A Lower Bound for Full Polymorphic Type
Inference: Girard-Reynolds Typability is
DEXPTIME-hard

Fritz Henglein

RUU-CS-90-14
April 1990

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel. : ... 4 31-30- 531454

S
3

%
%'ls/u °

A Lower Bound for Full Polymorphic Typ
Inference: Girard-Rey nolds Typablllty 1s
DEXPTIME-hard

Fritz Henglein

RUU-CS-90-14
April 1990

Department of Computer Science
Utrecht University
P.O0.Box 80.089
3508 TB Utrecht
The Netherlands

1 Introduction

Kanellakis and Mitchell have shown that ML typing is decidable in deterministic exponen-
tial time [KM89]. They also gave a reduction of the Quantified Boolean Value problem to
ML typing thus giving a lower bound of PSPACE-hardness. Mairson recently improved
this result by presenting a generic simulation of deterministic Turing Machines for up to an
exponential number of steps, thus proving DEXPTIME-hardness of ML typing. An alter-
native proof based on characterization by “acyclic” semi-unification was given by Kfoury,
Tiuryn and Urzyczyn [KTU89].

Mairson’s lower bound can be seen as a generic simulation of deterministic Turing
Machines (for up to an exponential number of steps) “in the types” of A-expressions. By
this we mean that the Turing Machine is simulated by the type inference algorithm as it

type-checks a A-expression representing the Turing Machine and its input. Critical use is
made of

e a universal “type equality”, represented by a A-expression (see below) that forces, in
accordance with the typing rules for ML, the types of some variables to be equal;

e an encoding of the Boolean values true and false by equality or (possible) inequality
of certain types;

e a mechanism (“fan-out gates”) for producing several terms with the same Boolean

input type from a single Boolean input type to “program around” the side effects of
type equality; and

e an encoding of an exponential number of moves by a Turing Machine by a nested
let-expression of polynomial size, exploiting the polymorphic typing rule of ML only
at this point.

The use of universal type equality is at the basis of the simulation as it is used in the defini-
tion of the Boolean values, of the fan-out gates, and indirectly also in the remaining steps.
We shall, in some sense, simplify Mairson’s proof and give a simulation in which another,
more “semantic” and more conventional representation of Boolean values is used without
resorting to a universal type equality relation. The type equality relation is a consequence
of ML’s typing rule for A-bound variables since all occurrences of a A-bound variable are
required to have the same monotype. Since the implicitly typed Girard-Reynolds Calculus
makes no such provision, Mairson’s technique does not directly extend to it.

The typability problem for the Girard-Reynolds Calculus has been very elusive since
its inception while attracting a considerable amount of attention. As far as we know no
nontrivial lower or upper bounds have been proved. In this paper we present the first
nontrivial lower bound for Girard-Reynolds typability. We show that it is DEXPTIME-
hard by adapting a new proof of DEXPTIME-hardness for ML typability, which builds on
Mairson [Mai90]. The amazing simplicity of our lower-bound technique for GR-typability
derives from the fact that with little change we can adapt a general purpose simulation of
Turing Machines in the (untyped) A-calculus to the typing disciplines imposed by ML and
the Girard-Reynolds Calculus.

The outline of the rest of this paper is as follows. In section 2 we present ML with tuples
and its typing rules. In section 3 elementary encodings of finite domains are given. Section
4 shows how Mairson’s fan-out gates are encoded in our representations. In section 5 we
give our version of how exponential-time deterministic Turing Machine computations can
be encoded as an ML typability problem. Section 6 introduces the implicitly typed Girard-
Reynolds Calculus, and section 7 presents the DEXPTIME-hardness result for Girard-

Reynolds typability. Finally, section 8 contains a short summary and some concluding
remarks. '

2 ML with Tuples

We quickly review ML typing. For technical reasons we add tuples and a constant w that
has any type into our language. The ML typing rules (Milner Calculus) are shown in Table
1. For a review of ML typing the reader is referred to, e.g., [DM82].

3 Elementary Encodings

3.1 Finite Domains

We show that a conventional representation of finite domains in the A-calculus can be
“lifted” to the universe of types. This representation does not rely on the equality of
certain type expressions, yet permits an encoding of equality for specific domains, instead
of a “universal” encoding.

For the representation of Turing Machines it is necessary to represent and compute with
finite domains of values; e.g., states, tape symbols, tape head directions. For this reason
we present a general representation of finite domains with a select (or case) expression. As
a special case we get a representation for the Booleans.

Let D* = {d,...,dx} be a given finite domain (set). We represent every element d; by
the i-th k-ary projection function, p¥.

di = Azy...TE.T1
di = Azy...Tk.7;
dr = Azy...ZTk.7k

Using this representation it is simple to give an encoding of a case expression.

casedof = dey...e

dy:eq

dy : e

Let A range over type environments; z over variables; e, e’ over A-expressions; a over type
variables; 7,7/, 1, ..., T over monotypes; o, 0’ over polytypes. The following are the type
inference axiom and rule schemes for ML typing with tuples.

Name Axiom/rule
(CONS) ADw:o
(TAUT) A{z:o}Dz:0
(GEN) ADe:o
(not free in A)
ADe:Vao
(INST) ADe:Vao
ADe:o|r/a]
(ABS) A{z:1'}De:r
ADMze:T >
(APPL) ADe:7'—>rT
ADe:1
AD(ee): 7
(LET) ADe:o
A{z:0} D€ :0'
ADletz =eine : 0’
(TUPLE) ADe:mn
ADer: T
AD (e1,---s€k):(T1y.+5Tk)
(SEL) ADe: (T, .oy Tk)

(1<i<k)

ADesl® .7

Table 1: Type inference axioms and rules for ML typing with tuples (Milner Calculus)

We shall denote the representations of the elements of D? = {d1,d2} by true and false,
respectively, and instead of

case d of

dl . €6
dz . €
we will write
cond d ¢;e;

Another possible representation of elements of finite domains is as characteristic functions
over Dj that is, as tuples of length k where, for d;, the i-th component is true and all the
other components are false.

This is the conventional representation of the Boolean values in the untyped A-calculus.
The term cond represents the conditional if-then-else construct. In the Milner Calculus, the
type system for the functional core of ML, these combinators have the following principal
types.

true : Vaf.a—- 8-«
false : Vaf.a— f—f
cond : Vofy.(a—fB—o9)—a— By

Note that the computation of the types of applied expressions with the conditional and
the Boolean values mirror the computation of the values. We can think of cond as taking
three type ezpressions as input and producing a type ezpression as output. Consider, for
example, the simple expressions below and their types, as output by the Standard ML of
New Jersey compiler [AMSS].

- cond tt 5 7.0;
val it = 5 : int

- cond ff 5 7.0;
val it = 7.0 : real

We can see that cond maps a pair of types integer and real to integer when given
(the type of) true as its first input and to real when given (the type of) false as first
input. Note, however, that the type of the first argument to cond is “side-effected”. That
is, whereas false has the type Vaf.a — B8 — B, in the context cond false 5 7.0 it has
the type integer — real — real. As a consequence we cannot generally use a A-bound
variable more than once if one of its occurrences is in the first argument position of a cond.

Our representation is different than the one chosen in Mairson [Mai90]. There, false
is represented by a A-expression of type Va.V3.Vy.c — # — 7 — 7, and true by a term
of type Va.Vy.a — a — ¥ — 7. The underlying idea in Mairson’s representation is that a
term of type 0 — 7 — v — v is considered a representation of true only if ¢ and 7 are
identical, and a representation of false only if 0 and 7 are completely independent.

