The Derivation of Distributed
Termination Detection Algorithms
from Garbage Collection Schemes

Gerard Tel, Friedemann Mattern

RUU-CS-90-24
July 1990

Utrecht University)

s * o
o /o)) .
; (2 Department of Computer Science
o "y Padualaan 14, P.O. Box 80.089,

N
T 9 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30- 531454

I880:0924~3275

The Derivation of Distributed
Termination Detection Algorithms
from Garbage Collection Schemes

G. Tel*
Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

F. Mattern
Department of Computer Science, Kaiserslautern University,
P.O. Box 3049, D 6750 Kaiserslautern, Fed. Rep. of Germany.

July 1990

Abstract

It is shown that the termination detection problem for distributed com-
putations can be modeled as an instance of the garbage collection problem.
Consequently, algorithms for the termination detection problem are obtained
by applying transformations to garbage collection algorithms. The transfor-
mation can be applied to collectors of the “mark-and—sweep” type as well as
to reference counting garbage collectors. As examples, the scheme is used to
transform the weighted reference counting protocol, the distributed reference
counting protocol of Lermen and Maurer, and Ben-Ari’s mark—and-sweep
collector into termination detection algorithms. Known termination detec-
tion algorithms as well as new variants are obtained.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concur-
rent Programming; D.2.10 [Software Engineering]: Design— Methodologies; C.2.2
[Computer—-Communication Networks]: Distributed Systems— Network Oper-

ating Systems; D.4.2 [Operating Systems]: Storage Management— Distributed
Memories.

General Terms: Algorithms, Design, Theory, Verification.

*The work of this author was supported by the ESPRIT II Basic Research Actions Program of
the EC under contract no. 3075 (project ALCOM).

1

Additional Keywords and Phrases: Distributed Algorithms, Termination Detection,
Garbage Collection, Program Transformations.

1 Introduction

A large amount of the research efforts in distributed algorithm design has been de-
voted to the problem of detecting when a distributed computation has terminated.
The reason for the large number of publications on this subject is threefold. First, as
the problem has shown up under varying model assumptions, and there are several
solutions for each model, a really large number of different algorithms has emerged.
All of these algorithms were published separately, as unifying approaches treating a
number of algorithms as a class have been rare. Second, the problem of termination
detection, being sufficiently easy to define and yet non-trivial, has been seen as a
good candidate to illustrate the merits of design or proof methods for distributed
algorithms. Third, it has been observed that the fundamental difficulties of the ter-
mination detection problem are the same as those of other problems in distributed
computing. Termination detection algorithms are related to algorithms for comput-
ing distributed snapshots [CL85], detecting deadlocks [CMH83, Na86], and approx-
imating a distributed infimum [ST88]. Thus the problem is seen to be important
from both a practical, algorithmical, as well as from a theoretical, methodological
point of view.

From both points of view we consider it useful to recognize general design
paradigms for distributed termination detection algorithms. One such paradigm
was described in [Te86]. A new paradigm is presented in this paper. It is shown
that the semantics of the termination detection problem is fully contained in the
semantics of the garbage collection problem. As a result, termination detection
algorithms are obtained as suitable instantiations of garbage collection algorithms.

Subsection 1.1 introduces the termination detection problem. Subsection 1.2 in-
troduces the (distributed) garbage collection problem. Section 2 describes how the
termination detection problem can be formulated as garbage collecting one hypo-
thetical object and derives the algorithmical transformation. Section 3 applies the

transformation to three known garbage collection algorithms. Section 4 contains
some additional remarks and comments.

1.1 The Termination Detection Problem

In a distributed system where processes communicate only via messages, in general
no process has a consistent and up to date view of the global state. As a result, it
is non-trivial to decide whether or not the global state is one in which a distributed
computation has terminated. Some processes may have finished their local compu-
tations, while others are still executing. But tasks may migrate from one process
to another, new tasks may be generated, or the receipt of a message may result in

renewed computational activity. As a consequence, finished processes may later be
computing again.

In general it is not possible for a process to decide whether new tasks will later
be generated by the process. Therefore it is always assumed that for each process a
local condition of stability is defined. While this local condition holds, the process
does not send messages (belonging to the computation) to other processes, no new
tasks are generated by the process, and no initiative of the process itself falsifies the
condition of stability. Only the receipt of a message (belonging to the computation)
can do so. It now follows that if a global state is reached in which all processes
(simultaneously) satisfy their condition of stability and no messages are in transit,
the computation is terminated because the system as described will forever remain

as dead as a doornail. A control computation must be superimposed to detect this
situation.

1.1.1 Description of the Problem

The problem is described formally as follows. A collection P of processes is consid-
ered, communicating by message passing. A process is either passive (if its condition
of stability is satisfied) or active (if the condition is not satisfied). Active processes
may send messages, but passive processes don’t. An active process may sponta-
neously become passive, but a passive process may become active only on receipt of
a message.

A full description of the possible actions of processes is given below. Throughout
the paper it is assumed that each action is executed atomically. An action whose
name is subscripted with p takes place in process (or object) p. An assertion between
braces (“{” and “}”) is a guard and means that the action can only be executed
when the assertion is true. Comments are placed between “(*” and “*)”. Action S,
is the sending of a message, action R, the receipt of a message, and action I, the
transition of a process from active to passive.

Sp: { state, = active }

send a message M

R,: (* A basic message arrives *)
receive message M ; state, := active

I,: (* The process becomes passive *)
state, := passive

Define the termination condition as:
No process is active and no messages are in transit.

This condition is stable: once true, it remains so. It is required to superimpose on
the described basic computation a control computation which enables one or more

3

of the processes to detect when the termination condition holds. A process detects
this by entering a special state terminated. The following two criteria specify the
correctness of the control algorithm.

D1 Safety. If any process is in state terminated then the termination condition
holds.

D2 Liveness. If the termination condition holds, then eventually a process will be
in the terminated state.

A passive process may take part in this control computation, and receiving control
messages does not make a passive process active.

Under varying assumptions about the communication semantics the concise de-
scription above still allows different variants of the problem. Originally the problem
emerged from a CSP context, where the sending and receipt of a message are syn-
chronized with each other. Thus messages are never in transit; the termination
condition for synchronous communication simply reads “all processes are passive”.
The introduction of asynchronous communication complicates the problem, as some-
how it must be verified that the channels are empty. This can be done using special
marker messages (in a FIFO environment) [Mi83], acknowledgements [DS80], or
counting of sent and received messages [Ma87].

1.1.2 Solutions to the Problem

Several classes of solutions to the termination detection problem are known. The

most important ones are those based on probes and those based on acknowledge-
ments.

Probe—based algorithms. A probe is a distributed algorithm that “visits” all
processes in the network. (It can be implemented by a token circulating on a ring,
by an echo mechanism, or in many other ways [Te90].) To detect termination using
probes, it is attempted to maintain that all visited processes are passive, and no
message is underway to or from a visited process. A violation of this aim occurs
when a non-visited process sends a message to a visited one. Usually, if this happens
the current probe is marked as unsuccessful, and after its completion a new probe is
initiated. (This marking can be done, for example, by assuming a different “color”
for processes that caused the violation and probe messages that report about it.)

The most notorious example in this class is [DFG83], a general treatment is given
in [Te86].

Acknowledgement—based solutions. In these algorithms all messages of the
basic computation are acknowledged, but only after all computational activity re-
sulting from it has ceased. That is, if an active process receives a message, it
acknowledges it immediately. If a passive process receives a message and becomes

4

active, it defers the acknowledgement until it is passive again, and has received ac-
knowledgements for all messages it sent during the period of activity. Examples of
this class are [DS80, SF86, CV90].

