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Abstract

We consider the generalization of graph coloring to distance-k coloring,
also termed strong coloring in the case k = 2. Some basic facts about strong
coloring of graphs are given, and several auxiliary results are presented for
strong colorings of special classes of graphs. A survey is given of some recent
results for strong colorings of planar and outerplanar graphs.

1 Introduction

The coloring problem for graphs has a longstanding mathematical interest. In this
paper we consider the generalization to distance-k coloring for any k > 1, that is,
we consider the problem of coloring a graph such that all vertices with distance < k
are colored differently. The distance-k coloring problem for graphs is NP-complete
for every k > 1 [17]. For k = 1 one has the old definition of graph coloring, and for
k = 2 the concept is also refered to as strong graph coloring [2, 4, 8]. Alternatively, a
strong coloring can be defined as a coloring with the property that not only adjacent
vertices have different colors (the usual “coloring condition”) but also all neighbors
of any vertex are colored differently (the “strong coloring condition”).

The strong coloring problem for graphs has several applications. For example,
in computing approximations to sparse Hessian matrices [17] the following typical
problem arises: Given an n X n matrix M of 0’s and 1’s, one wishes to partition the
columns of M into a number of sets such that no two columns in the same set have
a 1 in the same row. This is equal to the strong coloring problem when we view
M as the adjacency matrix of a graph. Another application occurs in the design of
collision-free multi-hop channel access protocols in radio-networks [15], which can be
solved using strong coloring. We also mention the application to the segmentation
problem for files in a network [2]. Here the colors represent different (disjoint)
segments of a file F, the graphs are regular with degree d and a strong coloring is

*This work was supported by the ESPRIT II Basic Research Actions program of the EC under
contract No. 3075 (project ALCOM). This report is a revision of an earlier version.
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desired with exactly d + 1 colors. (This implies that every vertex a full copy of F
can be assembled from the available segments in its direct neighborhood.) A last
application we mention concerns the problem of obtaining drawings of graphs G in
the plane in which the minimum angle formed by any pair of edges is maximized.
After a strong coloring of the graph G with u colors is determined, a unit circle
in the plane is drawn and u equidistant points py,...,p, are marked on the circle.
After placing the vertices of G that are assigned color ¢ in a ball of radius € around
pi (1 £ < u) and drawing the edges as straight line segments, the minimum angle
can be shown to have size %ﬂ [7].

In this paper we present an overview of some results for the strong coloring
problem for graphs as they seem to be known to date. We prove a number of basic
facts and present some results when the problem is restricted to special classes of
graphs. Some recent methods are shown to strongly color planar and outerplanar
graphs. Several open questions are identified.

The paper is organized as follows. In section 2 we give some definitions con-
cerning graphs and (strong) graph colorings. In section 3 we give some preliminary
results for the strong coloring problem for certain classes of planar and non-planar
graphs. In section 4 we give some facts for strongly coloring (r — 1)-regular graphs
with r colors, which we refer to as “perfect coloring”. In section 5 some results
for strongly coloring outerplanar and planar graphs are given. Section 6 contains
some remarks and open questions. In an appendix we present a new proof of the NP-
completeness of the strong coloring problem for graphs. We assume some familiarity
with basic graph theory (cf. Harary [11}).

2 Definitions

Let G = (V, E) be a graph with |V| = n vertices and |E| = m edges. The distance
between two vertices z and y is defined as the number of edges on the shortest path
between z and y. The distance between two edges of G is defined as the shortest
distance between an endpoint of one and of the other. Let A = maz{deg(v)|v € V},
with deg(v) the degree of vertex v. The square graph of G is the graph G? with
V(G?) = V(G) and E(G?) = {(u,v)|(u,v) € E or (u,z) € E and (z,v) € E for some
z}. Observe that A(G?) < (A(G))%. The chromatic number of a graph G, denoted
by x(G), is the least K < n such that G can be K-vertex-colored, i.e., such that there
exists a function f: V — {1,2,..., K} with f(u) # f(v) whenever (u,v) € E [11].
The chromatic indez of a graph G, denoted by x/(G), is the least K < m such that G
can be K-edge-colored, i.e., such that there exists a function f: E — {1,2,..., K}
with f((u,v)) # f((u,w)) for all u,v,w € V and (u,v),(u,w) € E [11]. In any
vertex (edge) coloring, every pair of vertices (edges) that have distance one must
have different colors. Whenever vertex colorings are considered, ¢(v) will denote the
color given to a vertex v.

The generalization to distance-k coloring is now straightforward. The k-chromatic



number of a graph G, denoted by xx(G), is the least K < n such that G can
be distance-k K-vertex-colored, i.e., such that there exists a function f : V —
{1,2,...,K} with f(u) # f(v) whenever u and v lie within distance k in G. The
k-chromatic indez of a graph G, denoted by x}(G), is the least K < m such
that G can be distance-k K-edge-colored, i.e., such that there exists a function
f:E —{1,2,...,K} with f((u,v)) # f((w,z)) whenever (u,v) and (w,z) lie
within distance k from each other. For k = 2, we speak of the strong chromatic
number and the strong chromatic indez respectively. If a (r — 1)-regular graph can
be strongly colored with exactly r colors, then this coloring is called perfect [12].

McCormick [17] has proved that, given a graph and an integer K, the problem
of deciding whether a graph can be distance-k vertex colored with K colors is NP-
complete, for every k > 1. Another proof for the NP-completeness of the strong
chromatic number problem can be found in the Appendix. Checking whether a
graph can be strongly colored with K < 3 colors is trivial. If a graph has A > 4 or
contains a Cs or a K3 3, then the graph is not strongly 4-colorable. It is open whether
the problem of deciding x}(G) < K for graphs G and integers K is NP-complete.
In this paper we will focus entirely on the strong coloring problem (k = 2). We will
be refering to some special classes of graphs including planar graphs, outerplanar
graphs, Halin graphs, chordal graphs and partial k-trees. We assume that the first
three are known but include an inductive definition of partial k-trees.

Definition 2.1 ([1]) The class of k-trees is the smallest class of graphs that satisfies
the following rules:

1. the complete graph K. on k vertices is a k-tree.

2. if G = (V,E) is a k-tree and v,,...,v form a complete subgraph of G, then
the graph G' = (VU {w}, EU{(vi;,w)|1 <t < k}) withw € V is also a k-tree.

A graph is a partial k-tree if and only if it is a subgraph of a k-tree.

3 Preliminaries

To obtain some first bounds for x2(G), consider the following (SL*) ordering of a
graph, determined by the following algorithm, which is almost similar to the SL-
algorithm of [16].

ALGORITHM SL*

Let n be the number of vertices in G.
Initialize H to G.
for j = n downto 1 do

begin



Choose a vertex v; in H.
Let v;,...,v;, be its neighbors.
Remove v; and all edges incident to v; from H.
Add zero or more edges to H to achieve that
Vj,- -, j; have distance < 2 to each other.
end
SL* = vy,vg,...,0,.

END OF ALGORITHM

Let SL* = vy, v,,...,v, be the ordering of G as computed by the algorithm. Let
p be the maximum of the degrees of the vertices as they appear in the for-loop. Let
H; be the graph operated on by the algorithm when the loop-body is executed for

j. Let A’ be the maximum degree of any vertex in an H;. Note that A’ > A as
H, =G.

Theorem 3.1 With p and A’ defined as above: A +1 < x2(G) < pA' + 1.

Proof: The lowerbound is trivial. For the upperbound, we use induction to
show that the graphs H; and thus the vertices can be strongly colored in SL*-order
with no more than pA’+1 colors. Let C be a set of pA’+1 colors. Vertex v; can be
assigned an arbitrary color from C and a strong coloring of H; is obtained trivially.
Assume we have colored the vertices vy, ...,v;_; (following the ordering) using colors
from C such that a strong coloring of H;_; is implied, for some i > 2. Now consider
H;. Assume that all vertices except v; are colored as in H;_;. v; is connected to at
most p colored neighbors and since all these neighbors have distance < 2 to each
other in H;_,, they are colored differently. Now v; has at most pA’ colored vertices
within distance 2, hence at most pA’ colors from C are blocked for it. Hence v; can
be colored with a color from C to obtain a strong coloring of H;. This completes
the induction. O

It follows from theorem 3.1 that, in order to obtain strong colorings with a “small
number of colors using the SL*-algorithm, an SL*-ordering must be found that gives
both a small value of p and a value of A’ that remains close to A.

A possible algorithm for adding additional edges between the vertices v, , ..., v;,
in each step of the for-loop in the SL*-algorithm is the following. Assign to every
vertex v;; a label (z,y), with 0 < z,y < [Vk]. Add an edge between two vertices
with labels (z1,31) and (z2,y2), if and only if z; = z; or y; = y,. Between every
two vertices, labelled (a,b) and (c,d), there is a path of length at most two via
vertex (a,d) or vertex (b,c). Note that this construction increases the degree of
every vertex v; by at most 2[Vk].



Corollary 3.2 k-trees can be strongly colored with at most kA + 1 colors.

Proof: From definition 2.1 it follows that an ordering of a k-tree is obtained
by removing suitable vertices of degree k in each step of the SL*-algorithm. Note
that these vertices can be chosen so their neighbors are a clique in the remaining

graph (a k-tree again), hence no edges need to be added. Applying theorem 3.1, the
corollary follows. O

Corollary 3.3 Every outerplanar graph can be strongly colored with at most 2A +1
colors.