3.2 Assignments

Single assignments or definitions can be modeled by a beta redex. Again, this is a repre-
sentation that follows the “value level”. That is, we define

T:=e5e3 = (Az.e2)eg

The effect “in the types” is that if e; has type r; and Az.e; has the type 7y — 73 then
the whole expression, (Az.ez)e;, has type 7. In ML a beta redex can also be written as a
let-expression, let z = e; in e;. Since let-expressions have a different typing rule than the

corresponding the pure beta redexes, however, we shall use the notation above, z := e;; ey,
instead.

We shall use the “pattern matching” notation

(Z15..y2k) = e
€2

for the sequence of assignments

t = e;
zy = t.l(");

Tk t.k(k);

€2

4 Preventing Interference

One of the main achievements of Mairson’s lower bound proof is the way in which type
information is “replicated” in such a fashion that encoding a computation in one copy of
type information does not affect the type information of another copy. In particular, using
different copies of the same type information, multiple occurrences of values in the first
argument position of cond and select can be emulated without the side-effect on the type
of one copy affecting another.

This mechanism is necessary to harness the universal side effect of type equality forced
by ML’s typing rule for A-bound variables. We develop, analogously, a way of “copying”
type information within our representations.

4.1 Copying Boolean Values

The Booleans true and false are represented by (the types of) the terms Azy.z and Azy.y.
We present an expression that, whenever given an expression of either typeVaf.a —» § — a
or YVaf.a — § — (3, returns a pair, p, such that both p.1 and p.2 have the same type as the
given input. Given such an expression copy,, corresponding to Mairson’s “fan-out gate”,
we can devise expressions for producing more than two copies of a type and for producing
copies of our representations of finite domains.

At this point we use the constant w with type Vo.a.

copy, = Ad.
(Az123.(d(z1,w)(22,w)). 1D,
A yz-(d(w, y1)(w, y2)).2?)

The principal type of this combinator is
copy; : Vay a2f182m172.
((a1,@2) = (B1,82) = (11,72)) = (@1 = B1 = 11,02 = By — 72)

This construction can, of course, be generalized to generate any fixed number of “copies”

of independent types. We shall write copy; for the A-expression that generates ! copies of
a Boolean representation.

Note that, on the untyped level, the effect of copy; is completely neutral: copy,(true)
B-reduces! to (true,true); and copy,(false) S-reduces to (false, false).
4.2 Copying Elements of Finite Domains

The construction for copying Boolean values can be extended in a straightforward fashion
to elements of finite domains of size k. In this case the corresponding copy function is
denoted by copy¥

copy’ = Ad.
(Az1...zx.(d(21,w) ... (Tk,w)).13),
Ay gk(d(w, 1) - - (w,)).209)

and its principal type is

copy$: Vaya361 827172
((al’ﬂl) -0 (ak)ﬂk) g (7’6))_' (al .. Op — 7’ﬁ1 ... IBk g 6)

Again, this construction can be generalized to ! copies of k-element domains. We shall
denote the corresponding representation copyyf.

5 Representing Turing Machines

A Turing Machine (TM) consists of the following components (see [HU79]).

1We call tuple redex reduction (es,-.., ek).t(") => ¢; also #-reduction for convenience’ sake.

Q@ = {q,...,q}: a finite set
of states, with initial state ¢,
and accepting states F C Q

C = {e,...,¢q}: afinite set of
tape symbols, with blank symbol ¢;
D = {l,r}or{l,0,r}:

two or three "directions” in which the tape head may move
(left, not at all, right)
d : @xC—-QxCxD:
a partial transition function.
A configuration (instantaneous description) is defined as a triple, (I,q,7) where I,7 €
C*,q € Q. The next-move function is induced by the transition function as follows2:

Conf = {(l,q,7):l,r€ C*,g € Q}
move: Conf — Conf (partial)
move (l,q,7) =
if r = € then:
return (1, g, ¢1);
(¢, ¢, d) = d(q,r(1));
if d' = then:
if I = ¢ then:
return (I, gyej, 1);
else:
return (1(2..),¢,1(1)cr(2..));
if d’ = r then:
return (I¢, ¢/, r(2..));
if d’ = 0 then:
return (I,q',c'r(2..));

5.1 The transition function

We now show how the transition function d is represented. For every combination of state
¢i and tape symbol c; the transition function d returns a triple d;; consisting of the new
state, the character to be written and the direction in which the tape head is to move. We
assume, w.l.o.g., that d is total, but it is also possible to emulate the Turing Machine with
a partial transition function directly.

*If the notation doesn’t make sense, don’t worry. The function move is simply the transition relation
tas from [HU79).

d = Age.
(c}...,cF) := copylc;
case g of
q : casec! of
¢ :diy;

¢ s dy;
¢ : case c? of
¢ :dy;

¢ : dyj;
¢ : case c* of
1 & dga;

cr : dp;

Note that in the above definition both arguments of d are side-effected since they occur
in the first positions of case expressions.

5.2 The next-move function

As we have seen, the transition function induces a next-move function on configurations.
We can almost transliterate this description into a representation “in the types” and “in the
values”. The generally unbounded tape contents are represented by nested pairs. W.l.o.g.
we assume that tape symbol ¢; represents the blank character and ¢; a special “end-of-tape”
symbol; further, that the simulated TM never attempts to write off the left end of its tape.

move = AC.
(I,q,7):=C;
(d,0):=1
(¢, F) =15
(¢%---,¢") := copyfq;
(¢y¢,d’) := case crof
¢ :dgler;

Cl-1: dq“lq_l;
q: (q” ¢, 0);
case d'of
l:(,q, (cl’ (<,M)));
r:((d,1),4,7);
0: (l, qla (clv (cl’w)))

5.3 The initial configuration
The initial configuration Cp = (¢, q1,z) of a Turing Machine computation is represented by

Co = ((enw),dy,(215- .0y (2n, (e1,0)) . .))

where z = 2, ...z, is the input.

5.4 Correctness
The correctness of our simulation follows from the following result.

Theorem 1 Let e = move(move(...(move(Cy))...)), and let ¢ be a B-reduct of e. If ¢
has type o then e has also type o.

Proof: (Sketch) Let E be the class of (representations of) configurations; i.e., every e in E is
of the form ((z1,...,(zm, (c1,w))...),q, (v1,- --1(¥n,(e1,w)) ..) and z;,y; € C,q € Q. Note that
E is a class of expressions in S-normal form. Obviously, for every e in E there is ¢’ in E such that
move(e) f-reduces to e'. It is sufficient to show that if 7/ is the principal type of ¢’ then move(e)
has also type /. But this follows from the representation considerations above. Then the theorem
follows by induction on the number of applications of move from the subject reduction theorem.
(End of proof) m

This theorem is also at the heart of the correctness of Mairson’s method. Even though
this “invariance” theorem — it is a weak dual to the subject reduction theorem — is only
formulated for a specific class of expressions, a much more general definition of a class of
B-conversions with invariant typings seems on hand.

5.5 The main loop

So far we have not made use of the polymorphic typing rule for let-expressions in ML. We
use this rule only once, to encode an exponential number of applications of the move function
- regarded as applications “in the types” — to an initial configuration. Our presentation
here is pretty much directly from Mairson [Mai90].