1.2 The Distributed Garbage Collection Problem

As our approach for deriving termination detection algorithms is based on solutions
to the garbage collection problem, we shall now describe this problem. From a
practical point of view, algorithms for the garbage collection problem are important
for the storage management of programming languages with dynamic objects. They
are also used in the implementation of functional programming languages as these
languages operate on directed graphs, represented by memory cells referencing each
other through pointers. An account of various garbage collection algorithms for
multiprocessors and distributed systems may be found in [Ru88}.

In many papers different models for the problem are found, here a model based
on the communicating objects paradigm is presented which is close to the model of
Lermen and Maurer [LM86]. The advantage of this model is that it abstracts from
aspects which are not relevant to our purposes, such as processors, memory cells,
and the difference between “local” and “remote” references.

1.2.1 Description of the Problem

An (object-oriented) distributed system consists of a collection O of cooperating
processes called objects. A subset of O is designated as root objects. Objects are
able to hold references to other objects. These references can be transmitted in
messages, see below. A reference to an object r will be called an r-reference. An
object r is a descendant of q if ¢ holds an r-reference or a message containing an r—
reference is in transit to g. An object is reachable if it is a root object or a descendant
of a reachable object. An object p holding an r-reference may decide to delete it,
after which p no longer holds this reference. Also, a reachable object p holding an
r-reference may copy the reference to another object ¢, after which ¢ will hold an
r-reference, by sending the r-reference in a message to ¢. Object ¢ will hold the
r-reference after receipt of this message. An object can have multiple references to
the same target object. Formally, the allowed actions in this model are as follows.

C,: (* p copies an r-reference to ¢ *)
{ p is reachable and holds an r-reference }
send a copy(r) message to q

R,: (* A copy(r) message arrives *)
receive the copy(r) message ;
insert the r-reference

D,: (* p deletes an r-reference *)
{ p holds an r-reference }
delete the r-reference

An object is called garbage if it is not reachable. As only references to reachable
objects are copied, a garbage object remains garbage forever (i.e., being garbage is
a stable property of an object). For reasons of memory management it is required
that garbage objects are identified and collected. This task is taken care of by a
garbage collecting algorithm. The following two criteria define the correctness of a
garbage collecting algorithm.

G1 Safety. If an object is collected, it is garbage.

G2 Liveness. If an object is garbage, it will eventually be collected.

1.2.2 Solutions to the Problem

Many solutions have been proposed to the distributed garbage collection problem,
most of which fall into one of two categories: collectors of the reference counting
type and collectors of the mark—-and—sweep type. Both types of solutions are known
since over 30 years for classical, non—distributed systems [Co60, McC60].

Reference counting [LM86, Be89, WWS8T7]. Collectors of the first type main-
tain for each object a count of the number of references in existence to that object.
References in other objects as well as references in messages are taken into account.
This reference count is incremented when the reference is copied, and decremented
when the reference is deleted. When the count for a non-root object drops to zero,
it can be concluded that the object is garbage and consequently the object can be
collected. For root objects no reference count is maintained.

A group of garbage objects, cyclically referencing each other, cannot be collected
by a reference counting algorithm, because no reference count drops to zero. Thus
the algorithms do not satisfy the liveness condition, and usually a supplementary
algorithm (typically of the mark-and-sweep type) is used to collect cyclic structures
of garbage. In our application, however, cyclic structures of garbage objects do not
occur, and a supplementary algorithm is not necessary.

Mark—and-sweep [St75, Be84, Dij78]. Collectors of the second type mark
all reachable objects as such, starting from the roots and recursively marking all
descendants of marked objects. In this way all reachable objects become marked
eventually. The design of the marking algorithm is complicated by the possibility
that references are inserted and deleted during its operation. The objects in the
system must cooperate with the marking algorithm by also marking objects when
references are made or changed. A possible design consists of an algorithm for
the marking proper, upon which a termination detection algorithm is superimposed

6

[TTL88]). When the marking phase is terminated a sweep through all objects is
made, in which all unmarked objects are collected. These two phases form one cycle
of the collector, and cycles are repeated as long as necessary.

2 Termination Detection Using Garbage Collec-
tion

In this section we describe how the distributed termination detection problem in
general can be modeled as an instance of the garbage collection problem. As a re-
sult, solutions to the termination detection problem can be derived from garbage
collection algorithms, of which examples will be shown in section 3. First the col-
lection O of objects used for this purpose is described as well as the behavior of
these objects. Next it is shown that the termination condition is equivalent to one
particular object becoming garbage. As a result, termination can be detected by a
garbage collection algorithm.

Recall that P is the set of processes whose termination is to be detected. The
collection O of objects consists of one root object A, for every process p in P, and
a single indicator object Z. An object A, may send and receive the messages of the
basic computation, and has all the variables p has. It is called passive (active) when
process p is passive (active). As A, is a root object, it is always reachable.

The indicator object Z is not a root object. Its only purpose is to indicate
the termination condition with its reachability status by the following equivalence,
which will be maintained during execution.

Z is garbage & the termination condition holds. (IND)
Theorem 2.1 IND holds when the following two rules are observed:

R1 An active object holds a Z-reference. A passive object holds no Z-reference.
R2 Each message of the basic computation contains a Z-reference.

Proof. Z is garbage is equivalent to: Z is not a descendant of any of the A,. By
definition, this means that no A, holds a Z-reference, and to no A, a message is
in transit containing a Z-reference. By R1 and R2 this is equivalent to: no A4, is
active and to no A, a message (of the basic computation) is in transit. This is the
definition of the termination condition. O

It must be shown that R1 and R2 can be maintained. It is possible to ensure
through proper initialization that R1 and R2 hold initially. To this end, assume that
active objects are initialized with the necessary Z-reference, and passive objects
without it, and that messages in transit initially contain the reference also. To
maintain R1 and R2 during the distributed computation, each transmission of a
message copies the Z-reference, and processes delete the reference when they become
passive. More explicitly, the actions to be carried out by A, are modified as follows:

7

Sp: { state, = active }
send a message (M, Z)

R,: (* A basic message arrives *)
receive message (M, Z) ; state, := active ;
insert Z in the references of A,

IL,: (* The process becomes passive *)
state, := passive ;
delete Z from the references of A,

With these modifications R1 and R2 are maintained indeed. Rl is maintained
because Z-references are deleted in action I,,, and inserted in action R,. The latter
is possible because the message contains a Z-reference by R2. R2 is maintained
because in action S, a Z-reference is included in every message. This is possible
because only active objects send messages, and these contain a Z-reference by R1.
Thus R1 and R2 are maintained during computation, and by theorem 2.1 IND holds.
To arrive at a termination detection algorithm, superimpose upon the objects as
described a garbage collection algorithm. The garbage collection algorithm is then
modified so as to inform the objects A, when it collects Z. When receiving this
notice, the root objects enter the terminated state. We omit this (trivial) operation
from the description of the algorithms that are to follow.

Theorem 2.2 The algorithm as constructed satisfies conditions D1 and D2.

Proof. Assume any process enters the terminated state. This happens upon notice
that Z is collected. By the correctness of the garbage collection algorithm (condition
G1) this implies that Z is garbage. By theorem 2.1 the termination condition holds.

Assume the termination condition holds. By theorem 2.1, Z is garbage, hence,
by the liveness of the garbage collector (condition G2) Z will eventually be collected.

Notice of this will be sent to the processes, and these will enter the terminated state
in finite time. O

It was remarked in section 1.2.2 that garbage collectors of the reference counting
type are not able to collect cyclic structures of garbage, which may possibly harm
the liveness of the termination detection algorithm. It is however easily seen that Z
is not part of such a cyclic structure, and in fact the following, stronger equivalence

holds.

The termination condition holds < there are no references to Z.

Summary of the transformation. The construction of a termination detection
algorithm is summarized in the following four steps.

