Rapid Development of a Program
Transformation System with Attribute
Grammars and Dynamic Transformations

Harald Vogt, Aswin van den Berg, Arend Freije

RUU-CS-90-23
June 1990

Utrecht University

Suwdo ‘ 5
;‘ <, Department of Computer Science
<
s % Padualaan 14, P.0. Box 80.089,

3508 TB Utrecht, The Netherlands,
Tel. ;... 4+ 31-30-531454°

Rapid Development of a Program
Transformation System with Attribute
Grammars and Dynamic Transformations

Harald Vogt, Aswin van den Berg, Arend Freije

Technical Report RUU-CS-90-23
June 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

Rapid development of a program transformation
system with attribute grammars
and dynamic transformations*

Harald Vogt Aswin van den Berg Arend Freije

Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-Mail: harald@cs.ruu.nl

Abstract

Using the attribute grammar based Synthesizer Generator a prototype program
transformation system has been developed in four man-months. This is very fast,
compared with the development-time of other program transformation systems.
The prototype supports the construction and manipulation of equational algorithm
proofs and making derivations interspersed with text. Its intended use is in writing
papers on algorithm design, automatic checking of the derivation and providing
mechanic help during the derivation.

The editor supports dynamic transformations: they can be inserted and deleted
during an edit-session, which is currently not supported by the Synthesizer Genera-
tor. Also the applicability and direction of applicability of a dynamic transformation
on a formula in the program derivation is indicated and updated incrementally. Dy-
namic transformations were, until now, never implemented in any other proof- or
program transformation system. The prototype, including the dynamic transforma-
tions, was written as a pure attribute grammar.

1 Introduction

This paper describes a prototype program transformation system made in four man-
months with the attribute grammar based Synthesizer Generator (SG) [RTD 83]. The
prototype transformation system (the BMF-editor) supports the interactive derivation of
equational algorithm proofs in the Bird-Meertens formalism (BMF) [Bird 87, MRT 86].

Doing a derivation in BMF means repeatedly applying transformations to BMF-formulas.

*This is a copy of the manuscript presented at the International Workshop on Attribute Grammars
and their Applications (WAGA), Paris, September 19-21, 1990

For a BMF-editor to be of practical use, the user should be able to add transforma-
tions which are derived during the derivation so they can be reused further on in the
derivation. The transformations supported by the SG, however, can be only entered at
editor-specification time. Dynamic transformations can be entered and deleted during the
edit-session. Furthermore, the applicability and direction of applicability of a dynamic
transformation on a formula is indicated and updated incrementally. Dynamic transfor-

mations were, until now, never implemented in any other proof- or program transformation
system.

The dynamic transformations are implemented with an attribute grammar. Insertion and
deletion of a transformation is already implemented with an attribute grammar in the
CSG proof editor [Reps & Alpern 84)]. In the attribute grammar based Interactive Proof

Editor (IPE) [Ritchie 88] the applicabilaty of a dynamic transformation can be shown on
demand but not incrementally.

The use of an attribute grammar based system like the SG was the key to easy and fast
development of the BMF-editor. First, because the SG generates a user interface and
environment for free. Second, because BMF-formulas, dynamic transformations and the
derivation itself are represented easily by attribute grammars.

The BMF-editor lies somewhere between a program transformation system and a computer
supported system for equational or formal reasoning. The construction time of program
transformation systems like the PROSPECTRA system [Prospectra 86], the KIDS system,
the TAMPR system and the CIP-S system (for an overview see [Partsch & Steinbruggen 83)),
was considerably longer because almost all systems were totally written by hand without
using any tools. The construction time of computer supported systems for formal reason-
ing like LCF, NuPRL, the Boyer-Moore theorem prover and the CSG proof editor (for an

overview see [Lindsay 88]), was in the most cases also considerably longer for the same
reasons.

The complete BMF-editor, including the dynamic transformations, was written in 3700
lines of pure SSL (the attribute grammar specification language of the SG), without using
any non-standard SSL comstructions. Therefore, the system is easily portable to any
machine capable of running the sG.