Proof: Every outerplanar graph G has a vertex v with degree at most 2. Delet-
ing v with its incident edges preserves the outerplanarity. Thus the SL*-algorithm
can chose v; to be a vertex of degree < 2 in every iteration of the loop. Observe
that if v; had degree 2 and its neighbors where not adjacent, then we can add an
edge between them in the last step of the iteration (without increasing any degrees).
Applying theorem 3.1 the result follows. O

Similar bounds can be given for distance-k vertex and edge colorings. Observe
that theorem 3.1 also implies that x'(G) < x2(G), as x(G) < A + 1 by Vizing’s
theorem. The question whether xx(G) < x4(G) remains as an interesting open
problem. For trees it is clear that x2(G) = A + 1 and x4(G) = maz{deg(u) +
deg(father(u))|lu € V}. Every Halin graph can be strongly colored with at most
A + 6 colors. (For the latter result one uses that every tree can be strongly colored
using at most A + 1 colors and every circuit with at most 5 colors.)

Observe that from a strong vertex coloring with x;(G) colors one can obtain
a strong edge coloring with (x2(G))? colors, by assigning to every edge (u,v) the
color [¢(u), ¢(v)], where the colors of the vertices are taken from the strong vertex
coloring. Notice that this large difference between the strong chromatic number
and the strong chromatic index actually occurs in the case of the complete bipartite
graphs G = K, ,, where x2(G) = 2n and x4(G) = n?. ,

There appears to be no simple connection between x(G) and x3(G). A reasonable
conjecture like x2(G) < (A + 1)x(G) + 1 fails, by observing the coloring of the
following bipartite graph G, = (< W;,V; >,E) for any p > 2. V; consists of p
vertices 0,...,p — 1. V; consists of p(p — 1) vertices {¢,j},0<i<p,0<j<p-—1,
and a vertex A. Let i € Vj be connected to the vertices {i,z} for 0 < z < p—1
and to vertex A. Add p(p — 1) vertices [k,[] to Vi, with 0 < k,I < p — 1, and the
edges ([¢, ], {0,4}) and ([z, ], {k, ((k — 1)i + j) mod (p — 1)}), with 1 < k < p and
0 <5 < p—1. Note that G, is p-regular bipartite and that every two vertices
in V2 have distance 2 to each other. Hence this graph has A = p, x(G) = 2 and
x2(G) = A(A —1) 4+ 1. It shows that x(G) and x3(G) can differ dramatically. In
figure 1, an example is given for p = 3.



Figure 1: Example of a G, for p = 3.

From the observation that xx(G) = x(G*) and x4(G) = x'(G*) (using the defi-
nition of the k*® power graph G* of [11]) for every k > 2, it follows that we can use
the available algorithms for ordinary graph coloring for obtaining strong colorings,
after calculating G? in O(Am) time. Also all lowerbounds for the chromatic num-

ber trivially hold for the strong chromatic number. This also leads to the following
observation:

Theorem 3.4 Chordal graphs can be strongly colored in a smallest possible number
of colors in polynomial time. For every chordal graph G one has x2(G) < (3A+1)2.

Proof: Note that the square graph of a chordal graph is a chordal graph too,
and can be colored in an optimal number of colors in polynomial time (cf. Golumbic
[10)).

For proving x2(G) < (3A +1)? we induct on n, the size of G. For n < 3 the
result trivially holds. Consider an arbitrary chordal graph G of n vertices, n > 3.
Without loss of generality we may assume that G is connected. If G is a clique, then
it can be strongly colored with n = A +1 colors and A+1 < (3A+1)% Thuslet G
not be a clique, S a minimal vertex separator of G and A, A,, ..., A; the connected
components of G — S. Let H; be the induced subgraph spanned by S and A;, and
let H, be the induced subgraph spanned by S and A,, ..., A;. By well-known facts
for chordal graphs [10] S is a clique, and H; and H; are connected chordal graphs.
Let |S| = s. By induction H; and H; are strongly colorable with the colors of some
set C of (3A + 1)? colors. A strong coloring of G can now be obtained as follows.

Permute the colors such that in the strong colorings of Hy and Hj, the vertices of
S get the same colors. (This can be done because the colors assigned to the vertices
of S must all be different, by the strong coloring requirement, in both the coloring
of H, and the coloring of H,.) Let N; be the set of vertices in A; that are reached
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by an edge from S, and N, the set of verticesin A;U...U A; defined similarly. Let
|N1| = ny and | N;| = ng, and observe that ny +n, < s(A—-s+1) < (3A+1)? —s.
Thus we have sufficiently many colors in C to arrange that s colors are fixed for
the vertices in S, and the remaining colors can be permuted such that in the strong
colorings of H; and H, the vertices in N; and N, are colored by disjoint sets of
colors. The resulting strong colorings of H; and H, can now be combined (merged)
to a correct strong coloring of G which employs no more than (1A +1)? colors. O

We conjecture that x(G?) < Q + 1, with Q the number of vertices of the largest
clique in the graph G?. If G? is a linegraph, then this conjecture is true by noting
that if the linegraph G? has a largest clique of size Q, then the linegraph of this
linegraph has maximal degree Q and can be edge-colored with @ + 1 colors. Hence
the linegraph G? can be vertex-colored with @ + 1 colors.

4 Perfect Colorings

A (r — 1)-regular graph is called perfectly colorable if it can be strongly colored
with exactly r colors. This kind of strong coloring is useful for the following file
distribution problem [2]: “Given a connected regular network G = (V,E) and a
file F, assign to each vertex z € V a segment F, C F such that for all z €
V,U(zw)ee Fy U Fr = F and in every neighborhood the distributed fragments are
free of overlaps, i.e., V(z,y) € E : F,NF, = 0.” When the network is (r —1)-regular,
this problem solves the file distribution question with the smallest possible number
of different disjoint segments of F. A perfect coloring describes the assignment of
the segments for a valid solution of the file distribution problem. It has been shown
by Bakker et al. [3] that this problem is NP-complete, even for the case r = 4.

In this section we give some relationships between strong colorings, perfect col-
orings and edge colorings.

Lemma 4.1 ([2]) If a (r — 1)-regular graph with |V| = n vertices can be perfectly
colored, then r|n and every group of equally colored vertices has & vertices.

Proof: Let N(z) denote the set of vertices having distance < 1 to vertex z.
Consider any perfect coloring of the graph, and let ¢ be one of the colors. Let z; and
z3 be two vertices colored c¢. There can be no vertex y in N(z1) N N(x2) because,
if there was, y would have two neighbors of the same color (which contradicts the
strong coloring property). Thus for all z,,z; with z; # z; and ¢(z1) = ¢(z2) = ¢
N(z,)N N(z2) = 0. Furthermore for every vertex y there is a vertex z with c(z) = ¢
and y € N(z). Hence the neighborhoods N(z) of vertices z with ¢(z) = c form a
partitioning of G. But for all z € V : |[N(z)| = r. Hence r|n and every group of
equally colored vertices has size . a



Theorem 4.2 Every strongly r-colorable graph is the induced subgraph of a perfectly
colorable (r — 1)-regular graph.

Proof: We induct on r. For r = 1,2 and 3, the theorem is trivial. Thus
let 7 > 4 and G be a strongly r-colorable graph. Consider a strong coloring of G
with the colors ¢y, ..., ¢ and let H be the induced subgraph of G consisting of all
vertices with a color € {¢i,...,¢,-1}. By induction H is an induced subgraph of
some (r—2)-regular graph Ry that is perfectly colorable, and w.l.o.g. we can assume
that it is-perfectly colored with c;,...,¢,;. Arrange the vertices of Ry into (r—1)
disjoint blocks By, ...,B,_;, with B; (1 <i<r— 1) containing the vertices of color
¢, and let every block contain b vertices. (By lemma 4.1 we know that the blocks
must be of equal size.) Tag the vertices of Ry that correspond to the vertices of H.
Let the vertices z,,...,z, (some s > 1) of G — H together form the “beginning” of
the r*® block B,. The vertices {z,,...,z,} form an independent set in G (because
they all have color c,).

Now form the graph Rg as follows. Make [£] copies of Ry and extend B, by
another [£]b — s vertices y. We now "connect” the z- and y-vertices to the vertices
in the Ry copies in two steps, as follows:

1. for i from 1 to s do
begin
connect z; to a new vertex from a Bj-block for every j,1 <j <r —1,
always favoring the tagged vertex z in a block B; if z; is
directly connected to z in G, but taking an untagged vertex otherwise.
end;

Observe that we have [£]b > s vertices of every color, so step 1 always works and
does not “run out of vertices to connect to”. But also observe that we have exactly
[£]5 — s vertices left of every color after this step.

2. for i from 1 to [7]b— s do
begin
pick a new y-vertex and connect y to a vertex from a B;-block that
was not yet connected to, for every j,1 <j <r—1.
(Note that these vertices were not tagged.)
end;

Note that step 2 makes the graph Gy (r — 1)-regular. The result is a graph Rg that
is (r — 1)-regular, perfectly colorable with r colors and clearly, by design, we have
that G is an induced subgraph of Rg. a

Another property is the following. Recall that by Vizing’s theorem every graph
is edge-colorable with A or A + 1 colors.



Figure 2: A 3-edge-colorable 3-regular graph that is not perfectly colorable ([13]).

Lemma 4.3 If a graph is strongly colorable with r colors and r is even, then it is
(r — 1)-edge colorable.

