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category: it is a semi Cartesian closed category ([3]). In general, semi categori-
cal notions arise if "functors” are used which do not preserve identities ([3]). The
Karoubi envelope construction transforms sem: notions to ordinary notions. For
example, the Karoubi envelope of a semi Cartesian closed category is a Cartesian
closed category. Hence we may define data structures such as products and function
spaces in the simple category qlS, and transform them via the Karoubi envelope to

clS.

The rest of this paper is organised as follows. In section 2 a short overview of
some relevant domain-theory is given. In section 3 continuous information systems
are defined, and it is shown that they are equivalent to continuous Scott domains.
Furthermore, it turns out that algebraic informations systems are just the reflexive
continuous ones. In section 4 qualitative information systems are defined, and it is
shown that continuous information systems may be constructed by means of the
Karoubi envelope. In section 5 we show how various data types may be defined on
qualitative information systems, and translated to continuous information systems.
Among other things, we prove that the category of qualitative information systems is
semi Cartesian closed with products. Finally, in section 6 two universal information
systems are defined.

2 Definitions

In this section a short overview of some relevant domain-theory is given by presenting
some definitions and theorems.

2.1 Domain theory

We consider posets in which the least upper bounds (lub’s) of certain subsets exist.

Definition 1 A subset S of a poset P is directed iff each finite subset of S has an
upperbound in S.

Note that a directed set S can not be empty, because the empty set must have an
upperbound in S. So a set S is directed iff it is not empty and every pair of elements
of S has an upperbound in S.

Definition 2 4 directed complete poset (dcpo) D is a poset D in which each di-
rected subset has a lub.

The appropriate kind of morphism between dcpo’s preserves the relevant structure.

Definition 3 A function f : D — E between dcpo’s is continuous iff it preserves
lubs of directed sets, i.e. if S C D directed, then f(VS)=V£(S).



Note that a continuous function f is monotone, i.e. d < d' implies f(d) < f(d).

Dcpo’s and continuous functions form a category Dcpo, with normal function com-
position and identity. However, we are interested in full subcategories of Dcpo, with
as objects dcpo’s which are generated by a basis. First the way-below relation is

defined.

Definition 4 Let D be a dcpo. Define the way-below relation <C Dx D as follows:
t L y iff for each directed subset S of D: y < \J S implies there exists an y €S
such that z < y'.

Theorem 5 The relation < on a depo D has the following properties:
e rLy=>c<y
e r'lzkyLyY =<y
s r K YyYyKLz>c Kz
® If X C D finite, thenVz e X(z < y) @ VX <y

Definition 6 D is a continuous dcpo iff D is a dcpo and there exists a subset Bp
of D such that for each = € D the set Bp(z) = {z' € Bp|z' < z} is directed, and
T = VBD(:E)

The set Bp is called a basis for D.

Define Cont as the full subcategory of Dcpo with as objects continuous dcpo’s D
with a fixed basis Bp.

Example 7 The interval [0,1] of real numbers is a continuous depo. It can easily
be checked that the relation < on [0,1] is the same as <, except that 0 < 0. Two

different bases for this depo are [0,1] itself, and the set {40 < ¢ < 1&q is a rational
number }.

Theorem 8 (Strong Interpolation) Let D, E be continuous depo’s, f : D — E a
continuous function, z an element of D, and y of E. If y < f(z), then there exists
a z' € Bp such that y < f(2') and =’ < z.

Proof: Take S = {e € Bg|3z' € Bp : e < f(z')&2’ < z}.

S is directed: It is clear that S is non-empty, for Bp(z) is not empty so take
¢’ € Bp(x), and Bg(f(z')) is not empty, so take e € Bg(f(x')). Suppose e, e; € S,
then there are zj,x, € Bp such that ¢; < f(z!), and 2} < z. Now Bp(z) is
directed, so there exists 2’ € Bp such that ' < z and zy,ry < z'. Because
ei < f(z;) < f(2'), we have e; < f(z'). The set Bg(f(z')) is directed, hence there
exists e € B such that e < f(z') and e;, e; < e. It follows that e is an upperbound
of €1, €2 in S.

Furthermore



VS = V{V Bg(f(z")|z’ € Bp(z)}
= V{f(z')|z' € Bp(=)}
= f(V Bp(z))
= f(=)

Suppose y < f(z), then y « f(z) <V S. There exists e € § such that y < e, hence
y < e < f(a') for certain ¢’ <« z, 2’ € Bp. It follows that y < f(z') and ' < z. B

Theorem 9 (Weak Interpolation) Let D be a continuous depo, and z,y € D. If
y < z, then there exists a ' € Bp such that y € 2’ < z.

