A pseudo-polylog average time parallel

maxflow algorithm

J.F. Sibeyn

RUU-CS-90-17
April 1990

Utrecht University

W .
5 3 Department of Computer Science
<
S > Padualaan 14, P.0. Box 80.089,
>

1771 A 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

A pseudo-polylog average time parallel

maxflow algorithm

J.F. Sibeyn

Technical Report RUU-CS-90-17
April 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

188N:0924~3275

A Pseudo-Polylog Average Time Parallel Maxflow Algorithm

Jop F. Sibeyn *
Department of Computer Science, University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht , the Netherlands

April 19, 1990

Abstract
We present a novel algorithm for the integer maxflow problem. On a PRAM CREW with
n? processing units we find over a number of common models for random graphs an average
calculation time Tav = O((log C + log* n) - log n/log(m/n)). Here C is the average edge
capacity and m the (expected) number of edges. If for a random graph m > n . log® n and
that the maximal capacity M satisfies M < (m/n)'/® . C. We will show that the capacity
condition does not really limit the applicability of the algorithm.

1 Introduction

In this paper we will present an algorithm for finding the maxflow of a directed graph with integer
capacities. We start with an introduction in which the problem is introduced and where a sketch
of the algorithm is given. After this the algorithm is worked out in a top-down way. At first
the results will be proved as average over a suitable class of graphs. This will be generalized in
section 3. At the end of the text we give some appendices containing back-ground theorems.

The parallel machine we will use is an PRAM CREW consisting of n? Processing-Units (c.f.
[10]). We will give an algorithm which solves the (integer) maxflow problem (MFP). Mostly we
will use small Greek letters for constants; small italic letters for variables; boldface type-style for
matrices; and calligraphic letters for classes. The graphs we consider are directed and have vertices
numbered from 1 = s ton = ¢. Graphs are identified with their adjacency matrix.

1.1 The maxflow problem

For a good introduction to the MFP and its terminology we refer to Papadimitriou [8].

A preflow f in a graph ¢ is an assignment of values (edge-flows) to the edges of ¢ such that
0 < fij < ¢ijVi,j (capacity restriction). A flow is a preflow which satisfies Z;":o(fis — fij) =
0Vl < i < n (flow conservation). A flow f in ¢ is a maxflow of c if f cannot be augmented
without violating the capacity restriction. An s-t cut (Vs, Vi) is a partition of the set of vertices
into two subsets V, 35 s,V; 3 ¢. The capacity of an s-t cut (V,, Vi) for a preflow f is given by
Fe(V,, Vi) = Z{ieV.,jeV;} fij. The capacity of the minimum cut of £ will be denoted by F(f). The
maxflow-mincut theorem (See [8, th 6.2 p 119]) states: mazflow(c) = F(c). This gives

Theorem 1 A flow f in ¢ is a mazflow if Fg(Vi, Vi) = Fe(Vi, Vi) for some cut Vs, V2).

The importance of the MFP is, apart from its practical value, given by the fact that it is P-
complete [5]. Given the presumed impossibility to solve MFP in parallel in polylog time order, it

comes about naturally to try to design a parallel polylog average time algorithm. We come rather
far in achieving this.

*The work of the author was financially supported by the Foundation for Computer Science (SION) of the
Netherlands Organization for Scientific Research (NWO). This research was partially supported be the ESPRIT I
Basic Research Actions Project of the EC under contract No. 3075 (Project ALCOM).

1.2 Approach and results
Basic observations underlying the construction of the algorithm are

o Almost always the mincut of a graph is situated right behind the source s, or just before the
terminal ¢ (theorem 2).

* Almost always the preflow c is almost balanced (6).

With outflow; = Ej fij the flow out of i and inflow; = Y, f;; the flow into j, this suggests the
following simple maxflow algorithm:

1. Start by saturating all edges of the graph. This gives no flow in general but we will
not be far away from it.

2. Determine min{outflow,, inflow,}, generally this is the value of the maxflow of c.

If min{outflow,, inflow,} = outflow, then reduce inflow, to outflow, else analogously.

4. Try to balance f by reducing flows on edges not adjacent to s or . If this is successful
and the mincut is situated at s or ¢ then we have found a maxflow.

5. If the balancing of f has failed then find the maxflow of ¢ with a polynomial worst-case
time algorithm.

@

The first step seems to be original. The concept of a preflow is used in a number of algorithms (cf.
(4, 7, 11]) but only in the restricted sense that in each vertex the outgoing flow is at most equal to
the incoming flow, i.e. a vertex may have a flow excess but never a flow deficit. In our algorithm
we use preflows in which vertices may have flow deficits. Another important point is that step 4

parallellizes extremely well. Once we have proved that step 4 requires pseudo-polylog time and is
successful almost always, the average case time will follow easily.

Definition 1 A(n) happens almost always (aa) if for some function w, lim,_ o w(n) = oo,
P(=A(n)) < =™)
A pair (X, p), where X is a positive distribution with mean value C(X) is called acceptable if
X<(p-n)1/5-C(X) as; p-n>logdn (2)

An algorithm is pseudo-polylog Jor a problem A if it solves any instance I of A in time bounded by
a polynomial in log |I| and log number(I).

Pseudo-polylog is defined analogously to pseudo-polynomial [8]. |I| is the size of the instance and
number(I) the largest integer appearing in I. In section 2 we will prove: If (X, p) is an acceptable
pair then Toy(n,p,C) = O((log C + log* n) - log n/log(n - p)). Because of the term “logC” this is
only pseudo-polylog. The acceptability of (X, p) implies that the graphs should not be too sparse
(actually, the diameter should not be too large and there should be a reasonable number of edges
at every vertex) and that it is extremely rare that an edge has a capacity considerably larger than
the average. We will show in section B.1 that Nc, the normal distribution with variance r - Cc?/2
is among the many distributions giving an acceptable pair as soon as (2) is satisfied. From the
results we have put together in the following table, we conclude that if our algorithm is applicable
then for polynomial C it is best. m is the (expected) number of edges.

algorithm number of PUs time order type
Karzanov 1 n° worst case
Sleator 1 n-m-logn worst case
Shiloach & Vishkin n n2.logn worst case
Johnson nt log®n worst case, planar graphs
Gabow 1 n-m-logC worst case
Sibeyn n? logn/log(m/n) - (log C + log* n) average case