Proof: Let G be strongly colorable with r colors. If r is even, then K, is
edge-colorable with (r — 1) colors. Let G be strongly colored with the r names of
vertices of K,. Now G can be edge-colored as follows: color an edge from the vertex
colored X to the vertex colored Y with z if the edge between X and Y in K, is
colored z. This gives a correct (r — 1)-edge coloring of G. O

The converse is not true, see for example figure 2. Also this theorem does not
hold for r odd in general, as an edge-coloring of a K, (which is perfectly colorable
with r colors) requires r colors when r is odd.

Also the spectra of perfectly colorable graphs have some interesting properties.
Because a perfectly r-colorable graph G is (r — 1)-regular, its largest eigenvalue is
equal to r — 1 and has multiplicity 1. The following more specific observation can
be made as well.

Theorem 4.4 Let G be perfectly r-colorable. Then G has an eigenvalue -1, with
multiplicity > (r — 1).

Proof: Let G be perfectly r-colored, and consider the vertices of G arranged in
blocks of equally colored vertices (of size 2 each). Let A = A(G) be the adjacency
matrix of G corresponding to this vertex-ordering. The symmetrix matrix 4 can
be viewed as a block matrix, with the blocks along the main diagonal consisting of
all zeroes and the off-diagonal blocks being * X 7 permutation matrices. (As an
aside we note that, conversely, if the vertices of a graph G can be arranged so the
adjacency matrix is of this form, then G is perfectly r-colorable.) Now consider the
7 X r matrix A’ obtained from A by replacing every block on the main diagonal by
a “0” and every off-diagonal block by a “1”. A'is the adjacency matrix of the K

ry
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whose spectrum consists of one eigenvalue (r — 1) and (r — 1) eigenvalues -1 ([6]).
Also, when (z,,...,z,) is an eigenvector of A’, then the vector obtained by repeat-
ing each coordinate 2-fold is an eigenvector of A and independency of eigenvectors

is preserved in the process. It follows in particular that A (and hence, G) has an
eigenvalue -1 with multiplicity at least r — 1. O

From the same argument some more information can be derived. Let n > r and
let Ay,..., A and —py,..., — be the remaining positive and negative eigenvalues
in the spectrum of G in decreasing order different from the r eigenvalues (r — 1)
and -1 that we have, with k + 1 = n — r. As the trace of A 1s zero, we have
AM+...+M = ui+.. .+4y. Observe also that A2is a symmetric matrix with all entries
along the main diagonal equal to r — 1. It follows that D T Y 1 e SR
tr(4%)~(r—1)2=(r—1) = (n—r)(r—1). Nowlet A= ), = Amax; = il = fmax and
6 = maz{), u}. One easily verifies that § > \/r — 1 and min{A, pu} > L/r —1.

n—r

Another characteristic of perfectly colorable graphs is the following:

Theorem 4.5 Let G be regular of degree > 3 and perfectly colorable. Then one can
partition V as V; UV, such that

1. the induced subgraph Gy on V; is a set of chordless cycles of length divisible
by 3.

2. the induced subgraph G, on V; is regular of degree A —3 and perfectly colorable.

Proof: Let a,b,c be three colors of the perfect coloring of G. Let V; be the set
of vertices colored a,bor ¢ and V; = V — W.

Consider any vertex in V;, say with color a. It has one neighbor colored b, this
neighbor has one neighbor colored ¢, etc. This necessarily closes itself as a cycle at
the point of departure. By the strong coloring property, this cycle must be chordless.
This proves the statement, and the cycles are not connected to each other.

Consider any vertex in V;. It has ezactly three neighbors in V;. Thus G, inherits
a perfect coloring of G with the remaining A — 3 colors. a

This theorem shows that perfectly colorable graphs decompose entirely into (dis-
joint) chordless cycles. Note that R;H = 95‘3, for A > 3.

For the file distribution problem perfect colorings are interesting mostly for reg-
ular networks, which includes many current processor networks. In [12] a detailed
study is given of perfectly colorable processor networks: For completeness we sum-
marize the results in the following theorem.

Theorem 4.6 ([12]) The following processor networks are perfectly colorable:

e The hypercube C,, if and only if n = 20 — 1 for some i > 0.
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o The d-dimensional torus of size ly X ... x lg if |; mod q = 0, with q such that
v/2d + 1|q for some integer r > 0. '

o The Cube-connected Cycles CCCy, if and only if d > 2,d # 5.
o The directed shuffle-ezchange network and the directed 4-pin shuffle network.

® The chordal ring network with chordlength 4p — 1 (p > 0) and 4kp — 4t (0 <
t < p) vertices if and only if :

1. k and t are even and (ift > 0) gcd_zt,ps is even, or
2. k’mdt't»_p? and sary) 9re odd and t + p is even.

o The hexagonal network of size m x n if and only if m,n mod 7 = 0.

The reader is referred to [12] for the definition of the various networks.

5 Outerplanar and Planar Graphs

In this section we consider the strong coloring problem for outerplanar and planar
graphs, respectively. By the results in section 3 we know that every outerplanar
graph can be strongly colored with 2A 4 1 colors. Our aim will be to improve this
to a bound of A + 3 colors (which, in turn, improves on a bound of A + 4 colors in
a precursor of this report). For this we need the following theorem.

Theorem 5.1 A graph can be strongly colored with at most k colors if and only
if all biconnected components of it can be strongly colored with at most k colors
(k>A+1)

Proof: The “only if” part is trivial. We proceed to show the “if” part. Let
G be a graph. (Without loss of generality we can confine ourselves to connected
graphs.) Let all biconnected components of G be strongly colorable with at most k
colors. We now show that G is strongly k-colorable. When G has no cutvertices,
the theorem trivially holds. Thus assume that the theorem holds for all connected
graphs with < p — 1 cutvertices, and let G have p cutvertices. Let v be a cutvertex
of G, then G consists of two connected graphs H, and H, such that each contain a
“copy” of the vertex v and are joined at v, but which are otherwise disjoint. W.l.o.g.
we may assume that both H; and H,; have < p — 1 cutvertices.

Let v have degree A, in H; and degree A; in H,, where we can assume w.l.o.g.
that A; < A; and clearly A; + A; < A. We can assume inductively that H;, and
H; can be strongly colored using at most k colors. Shift color-names such that H;
and H; use colors from the same set of k colors and v gets the same color “a” in
H, and H,. Joining H; and H; at v (while retaining the colorings of H; and H,
respectively) results in a strong coloring of G with k colors, except in the one case
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that some neighbors of v in H; have the same color as some neighbors of v in H,.
We now argue how such a conflict can be removed by a permutation of the colors,
if it arises.
Thus assume that the latter case arises. Note that v and its neighbors in H, use
Az +1 colors. Let r neighbors of v in H; use colors different from these but ! neigh-
bors use colors ¢y, ..., ¢ that are among the colors used by the A; neighbors in H;,
for certain r and ! with r+1 = A,. It means that A;+1+r different colors are used in
the neighborhood of v. Choose ! different colors d;, ..., d; from among the remaining
colors. (This can be done because k—(A;+1+k) > A1+ Az+1—(Ay+1+47)=1)
Exchanging c; and d; (for i from 1 to !) in the coloring of H; throughout leaves a
strong coloring in H; and removes the color conflicts at v, thus leading to a correct
strong coloring of G using at most k colors. This completes the inductive argument.
O

Forman et al. [7] prove the following lemma.

Lemma 5.2 Every biconnected outerplanar graph contains a vertex of degree 2 with
a neighbor of degree 2 or with adjacent neighbors, one of which is of degree at most

4.
Using theorem 5.1 and lemma 5.2, the following theorem of [7] can be obtained.

Theorem 5.3 Every outerplanar graph of mazimum degree A can be strongly col-
ored using at most A + 3 colors.

Proof: Let U C V be the set of vertices of degree 2 with at least one neighbor
of degree 2. If U # 0, remove all vertices of U and strongly color the remaining
outerplanar graph inductively. A strong coloring of the original graph can then be
obtained by re-inserting the vertices of U and assigning a suitable color to them one
after the other. Since there are at most A + 2 vertices at distance <2 from any
vertex v in U, at most A + 2 colors are blocked for v and we can indeed complete
the strong coloring within A + 3 colors.

If U = 0, then by lemma 5.2 there must exist a vertex v of degree 2 with adja-
cent neighbors, one of which has degree < 4. Remove vertex and strongly color the
remaining outerplanar graph inductively. Since there are at most A + 2 vertices at
distance < 2 from v, the same argument can be applied to obtain a strong coloring
of G with A + 3 colors total. Q

The lowerbound for strongly coloring outerplanar graphs is still open, though it
is not difficult to construct outerplanar graphs with degree < 6 that need A + 3
colors.

For planar graphs, the problem is to strongly color them with at most c.A+O(1)
colors for as small a constant c as possible. A first result is the following lowerbound
for the strong chromatic number.
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Theorem 5.4 For every A > 1 there ezists a planar graph G with x2(G) > [2A]. |

Proof: We can assume w.l.o.g. that A > 1. (For A =1 the theorem trivially
holds by taking a graph that consists of a single edge. Choose r,s > 0 with s < r
such that A = r + s + 2. It will be useful to take r = s = 1A — 1 when A is even
and s =7 —1 = A — 2 when A is odd. Construct the graph G4 consisting of a
“triangle” of three vertices (4, B and C), r vertices that are each connected to A
and to B, s vertices that are each connected to B and to C, and s more vertices that
are each connected to A and to C. For A odd (implying A > 3), a separate vertex
D is inserted on the triangle-edge (A, B). This vertex is also connected to C. One
easily verifies that G, is planar, has maximum degree A and diameter 2. Because
of the latter any strong coloring of Ga needs as many colors as there are vertices,
which is precisely [2A]. (By a result of Seyffart [18] this is about the largest possi-
ble number of vertices in any planar graph of diameter 2 and maximum degree A.) O

The lemma shows that ¢ > 2 for general planar graphs. For A < 5 one can
construct planar graphs that need > 2A colors in any strong coloring. For obtaining
an upperbound for the strong chromatic number of planar graphs, the following
lemma of [7] is useful.