The BMF-editor has been motivated and stimulated by ongoing research in the sToP
project (Specification and Transformations Of Programs). The aim of the project is to
further the research into program specification and transformation.

Section 2 introduces BMF and shows a sample derivation in BMF . Section 3 discusses the
components, the look and feel, the abstract syntax and the dynamic transformations of
the BMF-editor. A big example of a derivation with the editor is presented at the end of
section 3. Further suggestions for improving the editor are discussed in section 4. Finally,
the conclusions are presented in section 5.

2 The Bird-Meertens Formalism (BMF)

BMF is a lucid proof style based upon equational reasoning. A derivation in BMF consists
of first specifying an inefficient algorithm which must be transformed into an efficient
algorithm, and then making small, correctness-preserving transformation steps using a
library of rules, until the desired algorithm is derived. Each transformation step replaces
(part of) a formula, by another formula.

For a BMF-editor to be of practical use it should be possible to intersperse text together
with the development of the program. This is similar to the WEB-system described in
[Knuth 84]. The difference with the WEB-system is that we want to derive programs from
specifications using small correctness-preserving transformations, instead of the Dijkstra
style of programming. By using a transformation system which contains a library of
rules, it is possible to check whether our derivation is correct, thereby overcoming the
proof obligation still present in the WEB-system. Furthermore, as in the WEB-system, it
should be possible to filter the final program out of the file containing the text and the
program derivation. Just transforming would then be the same as writing articles in the
system without writing text.

Because we believe that proofs (or derivations) have to be engineered by a human rather
than by the computer we insist.on manual operation. Therefore, the program transfor-
mation system is a kind of an editor.

2.1 Some basic BMF

Here we present some basic BMF . In the following section we use this in a small derivation.
This short introduction was inspired upon [Bird 87]. All operators work on lists, list of
lists, or elements of lists (integers or lists). Lists are finite sequences of values of the same

type. Enumerated lists will be denoted using square brackets. The primitive operation
on lists is concatenation, denoted by the sign +. For example:

] #2141 = [1,2,1]

The operator / (pronounced “reduce”) takes a binary operator on its left and a list on
its right and “puts” the operator between the elements of the list. For example,

+/ (1), 2,1 = [1] 4 [2] 1]

Binary operators can be sectioned. For example (@ 1) denotes the function

®1)2 = 201

The brackets here are essential and should not be omitted.

The operator * (pronounced “map”) takes a function on its left and a list on its right and
applies the function to all elements of its list. For example,

3

(plus1)%[1,2,1] = [(plus1)1,(plus1)2,(plus1)1]

Functional composition is denoted by a centralised dot (:).

2.2 A sample derivation

The following transformations are used in the forthcoming derivation:

lif == (plusl)x-+4/ { Definition of lif }
Fx-H/ == 4/ Fxx { Map promotion }

The first rule defines the function lif, which concatenates all sublist of the list and then
increments all elements of the list by one.

The map promotion rule states that first concatenating lists and then mapping F is the
same as first mapping F to all the sublists of the list and then concatenating the results.
Here F plays the role of a program-variable, which can be bound to any BMF-formula.

The following (short) derivation states that the function lif can be computed by first
concatenating all sublist(s) of the list (++/) and then adding one to all elements of the
resulting list ((plus1)*) or by first adding one to all the elements of the sublist(s) of
the list ((plus1)+*) and then concatenating the result (4/). The names of the applied
transformation rules are shown between braces.

lif = { Definition of Lif }
(plusl)x - +/

= { Map promotion }
H/ - (plus1)*x

In each transformation step the selected transformation is applied on the selected term.
For example, in the second step of the sample derivation the map promotion rule is the
selected transformation and (plus1)* - 4/ is the selected term.

3 The BMF-editor

The BMF-editor supports the components used in the sample derivation. First these com-
ponents will be discussed. Then the appearance to the user, the possible user actions, the
abstract syntax of BMF-formulas and the system, and, finally, the dynamic transforma-
tions will be discussed.