1.3 Graphs and properties

As notation we use: 7i = (n-1)-p,N=n. (n-1),N=N - p and indeg;, outdeg; for the in
and out-degree of i. We work with the class G(n,p, X) of directed graphs. An arbitrary element
c € G(n,p, X) has n vertices and edges (1< i< n,1< j# i< n) which occur with probability p.
The capacities of the edges are chosen according to some positive discrete probability distribution
X. I £ is the density function of X then the expectation C(X)of Xis C(X) =Yz -£(z). In
section 3.1 we show that the results hold for other graph classes as well. The probability that a
graph ¢ with m edges occurs in G(n, p, X) is Pg(c) = [Ties &(ciry) - p™ - (1 — p)¥—™. Here ij is
the function which enumerates the non-zero edges. Occasionally a preflow f will be viewed as the
graph with edge capacities fij- This identification is implicit when we write £ € H, where H is
a subclass of G(n, p, X) with probability distribution Py induced by Pg. Thus f € H also means
that the probability on f is Py (f). (27) and theorem 8 give

Lemma 1 If#i > log®n then for alle > 0 aa for all i
lindeg; — fi| < € - 37/1°, |outdeg; — 7| < € - 77/10 3)

From now on (X, p) is assumed to be an acceptable pair. As notation we use: b; = inflow; —
outflow;, the imbalance of f in i; by = max;{|b;|}, the maximal imbalance; B = Y, 16, the total
imbalance; and G = >ij fij, the total flow. A vertex i is called “balanced” if bi(f) = 0. With (29)

we find
Lemma 2 For all € aa for all § (where this applies)
]mﬁow,—ﬁC| < 6-C.ﬁ9/10’ |outﬂow,--—ii-C|<e-C-ﬁ9/1° (4)
bnax < €-C 7% B<e.C.n.7%10 5)
IG-N.C| < e-C.N%0

We see that B(c) is of smaller order than G(c):

n-fd/t0 . ¢
B(e)/G(e) < N.C - NS/10.C

Theorem 2 F(c) = min{outflow,, inflow,} aa

< 2/it10 < 2/10g*/1% 1 aa (6)

Proof: Weshow that in the minimal s-¢ cut, (V,, Vo), [Vi| =1 or n—1. If|V,|=2thenV, = {s,v}
for some v and we find: F(V,,V;) > outflow, + outflow, — |c,o |~ |cys| > 2-7-C=2.C-7/10_2. M >
fi-C+C- 7% > outflow, aa. If 3 < [Va] < n/2 then we get using (29) with n' = |V:
F(Ve, i) 2 V|- (p-0' -C = (p-n')°/19.C) > 3/2" (5 - C — 29/10 :C) >ii-C+C-#%1° > outflow,
aa. The cases n/2 < |V,| < n — 2 are analogous. u
From Bollobas [1] we find for diam(c), the diameter of a graph c

Theorem 3 If ¢ € G(n,p) then diam(c) < [logn/logii] aa

2 The maxflow algorithm

The sketch of the algorithm given in section 1.2 is worked out in figure 1. The algorithm of Balance
is given in section 2.1. The internal vertices are the vertices i ¢ {s,t}. Internal edges, (edge) flows,
etc, are incident on internal vertices only. With the trivial observation that internal reductions do
not reduce F(s,V — {s}) and using theorem 1 we conclude

Corollary 1 Ifthe mincut of ¢ is situated right behind s and ¢ can be reduced by internal reductions
to a flow f then f is a mazflow of c.

Proc MaxFlow(n,p,C,¢,f);
Proc InitFlow(n, c,f);
=c;
determine outflow, (f), inflow (f);
if inflow,(f) > outflow,(f) then
for all i do fin = [fin - outflow,(f)/inflow,(£)] od ;
determine inflow,(f);
decrease by 1 the flow on inflow,(f) — outflow,(f) in-edges of n
else operate analogously fi) ;
Proc Balance(f, n, p, C);
(Under condition f € G(n, p, X) with outflow,(f) = inflow,(f) f is balanced aa
in O(log n/log i - (log C + log* n)) time, by internal reductions only.) ;
Proc StandardMaxFlow(n, c, f);
(Finds the maxflow of c in f in polynomial time.)
(InitFlow(n, c,f) { Now F(f) = F(c) and outflow, = inflow, } ;
Balance(f, n,p,C) { Now B(f) =0 aa } ;
if B(f) > 0 then StandardMaxFlow(n, c,f) fi { Now f is a maxflow. }) ;

Figure 1: The maxflow algorithm.

Lemma 3 Proc InitFlow needs O(log n) time to make £ a preflow satisfying

F(f) = F(c))
outflow,(f) = inflow,(f) (8)
~ fij = cij for all internal edges 9)

(8, 9) make that after InitFlow f € H = {8 € G(n,p, X)|outflow,(g) = inflow,(g)} in the sense
it was introduced in section 1.3. Informally we will say: “f € G(n,p, X) satisfying (8)”. (The
expected outflow,(f) is slightly too small for having f € M. However, this only increases the
probability that f can be balanced). Observe that f € 7 only holds when excess flow out of s
(resp. a flow deficit into t) is eliminated by reducing the flow in edges starting in s (resp. ending
in t) proportionally to their capacities.

Lemma 4 If ¢ € G(n,p,X) and f is a preflow satisfying (7, 8, 9) then aa £ is transformed by
Proc Balance to a mazflow of c.