Lemma 5.5 Let T and U be disjoint sets of vertices in a planar graph and suppose
that each verter in T has at least 8 neighbors in U. Then |T| < 2|U| — 4.

Using lemma 5.5, one can easily prove:

Lemma 5.6 Every planar graph contains either a vertez of degree < 2 or a vertex
of degree < 5 with at most two neighbors of degree < 12.

Proof: Assume by way of contradiction that we are given a graph violating the
lemma. For j = 0,1,..., denote by n; the number of vertices of degree exactly ;.
Since in any planar graph the total number of degrees is at most 6 times the number
of vertices,

> jn; <6 n;j,

j=3 j=3
from which it follows that

3inj Z zs:(ﬁ—j)nj Z i(j—G)nj Z 6 f: n;.

7=3 I=3 1=6 1=12

Taking T as the set of vertices of degree < 5 and U as the set of vertices of degree
> 12, this implies a contradiction to lemma 5.5. 0

From lemma 5.6, the following theorem can be obtained.
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Theorem 5.7 Every planar graph of mazimum degree A can be strongly colored
using at most 2A + O(1) colors.

Proof: We prove by induction on the number of vertices that every planar
graph can be strongly colored with at most 2.max{A, 14} + 34 colors. Consider any
planar graph G and apply lemma 5.6. If there is vertex of degree < 2, choose such
a vertex v and remove it. If v is of degree 2 and its neighbors are not adjacent,
introduce an edge between them. If there is no vertex of degree < 2, choose a vertex
v of degree < 5 with at most two neighbors of degree > 11 and contract v into one
of its neighbors of degree < 11. The resulting graph is planar and has maximum
degree at most max{A, 14}.

In either case, the inductive hypothesis implies that the resulting graph can be
strongly colored using at most 2.max{A, 14} + 34 colors, and a strong coloring of the
original graph can be obtained by re-inserting v and coloring it differently from all
vertices at distance < 2 from v. There are at most 2.max{A, 11} + 33 such vertices,
thus there is a free color for it. O

Forman et al. [7] have recently improved the bound of theorem 5.7 to BA+
O(A§). This seems to be the best current bound for strongly coloring planar graphs.

6 Conclusions and further remarks

In this paper we have presented a survey of some basic facts for the strong coloring
problem for graphs. Some results for strong coloring of various special classes of
graphs like planar and outerplanar graphs were reviewed also. Several open questions
were identified along the way.

There are many interesting further problems left. For example, given a coloring
algorithm A which gives a good approximate bound on the chromatic number of a
graph G, does this algorithm give a good approximate bound for the strong chro-
matic number of G, when it is applied to the square graph G?? What if G belong
to a special class of graphs?

Another open question is the following. Is there an analog for strong chromatic
numbers of the following theorem of Garey and Johson [9] : "If for some constant
r < 2 and constant d there exists a polynomial-time algorithm A which guarantees
A(G) < rx(G)+d, then there exist a polynomial-time algorithm A which guarantees
A(G) = x(G).”? The best performance ratio known for approximation algorithms
for the chromatic number problem is ﬁ(ﬁil—;’ﬁﬁ [5]. What is the corresponding best
performance ratio for the strong chromatic number by applying this to the square
graph G??7

It would be interesting to investigate other relationships between the strong
coloring problem and the well-studied coloring problem (see e.g. [13]), as well as re-
lationships between the strong vertex coloring problem and the strong edge coloring

14



problem.
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Appendix

Theorem Given a graph G and an integer K, the problem of determining whether
G can be strongly colored with < K colors is NP-complete (STRONG CHROMATIC
NUMBER). '

Proof: The problem trivially belongs to NP. (One can assign < K colors to
the vertices of G and verify in polynomial time whetter it is a strong coloring.)
For proving the NP-completeness, we reduce 3-SAT to STRONG CHROMATIC
NUMBER. Let F be a CNF formula having r clauses, with at most three literals
per clause. Let z; (1 < ¢ < n) be the variables in F. We may assume n > 4.
We shall construct, in polynomial time, a graph G that is strongly colorable with
™ + 2n + 2 colors iff F is satisfiable. The graph G = (V, E) is defined by:

V= {.'E,',xz,. . .,.’L‘n} U {fl,fz,. . .,Tn} U {yl,yg,. .o ,yn+l} U {pl,l,- . .,p,,',-}
U{pn+l,r} U {21,22, oo ,Zn} U {CI,C‘Z,. . .,Cr}

and
E = {(vi,y;)lt # 7} U {(zi, 2;)|i # 5} U{(2i,2:),1 < i < n}U

{(PigsPeg)li # kor j # 13U {(2:,7:),1 < < n} U {(Pasir Yns1) }U

{(Piis2k),1 4,k <n,1 < j <r}U{(zi, pik)|zi & Ck} U {(Zi, pik)|Ti & Ci}
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To see that G is rn+2n+2 colorable iff F is satisfiable, we first observe that the
yi’s form a complete subgraph on n + 1 vertices. Hence, each y; must be asssigned
a distinct color. Without loss of generality we may assume that in any coloring of
G y; is given the color ¢ for 1 < 3 2 n+ 1. Then we observe that the z;’s together
form a complete subgraph on n vertices. Every 2; is at most at distance two from
every yi, hence the z; must be colored differently from the Yi. Assume w.l.o.g. that
2 is given the color n + i+ 1 for 1 < i > n. We also observe that the Pi,;’s together
form a complete subgraph on rn + 1 vertices. Every p; ; is at most at distance two
from every yi, and every p; ; is at most distance two from every z, so the colors of
the p;; must be different from the colors of the yi and different from the colors of
the z;. Thus we can assume that p; ; is given the color 2n + in + J+1land ppyq, is
given the color rn + 2n + 2. Since y; lies within distance two from all the z;’s and
the Z;’s, except z; and Z;, the color i can only be assigned to x; or %;. z; lies within
distance two from Z;, so one of these two vertices must have a different color. z;
and Z; lie within distance two from every z; and pi,g and every other y;,7 <4, # 1,
so only color n + 1 is available for one of these two vertices, for every 7,1 <: < n,
because no z; or Z; lies within distance two from any other z; or T;. The vertex
that is assigned to color n + 1 will be called the false vertex. The other is the true
vertex. The only way to color G using rn + 2n + 2 colors, is to assign color n +1 to
one of {z;,%;} for eachi,1 <i <n.

Under what conditions can the remaining vertices be colored using no further
colors? Since n > 4 and each clause has at most three literals, each C; lies within
distance two from a pair z;,%;, for at least one j. Consequently no C; may be
assigned the color n + 1. Also every C; lies within distance two from every pr; and
every z;, so C; must be assigned a color less than n + 1.

Also no C; can be assigned a color corresponding to an z; or an T; that does
not occur in clause C;. These observations imply that the only colors that can be
assigned to C; correspond to vertices z; or Z; that are in clause C; and are true
vertices.

Hence G is strongly rn + 2n + 2 colorable iff there is a true vertex corresponding
to each C;, and thus iff F is satisfiable. O
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Strong Colorings of Graphs*

Goos Kant Jan van Leeuwen
Dept. of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

We consider the generalization of graph coloring to distance-k coloring,
also termed strong coloring in the case k = 2. Some basic facts about strong
coloring of graphs are given, and several auxiliary results are presented for
strong colorings of special classes of graphs. A survey is given of some recent
results for strong colorings of planar and outerplanar graphs.

1 Introduction

The coloring problem for graphs has a longstanding mathematical interest. In this
paper we consider the generalization to distance-k coloring for any £ > 1, that is,
we consider the problem of coloring a graph such that all vertices with distance < k
are colored differently. The distance-k coloring problem for graphs is NP-complete
for every k > 1 [17]. For k = 1 one has the old definition of graph coloring, and for
k = 2 the concept is also refered to as strong graph coloring [2, 4, 8|. Alternatively, a
strong coloring can be defined as a coloring with the property that not only adjacent
vertices have different colors (the usual “coloring condition”) but also all neighbors
of any vertex are colored differently (the “strong coloring condition”).

The strong coloring problem for graphs has several applications. For example,
in computing approximations to sparse Hessian matrices [17] the following typical
problem arises: Given an n X n matrix M of 0’s and 1’s, one wishes to partition the
columns of M into a number of sets such that no two columns in the same set have
a 1 in the same row. This is equal to the strong coloring problem when we view
M as the adjacency matrix of a graph. Another application occurs in the design of
collision-free multi-hop channel access protocols in radio-networks [15], which can be
solved using strong coloring. We also mention the application to the segmentation
problem for files in a network [2]. Here the colors represent different (disjoint)
segments of a file F', the graphs are regular with degree d and a strong coloring is

*This work was supported by the ESPRIT II Basic Research Actions program of the EC under
contract No. 3075 (project ALCOM). This report is a revision of an earlier version.
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desired with exactly d + 1 colors. (This implies that every vertex a full copy of F
can be assembled from the available segments in its direct neighborhood.) A last
application we mention concerns the problem of obtaining drawings of graphs G in
the plane in which the minimum angle formed by any pair of edges is maximized.
After a strong coloring of the graph G with u colors is determined, a unit circle
in the plane is drawn and u equidistant points py,...,p, are marked on the circle.
After placing the vertices of G that are assigned color 7 in a ball of radius € around
pi (1 £¢ < u) and drawing the edges as straight line segments, the minimum angle
can be shown to have size 15,%1151 [7].