A library of rules (the dynamic transformations) is supported and adding newly derived
rules to this library is made simple. The direction in which (a subset of all) transformations
are applicable on a newly selected (part of a) BMF-formula is updated incrementally and
shown directly on the screen.

Just as in a written derivation, the system keeps track of the history of the derivation.
Furthermore, it is possible to start a (different) subderivation anywhere in the tree. There-
fore, a forest of derivations is supported, thus facilitating a trial and error approach to
deriving algorithms.

Because the BMF-notation uses many non-ascii symbols, it is possible to select an arbitrary
notation (e.g. J\TRX) as unparsing for the internal representation of a BMF-formula. For
this purpose, the editor maintains an editable list of displaybindings.

3.1 Appearance to the user

{Definitlon of Hf} - = Ton Displayeindings 11T
lif == (plus 1)*. ++/ . .
{Map Promotion}
F*. 44 <= +4f . P . =
composition on screen: .
selected transformations: {Map Promotion} postapplic on screen : -]
selected terms ++ . (plus 1)** preapplic on screen : -
reduce on screen : /
1if concat on screen: ++ -
. %
= {Definition of lif map on screen : oy
(phus 1)* . ++/ } [hidden bindings]
- {Map Promotion} L - X
[] B B i

BE TEEe

Positioned at temm composition postapplication application map reduce
brackets select add-select where do-transform comment simplify

Figure 1: The Base View and Display Bindings View of the sample derivation in the
BMF-editor, the Display Bindings in the Base View are hidden.

The editor displays the definitions of the dynamic transformations and the derivation in
almost the same order as in the sample derivation.

Transformations are shown as two BMF-formulas separated by an ==-sign. A transfor-
mation is preceded by its name. The direction in which a transformation is applicable on
a BMF-formula is denoted by < and > signs in the ==-sign.

The selected transformation and the selected term are shown between the dynamic trans-
formations and the forest of derivations.

Nodes in the derivation tree are labeled with BMF-formulas; the edges of the tree are
marked with justifications. A justification is a reference to a transformation in the list of

dynamic transformations. At all times only one path in the derivation tree is displayed.
Left and right branches are indicated by “-symbols.

A displaybinding is shown as the internal representation of the BMF-formula followed by
the unparsing.

The dynamic transformation, selected transformation and term, the derivation and the
displaybindings are shown on the Base View and main window. The dynamic transfor-
mations and the displaybindings in the Base View can be hidden by the user.

Beside the Base View, various other views on the main window are possible. There is one
global cursor for all views. The following other views are available:

e Transformations View Displays all dynamic transformations.

o Applicable Transformations View Displays all the transformations that are
applicable on a subterm of a selected term.

e Transformable Terms View Displays all (sub)terms in the whole derivation on
which a selected transformation is applicable. These terms are shown together with
the possible results of the transforming.

¢ Display Bindings View Displays all displaybindings.

Figure 1 shows the Base View and Display Bindings View of the sample derivation in the
BMF-editor, the Display Bindings in the Base View are hidden.

3.2 User actions

A dynamic transformation can be inserted and deleted by edit-operations. A BMF-formula
can be entered by structure editing or by typing the internal representation of a BMF-
formula. There are shortcuts for frequently used BMF-constructions. For example, f* is
parsed correctly.

We will explain how to apply a transformation by doing the second transformation (map
promotion) of the sample derivation. Commands to the system are given through built-in
commands (SG-transformations), these will be indicated in boldface in the sequel of this
section.

Before applying a transformation the user must duplicate (dup) the last BMF-formula in
the derivation in order to keep the history of the derivation. Unfortunately, this must
be done manually because the built-in SG-transformations do not allow to modify a tree
which is not rooted by the node where the current cursor in the structure-tree is located.

Then, the BMF-formula to be transformed is selected with the mouse and the select
command. Now the system suggests which transformations are possible in the Transfor-
mations View or Applicable Transformations View. Because there is one global cursor for

all views, clicking on one of the transformations in the Transformations View selects the
corresponding transformation in the Base View. Selecting a dynamic transformation is
done in the same way as selecting the term to be transformed. Both selections are shown
as the selected transformation and the selected term. Figure 2 illustrates the situation
before applying the map promotion rule.