Given a Turing Machine T and an input z = ¢!...c" we encode running T for 2°® on
z as follows. The exponential composition of move with itself is accomplished as follows.

sim =
let move; = AC. move(move(C)) in
let move; = AC. movey(movey(C)) in

let move,,, = AC. move,_1(move,—1(C)) in
(1,¢,7) := movec,(Co);
accept := case q of
F: true;
Q — F: false;
(accept — K, Azyz.(zz,2y))IK

10

Here F is a listing of all accepting states. The invariance of ML typing under let-
reduction yields the final result.

Lemma 2 The ezpression sim is ML typable if and only if the represented Turing Machine
T accepts input = z, ...z, within 2" steps.

Proof: The let-reduct sim2 of sim,

sim2 =
(1,9, 7) := move*" (Cp);
accept := case q of
F: true;
Q — F: false;
(cond accept K(Azyz.(z2z, zy)))IK

is typable if and only if sim is typable [Dam84). If T is in an accepting state g; after 2°" steps then,
by Theorem 1,

(1,g,7) := move*" (Cy);
q

has the same (principal) type as ¢;. Similarly,

sim2 =
(1, q,7) :== move?™(Cy);
accept := case ¢ of

F: true;
Q — F: false;
accept

has the principal type of true: Vaf.a — 8 — a. Since

{accept : YVaf.a = B — a D}
(cond accept K(Azyz.(zz, zy)))IK :
Va.a — a
sim is typable.

If, on the other hand, T is not in an accepting state, the principal type of accept above is the
principal type of false: VaS.a — 8 — . But then

(accept — K, Azyz.(zz,2y))IK

would only be typable if I and K had the same type. But this is impossible. Consequently, sim is
not typable. (End of proof) m
Now we have the main theorem for ML typing.

11

Theorem 3 ML typability with tuples and constant w is complete for DEXPTIME under
log-space reductions.

Proof: The theorem follows directly from Lemma 2 since, given Turing Machine description T
and input z the program, sim can be constructed in logarithmic space. ML typability is shown to
be in DEXPTIME by Kanellakis and Mitchell [KM89]. (End of proof) m

In this form our theorem is actually weaker than DEXPTIME-completeness results
of Mairson [Mai90] and Kfoury, Tiuryn, Urzyczyn [KTU89] since we use tuples and the
constant w. We can strengthen it by getting rid of tuples and treating w as a free variable
[Hen90]. But since, in ML typing, the conventional encoding of tuples —i.e., (e1,...,ex) =
Az.z€1...ex (with z not free in any of the e;’s) — breaks down, the strengthening comes
at the expense of giving up the “double simulation” property (on the “value level” and on
the “type level”) of our representation. Curiously, transferring this DEXPTIME-hardness
proof to the elusive problem of Girard-Reynolds Typability is, on the other hand, only a
minor step.

6 The Implicitly Typed Girard-Reynolds Calculus

The explicitly typed Girard-Reynolds Calculus comes by many other names: polymorphic
A-calculus, second order A-calculus, system F (see, e.g., [Gir71, Rey74, GLT89, Mit88]). In
this section we review the implicitly typed Girard-Reynolds Calculus (or, for short, GR-
calculus), which is a type inference system of equally many names. Mitchell calls it pure
typing [Mit88]; Leivant lype quantification [Lei83]. The axiom and rule schemes of the
implicit GR-calculus are given in Table 2. Note that here, as opposed to ML typing, the
type expressions may be arbitrary expressions generated by the grammar

T 2= a|7’ -7 |Var

We assume, here as before, standard notions of type inference systems.

The typability problem for the GR-calculus is the problem of deciding, given a -
expression e, where there exist A, such that the typing A D e : T is derivable in the
above type inference system. It is also called the full polymorphic type inference problem
[Boe85, Pfe88] and the type reconstruction problem for the 2nd order A-calculus [KT89].

Characterizations of GR typability have been given by Mitchell [Mit88] and Gian-
nani and Ronchi della Rocca [GRDRS8S8]. Restricted or modified GR typability problems
have been investigated by McCracken [McC84], Boehm [Boe85, Boe89], Pfenning [Pfe88],
O’Toole and Gifford [0JG89], Kfoury and Tiuryn [KT89] and probably many others. In-
terestingly, partial polymorphic inference [Boe85, Pfe88] and rank-bounded polymorphic
inference with suitably typed constants [KT89] have been shown undecidable, yet none of
the proofs yield any nontrivial lower bound for full polymorphic type inference. In fact,
no nontrivial lower or upper bounds on GR typability were exhibited so far. Our lower
bound on full polymorphic type inference is based on techniques developed by Kanellakis
and Mitchell [KM89] and Mairson [Mai90] for ML typability.

12

Let A range over type environments; z over variables; e, e’ over A-expressions; a over type
variables; 7,7’ over type expressions. The following are the type inference axiom and rule
schemes of the implicitly typed Girard-Reynolds Calculus.

Name

Axiom /rule

(TAUT)

(GEN)

(INST)

(ABS)

(APPL)

A{z:0}Dz:0

ADe:o
(a not free in A)

ADe:Vao

ADe: Voo

ADe:o[r/a)

A{z:7'}De:T

AdDAze:T'> T

Ade:T' >
ADe: 7

AD(ee): T

Table 2: Type inference axioms and rules of the implicitly typed Girard-Reynold Calculus

(GR-calculus)

13

7 DEXPTIME-hardness of GR Typability

We shall see that our method of proving ML typability DEXPTIME-hard yields a lower
bound of DEXPTIME-hardness for GR typability almost immediately. As far as we know
this is the first nontrivial lower bound for GR typbability. We believe, though, that our
method of type invariant simulation can be pushed much further and possibly result in
nonelementary-recursive lower bounds.

It is easy to see that we can simulate let, tuples and selections that occur in ML
derivations by pure A-expressions in the GR-calculus,

letz=eine’ = (Az.e')e
(e1y-..1€x) = Az.zey...ex
ei® = e(Azy...25.2;)

since their ML typing rules are derived rules in the GR-calculus. E.g.,

(LET) ADe:o
A{z:0} D€ : 0’
AD(Az.e')e: o

(TUPLE) ADe:m

ADer:m
ADAz.ze...e VY. (i — ...k =)= 7

(SEL) Ade:Vy(n—..k—>7)—7
(1<i<k)

ADe(Azy...zp.2;) i T

Henceforth we shall consider let-expressions, tuples and selections as syntactic sugar for
their pure A-calculus counterparts in the GR-calculus.
Now, consider the expression sim’:

sim’ = Aw.
let move; = AC. move(move(C)) in
let move; = AC. movez(movey(C)) in

let move., = AC. move,_1(moves,—1(C)) in
(1, ¢,7) := movecy(Co);
accept := case q of
F: true;
Q — F: false;
(cond accept I(Az.zz))(\z.22)

14

The only differences from sim are the first line and the last line. By A-abstracting over w we
dispose of w as a separate constant since A-bound variables may carry polymorphic types
— in particular, Va.a — in the GR-calculus, which is not possible in the Milner Calculus.

The last line is instrumental since it ensures that sim’ has no B-normal form whenever T
does not accept its input.

Lemma 4 The ezpression sim’ is GR typable if and only if the represented Turing Machine
T accepts input ¢ =z, ...z, within 2" steps.