In this paper we present an overview of some results for the strong coloring
problem for graphs as they seem to be known to date. We prove a number of basic
facts and present some results when the problem is restricted to special classes of
graphs. Some recent methods are shown to strongly color planar and outerplanar
graphs. Several open questions are identified.

The paper is organized as follows. In section 2 we give some definitions con-
cerning graphs and (strong) graph colorings. In section 3 we give some preliminary
results for the strong coloring problem for certain classes of planar and non-planar
graphs. In section 4 we give some facts for strongly coloring (r — 1)-regular graphs
with r colors, which we refer to as “perfect coloring”. In section 5 some results
for strongly coloring outerplanar and planar graphs are given. Section 6 contains
some remarks and open questions. In an appendix we present a new proof of the NP-
completeness of the strong coloring problem for graphs. We assume some familiarity
with basic graph theory (cf. Harary [11]).

2 Definitions

Let G = (V, E) be a graph with |V| = n vertices and |E| = m edges. The distance
between two vertices z and y is defined as the number of edges on the shortest path
between 2 and y. The distance between two edges of G is defined as the shortest
distance between an endpoint of one and of the other. Let A = maz{deg(v)|v € V},
with deg(v) the degree of vertex v. The square graph of G is the graph G? with
V(G?) = V(G) and E(G?) = {(u,v)|(u,v) € E or (u,z) € E and (z,v) € E for some
z}. Observe that A(G?) < (A(G))%. The chromatic number of a graph G, denoted
by x(G), is the least K < n such that G can be K-vertex-colored, i.e., such that there
exists a function f: V — {1,2,..., K} with f(u) # f(v) whenever (u,v) € E [11].
The chromatic indez of a graph G, denoted by x'(G), is the least K < m such that G
can be K-edge-colored, i.e., such that there exists a function f: E — {1,2,...,K}
with f((u,v)) # f((u,w)) for all u,v,w € V and (u,v),(u,w) € E [11]. In any
vertex (edge) coloring, every pair of vertices (edges) that have distance one must
have different colors. Whenever vertex colorings are considered, ¢(v) will denote the
color given to a vertex v.

The generalization to distance-k coloring is now straightforward. The k-chromatic



number of a graph G, denoted by xi(G), is the least K < n such that G can
be distance-k K-vertex-colored, i.e., such that there exists a function f : V —
{1,2,...,K} with f(u) # f(v) whenever u and v lie within distance k in G. The
k-chromatic indez of a graph G, denoted by xi(G), is the least K < m such
that G can be distance-k K-edge-colored, i.e., such that there exists a function
f:E - {1,2,...,K} with f((u,v)) # f((w,z)) whenever (u,v) and (w,z) lie
within distance k from each other. For k = 2, we speak of the strong chromatic
number and the strong chromatic indez respectively. If a (r — 1)-regular graph can
be strongly colored with exactly r colors, then this coloring is called perfect [12].

McCormick [17] has proved that, given a graph and an integer K, the problem
of deciding whether a graph can be distance-k vertex colored with K colors is NP-
complete, for every k > 1. Another proof for the NP-completeness of the strong
chromatic number problem can be found in the Appendix. Checking whether a
graph can be strongly colored with K < 3 colors is trivial. If a graph has A > 4 or
contains a Cjs or a K3 3, then the graph is not strongly 4-colorable. It is open whether
the problem of deciding x}(G) < K for graphs G and integers K is NP-complete.
In this paper we will focus entirely on the strong coloring problem (k = 2). We will
be refering to some special classes of graphs including planar graphs, outerplanar
graphs, Halin graphs, chordal graphs and partial k-trees. We assume that the first
three are known but include an inductive definition of partial k-trees.

Definition 2.1 ([1]) The class of k-trees is the smallest class of graphs that satisfies
the following rules:

1. the complete graph K on k vertices is a k-tree.

2. if G = (V,E) is a k-tree and vy,...,vx form a complete subgraph of G, then
the graph G' = (VU {w}, EU {(vi,w)|1 <1 < k}) with w € V is also a k-tree.

A graph is a partial k-tree if and only if it is a subgraph of a k-tree.

3 Preliminaries

To obtain some first bounds for x2(G), consider the following (SL*) ordering of a
graph, determined by the following algorithm, which is almost similar to the SL-
algorithm of [16].

ALGORITHM SL*

Let n be the number of vertices in G.
Initialize H to G.
for j = n downto 1 do

begin



Choose a vertex v; in H.
Let vj,,...,v;, be its neighbors.
Remove v; and all edges incident to v; from H.
Add zero or more edges to H to achieve that
Vj,---,Vj have distance < 2 to each other.
end
SL* = V1,V2y ¢4 44Un.

END OF ALGORITHM

Let SL* = v;,vs,...,v, be the ordering of G as computed by the algorithm. Let
p be the maximum of the degrees of the vertices as they appear in the for-loop. Let
H; be the graph operated on by the algorithm when the loop-body is executed for
j. Let A’ be the maximum degree of any vertex in an H;. Note that A’ > A as
H,=G.

Theorem 3.1 With p and A’ defined as above: A +1 < x2(G) < pA' + 1.

Proof: The lowerbound is trivial. For the upperbound, we use induction to
show that the graphs H; and thus the vertices can be strongly colored in SL*-order
with no more than pA’+1 colors. Let C be a set of pA’ +1 colors. Vertex v, can be
assigned an arbitrary color from C and a strong coloring of H, is obtained trivially.
Assume we have colored the vertices vy,. .., v;—1 (following the ordering) using colors
from C such that a strong coloring of H;_, is implied, for some : > 2. Now consider
H;. Assume that all vertices except v; are colored as in H;_;. v; is connected to at
most p colored neighbors and since all these neighbors have distance < 2 to each
other in H;_;, they are colored differently. Now v; has at most pA’ colored vertices
within distance 2, hence at most pA’ colors from C are blocked for it. Hence v; can
be colored with a color from C to obtain a strong coloring of H;. This completes
the induction. 0O

It follows from theorem 3.1 that, in order to obtain strong colorings with a “small
number of colors using the SL*-algorithm, an SL*-ordering must be found that gives
both a small value of p and a value of A’ that remains close to A.

A possible algorithm for adding additional edges between the vertices v; ,...,v;,
in each step of the for-loop in the SL*-algorithm is the following. Assign to every
vertex vj; a label (z,y), with 0 < z,y < [Vk]. Add an edge between two vertices
with labels (z1,y1) and (z2,¥2), if and only if ; = z; or y; = y;. Between every
two vertices, labelled (a,b) and (c,d), there is a path of length at most two via
vertex (a,d) or vertex (b,c). Note that this construction increases the degree of
every vertex vj;, by at most 2[vk].



Corollary 3.2 k-trees can be strongly colored with at most kA + 1 colors.

Proof: From definition 2.1 it follows that an ordering of a k-tree is obtained
by removing suitable vertices of degree k in each step of the SL*-algorithm. Note
that these vertices can be chosen so their neighbors are a clique in the remaining

graph (a k-tree again), hence no edges need to be added. Applying theorem 3.1, the
corollary follows. O

Corollary 3.3 Every outerplanar graph can be strongly colored with at most 2A +1
colors.

Proof: Every outerplanar graph G has a vertex v with degree at most 2. Delet-
ing v with its incident edges preserves the outerplanarity. Thus the SL*-algorithm
can chose v; to be a vertex of degree < 2 in every iteration of the loop. Observe
that if v; had degree 2 and its neighbors where not adjacent, then we can add an
edge between them in the last step of the iteration (without increasing any degrees).
Applying theorem 3.1 the result follows. O

Similar bounds can be given for distance-k vertex and edge colorings. Observe
that theorem 3.1 also implies that x/(G) < x2(G), as x'(G) < A + 1 by Vizing’s
theorem. The question whether xx(G) < x}(G) remains as an interesting open
problem. For trees it is clear that x2(G) = A + 1 and x5(G) = maz{deg(u) +
deg(father(u))|lu € V}. Every Halin graph can be strongly colored with at most
A + 6 colors. (For the latter result one uses that every tree can be strongly colored
using at most A + 1 colors and every circuit with at most 5 colors.)

Observe that from a strong vertex coloring with x2(G) colors one can obtain
a strong edge coloring with (x2(G))? colors, by assigning to every edge (u,v) the
color [c(u),¢(v)], where the colors of the vertices are taken from the strong vertex
coloring. Notice that this large difference between the strong chromatic number
and the strong chromatic index actually occurs in the case of the complete bipartite
graphs G = K, ., where x2(G) = 2n and x5(G) = n?.