Next, the transformation can be applied by giving the do_transform command. Figure 1
illustrates the situation after the transformation.

Several improvements on this scheme are implemented:

A set of dynamic transformations can be selected with the mouse and the select and
add_select commands. Then, the system suggests which BMF-formulas in the derivation
can be transformed with the selected transformations by showing them in the Trans-
formable Terms View. Clicking on a result in the Transformable Terms View automati-
cally selects the transformable term in the Base View (the highlighted parts in Figure 2),
then the do_transform command can be given. In case there are more transformations
possible, the user is asked to choose one.

Analogously, a set of terms can be selected. The Transformations and Applicable Trans-
formations View display all applicable transformations on this set. Then the user can
choose which transformation should be applied.

I
«|View Transformatio]s |0l i

ERIN . .
. View Transtormations ot

_ {Definidon of If} || [
selected transformations: {Map Promotion} lif ~<- (plust)*++/ gl |
selected terms : (plus 1)*. ++/ {Map Promotion} i
i F¥44f =>= +4/F**

= {Definitlon of lif } =|View ApplicableTransformat ﬂﬁ'

(plus 1) * . ++/

(plus 1) . 14/

{Definition of lif } <
{Map Promotion} >

i
I
I
!
|
!
I
]
3

vView TranstormableTerms of buffer main

Positioned at term composi
brackets select add-select 1

plus 1)* . ++/ >>> ++/ . (plus 1)**

:

Figure 2: The sample derivation before applying map promotion and after duplication
of the last BMF-formula in order to keep the history of the derivation. Note the various
Views.

(plus 1)* .+ 4/ >>> 14/ (plus 1)*”

Other available commands are:

e simplify Simplify a BMF-formula (including removal of redundant brackets).

e new_right, new_left, right and left Focus on the (new) subderivation on the right
or left and continue with a (different) subderivation.

7

e comment Insert text between derivation steps.

A displaybinding can be entered by giving ascii-symbols or their integer-values and choos-
ing a suitable (IATgX) font using SG-transformations.

Parts of the dynamic transformations, the derivation and the displaybindings can be saved
and loaded with the built-in save and load facilities of the sG.

3.3 The abstract syntax

We have chosen a compact and uniform abstract syntax for BMF-formulas. The compact
representation of BMF-formulas was necessary to minimize the attribution rules for the
pattern-matching and program-variable binding in the BMF-formulas.

There is only one representation for BMF-formulas containing operators. For example,
a+ b+ cis represented as (+,[q, b, c]); the infiz operator followed by a list of operands.

All operators in BMF are represented by infix operators in the grammar. In BMF three
types of operators can be distinguished; prefiz, postfiz and infir operators. The prefiz
application fz can be seen as the infir application

fpreapplicz

where preapplic is the infiz operator that applies its left operand to its right operand.
Analogously, the postapplic infiz operator can be defined.

There is no difference between operands and operators, they are both represented by
Terms. A Term is described by the following production rules:

Term i:= TermConst

| TermVar

| (Term, [TermList]) ;
TermList ::= NoTerm

| Term, TermlList ;

A Term can be a standard-term (preapplic, postapplic, composition, map, reduce and list)
or a user-defined term, both described by TermConst, or a program-variable matching
any term (TermVar). Program-variables start with an uppercase letter, standard and
user-defined terms with a lowercase letter. Associated with each Term are fixed priorities.
The terms composition, map and reduce denote the corresponding notion in BMF. The
last term, list, is used to represent the lists of BMF.

As an example, the internal representation of H/ is:

(postapplic, [+, /)

In order to achieve the correct unparsing of this simple representation into BMF-notation,
special unparsing rules for the standard terms are defined. For example:

(preapplic, [f,z]) is unparsed as fz

(postapplic, [f,*]) is unparsed as f+
(,If, 9,h]) is unparsed as f-g-h
(list,[1,2,1]) is unparsed as [1,2,1]

The root-production of the system is now as follows:

BMF-editor ::= TransList
Derivation
DisplayList ;

TransList represents the list of dynamic transformations, DisplayList represents the ed-
itable list of displaybindings of terms.