Proof: If T accepts after 2°™ steps then, as we have seen in the proof of Lemma 2, there is
an ML derivation such that accept has type VafB.a — B — a. Since every ML derivation can be
canonically translated into a GR derivation, there is also a GR derivation such that accept has
type Vaf.a — f — «. Since Az.zz has type (Vo.a) — (Ya.a) (amongst others) and I has type
Va.a — a, we get the following derivation for Ag = {accept : Vaf.a — f — a, w : Va.a}.

Ao D accept:Vaf.a—f—a

4o D accept : (Va.a = a) — ((Va.a) — (Va.a)) — (Va.a — a)
Ao D accept I(Az.zz) : (Va.a — a)

Ao D accept I(Az.zz) : (Va.a) — (Va.a)) — ((Va.a) — (Va.a))
Ao D (accept I(Az.zz))(Az.22) : (Vor.a) — (Va.a)

Consequently, sim’ is GR typable.
If, on the other hand, T does not accept after 2°" steps then sim’ B-reduces to

(cond false I(Az.zz))(Az.zz)

which, in turn, #-reduces to
(Az.zz)(Az.zz).

But (Az.zz)(Az.zz). has no B-normal form. Thus sim’ is not strongly normalizing, and by Girard’s
strong normalization theorem [Gir71, GLT89] sim’ has no GR typing. (End of proof) m
We have, as in the ML typability case, the following lower bound for GR typability.

Theorem 5 GR typability is hard for DEXPTIME under log-space reductions.

Proof: This follows from Lemma 4 and the fact that sim’ can be constructed from TM T and
input z in logarithmic space. (End of proof) m

8 Concluding Remarks

We have presented a simulation of Turing Machines up to 2°® steps for inputs of size n in the
A-calculus under S-reduction that has the property that every reduction sequence is invari-
ant under ML typability, respectively GR typability. This yields the first intractibility result
for GR typability; in particular, we show that GR typability (also called full polymorphic
type inference or type reconstruction for the second order A-calculus) is DEXPTIME-hard
under log-space reductions.

Since the class of A-expressions we use for simulation has the property that, if they have
a typing then they have a rank-2 typing (see [Lei83, KT89]), this result is the best we can

15

achieve since Kfoury and Tiuryn have shown that rank-2 GR typability is equivalent to ML
typability [KT89], which is DEXPTIME-decidable.

In pursuing this work we have aimed to identify a “powerful” class of A-expressions that
has the property that

e there is a constant k such that if an expression has a typing derivation of any rank
then it has a derivation of rank at most k;

o the class of expressions is closed under S-reduction and GR typability is invariant for
any (-reduction sequence (i.e., a weak inverse of the sub ject reduction theorem).

Much to our surprise a rather obvious and straightforward simulation fits the bill for rank
2. Better bounds can possibly be achieved by considering expressions with higher rank.

Mitchell’s retyping functions [Mit88] in connection with normalized derivations seem like a
promising direction to pursue.

Acknowledgements

I would like to thank Harry Mairson and Hans Leif for extensive discussions on type
inference; in particular Harry for sharing his insights on computing with types with me,
not to mention his vibrant enthusiasm and his hilarious jokes.

References

[AM88] A. Appel and D. MacQueen. A Standard ML compiler. Manuscript, 1988.

[Boe85] H. Boehm. Partial polymorphic type inference is undecidable. In Proc. 26th

Annual Symp. on Foundations of Computer Science, pages 339-345. IEEE, Oct.
1985.

[Boe89] H. Boehm. Type inference in the presence of type abstraction. In Proc. SIG-
PLAN ’89 Conf. on Programming Language Design and Implementation, pages
192-206. ACM, ACM Press, June 1989.

[Dam84] L. Damas. Type Assignment in Programming Languages. PhD thesis, University
of Ediriburgh, 1984.

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In
Proc. 9th Annual ACM Symp. on Principles of Programming Languages, pages
207-212, Jan. 1982.

[Gir71] J. Girard. Une extension de l'interpretation de Godel a 1’analyse, et son ap-
plication a I’elimination des coupures dans I’analyse et la theorie des types. In
2nd Scandinavian Logic Symp., pages 63-92, 1971.

[GLT89] J. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

16

[GRDR88] P. Giannini and S. Ronchi Della Rocca., Characterization of typings in poly-

[Hen90]
[HUT79]

[KM89]

[KT89)]

[KTUS)

[Lei83]

[Mai90]

[McC84]

[Mit8s]

[0IG89)

[Pfe88]

[Rey74]

morphic type discipline. In Proc. Symp. on Logic in Computer Sciene, pages
61-70. IEEE, Computer Society, Computer Society Press, June 1988.

F. Henglein. A simplified proof of DEXPTIME-completeness of ML typing.
Manuscript, March 1990.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

P. Kanellakis and J. Mitchell. Polymorphic unification and ML typing (extended

abstract). In Proc. 16th Annual ACM Symp. on Principles of Programming
Languages. ACM, January 1989.

A. Kfoury and J. Tiuryn. Type reconstruction in finite rank fragments of the
second-order lambda calculus. Technical Report BUCS 89-011, Boston Univer-
sity, Oct. 1989.

A. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Technical
Report BUCS 89-009, Boston University, Oct. 1989. also in Proc. European
Symposium on Programming, Copenhagen, Denmark, May 1990.

D. Leivant. Polymorphic type inference. In Proc. 10th ACM Symp. on Principles
of Programming Languages, pages 88-98. ACM, Jan. 1983.

H. Mairson. Deciding ML typability is complete for deterministic exponential
time. In Proc. POPL ’90. ACM, Jan. 1990.

N. McCracken. The typechecking of programs with implicit type structure. In
Proc. Int’l Symp. on Semantics of Data Types, pages 301-316. Springer- Verlag,
June 1984. Lecture Notes in Computer Science, Vol. 173.

J. Mitchell. Polymorphic type inference and containment. Information and
Control, 76:211-249, 1988.

J. O’Toole Jr. and D. Gifford. Type reconstruction with first-class polymorphic
values. In Proc. SIGPLAN ’89 Conf. on Programming Language Design and
Implementation, pages 207-217. ACM, ACM Press, June 1989.

F. Pfenning. Partial polymorphic type inference and higher-order unification.
In Proc. 1988 ACM LISP and Functional Programming Conf., pages 153-163.
ACM, July 1988.

J. Reynolds. Towards a theory of type structure. In Proc. Programming Sym-
posium, volume 19 of LNCS, pages 408-425. Springer-Verlag, 1974.

17

A Lower Bound for Full Polymorphic Type
Inference: Girard-Reynolds Typability is
DEXPTIME-hard

Fritz Henglein

RUU-CS-90-14
April 1990

Utrecht University

S 0. ;

5 . Department of Computer Science
2

CE ™S Padualaan 14, P.O. Box 80.089,

VY
4771 o> 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30-531454

A Lower Bound for Full Polymorphic Type
Inference: Girard-Reynolds Typability is
DEXPTIME-hard

Fritz Henglein

RUU-CS-90-14
April 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

A Lower Bound for Full Polymorphic Type Inference:
Girard-Reynolds Typability is DEXPTIME-hard

Fritz Henglein
Department of Computer Science
Utrecht University
PO Box 80.089
3508 TB Utrecht
The Netherlands
Internet: henglein@cs.ruu.nl

April 9, 1990

Abstract

The typability problem for the Girard-Reynolds Calculus is an old and elusive prob-
lem. Neither nontrivial upper nor lower bounds have been known, not even whether the
problem is decidable or not. In this paper we present the, as far as we know, first non-
trivial lower bound for Girard-Reynolds typability. Expanding on work by Kanellakis
and Mitchell [KM89] and, in particular, Mairson [Mai90] on ML typability we prove
that GR typability is DEXPTIME-hard.