Proof: According to theorem 2 the mincut of f is situated right behind s aa. The specification

of Balance gives that f will be balanced aa and then corollary 1 gives that this is a maxflow of f
and thus of c. u

Combining these lemmas with theorem 9 we obtain our main theorem:

Theorem 4 If (X,p) is an accepiable pair then MazFlow as given in figure 1 finds the mazflow
of c € G(n,p, X) in pseudo-polylog time aa. Furthermore T5(n,p,x) = O(n? -logn) and

Tav, 6(n.p, x) = O(log n/ log i - (log C + log* n)) (10)

2.1 Balance

We have seen that the only really important part in the algorithm is the balancing of a prefiow
satisfying (8) by internal reductions in pseudo-polylog time aa. We observe two guidelines for the
reductions:To assure good parallellism reductions are always directed by a vertex; to make small
the probability that due to the reductions the flow in an edge is reduced to zero, reductions are
made proportional to the flow on the edge as far as possible. Define A~ = #{ilb; < 0}, 4t =

4

#{ilb; > 0}, A = A~ + A*. The algorithm consists of calls of four subprocedures which reduce
B(f) from its initial value given by (5) to 0 aa:

1. call PreBal(f,n) |11 -log C/log#i| times { bmax(f) was given by (5), now dmax(f) <
i7/10 aq, }

call InterBal(f, n) |7 - loglog i) times { After these calls bmax(f) < log*/*n aa. }
call NearBal(t, f, n) for ¢ increasing from 1 as long as log*/® n < min{A~(f), A*(f)} <
n - (2/f)*=! { This ends with min{A~(f), A*(f)} < log*/3n aa, and thus (b only
decreases) B < 2-1og®/3n. }

4. If B(f) < 2 -10g®/3 n then call CompleteBal(f, n,p) B(f)/2 times { Aa this balances
f if the condition is satisfied. }

PreBal and InterBal make large steps and reduce B very fast. However, they are too coarse to finish
the task of eliminating all imbalance. Therefore, we proceed with NearBal and CompleteBal. For
the time being we do not pay attention to dependencies between the calls within a subprocedure
or between the subprocedures. This will be justified in section 2.5.

We derive properties of the preflow f after the calls of the subprocedures, they will imply
the correctness of the specification of Balance in figure 1. Without further notice we will give
results that only hold asymptotically. Furthermore we assume that n = o(C). Application of
the subprocedures imposes conditions on in and out-flows, in and out-degrees and the diameter.
We should prove they are satisfied by induction. To keep the line of reasoning clear, this is done
separately in section 2.2.

If a recurrence relation z, is given by zo = z; 2,4y = z:/¢ +1n/2 and { > 3 then 2, < n V& >
[(log z + 2 — log n)/log(]. Using (5) and lemma 10 this gives

Lemma 5 After |11-logC/log#] calls of PreBal
bmax(f) < 7i7/1° ga (11)
The total time consumption during this first reduction phase amounts to O(logn - log C/ log i)

If a recurrence relation z; is given by zo = T4 = zf and 0 < (< 1, then: z; <2Vt >
[loglog z/log(1/¢)]. Using this, lemma 5 and lemma 11 we get
Lemma 6 A preflow satisfying (11) is transformed in |7 -loglogi] calls of InterBal to a preflow
f for which

bmax(f) < log*®n aa (12)
The total cost of these calls is O(logn - loglog 1) time.

This lemma makes that after the calls of InterBal f satisfies the conditions for application of
NearBal(1) (apart from the condition on the degrees) aa. We proceed by induction. Lemma 13
gives that if f satisfies the conditions for application of NearBal(d) then it satisfies afterwards the
conditions for NearBal(d + 1) aa. So aa we come to the point that we have (12) and

min{A~(f), A*(£)} < log¥3n (13)

Lemma 7 A preflow satisfying (12) is transformed by calling NearBal(t) for increasing
te{l,...,|2 logn/logii|} into a preflow £ for which

B(f) < 2-log®3%n (14)
These calls cost O(log'®/®n/log#) time in total.
Proof: It is easy to check that with d = |2 -logn/ log#i] we have n - (2/7)¢ < 1 < log*3n.

Hence, after calls of NearBal(t) for t = 1,2, ..., d; for some dy < d, min{A~, A*} must have come

below log*/® n. (14) follows from (13, 12) and B < 2 - min{A~, A*} - byax (this relation follows
from B~ = B*). The time consumption follows from lemma 13. [|
Now lemma 14 gives

Lemma 8 A preflow satisfying (14) can be transformed in at most l_logs/ 3n| calls of CompleteBal
to a flow f aa. The time consumption of these calls is O(log!*/3 n/log#) all together,

From the lemmas on the subprocedures we get the important result on Balance:

Theorem 5 If (X,p) is an acceptable pair and f € G(n,p,X) satisfying (8) then £ will be bal-
anced by Balance aa. Balance operates on internal edges only. For the time consumption we find
Tatance = O(logn/log i - (log C + log!%/3 n)).

2.2 Flow reductions while executing Balance

Our balancing procedures might behave unproperly when the amount of flow coming into (or going
out of) a vertex becomes too small in some sense. This might also happen when too few edges
contribute to the incoming (or outgoing) flow of a vertex. In this section we will prove that this
undesirable situation occurs only rarely. A similar result holds for the diameter of the graph (of
edges with a non-zero flow): its diameter should not become too large.

Lemma 9 At all times during Balance for all internal i
inflow;(f) > 2/3 -7 - C, outflow;(f) > 2/3-7-C aa (15)

Proof: The reductions of in and out-flow due to a call of PreBal, ..., CompleteBal are given by
lemma 10, lemma 11, lemma 13 and lemma 14. The reduction of bmax i8 80 fast that the reduction
of in and out-flow due to all calls of PreBal and InterBal can easily be estimated on twice the
reduction during the first call. If, as we assume, n = o(C) then the reductions due to the calls
of NearBal and CompleteBal are of smaller order. Combining (5, 20) we find that the reduction
during the first call of PreBal is bounded by 2 - C - #%/19, Using (4) we can finish the proof. m

Corollary 2 At all times during Balance for all internal i
indeg;(f) > 7i/2, outdeg;(f) > 7i/2 aa (16)

Proof: We only check the first part. Let flowdegratio = i::‘ ‘::.'. Then we have for ¢

flowdegratio;(c) < ﬂgé_’%:;;& < C+ C/(2-A'/19,. If by the action of Balance the reduc-
tion of flows on edges would be exactly proportional to those flows then this ratio would de-
crease. Actually this is not quite true but, as we have seen, the great bunch of flow reduc-
tion is performed by PreBal and PreBal reduces flows on edges approximately proportional to
those flows. So the ratio decreases or eventually increases slightly. In any case we will have
flowdegratio,(f) < C + C///!° where f is the preflow we get after application of Balance. With

(15) this gives indeg,(f) = o:}" e;:l'(fo).(e E%%%gm > fif2. |

Not taking into account dependency we find from (16) and theorem 3
Corollary 3 At all times during Balance diam(f) < [logn/(log# — 1)] aa.