1. Form the set O of objects, consisting of the root objects A, and one indicator
object Z.

2. Superimpose upon the actions of the basic computation the handling of the
Z-reference.

3. Superimpose upon this combined algorithm a garbage collection algorithm.

4. Replace the collection of Z by a notification of termination.

3 Examples of the Transformation

The transformation described in section 2 can in principle be applied to any garbage
collection scheme, of the reference counting as well as the mark—and-sweep type
or working according to other principles. In the next two subsections “simple”
reference counting and weighted reference counting are considered and corresponding
termination detection algorithms are derived. In subsection 3.3 the transformation
is applied to a mark-and-sweep garbage collector.

3.1 Reference Counting

This subsection transforms the distributed reference counting algorithm of Lermen
and Maurer [LM86)] into a termination detection algorithm. For each non-root
object o a reference count RC, is maintained. When an o-reference is copied from
object p to object g, p sends to ¢ a copy message cop(o) and to o an increment
message inc(o,q). When an o-reference is deleted by p, p sends a delete message
(or decrement message) dec(o) to o.

The scheme is much complicated by the possibility that dec(o) and inc(o, q)
messages may arrive at o in a different order than they are sent. This is to be ex-
pected when message communication is not FIFO or when these messages are sent
from different objects. If an inc(o,q) message is overtaken by a dec(o) message,
RC, may temporarily drop to 0, causing o to be collected while it is reachable. Ler-
men and Maurer overcome this problem by introducing a synchronization discipline
between dec(o) and inc(o, ¢) messages.

3.1.1 Description of the Scheme

The necessary synchronization is achieved by a two-way strategy. First, object o
learns about the creation of a certain o-reference before it learns about the deletion
of this o-reference. Second, o learns about the creation of all copies of a certain
o-reference before it learns about the deletion of the original reference. In [LM86]
it is shown that this indeed implies the safety of the scheme.

To implement the first part, o sends to ¢ an acknowledgement ack(o) for the
message inc(o, q) it receives from p. Note that the communication scheme is trian-
gular: p sends cop(o) to ¢ and inc(o, g) to o, o sends ack(o) to g, and ¢ receives
both a cop(o) message (from p) and an ack(o) message (from o). The ack(o) mes-
sage informs ¢ that o has learned about the creation of its o-reference. q deletes
an o-reference only if it is an acknowledged reference, that is, ¢ has received an
ack(o) message for it. ¢ maintains a count both of the number of its acknowledged
references to o and of the number of “surplus” copy messages it has received.

To implement the second part, a FIFO discipline on the links is assumed. As p
sends inc(o, ¢) messages concerning copies of its o-reference earlier than the dec(o)
message, this ensures indeed that o is informed about the creation of copies before
it learns about the deletion of the reference.

A formal description of the actions in the scheme is given below. The actions to
create a new object are omitted, because creation of objects does not occur when
the scheme is used for termination detection. Each object p keeps, besides its bag
of references, the following two variables for each non-root object 0. aR,(0) is the
number of acknowledged o-references. :Rp(0) is the difference between the number
of cop(o) messages and the number of ack(o) messages received by p. Initially
there are only acknowledged references (¢R,(0) = 0 for all p, 0), the reference counts
correctly reflect their number (RC, = ¥, aR,(0)), and no messages are in transit.
The following actions are possible.

CR,: (* Copy an o-reference to ¢ *)
send cop(o) to g ; send inc(o, q) to o

DR,: (* Delete an (acknowledged) o-reference *)

{ aRy(0) >0}
delete the o-reference ;

send dec(o) to 0 ; aRp(0) := aRy(0) — 1

RI,: (* Aninc(o,q) message arrives at o *)
receive inc(o, q) ;
RC, := RC, +1 ; send ack(o) to ¢

RD,: (* A dec(o) message arrives at o *)
receive dec(o) ; RC, := RC, — 1 ;
if RC, = 0 then collect o

RA,: (* An ack(o) message arrives at p *)
receive ack(o) ;
if iR,(0) > 0 then aR,(0) :=aRp(o) + 1 ;
iRy(0) 1= iRy(0) — 1

10

RC,: (* A cop(o) message arrives at p *)
receive cop(o) ; insert the o-reference ;
if iR,(0) < 0 then aR,(0) := aRy(0) + 1 ;
iRy(0) := iRy(0) +1

A full correctness proof for this garbage collection scheme is given in [LM86]. Under
the rules for the computation of the objects, an object already holding an o-reference
may receive yet another cop(o) message. In order to send enough dec(o) messages
in such a case, the action DR, is executed sufficiently often to make aR,(0) equal
to 0. An ack(o) message may even arrive when the reference is no longer needed, in
which case the execution of DR, is triggered by the receipt of the ack(o) message
(if RA, results in aRy(0) > 0). The termination detection algorithm, obtained
from this scheme in the next subsection, must also allow multiple execution of the
corresponding action (see also the remarks at the end of section 3.1.2).

3.1.2 Transformation into a Termination Detection Algorithm

In this subsection a termination detection algorithm is derived from the Lermen-
Maurer scheme. A discussion of the properties of the derived algorithm, called
the Activity Counting algorithm, is deferred to subsection 3.1.3. The termination
detection algorithm is derived in the four steps described at the end of section 2.

1. The set O of objects consists of the objects A, and the indicator object Z.

2. Superimpose upon the actions of the basic computation the handling of the
Z-reference. This yields the following program text.

Sp: { state, = active }
send a message (M, Z)

R,: (* A basic message arrives *)
receive message (M, Z) ; state, := active ;
insert Z in the references of A,

L: (* The process becomes passive *)
state, := passive ;
delete Z from the references of A,

3. Superimpose upon this combined algorithm the garbage collection algorithm
of Lermen and Maurer. To this end, the CR, action is included in the S,
action, the RC, action is included in the R, action, and the DR, action is
included in the I, action. In all cases Z is substituted for o.

Sp: { state, = active } (* This implies p holds a Z-reference *)
send a message (M, cop(Z)) to ¢ ; send inc(Z, q) to Z

11

Rlz:

RD;:

RA,:

4. Replace the collection of Z by a notification of termination. This is done by
substituting

for “collect Z” in action RDz. Upon receipt of this message, the processes

(* A basic message arrives *)

receive message (M, cop(Z)) ; state, := active;
insert Z in the references of A, ;

if iRy(Z) < 0 then aRy(Z) := aRp(Z) + 1 ;
iR,(Z):=iRy(Z) + 1

(* The process becomes passive *)
{aRy(Z)>0}

state, := passive ;

delete Z from the references of A, ;

send dec(Z) to Z ; aR,(Z) := aRp(Z) — 1

(* An inc(Z, q) message arrives at Z *)
receive inc(Z, q) ;
RCz := RCz +1 ; send ack(Z) to ¢

(* A dec(Z) message arrives at Z *)
receive dec(Z) ; RCz := RCz — 1 ;
if RCz = 0 then collect Z

(* An ack(Z) message arrives at p *)
receive ack(Z) ;

if iR,(Z) > 0 then aR,(Z) := aRy(Z) + 1 ;
iRy(Z) :=iRy(Z) - 1

send term to all A,

enter the terminated state.

The derivation of the termination detection algorithm is now completed. Finally
some simplifications in the algorithm can be made. Because there is only one non-
root object, the subscript Z may be dropped from all variables. Furthermore, the
handling of the Z-reference only serves to lead the garbage collection scheme in
its actions. Now that these actions have been correctly connected to the actions
of the basic distributed computation this reference handling can be removed. The
resulting Activity Counting algorithm is completely described as follows.