A dynamic transformation, named Label, is described by the following production:

Trans := { Label }
: Term == Term ;

A derivation is a list of terms separated by =-signs and the names of the transformation
applied:

Derivation := Term
| Term
= { Label }

Derivation ;

In the actual implementation a more complicated grammar is used for the tree-structure
of derivations and for the possibility to add comment in derivations.

3.4 Dynamic transformations

Transformations in the SG can be defined only at editor-specification time. Dynamic
transformations can be entered and deleted at editor-run-time. Just as for standard SG-
transformations the applicability of a dynamic transformation is computed incrementally.

In the Prospectra project [Prospectra 86] a brute force approach was taken. After adding
a new transformation the complete Prospectra Ada/Anna subset editor was regenerated.

Our prototype emulates dynamic transformations using standard SSL attribute computa-
tion. This emulation will be explained hereafter.

As was said in section 3.3, a dynamic transformation consists of a name (Label) and a left
hand side and right hand side pattern (Terms). A dynamic transformation is applicable
on term T if the left hand side or the right hand side matches with term T.

9

For example the dynamic transformation

Fx-4/ == +/-Fsx { Map promotion }

is applicable to the term

(plus1)* - 4/

which then can be transformed into

H/ - (plus1)*x*

Note that the program-variable F is bound to (plus1).

The applicability test and actual application of a dynamic transformation to a term pro-
ceeds in four phases: pattern-matching, program-variable binding (both together are in
fact unification), computation of the transformed term and replacement of the old term
by the transformed term. Pattern-matching, program-variable binding and computation
of the transformed term take place inside terms. The replacement of the old term by
the transformed term takes place in the SG-transformation do_transform (see also sec-
tion 3.2).

The first three phases (pattern-matching and program-variable binding and computation
of the transformed term) require both the selected transformation and the selected term.
To bring these together in an attribute grammar can be done in two complementary
ways. Either the term to be transformed is inherited by the dynamic transformation or
the dynamic transformation is inherited by the term to be transformed. Both ways are
depicted in Figure 3.

The first way is used to compute the applicability direction: the selected term is an
inherited attribute of the selected transformation. The second way is used to apply the
selected transformation to the selected term: the selected transformation is an inherited
attribute of the selected term. Also the Transformable Terms View is implemented in this
way.

In order to keep the pattern-matching simple we do not take the associativity of operators
into account. So the Term 16 H (represented as (@, [1, H])) does not match with the Term
1 b c (represented as (@, [1, b, c])). As a result, the match-time is linear in the size of
the tree. Furthermore, a program-variable can be bound only once to another term.

Pattern-matching and computation of bindings use the inherited attribute pat and syn-
thesized attributes applic and bindings of Term. A Term (the pattern-Term) is given as
an inherited attribute to the Term it should match (the match-Term). A short description
of each attribute is given.

e pat This attribute is used to distribute the pattern-Term over the tree representing
the match-Term. Every node in this tree inherits that part of the pattern-Term it
should match.

10

1

§ % +binding
G # Term
(plus 1)* ++/ F* 44/ = 4] P ++/ (plus 1)**

dynamic transformation
"‘:,' «‘:“ |
S Term Z Term Z Term

F* 44/ == ++/ F¥* (plus 1)* ++/ ++/ (plus 1)**

dynamic transformation

Figure 3: Two complementary ways of matching, binding of program-variables and com-
putation of the transformed term.

e applic This boolean attribute is used to synthesize whether the pattern-Term
matches. The top-most applic attribute in the tree representing the match-Term is
true if all patterns in this tree match and there are no conflicting bindings.

¢ bindings This attribute contains the list of program-variable bindings.

3.5 A big example

This example, taken from [Bird 87], shows some steps in the derivation of an O(n) algo-
rithm for the mss problem. The mss problem is to compute the maximum of the sums of
all segments of a given sequence of (possibly negative) numbers. This example illustrates
the use of where-abstraction and conditions in the BMF-editor. The conditions are tabu-
lated and automatically instantiated but not checked by the editor. First some definitions
necessary to define mss are given.