2.3 PreBal and InterBal

In this section the effect of PreBal and InterBal on b,y for a preflow f is analysed. PreBal reduces
bmax(f) considerably if f satisfies (15) and bmax(f) > 77/1°. InterBal requires (16) and

71/2 > bmax(f) > log¥3n (17)

First we treat PreBal. The algorithm returns excess in-flow over the in-edges in proportion to
the flow over these edges and for excess out-flow analogously. In the proof of corollary 2 we have
seen the use of this proportional reduction. We use help variables §;;;;, the change i wants to make

to (4,7) and 6;,; the change j wants to make to (4, 1), to make the actions of the PUs completely
independent. The algorithm is given by

Proc PreBal(f, n);
for all1 < i< ndo
ifb;(f)>0
then for all 1 < j < n do iy := 0;6;;5i := round(+b;(f) - fji/inflowy ;) od
else for all 1 < j < n do &5 := 0;6;;i; := round(—bi(f) - fji/ outflow,y, ;) od fi od ;
foralll<i,j<ndo
fij = max{fij — 6i3j — 65,0} od) .

Call the preflow we obtain after application of PreBal £/. We will express byax(f’) in terms of
bmax(f). We will do this by giving an upper bound on b;(f’) for an i for which both b;(f) and b;(f’)
are positive, the other cases can be treated in the same way. There are three sources for b;(f"),
they will be denoted by b(l) b(z) b(s) b(l) is the difference between the effect of the rounding down
and the rounding up of the 6; j;. Using (30) with M = 0.5 we find b{") < ¢-77/1° for all € > 0. b{®)
is due to the difference in reductions made on the in and out-edges by the neighbors. If for some
J bj > 0 then we can bound §;;, the contribution made by j to the balance of i by

8ij = bj - fij/inflowsg, j < 2 brmax - M/(- C) < 2 - bnax/R?/® (18)
Here (15) and the relation between M and C are essential. The same bound holds for the contri-
butions §;,;;. Application of (30) with M = 2 - byay/7i%/5 gives b{*) < € - buax/i!/1° for all € > 0.
The factor “bmax(f)” occurring here is the origin of the term “logC” in the time order of Balance

and MaxFlow. b§3) stems from a possible insufficiency of f;;. It can be only non-zero when at least
one of the adjacent vertices i, j wants to reduce more than half of its in or out-flow. The first case

occurs only when inflow; > 2 - outflow;,, ;. This will almost never happen, and thus bsa) =0 aa.

Lemma 10 f € G(n, p, X) satisfying (15) is transformed by PreBal in O(logn) time to an f' for
which

bmax(F) < €+ (A0 4 bpax(F)/71/20) for alle > 0 aa (19)
inflowy(f') — inflow;(f') < 2-bpax(f), outflow;(f') — outflow;(f') < 2 - bax(f) aa (20)

Proof: The reduction of inflow;(f) consists of mrecf) the reduction i performs on its own in-flow
and tnrea(,) the reduction caused by the vertices adjacent to i. Depending on the sign of b; mrexf)
is 0 or bounded by bpyax. mret{n) 2 65;5i- We use (29) to give an estimate of this. For the value
of p in (29) we substitute p/2. From inred? = ¥ inreaﬁz) /n = B* /n < bnax/2 we conclude that
we can use bmax/f for the average contribution C of (29). (18) gives us the value for M. So we
get inreafz) < bmax/2 + bmax /7110 < bax. u

Now we will focus on InterBal. The algorithm and its analysis are analogous to those for
PreBal. The algorithm is expressed by

1. if b; > O then select from the in-edges a subset S; of size b; else select from the out-
edges a subset of size |b;| { This can be done if (16) and (17) hold. Take for S; the
first |b;| vertices with indices larger (cyclical) than i satisfying the condition. }

2. reduce the flow on the selected edges by 1 { Exactly b; is returned or fetched back in
this way. }

There are other good choices for S; e.g. random. Any choice is good as long as no vertex occurs
on the average more often as endpoint of a selected edge than any other. Let f’ be the preflow
obtained after application of InterBal to a preflow f. The contribution b(l) to b;(f’) is 0 for
InterBal. So aa we will have b;(f') = b(2) We use (31) (observe that we need b; (f) > log*/3n)
with p = dmax/(2-n), M = 1 to bound b(z) This gives

Lemma 11 f € G(n, p, X) satisfying (16, 17) is transformed by InterBal in O(logn) time to an

' for which (20) holds and for which we have byax(f’) < max{e - bglm(f) log*/3n} for alle > 0
aa.

2.4 NearBal and CompleteBal

First we study the effect of NearBal(d) on min{A~, A*} for some preflow f € G(n, p, X). Suppose
f satisfies (16) and (12) together with

min{A~(f), A*(f)} < n - (2/7)%} (21)

The algorithm for NearBal(d) is just a shell for calling repeatedly the subprocedures NBMinus
and NBPlus:

while indeg,;,, outdeg,;, > 7i/2 and A=, A* > max{log*/®n,n - (2/7)9} do
if A=(f) < A*(f)
then NBMinus(d)
else NBPlus(d) fi od ;

The main part of this section will be spent on the analysis of the effect of NBMinus(d) on

min{A~, A*}. In this case A=(f) < A*(f). Of course the results for NBPlus(d) are the same. The
algorithm of NBMinus(d) proceeds as follows:

1. perform a breadth-first search with branching degree #/2 for vertices j with b >0
at a depth d in parallel from all vertices i with b; < 0 { With at most n - (2/7)4-1
vertices with negative balance, 21), and n? PUs we can assign n2/A~ > n - (/1/2)9-!
PUs to each of the A~(f) parallel calls of NBMinus. This is sufficient to perform this
search in O(d -logn). }

2. make the paths begin and end-vertex disjunct { This gives that b; is non-increasing
for all 4. }

3. make the paths vertex disjunct { This is done to prevent write conflicts and to guar-
antee that the flow in an edge is not reduced to less than 0. }

4. reduce the flow on all edges that lie in a path selected in step 2 and 3 by 1

Lemma 12 If the number of selected paths in NBMinus(d) is Aq then B is reduced by 2-A4. The
in and out-flows are reduced by at most 1. NBMinus(d) uses O(d - logn) time.