Sp: { state, = active }
send a message M to ¢ ; send inc(q) to Z

12

R,: (* A basic message arrives *)
receive message M ; statep, := active ;
if :R, < 0 then aR,:=aR, +1;
1Ry :=1R,+1

L: (* The process becomes passive *)
{aR, >0}
state, := passive ;

send dec to Z ; aR, := aR, — 1

RI;: (* An inc(q) message arrives at Z *)
receive inc(q) ;
RC := RC +1 ; send ack to ¢

RDz: (* A dec message arrives at Z *)
receive dec ; RC := RC -1 ;
if RC =0 then send term to all 4,

RA,: (* An ack message arrives at p *)
receive ack ;
if :R, > 0 then aR,:=aR, +1;
iR, :=1iR,—1

The initial conditions for this algorithm are: iR, = 0 for all p; aR, = 0 if p is
passive, and aR, > 0 if p is active; and RC = 3, aR,.

A process may receive an' activation message when it is already active, in which
case it does not become “even more active”. In order to send enough dec messages,
the process must later execute action I, as many times as it has received activation
messages. This is taken care of by the guard of this action, based on the proper
administration of the ack and M messages received (variables aR, and iR,). When

the process is passive, but has positive aR,, it eventually executes I, and sends a
dec message.

3.1.3 Discussion of the Algorithm

We do not provide a full correctness proof of the Activity Counting algorithm.
According to theorem 2.2 the correctness of the derived algorithm follows from the
correctness of the Lermen-Maurer reference counting scheme, which was proved in
[LMS86).

The principle of the Activity Counting algorithm is simple. When a process
activates another process, it informs the central controller Z by sending an increment
message inc(g), and when a process becomes passive, it informs Z by sending a

13

decrement message dec. The controller tries to keep an account of the number of
“currently” active processes by counting the increment and decrement messages.
When enough decrement messages have been received to balance the increment
messages and the initially active processes, it signals termination. Unfortunately
the possible delay between a basic action and its registration by Z render this over—
simplified scheme incorrect as the following example shows.

1. Assume only p is active and RC = 1.
2. p sends an activation message to ¢ and an increment message to Z.

3. g receives the activation message and becomes active. Then ¢ becomes passive
again and sends a decrement message to Z.

4. Z receives the decrement message (before the increment message), and RC
drops to 0 while p is still active.

The Activity Counting algorithm takes care of this and similar scenarios, because
the sending of the decrement message is deferred until an acknowledgement message
ack has been received. This implies that Z receives the decrement message after it
has received the corresponding increment message.

As the Activity Counting algorithm was derived from the Lermen—-Maurer refer-
ence counting scheme, it inherits properties of the latter algorithm, which will now
be discussed.

1. Message Complexity. The message overhead of the new algorithm is consid-
erable: for each basic message of the computation the algorithm adds up to three
control messages (inc(gq), ack, and dec). A known worst case lower bound for
this overhead is one control message per basic message [CM86], and this bound is
achieved by the algorithm in [DS80].

2. FIFO Discipline on Links. For the correctness of the algorithm it is required
that links deliver messages in the order they were sent.

3. Central Controller. The central object Z acts as a central controller in the
Activity Counting algorithm. For each single transmission of a basic message up to
two actions are necessary in Z (RIz and RDyz). The central process may become a
bottleneck in the computation and slow down the operation of the entire system. It
is not obvious how the functionality of Z can be distributed in a consistent manner.

4. Inhibition. A control algorithm is said to be inhibitory if it may temporarily
disable actions of the basic computation. In the Lermen-Maurer scheme this is the
case for the delete action, which is deferred until the object has an acknowledged
version of the reference. As a consequence, in the Activity Counting algorithm

14

becoming passive is only allowed if aR,(0) > 0, thus formally the algorithm is
inhibitory. This disadvantage can be overcome by a slight modification of the algo-
rithm as follows. The object may delete any reference, but the dec(o) message is
held back if the acknowledgement for the reference was not yet received. A similar
modification makes the Activity Counting algorithm non-inhibitory.

3.1.4 Related Algorithms

The Vector Counting Algorithm. With the help of ack messages, the Activity
Counting algorithm guarantees that Z only takes into account the receipt of a basic
message when it has already considered the corresponding sending of that message.
Thus, Z always has a consistent view of the message counters. By keeping more
information in Z, however, it is also possible to achieve this without actually sending
ack messages. (The FIFO property, however, is still necessary.) For this purpose
Z keeps a vector (i.e., an integer array) V with one component for each process.
Whenever Z receives an inc(q) message it increments ¢’s component of V instead
of sending an ack message: V[g] := V[g] + 1. Action RA, and the variables iR,
are no longer necessary: a process increments aR, when it receives a basic message
and sends aR, dec messages to Z immediately when it becomes passive. When
Z receives a dec message from ¢ it decrements the corresponding component of
V: V]q] := V[g] — 1. Notice that temporarily V[g] might become negative—this
is the case if Z receives a dec message before it receives the corresponding inc(q)
message. This is precisely the situation which is avoided by use of ack messages
in the original Activity Counting algorithm. Because Z’s view is inconsistent when
a component of V is negative, nothing is deduced in that case. It follows that
Z can signal termination when V becomes the null vector, and the RC counter
is no longer necessary. Some further optimizations (e.g., batching inc(q) and dec
messages) yield a centralized variant of the so-called Vector Counter termination-
detection algorithm [Ma87, ST88]. This algorithm has lower message overhead than
the Activity Counting algorithm, does not rely on the FIFO property, and can easily
be realized in a distributed way as well. ‘

Variations of the Lermen—Maurer Scheme. Two variants of the Lermen—
Maurer scheme were proposed by Rudalics [Ru88]. We describe informally his three
message protocol, which does not rely on FIFO links. In the Lermen-Maurer scheme
object ¢ receives an ack(o) acknowledgement when an o-reference has been copied
to it, but in the three message protocol an object p receives an acknowledgement
when it has initiated a copy of an o-reference. A delete message for the o-reference
may be send only when all acknowledgements have been received, and to this end an
acknowledgement counter is added to each reference. The protocol works as follows.

1. To copy an o-reference to ¢, p increments the acknowledgement count of its
reference and sends an increment message to o.

15

2. On receipt of this message, o increments its reference count and sends a copy
message to q.

3. On receipt of the copy message, ¢ inserts the reference and sends an acknowl-
edgement to p.

4. On receipt of this acknowledgement, p decrements the acknowledgement count
of the o-reference.

When p deletes the reference, it holds back the delete message until all acknowl-
edgements have been received. To this end, the references are all installed with
acknowledgement count equal to 1, and deletion of the reference is done by decre-
menting the count. When the count drops to zero (either by deletion of the reference
or by receipt of an acknowledgement) the delete message is sent.

A drawback of this algorithm is that the new reference can only be installed
after two messages have been propagated (one from p to o and one from o to g).
In Rudalics’ four message protocol p also sends a copy message to ¢ directly, and ¢
installs the reference when it receives a copy message either from p or from o. The
acknowledgement is sent when both copy messages have been received.

In a similar way as for the Lermen-Maurer scheme a termination detection al-
gorithm can be derived from the three and four message protocols by the transfor-
mation of section 2.

3.2 Weighted Reference Counting

In this section we consider the transformation of a garbage collection algorithm based
on weighted reference counting. The resulting termination detection algorithm turns
out to be an already known algorithm: it was proposed in [Ma89].

As mentioned in the introduction of section 3.1, dec(o) and inc(o, ¢) messages in
the “simple” reference counting scheme must be synchronized because their reorder-
ing may render the scheme unsafe. This need for synchronization can be avoided
using weighted reference counting. In this variant each reference has a positive
weight. The reference count of an object now represents the total weight of the
references pointing to it rather than their number. (We continue to use the word
reference count although it may no longer be completely appropriate.) When a ref-
erence is copied, its weight is split among the existing and the new reference. Thus,
although the number of references increases, the weight remains the same, and the
reference count need not be incremented and no inc(o,q) message need be sent.
The reference count monotonically decreases (because delete messages return the
weight), and the order in which control messages (only delete messages) arrive at
the object becomes irrelevant.