There appears to be no simple connection between x(G) and x2(G). A reasonable
conjecture like x2(G) < (A + 1)x(G) + 1 fails, by observing the coloring of the
following bipartite graph G, = (< V;,V2 >, E) for any p > 2. V; consists of p
vertices 0,...,p — 1. V; consists of p(p — 1) vertices {1,7},0<i < p,0<j <p~—1,
and a vertex A. Let i € V] be connected to the vertices {i,z} for 0 <z < p—1
and to vertex A. Add p(p — 1) vertices [k,[] to V;, with 0 < k,I < p— 1, and the
edges ([1,7],{0,¢}) and ([, ], {k,((k — 1)i + j) mod (p — 1)}), with 1 < k < p and
0 < i,j < p—1. Note that G, is p-regular bipartite and that every two vertices
in V, have distance 2 to each other. Hence this graph has A = p,x(G) = 2 and
x2(G) = A(A — 1) + 1. It shows that x(G) and x(G) can differ dramatically. In
figure 1, an example is given for p = 3.



{1,0}

Figure 1: Example of a G, for p = 3.

From the observation that xx(G) = x(G*) and x4(G) = x'(G*) (using the defi-
nition of the k* power graph G* of [11]) for every k > 2, it follows that we can use
the available algorithms for ordinary graph coloring for obtaining strong colorings,
after calculating G? in O(Am) time. Also all lowerbounds for the chromatic num-
ber trivially hold for the strong chromatic number. This also leads to the following
observation:

Theorem 3.4 Chordal graphs can be strongly colored in a smallest possible number
of colors in polynomial time. For every chordal graph G one has x2(G) < (3A+1)%

Proof: Note that the square graph of a chordal graph is a chordal graph too,
and can be colored in an optimal number of colors in polynomial time (cf. Golumbic
10]).

For proving x2(G) < (3A + 1)? we induct on n, the size of G. For n < 3 the
result trivially holds. Comnsider an arbitrary chordal graph G of n vertices, n > 3.
Without loss of generality we may assume that G is connected. If G is a clique, then
it can be strongly colored with n = A +1 colors and A+1 < (3A +1)% Thus let G
not be a clique, S a minimal vertex separator of G and Ay, As, ..., A; the connected
components of G — §. Let H; be the induced subgraph spanned by S and A,, and
let H; be the induced subgraph spanned by S and A,, ..., A;. By well-known facts
for chordal graphs [10] S is a clique, and H; and H; are connected chordal graphs.
Let |S| = s. By induction H; and H, are strongly colorable with the colors of some
set C of (3A +1)? colors. A strong coloring of G can now be obtained as follows.

Permute the colors such that in the strong colorings of H; and Hj, the vertices of
S get the same colors. (This can be done because the colors assigned to the vertices
of S must all be different, by the strong coloring requirement, in both the coloring
of H, and the coloring of H;.) Let N; be the set of vertices in A; that are reached
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by an edge from S, and N; the set of verticesin A;U...U A; defined similarly. Let
|N1| = ny and |N3| = ng, and observe that ny +ny < s(A—s+1) < (3A+1)? —s.
Thus we have sufficiently many colors in C to arrange that s colors are fixed for
the vertices in S, and the remaining colors can be permuted such that in the strong
colorings of H; and H, the vertices in N, and N, are colored by disjoint sets of
colors. The resulting strong colorings of Hy and H, can now be combined (merged)
to a correct strong coloring of G which employs no more than (3A + 1)? colors. O

We conjecture that x(G?) < Q +1, with @ the number of vertices of the largest
clique in the graph G?. If G? is a linegraph, then this conjecture is true by noting
that if the linegraph G? has a largest clique of size @, then the linegraph of this
linegraph has maximal degree @ and can be edge-colored with @ +1 colors. Hence
the linegraph G? can be vertex-colored with @ + 1 colors.

4 Perfect Colorings

A (r — 1)-regular graph is called perfectly colorable if it can be strongly colored
with exactly r colors. This kind of strong coloring is useful for the following file
distribution problem [2): “Given a connected regular network G = (V,E) and a
file F, assign to each vertex ¢ € V a segment F, C F such that for all z €
ViUteyeg Fy VU Fo = F and in every neighborhood the distributed fragments are
free of overlaps, i.e., V(z,y) € E : F,NF, = §.” When the network is (r — 1)-regular,
this problem solves the file distribution question with the smallest possible number
of different disjoint segments of F. A perfect coloring describes the assignment of
the segments for a valid solution of the file distribution problem. It has been shown
by Bakker et al. [3] that this problem is NP-complete, even for the case r = 4.

Tn this section we give some relationships between strong colorings, perfect col-
orings and edge colorings.

Lemma 4.1 ([2]) If a (r — 1)-regular graph with [V| = n vertices can be perfectly
colored, then r|n and every group of equally colored vertices has 3 vertices.

Proof: Let N(z) denote the set of vertices having distance < 1 to vertex z.
Counsider any perfect coloring of the graph, and let ¢ be one of the colors. Let x, and
£, be two vertices colored c¢. There can be no vertex y in N(z1) N N(z2) because,
if there was, y would have two neighbors of the same color (which contradicts the
strong coloring property). Thus for all z;,z; with 2, # =2 and c(z;) = c(z2) = c¢:
N(z1)N N(z2) = 0. Furthermore for every vertex y there is a vertex z with ¢(z) = ¢
and y € N(z). Hence the neighborhoods N(z) of vertices z with c(z) = ¢ form a
partitioning of G. But for all z € V : |[N(z)| = r. Hence r|n and every group of
equally colored vertices has size . O



Theorem 4.2 Every strongly r-colorable graph is the induced subgraph of a perfectly
colorable (r — 1)-regular graph.

Proof: We induct on r. For r = 1,2 and 3, the theorem is trivial. Thus
let r > 4 and G be a strongly r-colorable graph. Consider a strong coloring of G
with the colors ¢;,...,c, and let H be the induced subgraph of G consisting of all
vertices with a color € {¢),...,¢-1}. By induction H is an induced subgraph of
some (r —2)-regular graph Ry that is perfectly colorable, and w.l.0.g. we can assume
that it is perfectly colored with ¢y,...,¢,~1. Arrange the vertices of Ry into (r — 1)
disjoint blocks By, ..., B,_1, with B; (1 < i < r —1) containing the vertices of color
c;, and let every block contain b vertices. (By lemma 4.1 we know that the blocks
must be of equal size.) Tag the vertices of Ry that correspond to the vertices of H.
Let the vertices zq,...,z, (some s > 1) of G — H together form the “beginning” of
the r*® block B,. The vertices {z,,...,z,} form an independent set in G (because
they all have color ¢,).

Now form the graph Rg as follows. Make [§] copies of Ry and extend B, by
another [§]b— s vertices y. We now ”connect” the z- and y-vertices to the vertices
in the Ry copies in two steps, as follows:

1. for i from 1 to s do
begin
connect z; to a new vertex from a Bj-block for every 3,1 < j; <r -1,
always favoring the tagged vertex z in a block B; if z; is
directly connected to z in G, but taking an untagged vertex otherwise.
end;

Observe that we have [4]b > s vertices of every color, so step 1 always works and
does not “run out of vertices to connect to”. But also observe that we have exactly
[£]b — s vertices left of every color after this step.

2. for i from 1 to [§]b— s do
begin
pick a new y-vertex and connect y to a vertex from a Bj;-block that
was not yet connected to, for every 5,1 <3 <r—1.
(Note that these vertices were not tagged.)
end;

Note that step 2 makes the graph Gy (r —1)-regular. The result is a graph Rg that
is (r — 1)-regular, perfectly colorable with r colors and clearly, by design, we have
that G is an induced subgraph of Rg. O

Another property is the following. Recall that by Vizing’s theorem every graph
is edge-colorable with A or A + 1 colors.



Figure 2: A 3-edge-colorable 3-regular graph that is not perfectly colorable ({13]).

Lemma 4.3 If a graph is strongly colorable with r colors and r is even, then it is
(r — 1)-edge colorable.

Proof: Let G be strongly colorable with r colors. If r is even, then K, is
edge-colorable with (r — 1) colors. Let G be strongly colored with the r names of
vertices of K,. Now G can be edge-colored as follows: color an edge from the vertex
colored X to the vertex colored Y with z if the edge between X and Y in K, is
colored z. This gives a correct (r — 1)-edge coloring of G. a

The converse is not true, see for example figure 2. Also this theorem does not
hold for r odd in general, as an edge-coloring of a K, (which is perfectly colorable
with 7 colors) requires r colors when r is odd.

Also the spectra of perfectly colorable graphs have some interesting properties.
Because a perfectly r-colorable graph G is (r — 1)-regular, its largest eigenvalue is
equal to r — 1 and has multiplicity 1. The following more specific observation can
be made as well.

Theorem 4.4 Let G be perfectly r-colorable. Then G has an eigenvalue -1, with
maultiplicity > (r — 1).