If more than one path comes together in a vertex, one of them can be selected in the same way as
in InterBal. Lemma 12 shows that we have to give an estimate on A;. We may assume that

max{log?/3 n,n - (2/7#)%} < min{A~, A*} (22)

because otherwise we are already done for this d. Using (22) we find for the probability & that a
path ends in a vertex with positive balance § = A*/n > (2/7)%. The number of paths of length d
from a certain vertex i, nrgd), is given by nr‘(.d) = (7#/2)4 for all i aa. Thus nrgd) -6 > 1. From this
it follows that 84, the probability that at least one of the paths from a vertex ends in a vertex with
positive balance, satisfies §; > 1/2. Using corollary 5 we find for A}, the number of vertices which
find a j with b; > 0 at distance d, Ay > A~ /2— (A~ /2)°/1° > A~ /3. After step 2 of the algorithm
only an end-point disjunct subset of these paths remain. Application of corollary 7 gives for A/,
the number of these paths, A}, > A’/3 > A~ /9. We still should calculate A the number of paths
among the Aj which are vertex disjunct. Assume that A/ — 1 paths are disjunct, then (use (21)
and Ay < A~) P(pathy, lies disjunct) = (1 — (d+ 1) - (A4 — 1)/n)4~1. For d = 1 this probability
equals 1 as it should be: The start and end-vertex were already made disjunct from the rest. For
d > 2 we find Pyya(pathy: lies disjunct) > (1—(d+1)-(2/#)4-1)4-1 > 1~ d?.(2/R)%~! > 1-8/f.
The probability that an arbitrary path can be added disjunctly is greater than the probability
that the last path can be added disjunctly. Therefore we may apply (28) with p = 1 — 8/#:
Ag > AG-(1-8/R) — (A - (1 —8/#))%1° > A-/10. It is this application of DeMoivre which
brings along the requirement min{A~, A*} > log*/%n. Substituting A, in lemma 12 and f’ is the
preflow we get after application of NBMinus(d) then B(f') < B(f) — 2 - min{A~(f), A*(f)}/10 aa.

The slowest decrease rate of B is obtained if the ratio B/ min{A4~(f), A*(f)} remains stable at its
maximum, this means: We can substitute B = min{A~(f), A*(f)} - byax. With (12) this gives

min{A~(f'), A*(f')}/ min{A~(f), A*(£)} < (1 - 1/(10 - log*/® n)) aa (23)

We return to the analysis of NearBal(d). NBMinus and NBPlus are called as long as the condi-
tions are satisfied with a maximum of 10-log*/® n-log f times. Let £ be the preflow we would have
after this number of calls, then (23) gives min{A~ (£"), A+(£")}/ min{ A~ (£), A*(f)} < (1-1/(10-
log*/3 n))1010g"/* nlog it o 1/¢lo8% < 2/7. With the trivial observation that min{A4~(f), A*(f)} <
n/2, this gives the desired result on NearBal(d):

Lemma 13 f € G(n,p, X) satisfying (16, 12, 21 and 22) is transformed by calling NearBal(d) in
O(d -log"3n - log fi) time to an £ for which min{A4~ ("), A* (")} < n - (2/R)¢ aa, inflow;(f) —
inflow;(f") < 10 - d -log*/3n . log i, outflow;(f) — outflow,(f") < 10 - d -log*/3n . log 7.

After the calls of NearBal CompleteBal reduces the imbalance of f (B(f) > 0) further. It
proceeds as follows:

1. select 4, j such that b; < 0, b; > 0 { If (8) holds then there is at least one i with b; < 0
and one j with b; > 0 as long as B > 0. }

2. find a path from i to j of maximal length 2 - log n/log#i { Such a path exists aa
and assigning n PUs to every vertex it is easy to give an algorithm which finds it in
O(log? n/ log i) time. }

3. decrease the flow along the path from i to j by 1 { Along the path the balances remain
unchanged, for both i, j it has improved by 1. Thus we achieved a decrease of B by

2.}

Lemma 14 If B(f) > 0 and diam(f) < |2 logn/ log#i| then CompleteBal reduces B to B — 2.
The reduction of inflow; and outflow; is at most 1. The time consumption is O(log® n/ log).

2.5 Dependency

Many times we used conditions of the form “f € X C G(n,p, X)”. This means that we assumed
that the possible f were distributed as in . For the f obtained after a number of steps of the
algorithm this is not correct. In this section we analyse what a better analysis would give.

Assume that after a certain number of calls of PreBal (InterBal) we have obtained a preflow
f for which for some i, j: b;(f) < 0 and fj; > 0, then i fetches bi;ij () = fij - bi(£)/ outflowy, (f)
back from j in the next call of PreBal (InterBal)(not taking into account the rounding). That is
b;j(f’) depends on b;(f): it has become smaller than we expected a priori. This may influence the
value of b;(f") where f” is the preflow we get after another call of PreBal (InterBal). The nature of
this dependency depends on the sign of b;(f’: If b;j(f') > 0 then due to the sending of 5;.;; (f) b;(f")
is smaller than expected by an amount of 05345, dep = —fl; - 6145 (£)/ inflow,, ;(f'). This situation
will occur about 7i/2 times. If b;(f') < 0 then b;(f") depends only on bi(f) if f{; > 0. In this case
bj; ji, dep = = fl;-6isij (£)/ outflowsy, ;(£). 85, ji, aep > 0 will happen about p-7i/2 times (the situation
is illustrated in figure 2). This gives for A; gep, the expected total contribution to the imbalance of
bi(f") due to dependencies of this kind A;, dep = bi(£)-(1/(2-7)+1/(2-n)) < bax(f)/fi. Comparing
this with the upper bound on b;(f") we find from (19): €+ (- (bmax(£)/A1/10+77/10) (1110 L 37/10) 5
€2 -bmnax(F)/7%/19, we conclude that the effect of dependency can be neglected (for InterBal byqx(f")
is of smaller order but the conclusion remains the same).