16

3.2.1 Description of the Scheme

Distributed weighted reference counting schemes have been given by Bevan [Be89],
Watson and Watson [WW8T], and others. The principle was attributed to Weng
[WeT79]. In the description below again the mechanism to create new objects is
omitted. An o-reference is now a tuple (o, w), where w denotes the weight of the
reference. Initially for each non-root object o, the reference count RC, equals the
sum of the weights of all existing o-references. The following (atomic) actions can
take place.

CR,: (* p copies reference (o, w) to ¢ *)
send cop(o,w/2) to ¢ ; w:=w/2

RR,: (* A message cop(o,w) arrives *)
receive cop(o, w) ;
if p has an o-reference
then add w to its weight
else insert the o-reference with weight w

DR,: (* p deletes reference (o, w) *)
send dec(o, w) to o ; delete the o-reference

RD,: (* A dec(o,w) message arrives at o *)
receive dec(o,w) ; RC, := RC, — w ;
if RC, = 0 then collect o

A correctness proof and analysis of the scheme is found in [Be89] or [WW87] and is
based on invariance of the following two assertions:

1. Each reference has a positive weight; each delete message contains a positive
weight.

2. RC, = Y R=(ow) W + XL D=dec(o,w) W> Where R ranges over all o-references in
existence and D ranges over all delete messages in transit.

Action RR,, above adds the weight of the received reference if p already has an o-
reference. There are two alternatives. First, p may return the received weight to o
immediately in a dec(o, w) message. Second, p may store the weight separately and
thus keep a non-empty set of weights for each reference rather than a single weight.
Both alternatives maintain the two invariants of the algorithm. A consequence of
the two alternative strategies is, that all weights in the system are always (negative)
powers of 2, and can be represented concisely by their negative logarithm. The
version above allows for a lower message complexity, as weights are combined and
fewer delete messages may be necessary.

17

3.2.2 Transformation into a Termination Detection Algorithm

To transform the garbage collection scheme into a termination detection algorithm
we apply the four step construction of section 2. Steps 1, 2, and 4 are as in section
3.1.2. In step 3 the actions of the weighted reference counting scheme are superim-
posed on the program resulting from step 2 (see section 3.1.2). To this end, action
CR, is included in action S,, action RR, is included in action R,, and action DR,
is included in action I,. Again for o the object Z is substituted. This results in the
following program text.

Sp: { state, = active } (* Thus p has a Z-reference (Z, w) *)
send a message (M, cop(Z,w/2)) ; w := w/2

R,: (* A basic message arrives *)
receive message (M, cop(Z, w)); state, := active;
if p has a Z-reference
then add w to its weight
else insert the Z-reference with weight w

L: (* The process becomes passive *)
state, := passive ;
delete the Z-reference ; send dec(Z, w) to Z

RDz: (* A dec(Z,w) message arrives at Z *)
receive dec(Z,w) ; RCz := RCz — w ;
if RCz = 0 then collect Z

The same simplifications as in section 3.1.2 can be made: The actual handling of the
Z reference can be removed, instead we equip every process p with a variable Wo,
representing the weight of p’s (virtual) Z-reference (0 if p has no such reference).
The subscript Z is dropped. This finally results in the following algorithm.

Sp: { statep, = active } (* Thus W, > 0 *)
send a message (M, W,/2) ; W, := W, /2

Rp: (* A basic message arrives *)
receive message (M, W); state, := active;
Wo:=W,+ W

L: (* The process becomes passive *)

state, := passive ;

send dec(W,) to Z ; W, :=0

RD: (* A dec(W) message arrives at Z *)

18

receive dec(W) ; RC := RC — W ;
if RC = 0 then send term to all 4,

The initial conditions for this algorithm are: W, = 0 if p is passive; Wo>0ifpis
active; RC = ¥, W,; and no messages are in transit.

3.2.3 Discussion of the Algorithm

The termination detection algorithm that has just been derived is known as the
Credit Recovery algorithm [Ma89].

Weight Underflow. The implementation of the weighted reference counting
scheme faces a difficulty that has not yet been discussed, and it is not surpris-
ing that the Credit Recovery algorithm faces a similar difficulty. The problem arises
because weights are represented in a finite number of bits: thus there is a smallest
possible positive weight, and if a reference of this weight is copied its weight cannot
be split. The problem in the Credit Recovery algorithm arises when a process with
the smallest possible positive value of W, sends a message.

Also the solutions to these difficulties are similar in the two algorithms. In the
weighted reference counting algorithms, a new indirection object is created with a
mazimal reference count, and the original reference is replaced by a reference to the
indirection object, with maximal weight. Next it can be copied without difficul-
ties. In the Credit Recovery algorithm, a process negotiates with Z to exchange its
(minimal) credit for a new, maximal credit. Then it can send the message. The
operation results in an increase in the reference count of Z.

These additions to the algorithms do not make them inefficient or impractical,
because in both algorithms weight underflow is supposed to be a very rare event.
As remarked at the end of section 3.2.1, it can be arranged that all weights are
powers of 2, and can be represented by their (negative) logarithm. When copying
a reference, W := W + 1 is executed instead of W := W/2, and the probability of

overflow in W should not be much greater than the overflow probability in classical
reference counting schemes.

Generational Reference Counting. An alternative reference counting scheme,
called Generational reference counting, has been proposed by Goldberg [Go89]. This
scheme avoids inc(o, ¢) messages by sending together with a dec(0) message for any
reference, the number of copies that have been made of this reference. Each reference
has a generation number (a copy of a reference with generation number i gets gen-
eration number i 4+ 1) and an object keeps separate counts for each generation. The
communication pattern is the same as for the weighted reference counting scheme:
a control message is sent only upon deletion of a reference. We omit a full descrip-
tion of the scheme and the (straight—forward) transformation into a termination
detection algorithm.

19

The resulting Generational Termination Detection algorithm is presented below.
Each active process p has a generation number gen, and a counter sons, to count
activation messages sent. Both are returned to Z when p becomes passive. The
central controller Z maintains an array of integers ActCount. Initially a process p
is either active with gen, = 1 or passive, ActCount[1] equals the number of active
processes, ActCount[i] = 0 for ¢ > 1, and no messages are underway.

Sp: { state, = active }
send (M, gen, +1) to g ;
sonsp := sons, +1

R,: (* A basic message (M, g) is received *)
if state, = active
then send pas(g,0) to Z
else state,, gen,, sons, := active, g,0

I,: (* p becomes passive *)
{ state, = active }
send pas(gen,, sons,) to Z ;
state, := passive

RP:(* A pas message arrives at Z *)
receive pas(g, s) ; ActCount[g] := ActCount[g] — 1 ;
ActCountlg + 1] := ActCountlg + 1] + s ;
if Vi : ActCount|i] = 0 then send term to all processes

We present this algorithm as another illustration of our transformation, but Gold-
berg’s remark: “it is not clear if there is any advantage to using the generational
reference counting scheme instead of the weighted reference counting scheme” seems
to apply equally to the resulting termination detection algorithms.

3.3 Mark—and-Sweep Garbage Collection

As explained in section 1.2.2, mark-and-sweep garbage collectors operate in consec-
utive cycles. In each cycle first all reachable objects are marked, and subsequently
all unmarked objects are reclaimed. In this subsection it is shown how the garbage
collection algorithm of Ben-Ari [Be84] can be transformed into a termination de-
tection algorithm. (Actually, we use a variant of the algorithm described by Van de
Snepscheut [Sn87]). This algorithm was designed to run concurrently with a single
processor mutating the references contained in memory cells. Thus the copying of a
reference is a single step where we have assumed so far that it consists of the sending
and receipt of a message. When using Ben—-Ari’s collector, these two events must
be assumed to be one single event, as it is in a distributed system with synchronous

20

communication. Therefore, in the remainder of this section we assume that message
passing is synchronous. Let n be the number of processes.

