension
of the conventional attribute grammar case, in which every tree occurs only once,
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and the incremental updating process is using the original tree as a simple cache
structure.

e It may be the case that during attribute evaluation the structure of the total tree
is changed because new values get assigned to higher order attributes. As a conse-
quence some of the attributes which may be assumed by the updating algorithm to
be affected, may appear to have become inaccessible during the updating process.

e There is ample opportunity for structure sharing[Chr89], because higher order at-
tributes are inherently structural objects.

e As demonstrated by the example it may be the case that there are several instan-
tiations of a higher order attribute in existence which have the same inherited
attributes. This is caused by the fact that we use attributes to model semantic
functions. It is desirable to indentify these identical expansions in order to avoid
superfluous computations. When an environment has changed it is desirable that
the consequences of this updating are computed for every distinct identifier, but not
for every identifier occurrence.

In [VSK89] a transformation is given, which maps a higher order grammar onto a
conventional one. The basic step in this mapping is the addition of extra dependencies to
productions in which higher order attributes are instantiated. These dependencies are used
to indicate that the attributes of the instantiation depend on the higher order attribute,
which should thus be evaluated before visiting the tree described by it. All grammar based
dependency analysis may be done on the transformed grammar.

In order to get reasonable efficiency we expect to make extensive use of structure shar-
ing. In order to do so we maintain two heaps, the structure heap SH and the instantiation
heap IH. Higher order attributes are represented by pointers into SH, and the evaluation
of every node-constructing semantic function results in a new structure in SH. From a
functional programming point of view we may consider every pointer into SH as uniquely
identifying an evaluation function, partially parameterised with an abstract syntax tree.

Nodes in the attributed tree are represented by four-tuples in IH:

1. A pointer S into SH, representing the structure of the attributed tree of which this
node is the top.

2. The values of the inherited attributes IV.
3. The values of the synthesized attributes SV.

4. Pointers SP to the nodes of its sons. These pointers may be nil when the attributes
of the sons have not yet been evaluated.

Finally we maintain a partial mapping M:
(structure-pointerxinherited attributes)—node-pointer.

We will now first consider the simple case of a nonterminal which is only visited once
during an evaluation. When the node with structure s gets scheduled for evaluation the
following steps are taken:
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1. evaluate the values ik of the inherited attributes
2. if sxih is in the domain of M, then share the attributed tree M(s, ih).
3. if not create a node in IH, containing the values s and ik and visit that node.

In this way we achieve a memo-function implementation[Hug85]. Note that in this way
all instantiations of a higher order attribute, when called with the same arguments, are
shared and evaluated only once. An interesting aspect is now the following observation.
When, as a result of reevaluation, a value in the SH changes, the nodes in IH referring to it
will be marked for reevaluation. Because there are only as many nodes existent as there are
different sets of inherited attributes a considerable increase in speed may be achieved. Not
all instantiations, but only all different instantiations have to be reevaluated. Furthermore,
those subtrees for which the reevaluation results in the same synthesized attributes as
before, may be left out from the data structure maintained for rescheduling.

We now consider the case in which multiple visits may be necessary, and assume that
the visits are ordered in some way. The solution is now to consider each visit as not
only returning its associated synthesized attributes, but also the partially parameterised
function corresponding to the as yet unevaluated part of the tree. This function is readily
identified with the node in the IH, containing the inherited and synthesized attributes of
the visit. So by extending the domain of the function M to (SHUEHxIH) and making
the first component of the structures in the IH not only refer to elements in SH but also

to elements in IH, the aforementioned memo-isation can be extended to the multiple visit
case.

5 Conclusions

The correspondence of attribute grammars with functional programs has been indicated.
We have shown how by using higher order attribute grammars, coupled with chaining
nodes in the trees in order to find the appropriate places for performing the indicated
transformations, the application area of attribute grammars can be considerably extended.

We expect that by further pursuing this similarity, and introducing some of the elegance
which functional programs exhibit into the attribute arena, attribute grammars can be
turned into a widely used programming formalism.
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