So far we calculated the first order contribution of the dependency. The contributions resulting
from imbalance which returns after a longer path to i are of even smaller order.

Reductions in NearBal and CompleteBal cannot induce new imbalances and thereby make nec-
essary new reductions as was the case with PreBal and InterBal. Therefore, the kind of reductions
we find during PreBal and CompleteBal do not occur. The dependency we find here arises from the
fact that near to an unbalanced vertex edge flows are reduced more than elsewhere. E.g. in figure 3

£ K
J
bi<0
6ij <0toj
> ' 6p<O0tok
L i.6"<0t01
v
[J
k

£t+1) et >0
3 6j.' tod
influence from &;;
+7i/2 vertices like j
<o

by to i over (I,1)
influence from §;;
+p - /2 vertices like j

h<o0
YO0toi

k

Figure 2: Dependency on the imbalance at vertex { with PreBal (InterBal).

3=io
<O 1 is
> > @
lis k
> @ L]

Figure 3: Flow reduction during NearBal takes place along the paths from i to j.

10

® 4. /2 vertices like k

the probability that one of the edges in the path (i, ...,i5) gets emptied is non-zero. For (is, 5)
this is even more probable while it may lie in more then one path. On the contrary (is, k) remains
as it was. These specific reductions might deform the graph such that corollary 2 and corollary 3
no longer hold. These corollaries were based on (15). Without dependency the reduction of inflow;
for a j € S* was at most 4 - C - 71%/10, The largest effect we have is the extra emptying of edges
adjacent to an j because they were last edge in a path from an i € S—. This happens less than
bj < log4/ 3 n times. This extra reduction of inflow; is no obstruction in obtaining (15).

3 Extensions

In this section subjects are studied which make the range of applicability of the developed algorithm
larger: We prove that the results hold for other classes of graphs than G(n, p, X); we give conditions
which make it probable that the algorithm will be successful and we give suggestions how the
algorithm can be used in practical situations.

3.1 Other classes of graphs

In a practical situation one usually knows the number of edges, m, or it can be determined easily.
Therefore, is it desirable to have results for #(n,m, X), the class of directed graphs with m non-
parallel edges weighted by X, and MM(n, m, X), the class of directed graphs weighted by X
with m possibly parallel edges. We can define classes UG(n,p, X),UH(n, m, X), MUH(n,m, X)
of undirected graphs analogously.

3.1.1 The class H(n,m, X)

In this section we will prove that the results for the average performance of MaxFlow over G (n,p, X)
hold just as well over H(n, m, X). For the proof we need a theorem and some notions from the
probability theory on graphs. They can be found in Bollobas [1, p 32 ...35].

The probability that a graph ¢ with m edges occurs in H(n, m, X) is Px(c) = [[1v, ¢ (cixry) / Z .

Here ij is the function which enumerates the non-zero edges. Let §"(X) = G(n,1/2, X) the class
of all graphs.

Definition 2 Q is a property of graphs if Q is a subset of G"(X) which contains full isomorphism
classes.

We are specially interested in the property R defined by
R = {c € G"(X)| MaxFlow needs polylogarithmic time when applied to c} (24)
Fg~(x)(Q), the probability on a property Q is defined as the probability on the subset Q. Fora

subclass C of G" the probability on Q is Pe(x)(Q) = P x)(@ NC(X)). For G and H this amounts
to

E(C)
Ponex)(Q) = Z Pg(n,p,x)(c) = Z PE(c) -qV-E(©) . H f(cij(k)) (25)
ceqQ CEQ k=1
“ N
P‘H(n,m,X)(Q) = Z P‘H(n,m,X)(c) = Z H E(czxk))/ (m) (26)
cenM(n,m,X) {CeQIE(C)=m} k=1

Example 1 A property of graphs from G™(X) is Q = {c € G*(X)|E(c) is even}. For this property
Fo(np,x) (@) = 1/2; Prnm,x)(Q) =0 if m odd.

This shows that properties holding for G not necessarily hold for 7. On the other hand it is clear
that properties holding for 2 hold at least sometimes for G:

11

Lemma 15 Ifp > 0,Q C G*(X), then we have Py(n,m,x)(@) < 3- ml/2 * Pg(n p,x)(Q)-
Proof: From (25 and 26) it is immediate that Pg(np x)(Q) = Zf‘v:o (]Z) ph N

Pr(n,u,x)(Q) and thus Py, p, x)(Q) > (x) P g™ Pryn,m,x)(Q) > Pr(n,m,x)(Q)/((2- 7

p-q-N)Y/2.em/%), To obtain this last inequality we used [1, (5) p 4). N
By the example it seems difficult to derive results for from those of G. Fortunately we have

Corollary 4 If p > 0 and Q is a property which holds over G(n,p,X) aa then Q holds over
H(n,m,X) aa.

Proof: From the definition of aa (definition 1) and lemma 15 we find that there is an w, limp— o w(n) =
oo such, that P’H(n,m,X)("Q) <3. mi/2. PO(n,p,X)(“Q) <3 .n.pn-wn), =
This corollary and theorem 4 give

Theorem 6 If (X,m/N) form an acceptable pair and ¢ € H(n,m,X) then ¢ € R aa and
Tav, H(n,m,x) = O((log C + log* n) - log n/log#).

3.1.2 The class MH(n,m, X)

In G(n,p, X) and M(n,m, X) we assumed that there was at most one edge (i,7). In this section
we will show that if m < N'~¢ for some ¢ > 0 the results also hold for the class MH(n, m, X)
where the m edges are distributed completely arbitrary.

Let ¢ € G"(X) a graph and Q C G"(X) a property, then we define Prn(c) = [Tr=1 é(cixr)) /IN™,
DePar(c) = c with all parallel edges replaced by one edge with summed capacity, Qu = {c €
Q|E(DePar(c)) = m}, MazPar(c) = maxo; j<n{k|k = number of directed edges (i, j) in ¢ } and
the skeleton of a graph ¢ € H(n,m, X) is the graph Skelet(c) € H(n,m, 1) obtained by replacing
all edge capacities by 1. Of course the maxflow is invariant under DePar-

F(DePar(c)) = F(c)
There is no X’ such, that DePar : MH pi(n, m, X) — DM(n,m’,X’) is a probability preserving
mapping. Nevertheless, DePar has some nice properties. It is easy to check that

Lemma 16 Ifc € MHpmi(n,m, X) then P(Skelet(DePar(c)) = ski) = P(Skelet(DePar(c)) = sk;)
for all sky, sky € DH(n,m',1).