3.3.1 Description of the Algorithm
In each cycle initially all nodes are white, and the following is done in a cycle:

1. Color all roots black.

2. Sequentially visit all nodes. For all black nodes, color the nodes to which it
has references black.

3. Sequentially visit all nodes and count the number of black nodes.

4. If more black nodes were counted than in the previous round (more than the
number of roots for the first round) go to step 2, otherwise to step 5.

5. Collect the white nodes and make all nodes white.

It is essential for the correctness of the algorithm that the basic program cooperates
with the marker algorithm: whenever the basic program installs a new reference, it
blackens the object to which it points. No cooperation is required when the basic
program deletes a reference. The correctness proof of this garbage collection scheme
is quite involved; two proofs are found in [Be84] and [Sn87).

3.3.2 Transformation into a Termination Detection Algorithm

In the scheme used to obtain a termination detection algorithm each object can
have at most one reference, which is always a Z-reference. The transformation is
straightforward. Rather than coloring the roots white at the end of each cycle and
black again at the beginning of the next one, assume that the roots are always black
by definition. The five steps of the algorithm are transformed as follows.

1. (Blacken the roots.) The roots (the processes A,) are always black, so their
color is not stored and this step is skipped.

2. (Blacken sons of black nodes.) In this step the virtual object Z need not
be visited as it has no sons. The processes A, are visited by arranging the
processes in a (virtual) ring and passing a token along this ring. On this
tour the token visits the processes in a “lazy” way: before actually visiting a
process, it waits until the process is passive, and thus has no reference at all.
This does not hinder the liveness of the termination detection, because there
is no termination while a process is active. As a result of this strategy, no
coloring is done in this round.

21

3. (Count black nodes.) There are n + 1 processes, and the n roots are known to
be black. It only needs to be determined whether any root has blackened Z,
which is the case if a Z-reference has been installed (by the basic program)
since the beginning of this cycle. To this end each process maintains a flag
which is set when Z should be blackened according to the scheme (viz., when
becoming active). In order to see whether Z was blackened, the token again
visits all processes, now testing whether any flag was set.

4. (Cycle completed?) If the second tour of the token reveals that no flag was
set, Z is white and the number of black nodes is still n. In this case, go to
step 5. If any flag was set (Z is black) there are now n + 1 black nodes and
the original algorithm would jump to step 2 in order to (try to) blacken more
nodes. However in our case this is useless, as all nodes are black already, and
we decide to also terminate the cycle. As Z is black, it cannot be collected,
hence a new cycle of the collector must be started by resetting all the flags
and returning to step 2.

5. (Collect.) The collection phase is entered with n black nodes, i.e., the virtual
node Z is white, therefore termination can be signaled.

Essential for the termination detection algorithm is that a flag is set when a process is
activated. (The meaning of this flag in the garbage collection scheme is “I blackened
Z”.) The termination detection algorithm repeatedly sends a token around the ring
twice. In the first round the token only waits at each process until this process is
passive. In the second round the token inspects and resets the flags. If no flag was
set, termination is concluded, otherwise a new double tour of the token is initiated.

3.3.3 Correctness of the New Algorithm

In this section we formally present the new termination detection algorithm com-'
pletely, and prove its correctness by means of an invariant. Assume the processes are
numbered from 0 through n — 1 and the processes have communication facilities so
that processor q can send control messages to procesor ¢ — 1 (mod n). The variable
tour (values first, second) denotes whether the token is on the first or the second of
the two tours. t denotes the current position of the token. Processes have a color
(black or white), stored in color, for process ¢. The token has a color tc on its second
tour.

The algorithm is initiated by process 0 by sending the token on its first tour
to process n — 1. A token visit during the first tour is described in action T1.
It is enabled only when the process holding the token is passive, and consists of
forwarding the token only (decrement ¢). If the token is at the end of the first
tour it is whitened and sent on its second tour. A token visit during the second
tour is described in action T2. The color of the visited node influences the color
of the token, and is reset to white. When the token is not yet at the end of the

22

second tour it is forwarded. At the end of the tour, if the token is white termination
is concluded, otherwise it is sent on its first tour again. Action A, describes the
(synchronous) activation of process ¢ by process p and ¢’s subsequent blackening.
Action I, describes how process p becomes passive.

T1: { tour = first A states = passive }
ift>0
then t:=¢t—-1
else tour, t, tc := second,n — 1, white

T2: { tour = second }
if colory = black then tc := black ; colory := white ;
ift>0
thent:=t—1
else if tc = white
then signal termination
else (* Reinitialize procedure *)
tour,t := first,n — 1

A,: { state, = active }
state, := active; color, := black

L: state, := passive

During the first tour, the token visits a process only in passive state. Thus a process
can be active “behind” the token only if it is reactivated after the visit, but this
implies that the process is black. Black processes are reported in the second round,
regardless of what the basic computation does. The principle of the algorithm is
captured in the following predicate.

P =
tour=first A (Vg> t:state; = passiveV Igq : color, = black)
V tour= second A (Yq: state, = passive V
[tc = black v 3¢ < t: color, = black])

Lemma 3.1 P is an invariant of the algorithm.

Proof. After initialization tour = first and t =n —1 so P holds. It is easily verified
that each of the actions maintains P. O

Theorem 3.2 The algorithm satisfies the safety and liveness criteria for termina-
tion detection algorithms.

Proof. First suppose process 0 signals termination. This happens (see action T2)
when the white token visits process 0 on its second tour, and colory = white. From
P, all processes are passive.

23

Now suppose the termination condition holds. No more blackening of processes
occurs, so the next complete second tour whitens all processes, and after the subse-
quent second tour termination is signaled. [J

3.3.4 Discussion of the Algorithm

It is interesting to compare this algorithm with the similar algorithm by Dijkstra.
et al. [DFG83]. In that algorithm a process is blackened upon sending rather than
upon receiving. Note that the subformula “Vg > ¢: state, = passive” of P is falsified
when process g > t is activated by some p < . The consequence of blackening upon
sending rather than receiving is, that a black process is certainly found ahead of
the token in this case (while in the new algorithm the black process may be found
behind the token). But then the two tours can be replaced by a single tour, and
indeed the algorithm by Dijkstra et al. uses one tour only.

An alternative transformation of Ben—Ari’s algorithm uses blackening upon send-
ing. Indeed, sender and receiver cooperate atomically in the A, action, which marks
Z in Ben-Ari’s algorithm, and this virtual marking can be flagged in the sender as
well as in the receiver. With this modification the A, action would be the following,
and the reader may easily verify that this action also maintains invariant P above.

A,: { state, = active }
state, := active; color, := black

Unfortunately, invariant P is not strong enough to ezploit the advantage of blacken-
ing upon sending, like in [DFG83]. We conclude that the transformation of Ben—Ari’s
garbage collection algorithm yields a termination detection algorithm which is very
similar to Dijkstra’s algorithm, but less efficient because it needs two control tours
rather than one. It is possible, however, to optimize the scheme by combining the
second tour of one cycle with the first tour of the next cycle. The combined action
T describing the token visit is almost identical to T2:

T: { state; = passive }
if colory = black then tc := black ; colory := white ;
ift>0
then t:=t-1
else if tc = white
then signal termination
else (* Reinitialize procedure *)
te, t := white,n — 1

4 Conclusions

In this paper we have presented a transformation of garbage collection schemes into
termination detection protocols. Applying the transformation to known schemes, we

24

have derived several known termination detection algorithms, and three new ones:
the Activity Counting algorithm, the Generational termination detection algorithm,
and a “dual-tour” token algorithm for a ring of processors. Also the transformation

is of a theoretical interest, and rises some further questions that will be addressed
below.