Proof: Let G be perfectly r-colored, and consider the vertices of G arranged in
blocks of equally colored vertices (of size 2 each). Let A = A(G) be the adjacency
matrix of G corresponding to this vertex-ordering. The symmetrix matrix A can
be viewed as a block matrix, with the blocks along the main diagonal consisting of
all zeroes and the off-diagonal blocks being 2 x 2 permutation matrices. (As an
aside we note that, conversely, if the vertices of a graph G can be arranged so the
adjacency matrix is of this form, then G is perfectly r-colorable.) Now consider the
r X r matrix A’ obtained from A by replacing every block on the main diagonal by
a “0” and every off-diagonal block by a “1”. A’ is the adjacency matrix of the K,,
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whose spectrum consists of one eigenvalue (r — 1) and (r — 1) eigenvalues -1 ([6)).
Also, when (z,...,z,) is an eigenvector of A’, then the vector obtained by repeat-
ing each coordinate 2-fold is an eigenvector of A and independency of eigenvectors
is preserved in the process. It follows in particular that A (and hence, G) has an
eigenvalue -1 with multiplicity at least r — 1. 0

From the same argument some more information can be derived. Let n > r and
let Ay,...,Ax and —p,,..., —u be the remaining positive and negative eigenvalues
in the spectrum of G in decreasing order different from the r eigenvalues (r — 1)
and -1 that we have, with k + 1 = n — r. As the trace of A is zero, we have
AM+. .4+ = pi+. ..+ . Observe also that A? is a symmetric matrix with all entries
along the main diagonal equal to r — 1. It follows that M2 +...+ A2+ p+.. .+ 4uf =
tr(A?)—(r—1)?—(r—1) = (n—r)(r—1). Now let A = A\; = Amax, f = Ji = fimax and
6 = maz{\, u}. One easily verifies that § > /r — 1 and min{\, px} > 1/r — L.

Another characteristic of perfectly colorable graphs is the following;

Theorem 4.5 Let G be reqular of degree > 3 and perfectly colorable. Then one can
partition V as V; UV, such that

1. the induced subgraph Gy on V) is a set of chordless cycles of length divisible
by 3.

2. the induced subgraph Gy on V;, is regular of degree A —3 and perfectly colorable.

Proof: Let a,b,c be three colors of the perfect coloring of G. Let V; be the set
of vertices colored a,bor cand V; =V — W.

Consider any vertex in Vj, say with color a. It has one neighbor colored b, this
neighbor has one neighbor colored ¢, etc. This necessarily closes itself as a cycle at
the point of departure. By the strong coloring property, this cycle must be chordless.
This proves the statement, and the cycles are not connected to each other.

Consider any vertex in V;. It has ezactly three neighbors in V;. Thus G, inherits
a perfect coloring of G with the remaining A — 3 colors. O

This theorem shows that perfectly colorable graphs decompose entirely into (dis-
joint) chordless cycles. Note that Vfl = —A-—gl, for A > 3.

For the file distribution problem perfect colorings are interesting mostly for reg-
ular networks, which includes many current processor networks. In [12] a detailed
study is given of perfectly colorable processor networks. For completeness we sum-
marize the results in the following theorem.

Theorem 4.6 ([12]) The following processor networks are perfectly colorable:

o The hypercube C,, if and only if n = 2' — 1 for some i > 0.
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e The d-dimensional torus of size ly X ... x lg if |, mod ¢ = 0, with q such that
V/2d + 1|q for some integer r > 0.

e The Cube-connected Cycles CCCy, if and only if d > 2,d # 5.
e The directed shuffle-exchange network and the directed 4-pin shuffle network.

o The chordal ring network with chordlength 4p — 1 (p > 0) and 4kp — 4t (0 <
t < p) vertices if and only if :

1. k and t are even and (ift > 0) mdtm is even, or
2. k, sc_dzm and _ff— are odd and t + p is even.

e The hezagonal network of size m X n if and only if m,n mod 7 = 0.

The reader is referred to [12] for the definition of the various networks.

5 Outerplanar and Planar Graphs

In this section we consider the strong coloring problem for outerplanar and planar
graphs, respectively. By the results in section 3 we know that every outerplanar
graph can be strongly colored with 2A + 1 colors. Our aim will be to improve this
to a bound of A + 3 colors (which, in turn, improves on a bound of A + 4 colors in
a precursor of this report). For this we need the following theorem.

Theorem 5.1 A graph can be strongly colored with at most k colors if and only
if all biconnected components of it can be strongly colored with at most k colors

(k>A+1).

Proof: The “only if” part is trivial. We proceed to show the “if” part. Let
G be a graph. (Without loss of generality we can confine ourselves to connected
graphs.) Let all biconnected components of G be strongly colorable with at most k
colors. We now show that G is strongly k-colorable. When G has no cutvertices,
the theorem trivially holds. Thus assume that the theorem holds for all connected
graphs with < p — 1 cutvertices, and let G have p cutvertices. Let v be a cutvertex
of G, then G consists of two connected graphs H; and H; such that each contain a
“copy” of the vertex v and are joined at v, but which are otherwise disjoint. W.lo.g.
we may assume that both H; and H; have < p — 1 cutvertices.

Let v have degree A, in H; and degree A, in H;, where we can assume w.l.o.g.
that A; < A, and clearly A; + A; < A. We can assume inductively that H, and
H, can be strongly colored using at most k colors. Shift color-names such that H,
and H, use colors from the same set of k colors and v gets the same color “a” in
H, and H,. Joining H; and H; at v (while retaining the colorings of H; and H,
respectively) results in a strong coloring of G with k colors, except in the one case
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that some neighbors of v in Hy have the same color as some neighbors of v in Hs.
We now argue how such a conflict can be removed by a permutation of the colors,
if it arises.

Thus assume that the latter case arises. Note that v and its neighbors in H; use
Az + 1 colors. Let r neighbors of v in H; use colors different from these but ! neigh-
bors use colors ci, ..., that are among the colors used by the A neighbors in Hj,
for certain r and { with 7+ = A,. It means that A;+1+r different colors are used in
the neighborhood of v. Choose [ different colors dy, .. ., d; from among the remaining
colors. (This can be done because k—(Ay+1+k) > A1 +Az2+1— (Ay+1+r)=1.)
Exchanging c; and d; (for ¢ from 1 to l) in the coloring of Hi throughout leaves a
strong coloring in H; and removes the color conflicts at v, thus leading to a correct
strong coloring of G using at most k colors. This completes the inductive argument.

a
Forman et al. [7] prove the following lemma.

Lemma 5.2 Every biconnected outerplanar graph contains a vertez of degree 2 with
a neighbor of degree 2 or with adjacent neighbors, one of which is of degree at most

4.
Using theorem 5.1 and lemma 5.2, the following theorem of [7] can be obtained.

Theorem 5.3 Every outerplanar graph of mazimum degree A can be strongly col-
ored using at most A + 3 colors.

Proof: Let U C V be the set of vertices of degree 2 with at least one neighbor
of degree 2. If U # 0, remove all vertices of U and strongly color the remaining
outerplanar graph inductively. A strong coloring of the original graph can then be
obtained by re-inserting the vertices of U and assigning a suitable color to them one
after the other. Since there are at most A + 2 vertices at distance <2 from any
vertex v in U, at most A + 2 colors are blocked for v and we can indeed complete
the strong coloring within A + 3 colors.

If U = 0, then by lemma 5.2 there must exist a vertex v of degree 2 with adja-
cent neighbors, one of which has degree < 4. Remove vertex and strongly color the
remaining outerplanar graph inductively. Since there are at most A + 2 vertices at
distance < 2 from v, the same argument can be applied to obtain a strong coloring
of G with A + 3 colors total. O

The lowerbound for strongly coloring outerplanar graphs 1s still open, though it
is not difficult to construct outerplanar graphs with degree < 6 that need A + 3
colors.

For planar graphs, the problem is to strongly color them with at most c.A+0(1)
colors for as small a constant c as possible. A first result is the following lowerbound
for the strong chromatic number.
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Theorem 5.4 For every A > 1 there ezists a planar graph G with x2(G) 2 [3A].

Proof: We can assume w.l.o.g. that A > 1. (For A = 1 the theorem trivially
holds by taking a graph that consists of a single edge. Choose r,s >0 with s < r
such that A = r + s + 2. It will be useful to take r = s = 1A — 1 when A is even
and s=r—1=1A— 2 when A is odd. Construct the graph Ga consisting of a
“triangle” of three vertices (4, B and C), r vertices that are each connected to A
and to B, s vertices that are each connected to B and to C, and s more vertices that
are each connected to 4 and to C. For A odd (implying A > 3), a separate vertex
D is inserted on the triangle-edge (A, B). This vertex is also connected to C. One
easily verifies that G4 is planar, has maximum degree A and diameter 2. Because
of the latter any strong coloring of Ga needs as many colors as there are vertices,
which is precisely [2A]. (By a result of Seyffart [18] this is about the largest possi-
ble number of vertices in any planar graph of diameter 2 and maximum degree A) O

The lemma shows that ¢ > 3 for general planar graphs. For A < 5 one can
construct planar graphs that need > 2A colors in any strong coloring. For obtaining
an upperbound for the strong chromatic number of planar graphs, the following
lemma of [7] is useful.

Lemma 5.5 Let T and U be disjoint sets of vertices in a planar graph and suppose
that each vertez in T has at least 8 neighbors in U. Then |T| < 2|U| — 4.

Using lemma 5.5, one can easily prove:

Lemma 5.6 Every planar graph contains either a vertez of degree < 2 or a vertez
of degree < 5 with at most two neighbors of degree < 12.

Proof: Assume by way of contradiction that we are given a graph violating the
lemma. For j = 0,1,..., denote by n; the number of vertices of degree exactly j.
Since in any planar graph the total number of degrees is at most 6 times the number
of vertices,

Zjnj S Gan,

J=3 j=3
from which it follows that

332 36— )y 2 33 — 6)ny 26 3 s

=3 =3 3=6 =12

Taking T as the set of vertices of degree < 5 and U as the set of vertices of degree
> 12, this implies a contradiction to lemma 35.5. |

From lemma 5.6, the following theorem can be obtained.