Lemma 17 Ifm < N'=¢,¢> 0,c € MH(n,m, X) and (X, m/N) is acceptable then

max {DePar(c);;} < C(X) - 7%/ qa
0<i,i<n
Prooft maxogij<n{cij} < M(X) aa. Substitution of r = m,n = N in corollary 8 gives
MazPar(c) < loglogn aa. Using maxo<; j<n{DePar(c);j} < max;j{cij}- MazPar(c), the definition
of acceptable and loglogn < log®/*° n < 71/49 we get the result. [|

Let R be the maxflow property (24) generalized to MG™(X), then we can use these two lemmas
for the central lemma of this section:

Lemma 18 Under the conditions of lemma 17 there is an wy with lim,_ o wmi(n) = 0o such,
that

Ppmn,,,(nm,x)("R) < n~“m (") for all m' >m/3

Proof: We know Pury(n,m:,x)(~R) < n~—“m='(?) for any acceptable pair (X', m"). If we pass
over the proofs again we find that we do not need X’ to be used independently for every edge. It
is sufficient that the capacities and edges are regularly distributed aa. This amounts to

e All graph skeletons with m’ edges are equi-probable.

12

¢ (3, 4) hold aa.
¢ (2) holds.

Set i = m'/(n—1),C' = C-m/m’, then i’ > 10g?®/1%n, X < 7/9/40.C" aa. This gives alternative
values for n,{ in section B.2. If we leave 6,0’ as they were we find (3, 4) anew and the only

consequence of taking the modified (2) is that the number of calls of PreBal should be increased
slightly (disappearing in the estimates). []
Use corollary 7 with » = m,n = N to prove

Lemma 19 If m < N then there is an x with lim,_ x(n) = oo such, that
PMH(n,m,X)(Mum'<m/8(n9 m, X)) < n=x(n)
This gives the main theorem for MH(n, m, X):

Theorem 7 If m < N'-¢e > 0,(X, m/N) is acceptable and ¢ € MMH(n,m,X) then c € R aaq,
Tav, MH(n,m, X) = 0((logC+ 1054 n) . log n/ logﬁ).

Proof: Define w(n) = minm'zm/S{w:n(n)}: then PM‘H(n,m,X)(R) = 2:'=1 PM‘HMI(n,m,X)(R) :
Prrinm,x)(MHmi (n,m, X)) > (1= n=vM) . T8 _ o Prariinm,x)(MHmi(n, m, X)) > (1 -
n=«()). (1 - n=x(®)), =

3.1.3 Undirected graphs

Sometimes the maxflow in an undirected network has to be found. We solve this by replacing
undirected edges by a directed edge in both directions. The maxflow we find in this network can
be transformed in a solution of the problem by taking the net-flow through every undirected edge
)

We show that under certain conditions on p, X the maxflow for ¢ € UG(n, p, X) can be found
in peeudo-polylogarithmic time aa. From this the same result follows for the classes UH(n,m, X),
MUH(n, m, X) in the same way as the result for their directed counterparts followed from that
on G(n,p, X).

The proof for UG(n, p, X) is analogous to that for G(n,p, X). Only the situation of dependency
is slightly different. In figure 2 vertices like k no longer exist. Now about half of the adjacent
vertices are like j and the other half like [. The effect of dependencies is thereby at most doubled in
comparison with the dependencies occurring for graphs of G(n,p, X). Thus they remain negligible.

3.2 Requirements on a graph, choice of constants
In this subsection some properties are given which a graph should have to make it probable that its

maxflow can be found in polylog time. Also we give expressions for the values of p, C that should
be used in the call of MaxFlow.

3.2.1 Requirements

If we pass over the proofs given for the results of theorem 4 and for the results of PreBal and
NearBal we find that we need something like

bmax(€) < C-#®/10
i > log’n
M < C-al/s
indegyi, ovtdeg, ;. > #/2
inflowy,,, outflow;,, > #-C/2
diam(c) < [2-logn/logii]

13

S+ S0 S-

|S*|~n/3 5% = {i|b; = 0} |S=|~n/3
no edges to S~ |S%| ~n/3 no edges to St

Figure 4: An exceptional distribution of imbalances. Here A cannot be reduced by NearBal(1)

The maxflow of a graph satisfying these requirements can be found pseudo-polylogarithmically
with the algorithm of figure 1 aa.

However, there are two different origins of problems.

e It is well possible that for a graph c, although all requirements are satisfied, the mincut is
not situated behind s or in front of t. So we should add the requirement

F(c) = min{ outflow, (c), inflow,(c)}

o The second problem is due to the algorithm and can occur with any graph (showing that
for this algorithm there is no complete requirement set). During PreBal and InterBal the
distribution of imbalances (apart from dependencies) is completely remodeled at every call.
So it is the very last call of InterBal which determines the distribution of imbalances that is
handed over to NearBal for further reduction. It may happen that the situation is now as
depicted in figure 4. In this situation NearBal(1) will not change anything at all and therefore
the algorithm will break off at the start of NearBal(2) because then min{A~,A*} = n/3 >
2. n/i. This problem can be overcome by replacing Balance by a randomized version of it:
If (the last call of) InterBal selects the edges in which the flow will be reduced randomly,

then rerunning the algorithm will give a different distribution of imbalances which aa can be
further reduced again.

We call the suggested alternative algorithm AltMaxFlow. Let SGn(X) be the subclass of g"(X)
satisfying the requirements given above inclusively the one on the mincut. It is tempting to state

Hypothesis 1 Using AltMazFlow: Texpectea(€) = O((log C + log* n) - logn/log#) for all ¢ €
SGn(X).