4.1 Other Garbage Collection Algorithms

Virtually all garbage collection schemes can be transformed into sensible termination
detection algorithms. Here we only sketch two more transformations, the reader is
invited to complete the details and to apply the transformation to other garbage
collection schemes (e.g., the well known algorithm by Dijkstra et al. [Dij78]).

A “classical” but now outdated garbage collection scheme consists in suspending
the execution of the basic program when memory becomes short and run the garbage
collector (of the mark—-and-sweep type) while the program is stopped. Compared
to on-the—fly garbage collection, synchronization and cooperation between the basic
program and the collector is much simplified. The transformation of such a garbage
collection algorithm yields a “freezing” termination detection algorithm where no
reactivations are possible while the algorithm checks for the termination condition.
In fact, one of the first published termination detection schemes was a freezing
algorithm [Fr80).

In [St75] Steele describes a mark-and-sweep on-the-fly garbage collection algo-
rithm. In this algorithm, when a reference from a marked to an unmarked object is
installed, the marker process must visit the marked object again. In our transforma-
tion this principle means that when process p installs a reference to Z (i.e., becomes
active), the termination detection algorithm must visit p again. This requirement -
can be realized in various ways. One way is to use a token visiting reactivated
processes. Then the processes must keep specific information in order to record the
identities of processes they reactivated (e.g., a vector with one component for each
process).

4.2 A Different Transformation

The transformation of a garbage collection scheme into a termination detection
algorithm as described in section 2 proved to be very useful—a number of interesting
termination detection schemes resulted from its application. However, there exists a
different transformation principle which is in some respects “dual” to the principle
we used up to now. In this subsection we sketch that principle, the details, however,
are omitted.

Each process p is transformed into a non-root object A,. In addition, a single
(virtual) root object R exists. It is assumed that initially only a single object Ao
is active, all other objects are initially passive. Throughout the computation the
following equivalence must be guaranteed:

25

A, is active <& R has an A,—reference.

This equivalence can easily be realized by a reference counting algorithm: The local
reference counter RC), is incremented when process A, is activated, and decremented
when it becomes passive. Thus, R—references are only virtual references, they need
not be implemented.

In order to detect termination, we want to maintain the following property:

Ao is garbage = the termination condition holds.

Using this property a (distributed) garbage collection algorithm can detect the ter-
mination condition when collecting Ag. The property is maintained by the following
two rules:

1. Each basic message from object A, to object A, contains an A,-reference.

2. When object A, receives a message containing an A,-reference it inserts that
reference if it has no reference to any object, otherwise it immediately deletes
the A -reference. If A, is activated, RC, is incremented.

The reader may easily verify that no cycles are formed and that if an object Ap is
active then there exists a reference path from A, (and consequently also from R)

to Ao. In order to guarantee the liveness property, the following rules should be
observed in addition:

3. When object A, becomes passive, RC, is decremented. (That is, the virtual
Ap-reference in R is deleted.)

4. When the reference counter RC,, of object A, drops to zero and A, has an A,~
reference, that reference is deleted ("recursive freeing” as part of the virtual
collection of the garbage object A4,).

When Lermen and Maurer’s garbage collection algorithm is used (see section
3.1), the two messages ack and cop can be merged into a single message. This
is the case because A, sends a reference pointing to itself. The only effect of the
subsequent execution (in arbitrary order) of the receive actions RA, and RC, is
to increment aR,(0) which is used as a guard for action DR,. Since A, (virtually)
sends inc to itself, action RI, is executed locally in A, when sending a basic message.

The algorithm resulting after removal of the manipulation of references is simple.
Whenever an object becomes active or sends a basic message it increments a local
counter. The counter is decremented when the object becomes passive or when a
decrement control message is received. Decrement messages are either sent by rule 2
or by rule 4. The FIFO property is not required because the channel for which it was
necessary in the original garbage collection algorithm no longer exists. Termination
is detected when the counter of Ay drops to 0.

The resulting algorithm is already known, it is Dijkstra and Scholten’s termina-
tion detection scheme for diffusing computations [DS80].

26

4.3 Reversed Transformation

In this section it is indicated how a termination detection algorithm can be trans-
formed into a reference counting garbage collection scheme. The aim of a reference
counting algorithm is to collect an object o when all o-references (in objects) have
been deleted and no more o-references are in transit (in copy messages). A simi-
larity to the termination detection problem is observed when activity of objects is
defined suitably.

An object is defined to be o—active if it holds an o-reference and o—passtve oth-
erwise, and a message is called an o-activation message if it carries an o-reference.
Under these definitions, an o-passive object becomes o-active only upon receipt of
an o-activation message, and only o-active objects send o-activation messages. The
behavior of the computation is according to the skeleton in section 1.1.1, so that the
o-termination condition, defined as

no process is o-active and no o-activation messages are in transit
is stable and can be detected by a termination detection algorithm. Furthermore
there are no o-references < the o-termination condition holds. (RT)

To arrive at a reference counting algorithm, a termination detection algorithm is
superimposed on the o-reference handling. When the o-termination condition is
established, o is collected. For each object a separate instance of the termination
detection algorithm is executed concurrently.

Not all termination detection algorithms can be reasonably used in this construc-
tion. Several considerations must be taken into account.

Centralized versus Distributed Control. It is not a drawback if an algorithm
is chosen in which one process plays a special role, such as initiating the algorithm.
The object o itself is a natural candidate to play this role. The central object could
however become a bottleneck if its intervention is needed in every basic communica-
tion (as in the Activity Counting or Generational termination detection algorithm).

No Probe-Based Algorithms. The set of objects can be very large and varies
due to creation and collection of objects. Therefore it is not feasible to use a termi-
nation detection algorithm in which all processes in the system take part. Rather,
the activity of the algorithm should be restricted to processes that take part in
the basic computation also. The algorithm of [DS80], the Credit, Activity Count-
ing, and Generational termination detection algorithm all have this property, but
probe-based algorithms are ruled out.

27

Early Termination. A process p holding or having held an o-reference may detect
that it is garbage itself and must be collected. Therefore the termination detection
algorithm must allow processes to terminate locally even while the computation as a
whole has not yet terminated. The algorithm of [DS80] does not have this property:

an “engaged” process must remain in the system as long as any of its descendants
remain active.

These considerations differ from those that are usually taken into account when
a termination detection algorithm is designed. For example, it is usually preferred
that processes participate in the termination detection procedure only while they are
passive, but this property probably conflicts with the possibility of early termination.
The termination detection algorithms that we have derived from reference counting
schemes present themselves as candidate algorithms, but their transformation yields
no new algorithms, and all suffer from the “bottleneck” disadvantage. Current
research addresses the design of a new termination detection algorithm, based on
the algorithm in [DS80] but with early termination, and its transformation into a
reference termination scheme.

This transformation is different from the transformation considered in [TTL88],
where it was observed that detecting the termination of the marking phase emerges
as a natural subproblem in mark-and-sweep garbage collectors. It was shown that
the choice of a particular termination detection algorithm has a major influence
on the resulting garbage collection algorithm. Although virtually all termination

detection algorithms can be used for that purpose, only a subclass of the garbage
collection algorithms is obtained.

4.4 Related Problems

The termination detection problem is an instance of a class of detection problems in
distributed systems. Communication deadlock detection is a generalization where
also a part of the network can be terminated [Na86); distributed infimum approx-
imation is a generalization where the “property” to be detected takes values from
any partially ordered domain, rather than just passive or active [Te86, Ma90].

Deadlock Detection. In the communication deadlock problem, for each passive
process a subset of the processes is determined at the moment it becomes passive.
The process can become active only by receiving a message from a process in this
subset. The termination detection problem is obtained, when each process always
chooses the full set of processes. Thus, both the garbage collection problem and the
communication deadlock detection problem seem to “dominate” the termination

detection problem. This rises the question whether our approach can be generalized
to detection of communication deadlocks.