13



Theorem 5.7 Every planar graph of mazimum degree A can be strongly colored
using at most 2A + O(1) colors.

Proof: We prove by induction on the number of vertices that every planar
graph can be strongly colored with at most 2.max{A, 14} + 34 colors. Consider any
planar graph G and apply lemma 5.6. If there is vertex of degree < 2, choose such
a vertex v and remove it. If v is of degree 2 and its neighbors are not adjacent,
introduce an edge between them. If there is no vertex of degree < 2, choose a vertex
v of degree < 5 with at most two neighbors of degree > 11 and contract v into one
of its neighbors of degree < 11. The resulting graph is planar and has maximum
degree at most max{A, 14}.

In either case, the inductive hypothesis implies that the resulting graph can be
strongly colored using at most 2.max{A, 14} + 34 colors, and a strong coloring of the
original graph can be obtained by re-inserting v and coloring it differently from all
vertices at distance < 2 from v. There are at most 2.max{A, 11} + 33 such vertices,
thus there is a free color for it. O

Forman et al. [7] have recently improved the bound of theorem 5.7 to 2A +
O(A§). This seems to be the best current bound for strongly coloring planar graphs.

6 Conclusions and further remarks

In this paper we have presented a survey of some basic facts for the strong coloring
problem for graphs. Some results for strong coloring of various special classes of
graphs like planar and outerplanar graphs were reviewed also. Several open questions
were identified along the way.

There are many interesting further problems left. For example, given a coloring
algorithm A which gives a good approximate bound on the chromatic number of a
graph G, does this algorithm give a good approximate bound for the strong chro-
matic number of G, when it is applied to the square graph G?? What if G belong
to a special class of graphs?

Another open question is the following. Is there an analog for strong chromatic
numbers of the following theorem of Garey and Johson [9] : "If for some constant
r < 2 and constant d there exists a polynomial-time algorithm A which guarantees
A(G) < rx(G)+d, then there exist a polynomial-time algorithm A which guarantees
A(G) = x(G).”? The best performance ratio known for approximation algorithms
for the chromatic number problem is 1(11‘(—’)551::{52 [5]. What is the corresponding best
performance ratio for the strong chromatic number by applying this to the square
graph G%7

It would be interesting to investigate other relationships between the strong
coloring problem and the well-studied coloring problem (see e.g. [13]), as well as re-
lationships between the strong vertex coloring problem and the strong edge coloring
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problem.

References

[1] Arnborg, S., and A. Proskurowski, Characterization and Recognition of Partial
k-trees, Tech. Report TRITA-NA-8402, The Royal Inst. of Techn., Stockholm,
1984.

[2] Bakker, E.M., The File Distribution Problem, unpublished manuscript, Utrecht,
1988.

[3] Bakker, E.M., J. van Leeuwen and R.B. Tan, Perfect Colorings, Techn. Rep.,
Dept. of Computer Science, Utrecht University, 1990 (to appear).

[4) Berge, C., Graphs and Hypergraphs, North-Holland Publ. Co., Amsterdam,
1973.

[5] Berger, B., and J. Rompel, A better Performance Guarantee for Approximate
Graph Coloring, Algorithmica 5 (1990), pp. 459-466.

[6] Biggs, N.L., Algebraic Graph Theory, Cambridge Tracts in Math. 67, Cambridge
Univ. Press, London, 1974.

[7) Forman, M., T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A.
Simvonis, E. Welzl and G. Woeginger, Drawing Graphs in the Plane With High
Resolution, Proc. 31th Ann. IEEE Symp. on Found. of Comp. Science (1990),
to appear.

(8] Fouquet, J.L., and J.L. Jolivet, Strong Edge-Coloring of Cubic Planar Graphs,
in J.A. Bondy and U.S.R. Murty (Eds.), Progress in Graph Theory, Academic
Press, Toronto, 1984, pp. 247-264.

[9] Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Co., San Francisco, CA, 1979.

[10] Golumbic, M.C., Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, NY, 1980.

[11] Harary, F., Graph Theory, Addison-Wesley Publ. Comp., Reading, Mass., 1969.

[12] Kant, G., and J. van Leeuwen, The File Distribution Problem for Processor Net-
works, In J.R. Gilbert and R. Karlson (Eds.), Proc. 2nd Scandinavian Workshop
on Algorithm Theory, Lecture Notes in Comp. Science 447, Springer-Verlag,
Berlin/Heidelberg, 1990, pp. 48-59.

15



[13] Kant, G., and J. van Leeuwen, Coloring of Graphs — A Survey, Techn. Rep.,
Dept. of Computer Science, Utrecht University, 1990 (to appear).

[14] Loupekine, F., and J.J. Watkins, Cubic Graphs and the Four-Color Theorem,
in: Y. Alavi et al. (Eds), Graph Theory and Its Applications to Computer
Science, Wiley & Sons, New York, 1985, pp. 519-530.

[15] Malka, Y., S. Moran and S. Zaks, Analysis of Distributed Scheduler for Com-
munication Networks, in: J.H. Reif (ed.), VLSI Algorithms and Architectures
(Proc’s AWOC 88), Lecture Notes in Computer Science 319, Springer-Verlag,
1988, pp. 351-360.

[16] Matula, D.W., G. Marble and J.D. Isaacson, Graph Coloring Algorithms, in
R.C. Read, (ed.), Graph Theory and Computing, Academic Press, New York,
NY, 1972, pp. 95-129.

[17] McCormick, S.T., Optimal approzimation of sparse hessians and its equivalence
to a graph coloring problem, Technical Report, Dept. of Oper. Res., Stanford
University, Stanford, 1981.

[18] Seyffarth, K., Maximal Planar Graphs of Diameter Two, Journal of Graph
Theory, Vol. 13 (1989), pp. 619-648.

Appendix

Theorem Given a graph G and an integer K, the problem of determining whether
G can be strongly colored with < K colors is NP-complete (STRONG CHROMATIC
NUMBER).

Proof: The problem trivially belongs to NP. (One can assign < K colors to
the vertices of G and verify in polynomial time whetter it is a strong coloring.)
For proving the NP-completeness, we reduce 3-SAT to STRONG CHROMATIC
NUMBER. Let F be a CNF formula having r clauses, with at most three literals
per clause. Let z; (1 < i < n) be the variables in F. We may assume n > 4.
We shall construct, in polynomial time, a graph G that is strongly colorable with
rn + 2n + 2 colors iff F is satisfiable. The graph G = (V, E) is defined by:

V = {2i, %2, -, 2a} U {Z1, T2 -, Bn} U {¥1, 92, -« - Ynir } U {P1, - - y P}
U{p,,+1,} U {21, 22400 ,Zn} U {Cl, Cz, ey C,-}
and
E = {(yiyi)li # 3}V {(z, z)li #j}U{(z,2),1 <1< n}u
{(pijpr)li # kor § # 11U {(2:,%),1 i < n}U{(Prsr Yna1)}U
{(yi, )l <1 <nyi# YU {(pi;yCj),1 <i<n,1<j<r}U
(i, 2e),1 <5,k < 0,1 < § < r}U{(mi, pig)lzi & Ce} U {(Ti, pik)[Zi & Cie}
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To see that G is rn+2n+2 colorable iff F is satisfiable, we first observe that the
y;’s form a complete subgraph on n + 1 vertices. Hence, each y; must be asssigned
a distinct color. Without loss of generality we may assume that in any coloring of
G y; is given the color ¢ for 1 <7 > n+ 1. Then we observe that the z;’s together
form a complete subgraph on n vertices. Every z; is at most at distance two from
every ¥;, hence the z; must be colored differently from the y;. Assume w.l.o.g. that
z; is given the color n + i+ 1 for 1 <7 > n. We also observe that the p; ;’s together
form a complete subgraph on rn + 1 vertices. Every p; ; is at most at distance two
from every y, and every p; ; is at most distance two from every z, so the colors of
the p; ; must be different from the colors of the y; and different from the colors of
the z;. Thus we can assume that p; ; is given the color 2n + in + j + 1 and ppyq, 1s
given the color rn + 2n + 2. Since y; lies within distance two from all the z;’s and
the %,’s, except z; and Z;, the color ¢ can only be assigned to z; or Z;. z; lies within
distance two from Z;, so one of these two vertices must have a different color. =z;
and 7; lie within distance two from every z; and pi; and every other y;,5 <1,5 # ¢,
so only color n + 1 is available for one of these two vertices, for every 7,1 < ¢ < n,
because no z; or 7; lies within distance two from any other x; or Z;. The vertex
that is assigned to color n + 1 will be called the false vertex. The other is the true
vertex. The only way to color G using rn + 2n + 2 colors, is to assign color n +1 to
one of {z;,=;} for each ¢,1 <7 < n.

Under what conditions can the remaining vertices be colored using no further
colors? Since n > 4 and each clause has at most three literals, each C; lies within
distance two from a pair z;,%;, for at least one j. Consequently no C; may be
assigned the color n + 1. Also every C; lies within distance two from every px; and
every z;, so C; must be assigned a color less than n + 1.

Also no C; can be assigned a color corresponding to an z; or an Z; that does
not occur in clause C;. These observations imply that the only colors that can be
assigned to C; correspond to vertices z; or T; that are in clause C; and are true
vertices.

Hence G is strongly rn + 2n + 2 colorable iff there is a true vertex corresponding
to each C;, and thus iff F is satisfiable. O
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