Mairson’s proof of DEXPTIME-hardness of ML typability relies on an encoding of
Boolean values by type schemes with equality between some components of the type
scheme. This type equality can be forced in ML due to ML’s monomorphic typing rule
for A-bound variables. Since this equality cannot be forced in the Girard-Reynolds Cal-
culus, Mairson’s proof cannot naively be transferred to the Girard-Reynolds typability
problem.

We show that a conventional (untyped) A-calculus representation of Boolean values,
together with an analogue of Mairson’s fan-out gates, results in a straightforward sim-
ulation of a deterministic Turing Machine “in the types” for an exponential number of
steps. This yields yet another proof, principally based on Mairson’s, of DEXPTIME-
hardness of ML typability. Since the A-expression representing a Turing Machine com-
putation simulates the Turing Machine also under S-reduction it is easy to extend this
lower bound proof to a DEXPTIME-hardness result for Girard-Reynolds typability by
mapping a rejecting computation to a nonnormalizing A-expression.

The simulation relies on a class of A-expressions that have a rank-2 typing if they
have any typing at all. Since rank-2 typability is DEXPTIME-decidable [KT89] our
bound is the best we can achieve using this particular class. It appears possible, though,
to achieve better lower bounds by extending our technique of double simulation “in the
types” and “in the values” to expressions with (only) higher-rank typings.

1 Introduction

Kanellakis and Mitchell have shown that ML typing is decidable in deterministic exponen-
tial time [KM89]. They also gave a reduction of the Quantified Boolean Value problem to
ML typing thus giving a lower bound of PSPACE-hardness. Mairson recently improved
this result by presenting a generic simulation of deterministic Turing Machines for up to an
exponential number of steps, thus proving DEXPTIME-hardness of ML typing. An alter-
native proof based on characterization by “acyclic” semi-unification was given by Kfoury,
Tiuryn and Urzyczyn [KTU89).

Mairson’s lower bound can be seen as a generic simulation of deterministic Turing
Machines (for up to an exponential number of steps) “in the types” of A-expressions. By
this we mean that the Turing Machine is simulated by the type inference algorithm as it

type-checks a A-expression representing the Turing Machine and its input. Critical use is
made of

e a universal “type equality”, represented by a A-expression (see below) that forces, in
accordance with the typing rules for ML, the types of some variables to be equal;

e an encoding of the Boolean values true and false by equality or (possible) inequality
of certain types;

¢ a mechanism (“fan-out gates”) for producing several terms with the same Boolean
input type from a single Boolean input type to “program around” the side effects of
type equality; and

¢ an encoding of an exponential number of moves by a Turing Machine by a nested
let-expression of polynomial size, exploiting the polymorphic typing rule of ML only
at this point.

The use of universal type equality is at the basis of the simulation as it is used in the defini-
tion of the Boolean values, of the fan-out gates, and indirectly also in the remaining steps.
We shall, in some sense, simplify Mairson’s proof and give a simulation in which another,
more “semantic” and more conventional representation of Boolean values is used without
resorting to a universal type equality relation. The type equality relation is a consequence
of ML’s typing rule for A-bound variables since all occurrences of a A-bound variable are
required to have the same monotype. Since the implicitly typed Girard-Reynolds Calculus
makes no such provision, Mairson’s technique does not directly extend to it.

The typability problem for the Girard-Reynolds Calculus has been very elusive since
its inception while attracting a considerable amount of attention. As far as we know no
nontrivial lower or upper bounds have been proved. In this paper we present the first
nontrivial lower bound for Girard-Reynolds typability. We show that it is DEXPTIME-
hard by adapting a new proof of DEXPTIME-hardness for ML typability, which builds on
Mairson [Mai90]. The amazing simplicity of our lower-bound technique for GR-typability
derives from the fact that with little change we can adapt a general purpose simulation of
Turing Machines in the (untyped) A-calculus to the typing disciplines imposed by ML and
the Girard-Reynolds Calculus.

The outline of the rest of this paper is as follows. In section 2 we present ML with tuples
and its typing rules. In section 3 elementary encodings of finite domains are given. Section
4 shows how Mairson’s fan-out gates are encoded in our representations. In section 5 we
give our version of how exponential-time deterministic Turing Machine computations can
be encoded as an ML typability problem. Section 6 introduces the implicitly typed Girard-
Reynolds Calculus, and section 7 presents the DEXPTIME-hardness result for Girard-

Reynolds typability. Finally, section 8 contains a short summary and some concluding
remarks. '

2 ML with Tuples

We quickly review ML typing. For technical reasons we add tuples and a constant w that
has any type into our language. The ML typing rules (Milner Calculus) are shown in Table
1. For a review of ML typing the reader is referred to, e.g., [DM82].

3 Elementary Encodings

3.1 Finite Domains

We show that a conventional representation of finite domains in the A-calculus can be
“lifted” to the universe of types. This representation does not rely on the equality of
certain type expressions, yet permits an encoding of equality for specific domains, instead
of a “universal” encoding.

For the representation of Turing Machines it is necessary to represent and compute with
finite domains of values; e.g., states, tape symbols, tape head directions. For this reason
we present a general representation of finite domains with a select (or case) expression. As
a special case we get a representation for the Booleans.

Let DF = {d,...,d;} be a given finite domain (set). We represent every element d; by
the i-th k-ary projection function, p¥.

d1 = A:v] oo o Tk
di = Azy...25.2;
dp, = Azy...ZTk.Tk

Using this representation it is simple to give an encoding of a case expression.

casedof = dej...ex
d1:€1

dy : ex

Let A range over type environments; z over variables; e, e’ over A-expressi(ms; a over type
variables; 7,7/, 7, ..., T, over monotypes; o, 0’ over polytypes. The following are the type
inference axiom and rule schemes for ML typing with tuples.

Name Axiom/rule
(CONS) ADw:o
(TAUT) A{z:0}Dz:0
(GEN) ADe:o
(a not free in A)
ADe:Vao
(INST) ADe:Vao
ADe:o|r/a)
(ABS) A{z:7'}De:T
ADMze:1T' >
(APPL) ADe:7' >
ADe:7
AD(ee): T
(LET) ADe:o
A{z:0}D¢€:0’
ADletz =eine : 0’
(TUPLE) ADei:mn
ADep: T
AD(e1y-.-sek): (T150-5Tk)
(SEL) ADe:(Try..yTk)

(1<i<k)

ADeil® 7

Table 1: Type inference axioms and rules for ML typing with tuples (Milner Calculus)

We shall denote the representations of the elements of D? = {d;,dz} by true and false,
respectively, and instead of

case d of

dl . €
da: e
we will write
cond d e;e;

Another possible representation of elements of finite domains is as characteristic functions
over D; that is, as tuples of length k where, for d;, the i-th component is true and all the
other components are false.

This is the conventional representation of the Boolean values in the untyped A-calculus.
The term cond represents the conditional if-then-else construct. In the Milner Calculus, the
type system for the functional core of ML, these combinators have the following principal
types.

true : Vofa—-f—-a
false : Vaf.a— -
cond : Vafy(a—=f—-7)—a— -7

Note that the computation of the types of applied expressions with the conditional and
the Boolean values mirror the computation of the values. We can think of cond as taking
three type exzpressions as input and producing a type ezpression as output. Consider, for
example, the simple expressions below and their types, as output by the Standard ML of
New Jersey compiler [AM8S].