28

Distributed Infimum Approximation. In the distributed infimum approxima-
tion problem an arbitrary partially ordered domain X with the infimum operator
A replaces the two—valued domain {active, passive}. The “state” z, of process p is
a value from X, and the messages of the basic computation are tagged with values
from X. The handling of message tags and states in the operations of the basic
computation satisfies the following rules.

Sp,: (* Send basic message *)
send a message (M, z,)

R,: (* A basic message arrives *)
receive message (M, z) ; zp: =z, Az

L: (* Internal increase of = *)
{zp<z} 2pi=2

The problem is to approximate the global state function F', defined as the infimum
of all states and tags of messages. It follows from these actions that this function is
monotonically increasing.

It would be interesting if our current construction could be generalized to obtain
Distributed Infimum Approximation algorithms. To this end, instead of the single
object Z a directed graph Gx of objects could be defined, reflecting the structure
of X. The actions of the basic computation must then be formulated as reference
manipulation, such that the growth of F' is reflected by objects of Gx becoming
garbage.

4.5 Legal Aspects

We have shown that termination detection algorithms are obtained as suitable in-
stantiations of garbage collection schemes. Supplying a particular scheme, our trans-
formation yields a particular termination detection algorithm. It may happen that
the resulting algorithm was found independently already. This is the case with the

weighted reference counting scheme, which yields the Credit Recovery algorithm for
termination detection, see section 3.2.

Commercial use of the weighted reference counting scheme by Watson and Wat-
son is protected by a patent [EPO]. Does the patent now cover the Credit Recovery
algorithm? The patent describes the invention in “a computer system having storage
means containing memory cells, at least some of which contain pointers to others”,
so that it seems to us that it does not cover applications of the invention not using
pointers explicitly. Ben Lian argued however, that “since the algorithm itself is
patented, then any technique which makes use of weighted reference counts in any
form is covered by the patent. This is regardless of different terminology and/or
strategy used to split reference weights.”

29

In recent years more papers described general transformations of solutions to
one problem into solutions to another problem. The implication a patent on such a
solution can have in general is too complicated for us and we are glad to leave it as
food for lawyers.

References

[Be84]

[Beg9)

[CL85]

[CM36]

Ben-Ari, M., Algorithms for On—-the-fly Garbage Collection, ACM Trans.
on Prog. Lang. and Systems 6 (1984) 333-344.

Bevan, D.I., An Efficient Reference Counting Solution to the Distributed
Garbage Collection Problem, Parallel Computing 9 (1989) 179-192.

Chandy, K.M., L. Lamport, Distributed Snapshots: Determining Global
States of Distributed Systems, ACM Trans. on Computer Systems 3 (1985)
45-56.

Chandy, K.M., J. Misra, How Processes Learn, Distributed Computing 1
(1986) 40-52.

[CMH83] Chandy, K.M., J. Misra, L.M. Haas, Distributed Deadlock Detection, ACM

[Co60]

[CV90]

[DFGS3]

[Dij78]

[DS80]

[EPO]

[Fr80]

Trans. on Computer Systems 1 (1983) 144-156.

Collins, G.E., A Method for Overlapping and Erasure of Lists, Comm.
ACM 3 (1960) 655-657.

Chandrasekaran, S., S. Venkatesan, A Message-Optimal Algorithm for
Distributed Termination Detection, Journal of Parallel and Distributed
Computation 8 (1990) 245-252.

Dijkstra, E.W., W.H.J. Feijen, A.J.M. van Gasteren, Derivation of a Ter-

mination Detection Algorithm for Distributed Computations, Inf. Proc.
Lett. 16 (1983) 217-219.

Dijkstra, E.W., L. Lamport, A.J. Martin, C.S. Scholten, E.F.M. Stef-

fens, On-the-fly Garbage Collection: An Ezcercise in Cooperation, Comm.
ACM 21 (1978) 966-975.

Dijkstra, E.W., C.S. Scholten, Termination Detection for Diffusing Com-
putations, Inf. Proc. Lett. 4 (1980) 1-4.

European Patent Office, Garbage Collection in a Computer System, Euro-
pean Patent Application no 86309082.5.

Francez, N., Distributed Termination, ACM Trans. on Prog. Lang. and
Systems 2 (1980) 42-55.

30

[Go89]

[LMs6]

[Ma87]

[Mag9]

[Ma90]

[McC60]

[Mis3]

[Nagé]

[Ru88]

[SF86]

[Sn87]

[St75]

[ST88]

Goldberg, B., Generational Reference Counting: A Reduced~Communic-
ation Distributed Storage Reclamation Scheme, ACM SIGPLAN Notices
24 (July 1989) 313-321.

Lermen, C.-W., D. Maurer, A Protocol for Distributed Reference Count-
ing, ACM Conference on Lisp and Functional Programming, Cambridge,
1986, pp. 343-354.

Mattern, F., Algorithms for Distributed Termination Detection, Dis-
tributed Computing 2 (1987) 161-175.

Mattern, F., Global Quiescence Detection Based on Credit Distribution
and Recovery, Inf. Proc. Lett. 30 (1989) 195-200.

Mattern, F., Efficient Distributed Snapshots and Global Virtual Time
Algorithms for Non-FIFO Systems, Tech. Rep. SFB124-24/90, Kaisers-
lautern University, 1990.

McCarthy, J., Recursive Functions of Symbolic Ezpressions and Their
Computation by Machine, Comm. ACM 3 (1960) 184-195.

Misra, J., Detecting Termination of Distributed Computations Using
Markers, Proc. of the 2nd ACM Symp. on Principles of Distributed Com-
puting, Montreal, Quebec, 1983, pp. 290-294.

Natarajan, N., A Distributed Scheme for Detecting Communication Dead-
locks, IEEE Trans. on Software Engineering SE-12 (1986) 531-537.

Rudalics, M., Multiprocessor List Memory Management, Technical Report
RICS-88-87.0, Research Institute for Symbolic Computation, J. Keppler
University, Linz, 1988.

Shavit, N., N. Francez, A New Approach to Detection of Locally Indicative
Stability, in: L. Kott (ed.), Proceedings ICALP 1986, Lecture Notes in
Computer Science 226, Springer—Verlag, 1986.

Van de Snepscheut, J.L.A, “Algorithms for On-the—fly Garbage Collection”
Revisited, Inf. Proc. Lett. 24 (1987) 211-216.

Steele, G.L., Multiprocessing Compactifying Garbage Collection, Comm.
ACM 18 (1975) 495-508.

Schoone, A.A., G. Tel, Transformation of a Termination Detection Algo-
rithm and its Assertional Correctness Proof, Technical Report RUU-CS-
88-40, Dept. of Computer Science, Utrecht University, 1988.

31

[Te86]

[Te90]

[TTLSS]

[WeT79]

[Wws7]

Tel, G., Distributed Infimum Approzimation, Technical Report RUU-CS-
86-12, Dept. of Computer Science, Utrecht University, 1986.

Tel, G., Total Algorithms, Technical Report RUU-CS-88-16, Dept. of
Computer Science, Utrecht University, 1988. Also in: Algorithms Review
1 (1990) 13-42.

Tel, G., R.B. Tan, J. van Leeuwen, The Derivation of Graph Marking
Algorithms from Distributed Termination Detection Protocols, Science of
Computer Programming 10 (1988) 107-137.

Weng, K.-S., An Abstract Implementation for a Generalized Dataflow Lan-
guage, Technical Report MIT/LCS/TR-228, Massachusetts Institute of
Technology, 1979.

Watson, P., I. Watson, An Efficient Garbage Collection Scheme for Par-
allel Computer Architectures, in: J.W. de Bakker, A.J. Nijman, P.C. Tre-
leaven (eds.), Proceedings Parallel Architectures and Languages Europe,

vol. II, Lecture Notes in Computer Science 259, Springer—Verlag, 1987,
Pp. 432-443.

32