The function segs returns a list of all segments of a list. For example,
segs(1,2,3] = [l], (1], (2,2}, (2], [1,2,3],[2,3],[3]]
The maximum operator is denoted by 1, for example
21413 = 4

Now mss can be defined as follows

11

mss = T/ -4/*-segs
Direct evaluation of the right-hand-side of this equation requires O(n3®) steps on a list

of length n. There are O(n?) segments and each can be summed in O(n) steps, giving
O(n3) steps in all.

Without further explanation of the applied transformation rules we illustrate three situa-
tions in the derivation of a linear time algorithm for the mss problem. Figure 4 shows the
start of the derivation together with all necessary displaybindings and transformations.
Figure 5 illustrates the situation before applying Horner’s rule. In Figure 6 the whole
derivation is shown, note the instantiation of the where-abstraction and the conditions
after applying Horner’s rule.

+ e—
w| View Transformations of buffer main

View Tianstoimat ions

i
View basplayBindings of

ol butter nain

composition on screen : { Definition of mss }

postapplic on screen ; mss =<= 1/.(+)*.segs =
preapplic on screen : { Definidon of segs } mss]
reduce on screen : / segs =>= ++/. tails* . inits - { Definition of mss } s
concat on screen: ++ { reduce promotion } m

map onscreen: * D .+ - & . (DNH* m
Oplus onscreen: @ { map promotion}

Otimes onscreen: @ F* . 4/ w= 4/ (F*)* b
leftreduce on screen: 4 { map distributivity }
leftaccum on screen: # F*.G* == (F.G)* &
odot on screen: © { Horner’s Rule } TR E '] ill

max onscreen: 1 @/.(®/)* . tails = I

Seed onscreen: . ©(#> ¢) where (e =1d ®, a0b = (a®b)De)
plus on screen: + provided: (a@b)Rc = (aBc)D(bSC) |y]
identity on screen: id { Accumulation Lemma } ™
(D4 «))* . inits == D(H +) H
g ¥ E B = R B K=

Figure 4: The definition of mss and all necessary transformations and displaybindings for
the derivation of a linear time algorithm for mss.

The last formula (/ - © 4 €) is a maximum reduce composed with a left-accumulation.
Left accumulation is expressed with the operator 4. For example,

Ofela,a,...,a,] = [6,e0a,...,(e0Oa)0a)O...0 a,]

The maximum reduce composed with the left-accumulation can be easily translated into
the following loop in an imperative language. Using hopefully straightforward notation,
the value T/ - © 4 e is the result delivered by the following imperative program (a©® b =
(a+0)10):

12

ML LR

selected transformations : { Horner’s Rule }
selected terms : T/.(1/. (+)* . tails)* . inits

ms.‘ { Definition of mss } = View Transformatl m
1. ()" segs KT

T/- (iﬂosal:o.‘:a‘;{sﬁh%u) { reduce promotion }
- { map promotion} Eman mﬂ;:l}ty }
T/ ((+)*)* . tails* . inits map distrihu ST B E
- { reduce promotion }l { Horner’s Rule } H 1B

T/ CEN* . ((H)*)* . ails® L injes || ©F- (@07 tails =>=
- distrib ©(# e) where (e =id ®, a0b = (a®b)De)
{ map distributivity } { ma) provided: (a@b)@¢ - (3@C)DDST)
{ Accumulation Lemma }

HE E
LW

1/ (/- (+/)*) . tailsy* . inits

Positionad at term composition postapplication application map reduce brackets
§select add-select where do-transform comment simplify

main

mss
= {Definition of mss }
T/ (+)* . segs
= { Definition of segs }
1/. (+)* . (++ . tails* . inits)
= { map promotion}
T/ ++ . ((+/)*)* . tails* . inits
= { reduce promotion }
17.(10* . ((+H*)* . tails* . inits
= { map distributivity } { map distributivity }
7.1/ - (+0)*) . tails)* . inits
= { Horner’s Rule } provided: (afb)+c =(a+c)f(b+c)
1/.(O(# ¢)) where (e =1id +) *.inits
= { Accumulation Lemma }
1/.O(#) where (e =1d +)

N FEE b
B

Figure 6: The whole derivation of a linear time algorithm for the mss problem. Note the
instantiation of the where abstraction and the conditions after applying Horner’s rule.