- cond tt 5 7.0;
val it = 5 : int

- cond ff 5 7.0;
val it = 7.0 : real

We can see that cond maps a pair of types integer and real to integer when given
(the type of) true as its first input and to real when given (the type of) false as first
input. Note, however, that the type of the first argument to cond is “side-effected”. That
is, whereas false has the type YafB.a — § — f, in the context cond false 5 7.0 it has
the type integer — real — real. As a consequence we cannot generally use a A-bound
variable more than once if one of its occurrences is in the first argument position of a cond.

Our representation is different than the one chosen in Mairson [Mai90]. There, false
is represented by a A-expression of type Va.Vf.Vy.aa — § — 4 — v, and true by a term
of type Va.Vy.a —+ a — v — <. The underlying idea in Mairson’s representation is that a
term of type 0 - 7 — v — v is considered a representation of true only if o and 7 are
identical, and a representation of false only if ¢ and 7 are completely independent.

3.2 Assignments

Single assignments or definitions can be modeled by a beta redex. Again, this is a repre-
sentation that follows the “value level”. That is, we define

z:=ejje2 = (Az.ex)eg

The effect “in the types” is that if e; has type 73 and Az.e; has the type ; — 7, then
the whole expression, (Az.ez)e;, has type 2. In ML a beta redex can also be written as a
let-expression, let z = e; in e3. Since let-expressions have a different typing rule than the
corresponding the pure beta redexes, however, we shall use the notation above, z := e;; e,
instead.

We shall use the “pattern matching” notation

(@1, r78) 1= ex;
€2
for the sequence of assignments
t = e
zy = t.l(");
T = t.k(k);
€2

4 Preventing Interference

One of the main achievements of Mairson’s lower bound proof is the way in which type
information is “replicated” in such a fashion that encoding a computation in one copy of
type information does not affect the type information of another copy. In particular, using
different copies of the same type information, multiple occurrences of values in the first
argument position of cond and select can be emulated without the side-effect on the type
of one copy affecting another.

This mechanism is necessary to harness the universal side effect of type equality forced
by ML’s typing rule for A-bound variables. We develop, analogously, a way of “copying”
type information within our representations.

4.1 Copying Boolean Values

The Booleans true and false are represented by (the types of) the terms Azy.z and Azy.y.
We present an expression that, whenever given an expression of either type Vaf.a — § — «
or Vaf.a — 3 — (3, returns a pair, p, such that both p.1 and p.2 have the same type as the
given input. Given such an expression copy,, corresponding to Mairson’s “fan-out gate”,
we can devise expressions for producing more than two copies of a type and for producing
copies of our representations of finite domains.

At this point we use the constant w with type Va.a.

copy; = Ad.
(Az122.(d(21,w)(22,w)).13),
Ay (d(w, 1) (w, y2))'2(2))

The principal type of this combinator is
copy; : Ve aaf1 821172
((a1,a2) = (B1,82) = (11,72)) = (@1 = f1 = 71,22 = B2 = 72)

This construction can, of course, be generalized to generate any fixed number of “copies”

of independent types. We shall write copy; for the A-expression that generates [copies of
a Boolean representation.

Note that, on the untyped level, the effect of copy, is completely neutral: copy,(true)
B-reduces! to (true,true); and copy,(false) S-reduces to (false, false).

4.2 Copying Elements of Finite Domains

The construction for copying Boolean values can be extended in a straightforward fashion
to elements of finite domains of size k. In this case the corresponding copy function is
denoted by copy%

copys = Ad.
(Azy...zx(d(z1,w) ... (2k,w)).13),
Ay ke(d(w,) (w0, u)).2(2)

and its principal type is

copy? : Vo 0261827172-
(a1, 1) = ... = (e,) > (1,8) 2 (a = ... ag =7, p1— ... = B — 6)

Again, this construction can be generalized to ! copies of k-element domains. We shall
denote the corresponding representation copy?’.

5 Representing Turing Machines

A Turing Machine (TM) consists of the following components (see [HU79]).

1We call tuple redex reduction (ey, ..., ex).f*) = ¢; also S-reduction for convenience’ sake.

Q@ = {aq,-..-,q}: a finite set
of states, with initial state ¢,
and accepting states FF C @

¢ = {ca,-...,c}: afinite set of
tape symbols, with blank symbol ¢;
D = {l,r}or{,0,r}

two or three directions” in which the tape head may move
(left, not at all, right)
d : @xC->Q@xCxD:
a partial transition function.
A configuration (instantaneous description) is defined as a triple, (,q,7) where /,7 €
C*,q € Q. The next-move function is induced by the transition function as follows?:

Conf = {(1,¢,7) :l,7 € C*,q € Q}
move: Conf — Conf (partial)
move (l,q,7) =
if r = € then:
return (I,q,¢1);
(¢,¢,d) = d(g,7(1));
if d’ = I then:
if I = € then:
return (l’ Qrejs 'I‘);
else:
return (I(2..),¢,1(1)dr(2..));
if d’ = r then:
return (I, ¢, 7(2..));
if d’ = 0 then:
return (I, ', ¢r(2.));

5.1 The transition function

We now show how the transition function d is represented. For every combination of state
¢; and tape symbol c; the transition function d returns a triple d;; consisting of the new
state, the character to be written and the direction in which the tape head is to move. We
assume, w.1.0.g., that d is total, but it is also possible to emulate the Turing Machine with
a partial transition function directly.

21f the notation doesn’t make sense, don’t worry. The function move is simply the transition relation
ke from [HU79).

d = Age.
(c,...,cF) := copyke;
case g of
q1 : case c! of
1 :dn;

a :dy;
¢ : case c? of
c :dan;

¢ : dy;

qx : case c* of
c1 & dr;

cr : dig;

Note that in the above definition both arguments of d are side-effected since they occur
in the first positions of case expressions.

5.2 The next-move function

As we have seen, the transition function induces a next-move function on configurations.
We can almost transliterate this description into a representation “in the types” and “in the
values”. The generally unbounded tape contents are represented by nested pairs. W.lo.g.
we assume that tape symbol ¢ represents the blank character and ¢; a special “end-of-tape”
symbol; further, that the simulated TM never attempts to write off the left end of its tape.

move = AC.
(l’ 9 T) = C;
(C"I) =1
(", F):=1;
(¢%...,q") := copyfg;
(¢,c,d") := case c"of
(43 dqlcl;

ci—1 : dgttep-1;
o (qu 6170);
case d'ot:
l: (la q,9 (cl’ (Ci, F)));
r:((c\1),¢,7);
0: (l, q, (Cla (Clv"))))

5.3 The initial configuration
The initial configuration Cp = (€, g1, %) of a Turing Machine computation is represented by

Co = ((cb U.)), dlv (221, vy (zn’ (c;,w)) .. '))

where z = z;...2, is the input.

5.4 Correctness
The correctness of our simulation follows from the following result.

Theorem 1 Let ¢ = move(move(...(move(Cp))...)), and let ¢ be a f-reduct of e. If ¢
has type o then e has also type 0.