Proof: Take f = idp in the strong interpolation theorem. n

Cont itself is not a Cartesian closed category, but it contains various Cartesian
closed subcategories.

Definition 10 A dcpo D is bounded complete iff each bounded subset (i.e. each
subset with an upperbound) has a lub.

Define BCCont as the full subcategory of Cont with as objects bounded complete
continuous dcpo’s. BCCont is Cartesian closed.

Example 11 The interval [0,1] of real numbers is a bounded complete continuous
depo.

By theorem 5 the way-below relation < is transitive and anti-symmetric. However,
it is not necessary reflexive.

Definition 12 An element d of a depo D is compact iff d < d.

Definition 13 An algebraic dcpo D is a continuous depo with a basis consisting of
compact elements.

Define Alg, resp. BCAIlg as the full subcategories of Cont with as objects algebraic
dcpo’s, resp. bounded complete algebraic dcpo’s. Alg is not Cartesian closed, but
BCAIg is. The objects in the last category are sometimes called Scott domains.

Finally we consider a full subcategory of BCAlg with as objects a very concrete

kind of dcpo’s ([1]), i.e. the elements of these dcpo’s are sets, and the ordering is
subset-inclusion.

Definition 14 A qualitative domain is a set of sets A, which satisfies the following:
1. D e A
2. Ify Cz €A, then y € A.



3. A 1s closed under directed unions.

It can easily be checked that each qualitative domain is a bounded complete alge-
braic dcpo. Define Qd as the full subcategory of BCAlg with as objects qualitative
domains. This category is not Cartesian closed. Therefore, in [1] the Cartesian
closed subcategory of Qd was taken with stable continuous functions as arrows.
However, we shall see that although Qd is not a Cartesian closed category it is very
interesting.

2.2 Algebraic information systems
Algebraic information systems are concrete representations of Scott domains.

Definition 15 An algebraic information system (ais) A is a tuple < Dom 4, Cony, 4>
where

o Domy is a set, the set of tokens,
o Cong C Ps(Domy), the set of consistent sets of tokens,
o F4C Cony x Domy, the entailment relation,
satisfying the following clauses (X,Y € Py(Domy)):
1. D € Cony
2. XCY€Conyg=>Xe€Cony
3. a € Domy = {a} € Cony
4. XFpa=>XU{a} €Cony
5.a€eX€Comnyg=>Xka
6. I(VBEY(X Fab)&Y Faa)= X Faa

Algebraic information systems are defined in [11], where they are simply called
information systems. Note that we have given here the slightly different definition
of [8]. There is a notion of map between two algebraic information systems. (In the
following we will abbreviate Vb€ Y(X 4 b) as X I, Y.)

Definition 16 An algebraic approximable mapping (aam) f between algebraic in-
formation systems A and B is a relation f C Cony x Cong which satisfies:

1. 010
2. (XfY&XSY') = Xf(Y UY")
3. 3X,Y (X' b4 X&XfY&Y Fp Y') = X'fY"
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3. a € Domy = {a} € Cony,

4. VOEY(X4b) =Y € Cony

5. (XCY&XtFra)=Y Faa

6. AY(MbEY (X L4 b)&Y Faa) XFaa
We will often omit the subscripts, and write A for Dom,. Furthermore, if R is a
relation between Con and Dom, X € Con, and Y € Ps(Dom), then XRY stands

for Vb € Y(XRb). For example, X R holds for each consistent X, and clause 4
above can be writtenas X F4 Y = Y € Cong,.

Theorem 20 Let A be a cis, then
Y (XFY&Y FZ2)e X2

Proof: From left to right it is trivial. Now suppose X I Z. By clause 6 in the
definition of a cis there exists for each ¢ € Z an Y, such that X + Y, F ¢. Take
Y = U{Yc|c € Z}. It is clear that Y is a finite set and that X + Y. Furthermore,
Y. CY and Y, |- ¢ hold for each ¢ € Z, hence by clause 5 in the definition of a cis
it follows that for each c € Z Y - ¢, and therefore Y I Z. [

Example 21 The continuous information system Q is given by the following clauses:

¢ Domg = {q|0 < ¢ < 1&q is a rational number }
L ConQ = ’Pf(DomQ)
e XFgg=q< VX

Example 22 The continuous information system P is given by the following clauses:

¢ Domp = P({n|n is a natural number })
o Conp = Py(Domp)
o X Fpp=UX —p infinite.
Maps between continuous information systems are certain kinds of relations.