13

int a,b,t;
a:=0; t :=0;
for b in x

do a := max(a+b,0);
t := max(t,a)

od

return t

4 Further suggestions

It should be possible to generate a IATRX document by combining the comments and
the derivation. Also program-code (for example Miranda) should be generated from the
derivation. A first attempt of implementing both features is already done using the same
technique as was used for the displaybindings.

Incremental type checking and consistency checking of the derivation (for example after
deletion of a transformation) should be performed. The dynamic transformations now only
use pattern-matching. The dynamic transformations could be extended to conditional and
parameterized dynamic transformations (see also [Santos 88]).

A good way of organizing theories for making large derivations should be found, instead
of one big theory. At edit-time, some complexity-measure of an algorithm should be
indicated and updated incrementally.

5 Conclusion

A prototype program transformation system for BMF has been developed in four man-
months with the attribute grammar based sG. The use of an attribute grammar based
system has significantly speeded up the building of such a complex system. Dynamic
transformations, which provide insertion and deletion of a transformation during an edit-
session, are a great help for making derivations in an interactive program transformation
system. Dynamic transformations are particular useful, because their applicability can
be indicated and updated incrementally. Dynamic transformations were, until now, never
implemented in any proof- or program transformation system.

Acknowledgements

Matthijs Kuiper, Jeroen Fokker and Johan Jeuring commented on previous versions of this
paper. Finally, we would like to thank Doaitse Swierstra for the support while working
on the BMF-editor.

14

References

[Bird 87] Bird, R. An introduction to the theory of lists. Logic of Programming and Calculi
of Discrete Design (M. Broy,ed.), NATO ASI Series Vol. F.36, Springer Verlag 1987.

[Knuth 84] Knuth, D.E. Literate Programming. The Computer Journal, Vol. 27, 1984.

[Lindsay 88] Lindsay, P.A. A survey of mechanical support for formal reasoning. Software
Engineering Journal, January 1988.

[MRT 86] Meertens, L.G.L.T. Algorithmics — towards programming as a mathematical
activity. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.), Proc. CWI
Symposium on Mathematics and Computer Science, CWI Monographs Vol. 1, 1986.

[Partsch & Steinbruggen 83] Partsch, H. and R. Steinbruggen. Program Transformation
Systems. Computing Surveys, Vol. 15, No.3, September 1983.

[Prospectra 86] Krieg-Briickner, B., B. Hoffmann, H. Ganzinger, M. Broy, R. Wilhelm, U.
Moncke, B. Weisberger, A. McGettrick, I.G. Campbell and G. Winterstein. PROgram

development by SPECification and TRAnsformation. Proc. ESPRIT Conf. 86, North-
Holland 1987. N

[Reps & Alpern 84] Reps, T. and B. Alpern. Interactive Proof Checking. In the 11th
Ann. ACM Symp. on Principles Of Programming Languages, pages 36-45, 1984.

[RTD 83] Reps, T., T. Teitelbaum and A. Demers. Incremental Context-Dependent Anal-
ysis for Language Based Editors. In ACM Transactions on Progr. Lang. and Systems,
Vol. 5, No. 3, pages 449-477, July 1983.

[Ritchie 88] Ritchie, B. The Design and Implementation of an Interactive Proof Editor.
Tech. Rep. CSF-57-88 and PhD. dissertation, Dept. of Computer Science, Univ. of
Edinburgh, Oct. 1988.

[Santos 88] Santos, R.G. Conditional and parameterized transformations in CSG.
PROSPECTRA Study Note S.1.5.C2-SN-2.0, 1988-24-5.

15