Proof: (Sketch) Let E be the class of (representations of) configurations; i.e., every e in F is
of the form ((z1, ..., (Zm,(c1,w))..)&, (@1, -, (¥, (c1,w))...)) and z;,y; € C,q € Q. Note that
E is a class of expressions in f-normal form. Obviously, for every e in E there is ¢’ in E such that
move(e) F-reduces to ¢’. It is sufficient to show that if 7/ is the principal type of ¢’ then move(e)
has also type /. But this follows from the representation considerations above. Then the theorem
follows by induction on the number of applications of move from the subject reduction theorem.
(End of proof) m

This theorem is also at the heart of the correctness of Mairson’s method. Even though
this “invariance” theorem — it is a weak dual to the subject reduction theorem — is only
formulated for a specific class of expressions, a much more general definition of a class of
B-conversions with invariant typings seems on hand.

5.5 The main loop

So far we have not made use of the polymorphic typing rule for let-expressions in ML. We
use this rule only once, to encode an exponential number of applications of the move function
— regarded as applications “in the types” — to an initial configuration. Our presentation
here is pretty much directly from Mairson [Mai90].

Given a Turing Machine 7' and an input z = c!...c" we encode running T for 2°" on
z as follows. The exponential composition of move with itself is accomplished as follows.

sim =
let move; = AC. move(move(C)) in
let move; = AC. movez(movey(C)) in

let moves, = AC. movey,—1(movec,—1(C)) in
(1, g,7) := move(Co);
accept := case ¢ of
F: true;
Q — F: false;
(accept — K, Azyz.(zz,2y)) K

10

Here F is a listing of all accepting states. The invariance of ML typing under let-
reduction yields the final result.

Lemma 2 The ezpression sim is ML typable if and only if the represented Turing Machine
T accepts input = = 1 ..., within 2 steps.

Proof: The let-reduct sim2 of sim,

sim2 =
(1,q,7) := move?” (Co);
accept := case ¢ of
F: true;
Q — F: false;
(cond accept K(Azyz.(2z, y))IK

is typable if and only if sim is typable [Dam84]. If T is in an accepting state g; after 2°" steps then,
by Theorem 1,

(1,q,7) := move*”" (Co);
q

has the same (principal) type as ¢;. Similarly,

8im2 =
(I,q,7) := move*” (Co);
accept := case ¢ of

F: true;
Q — F: false;
accept

has the principal type of true: Vaf.a — 8 — a. Since

{accept : Vap.a — g — a D}
(cond accept K(Azyz.(2z,zy)))IK :
Va.a —

sim is typable.

If, on the other hand, T is not in an accepting state, the principal type of accept above is the
principal type of false: Yaf.a — 8 — . But then

(accept — K, Azyz.(2z,2y))IK

would only be typable if I and K had the same type. But this is impossible. Consequently, sim is
not typable. (End of proof)

Now we have the main theorem for ML typing.

11

Theorem 3 ML typability with tuples and constant w is complete for DEXPTIME under
log-space reductions.

Proof: The theorem follows directly from Lemma 2 since, given Turing Machine description T
and input z the program, sim can be constructed in logarithmic space. ML typability is shown to
be in DEXPTIME by Kanellakis and Mitchell [KM89]. (End of proof) m

In this form our theorem is actually weaker than DEXPTIME-completeness results
of Mairson [Mai90] and Kfoury, Tiuryn, Urzyczyn [KTU89] since we use tuples and the
constant w. We can strengthen it by getting rid of tuples and treating w as a free variable
[Hen90]. But since, in ML typing, the conventional encoding of tuples — i.e., (€1,...,€k) =
Az.zey .. .e (with z not free in any of the e;’s) — breaks down, the strengthening comes
at the expense of giving up the “double simulation” property (on the “value level” and on
the “type level”) of our representation. Curiously, transferring this DEXPTIME-hardness
proof to the elusive problem of Girard-Reynolds Typability is, on the other hand, only a
minor step.

6 The Implicitly Typed Girard-Reynolds Calculus

The explicitly typed Girard-Reynolds Calculus comes by many other names: polymorphic
M-calculus, second order A-calculus, system F (see, e.g., [Gir71, Rey74, GLT89, Mit88}). In
this section we review the implicitly typed Girard-Reynolds Calculus (or, for short, GR-
calculus), which is a type inference system of equally many names. Mitchell calls it pure
typing [Mit88]; Leivant type quantification [Lei83]. The axiom and rule schemes of the
implicit GR-calculus are given in Table 2. Note that here, as opposed to ML typing, the
type expressions may be arbitrary expressions generated by the grammar

r u= a|t—7"|VYar

We assume, here as before, standard notions of type inference systems.

The typability problem for the GR-calculus is the problem of deciding, given a A-
expression e, where there exist A, T such that the typing A D e : 7 is derivable in the
above type inference system. It is also called the full polymorphic type inference problem
[Boe85, Pfe88] and the type reconstruction problem for the 2nd order A-calculus [KT89).

Characterizations of GR typability have been given by Mitchell [Mit88] and Gian-
nani and Ronchi della Rocca [GRDRSS8)]. Restricted or modified GR typability problems
have been investigated by McCracken [McC84], Boehm [Boe85, Boe89], Pfenning [Pfe88],
0’Toole and Gifford [0JG89], Kfoury and Tiuryn [KT89] and probably many others. In-
terestingly, partial polymorphic inference [Boe85, Pfe88] and rank-bounded polymorphic
inference with suitably typed constants [KT89] have been shown undecidable, yet none of
the proofs yield any nontrivial lower bound for full polymorphic type inference. In fact,
no nontrivial lower or upper bounds on GR typability were exhibited so far. Our lower
bound on full polymorphic type inference is based on techniques developed by Kanellakis
and Mitchell [KM89] and Mairson [Mai90] for ML typability.

12

Let A range over type environments; £ over variables; e, ¢’ over A-expressions; a over type
variables; 7, 7' over type expressions. The following are the type inference axiom and rule
schemes of the implicitly typed Girard-Reynolds Calculus.

Name

Axiom/rule

(TAUT)

(GEN)

(INST)

(ABS)

(APPL)

A{z:0}Dz:0

ADe:o
(c not free in A)

ADe:Vao

ADe:Vao

ADe:o|t/al

A{z:7'}De:T

ADXze:T — T

ADe:T' >
ADe 7!

AD(ee): T

Table 2: Type inference axioms and rules of the implicitly typed Girard-Reynold Calculus

(GR-calculus)

13

7 DEXPTIME-hardness of GR Typability

We shall see that our method of proving ML typability DEXPTIME-hard yields a lower
bound of DEXPTIME-hardness for GR typability almost immediately. As far as we know
this is the first nontrivial lower bound for GR typbability. We believe, though, that our
method of type invariant simulation can be pushed much further and possibly result in
nonelementary-recursive lower bounds.