It is easy to show, in fact most of it was done in this paper, that the requirements are satisfied by
aa graphs of " (X). If the hypothesis is correct, this implies (10). On the other hand the proof of
the hypothesis requires careful analysis of the reduction procedures,

3.2.2 Practical situation

For practical applications it is undesirable that the parameters p and C occur in the heading of
MaxFlow. Usually one does not know p and the distribution X from which C follows. We can try
to solve this problem in the following way:

1. d := DePar(c);

2. p:= E(d)/N;

3. C := average of all edge capacities; M := maximal edge capacity;
4. MaxFlow(n, p, max{C, M/#1/%}, ¢, f).

In step 4 the value for C may be too small to assure enough calls of PreBal, therefore chose the
maximum with M/#/1/5,

14

4 Conclusion

We presented an algorithm for the MFP. The algorithm started by saturating all edges and then
aa balanced this preflow by repeatedly calling a number of balancing procedures. If the balancing
was successful the remaining flow was maximal. We proved a pseudo-polylog average case time
over a number of classes of random graphs. The problem to single out a class of graphs which has
a pseudo-polylog time for all its elements remains to be solved. Other subject of future research
can be the implementation of this algorithm on other computer models.

Acknowledgement

I would like to thank Marinus Veldhorst for his helpful comments, his careful reading and his
judgement of the matter.

15

A Notation

L7
indeg;(f)
outdeg,(f)
bi(f)
inflow;(f)
outflow;(f)
S*(f)
s=(f)
A(f)
A*(f)
A=(f)
B(f)

E(f)

F(f)

RS ng
A
23

#{4lfj: > 0}
#{ilfi; > 0}
X Jii— fis
Ej fii
2 fii
{i]6«(£) > 0}
{ilb:(f) < 0}
#5+(f) N S~ (f)
#5+(f)
#5-(f)
> [b(6)|
#{(4,9)\f;; > 0}
min{Fg(V,, V})|

(Vi, V2) is an s-t cut}

Yeviievay fis
i.4 fij
Z1<c,j<n fi:‘

B Probability theory

number of vertices

number of pairs (i, j), i # j

probability that an edge exists

number of edges for the classes of graphs
where this is fixed

the expected number of edges at a vertex
the expected total number of edges
probability that an edge does not exist
distribution for edge capacities

density function of X

binomial distribution with parameters n,p
normal distribution with mean 0 and variance o2
density function for N(0,0)

normal distribution with variance » - C/2
a class of graphs

class of graphs we are working with
probability distribution on C

probability distribution on G(n, p, X)
expectation of X

maximal edge capacity

graph (given by its capacity matrix)
(pre-) flow in a graph

indices of vertices

indegree of vertex i

outdegree of vertex 1

balance of a preflow f at i

flow into vertex ¢

flow out of vertex ¢

set of vertices with positive balance

set of vertices with negative balance
number of vertices for which b; # 0
number of vertices for which b; > 0
number of vertices for which b; < 0

the total imbalance of £

number of non-zero edges of £

value of mincut of £

the value of (V,, V) for £

the total flow of £

the internal part of the total flow of £
worst case time on C

average case time on C with probability
distribution P(C).

In this section we give a number of results from probability theory that are used over and over in
the proofs. We will use P as our probability measure.

Theorem 8 If Ay, ..., A; are all independent, satisfy (1) with a common w(n) and i = O(n?) for
some fized 6, then aa \;_, A;.

16

Theorem 9 A polynomial time algorithm which needs aa O(f(n)) time on a class C(n) satisfies

T-v(c(n)) = O(f(ﬂ))

Let S, p be the binomial probability distribution with parameters p and n and let ~ mean: “is
converging to”. Derived from a result by DeMoivre and LaPlace (c.f. [1, p 13]) is

Theorem 10 (DeMoivre) If ¢(n) = 1 — p(n),lim, oo p(n) - g(n) - n = oco,z(n) = o((p - ¢ -
n)!/%), limn—c0 2(n) = 00, h(n) = z - (p- g - n)!/? then P(|Snp—p- 1| 2 h) ~ Fpm - e=="/2,

Corollary 8 Foralle >0

|Snp—p-nl< €-(p-n)"/1° qa,ifn. p(n) > log®n 27
ISnp—p-nl< €-(p-n)*/° aa, ifn-p(n)>log*3n (28)

Actually the exponents 3,7/10,4/3,9/10 etc. can be replaced by others but the given values are
convenient (c.f. section B.2). A “continuous” version of DeMoivre is (cf. [6])

Theorem 11 (Hoefdings inequality) If X; are independent positive random variable with mean
Ci and mazimal value M; then P(|35 Xi — 0 Ci| > h) < 2.~ 2P/ XM
Given a probability distribution X we define X(p) by X (p) = X with probability p, X(p) = 0 with

probability 1 — p. It is by independent X;(p) that the graphs of G(n,p, X) are formed. Now we
find by combining theorem 11 and corollary 5

Corollary 6 If X is a positive distridbution with mean C and Xi(p) are independently formed from
X for1<i<n, X <M aaandn-p>login, then foralle > 0

n
IEX.-(p)—n-p-Cl56-(n-p)7/1°-M aa <e-(n-p)'°.CifM< ymp-C (29)
=1

If X is a symmeric distribution with positive mean C = 1% i|-£(i) and Xi(p) are independently
Jormed from X for1<i<n, X < M aa, then for alle > 0

n
1D X< e(n-p)7-M aaifn-p>logn (30)
i=1
n
X< e (n-p) M aaifn-p>log>n (31)
i=1

B.1 Normal distribution

The normal distribution with variance o and mean 0, N (0,) has density function V(O,a, t) =
s -€™*"/(39°), Define ¢(t), (z) to be the density function and distribution for N (0,1). Stan-
dard probability theory gives the following fact (see e.g. [2, p 175]): z — oo then

1

5 . 3-02/2 (32)
x- 7 .x
Let Nc = N(0,/x/2 - C), then with (32) it is easy to derive

Lemma 20 The ezpectation of |[Nc| is C. 1 — No(z) ~ o= /O if e co.

1-8(z) ~ = - 4(z) =

Theorem 12 (Ng, p) is acceptable if n - p > log® n.

Proof: From lemma 20 we get P(Nc(z) > ¢/ p-C) < Té‘k‘? =P n ¢ o-login/r g
This tells us that acceptability does not impose too much restrictions on the distribution.

17