It is easy to see that we can simulate let, tuples and selections that occur in ML
derivations by pure \-expressions in the GR-calculus,

letz=ceine = (Az.)e
(e1,..-r€k) = Az.zer...€k
ei®) = e(Azy ... 2k.2;)

since their ML typing rules are derived rules in the GR-calculus. E.g.,

(LET) ADe:o
A{z:0}D€: 0’
A>(z.e)e: o’

(TUPLE) ADe:n

ADer: Tk
AD)z.z€1...€ V(i — .. k= 7) >

(SEL) Ade:Vy(n— ..k —>7) 7
(1Li<k)

ADe(Azy...zk.2) 1 T

Henceforth we shall consider let-expressions, tuples and selections as syntactic sugar for
their pure A-calculus counterparts in the GR-calculus.
Now, consider the expression sim’:

sim’ = Aw.
let move; = AC. move(move(C)) in
let move; = AC. movez(movey(C)) in

let moves = AC. mMoVe,—j(moves,—1(C)) in
(1,q,7) := move(Co);
accept := case q of
F: true;
Q — F: false;
(cond accept I(Az.z2))(Az.zz)

14

The only differences from sim are the first line and the last line. By A-abstracting over w we
dispose of w as a separate constant since A-bound variables may carry polymorphic types
— in particular, Ya.c — in the GR-calculus, which is not possible in the Milner Calculus.
The last line is instrumental since it ensures that sim’ has no S-normal form whenever T
does not accept its input.

Lemma 4 The ezpression sim’is GR typable if and only if the represented Turing Machine
T accepts input T = ;... T, within 2°* steps.

Proof: If T accepts after 2°" steps then, as we have seen in the proof of Lemma 2, there is
an ML derivation such that accept has type Vaf.a — f — «. Since every ML derivation can be
canonically translated into a GR derivation, there is also a GR derivation such that accept has
type VaB.a — B — a. Since Az.zz has type (Va.a) — (Vo.a) (amongst others) and I has type
Va.a — a, we get the following derivation for Ao = {accept : Vaf.a0 — B —a,w:Va.al.

Ag D accept:Vaf.a—f—a

Ao O accept : (Va.a — a) = ((Va.a) = (Ya.a)) = (Va.a — a)
Ao D accept I(Mz.zz): (Va.a — @)

Ao O accept I(z.zz) : (Ya.a) = (Vo)) — ((Va.a) — (Va.a))
Ao D (accept I(Az.zz))(Az.z2) : (Va.a) = (Va.a)

Consequently, sim’ is GR typable.
If, on the other hand, T does not accept after 2° steps then sim’ B-reduces to

(cond false I(Az.zz))(\z.zz)

which, in turn, #-reduces to
(Az.zz)(Az.z2).

But (Az.zz)(Az.zz). has no f-normal form. Thus sim’ is not strongly normalizing, and by Girard’s
strong normalization theorem [Gir71, GLT89] sim’ has no GR typing. (End of proof) m
We have, as in the ML typability case, the following lower bound for GR typability.

Theorem 5 GR typability is hard for DEXPTIME under log-space reductions.

Proof: This follows from Lemma 4 and the fact that sim’ can be constructed from TM T and
input z in logarithmic space. (End of proof) ®

8 Concluding Remarks

We have presented a simulation of Turing Machines up to 2°" steps for inputs of size n in the
A-calculus under B-reduction that has the property that every reduction sequence is invari-
ant under ML typability, respectively GR typability. This yields the first intractibility result
for GR typability; in particular, we show that GR typability (also called full polymorphic
type inference or type reconstruction for the second order A-calculus) is DEXPTIME-hard
under log-space reductions.

Since the class of A-expressions we use for simulation has the property that, if they have
a typing then they have a rank-2 typing (see [Lei83, KT89]), this result is the best we can

15

achieve since Kfoury and Tiuryn have shown that rank-2 GR typability is equivalent to ML
typability [KT89], which is DEXPTIME-decidable.

In pursuing this work we have aimed to identify a “powerful” class of M\-expressions that
has the property that

e there is a constant k such that if an expression has a typing derivation of any rank
then it has a derivation of rank at most k;

o the class of expressions is closed under S-reduction and GR typability is invariant for
any f-reduction sequence (i.e., a weak inverse of the subject reduction theorem).

Much to our surprise a rather obvious and straightforward simulation fits the bill for rank
2. Better bounds ¢an possibly be achieved by considering expressions with higher rank.

Mitchell’s retyping functions [Mit88] in connection with normalized derivations seem like a
promising direction to pursue.

Acknowledgements

I would like to thank Harry Mairson and Hans Leifl for extensive discussions on type
inference; in particular Harry for sharing his insights on computing with types with me,
not to mention his vibrant enthusiasm and his hilarious jokes.

References

[AMS88] A. Appel and D. MacQueen. A Standard ML compiler. Manuscript, 1988.

[Boe85] H. Boehm. Partial polymorphic type inference is undecidable. In Proc. 26th
Annual Symp. on Foundations of Computer Science, pages 339-345. IEEE, Oct.
1985.

[Boe89] H. Boehm. Type inference in the presence of type abstraction. In Proc. SIG-
PLAN ’89 Conf. on Programming Language Design and Implementation, pages
192-206. ACM, ACM Press, June 1989.

[Dam84] L. Damas. Type Assignment in Programming Languages. PhD thesis, University
of Edinburgh, 1984.

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In
Proc. 9th Annual ACM Symp. on Principles of Programming Languages, pages
207-212, Jan. 1982.

[Gir71) J. Girard. Une extension de l'interpretation de Godel a I’analyse, et son ap-
plication a l’elimination des coupures dans l’analyse et la theorie des types. In
2nd Scandinavian Logic Symp., pages 63-92, 1971.

[GLT89] J. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

16

[GRDRS88] P. Giannini and S. Ronchi Della Rocca. Characterization of typings in poly-

[Hen90]
[HUT79]

[KM89)]

[KT89)

[KTUS9]

[Lei83]
[Mai90]

[McC84]

[Mit88]

[03G89]

[Pfe88]

[Rey74]

morphic type discipline. In Proc. Symp. on Logic in Computer Sciene, pages
61-70. IEEE, Computer Society, Computer Society Press, June 1988.

F. Henglein. A simplified proof of DEXPTIME-completeness of ML typing.
Manuscript, March 1990.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

P. Kanellakis and J. Mitchell. Polymorphic unification and ML typing (extended
abstract). In Proc. 16th Annual ACM Symp. on Principles of Programming
Languages. ACM, January 1989.

A. Kfoury and J. Tiuryn. Type reconstruction in finite rank fragments of the
second-order lambda calculus. Technical Report BUCS 89-011, Boston Univer-
sity, Oct. 1989.

A. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Technical
Report BUCS 89-009, Boston University, Oct. 1989. also in Proc. European
Symposium on Programming, Copenhagen, Denmark, May 1990.

D. Leivant. Polymorphic type inference. In Proc. 10th ACM Symp. on Principles
of Programming Languages, pages 88-98. ACM, Jan. 1983.

H. Mairson. Deciding ML typability is complete for deterministic exponential
time. In Proc. POPL ’90. ACM, Jan. 1990.

N. McCracken. The typechecking of programs with implicit type structure. In
Proc. Int’l Symp. on Semantics of Data Types, pages 301-316. Springer-Verlag,
June 1984. Lecture Notes in Computer Science, Vol. 173.

J. Mitchell. Polymorphic type inference and containment. Information and
Control, 76:211-249, 1988.

J. O’Toole Jr. and D. Gifford. Type reconstruction with first-class polymorphic
values. In Proc. SIGPLAN ’89 Conf. on Programming Language Design and
Implementation, pages 207-217. ACM, ACM Press, June 1989.

F. Pfenning. Partial polymorphic type inference and higher-order unification.
In Proc. 1988 ACM LISP and Functional Programming Conf., pages 153-163.
ACM, July 1988.

J. Reynolds. Towards a theory of type structure. In Proc. Programming Sym-
posium, volume 19 of LNCS, pages 408-425. Springer-Verlag, 1974.

17