Definition 23 A continuous approximable mapping (cam) f between continuous
information systems A and B is a relation f C Cons x Domg which satisfies:

1. XfY =Y € Cong
2. (X CX'&Xfb) = X'fb



3. AX,Y (X' k4 X&X fY&Y Fp b) & X'fb
Theorem 24 Let f be a cam between A and B, then
1 AX,)Y(X' k4 X&XfY&Y Fp Y') & X'fY!

2. 3X (X' k4 X&EXfY') & X'fY!
3 Y (X'fY&Y Fp V') & X'fY’
Proof:

1. From left to right it is trivial. To prove the other way round suppose X’fY".
By clause 3 in the definition of a cam there exist for each b € Y’ consistent
sets X and Y}, such that X' k4 Xp& X, fY, &Y, bp b. Take X = Y{X;|b € Y’}
and Y = Y{Y3|b € Y'}. It is clear that X,Y are finite, and that X' +, X.
Furthermore, X C XandX;fY, hold for each b € Y, and hence by clause 2
in the definition of a cam X fY;. Therefore X fY. Finally Y; C Y&Y; b5 b for
eachb€ Y’ hence YgbforeachbeY’,and Y g Y.

2. IX(X'F X&EXfY') &
X, 21, Z:(X' - X&X + 21&2, f 2,82, | Y') &
3Z1, Zz(X' F Zl&Z]fZ2&Zz F Y') A
X'fy"

3. Analogous to 2.

The identity cam Iy : A — A is defined as XI4a := X F4 a. Let f:A—- B
and g : B — C be cam, then their composition go f : A — C is defined as
X(go f)e:=3Y (X fY&Ygc). clS is the category with as objects continuous infor-
mation systems and as arrows continuous approximable mappings.

3.2 cIS~BCCont

It will be shown how each cis represents a bounded complete continuous dcpo. The
underlying set of this dcpo will consist of certain subsets of the tokens of the cis.

Definition 25 The elements Pt(A) of a cis A are subsets x of tokens which satisfy:
1. X C 2&X finite = X € Cony,,
2. XCzx&Xta=ac€z,
3. acz=>3XCx(Xta).



Hence elements are subsets of tokens which are finitely consistent (1) and closed
under entailment (2). Furthermore, each token in an element has a cause (3), i.e. is
derivable from a finite subset of the element.

Theorem 26 Let A be a cis, and S a finitely consistent set of tokens of A. Then
[S] :={a|3X C S(X I a)} is an element of A.

Proof:

1. [S] is finitely consistent.
Suppose X is a finite subset of [S]. For each a € X there is a X! C S such
that X I a. Take X' = |J{X.|a € X}. The set X’ is consistent, because S is
finitely consistent. By clause 5 in the definition of a cis it follows that X’ I X,
hence X € Cony by clause 4.

2. [S] is closed under entailment.
Suppose X is a finite subset of [S], and X | a. Let X' be the same set as in

the previous item, then X’ C S and X' + X I a. By clause 6 in the definition
of a cis it follows that X’ |- a, hence a € [S].

3. Each token in [S] has a cause.

Suppose a € [S]. There is a X C S such that X | a. By clause 6 there exists
an Y such that X F Y | a, hence Y C [S].

The elements of a cis A ordered by inclusion form a bounded complete continu-
ous dcpo.

Theorem 27 Pt(A) ordered by set-inclusion is a bounded complete continuous dcpo.

Proof: The union of a directed set of elements is an element, and it is the lub of
that set.

Let S be a bounded subset of elements. Then J S is finitely consistent (because it is
a subset of a finitely consistent set), hence [|J S] is an element. It is easy to see that
[U S] is smaller than each upperbound of S. Furthermore, it is itself an upperbound
of S: Suppose a € z € S, then because z is an element there is X C z such that
X F a. Hence X C|US and X I a, hence a € [J 5].

Finally, we have to give a basis of Pt(A). First, the following holds: if X C z, then
[X] < z. For suppose S is a directed set of elements, and x C |JS. For each a € X
there is an y, € S such that a € y,. But {ys|a € X} is finite and S directed, hence
there is an upperbound y € S. By X C y it follows that [X] C y.

Let = be an element and consider Z = {[X]|X C z, X finite }. This set is directed:
[@] € Z, hence it is not empty. If [X;],[X3] € Z, then [X; U X;3] € & and this is an
upperbound.
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The union of # is equal to z: Suppose a € z, then there is X C z such that X I q,
hence a € [X]. The reverse is trivial.

Therefore {[X]|X € Cong} is a basis of PT(A). n

Example 28 Let Q be the cis from the previous subsection, then Pt(Q) = [0, 1].

Each cam between information systems represents a continuous function between
bounded complete continuous dcpo’s.

Theorem 29 Let f : A — B be a cam, then Pt(f) : Pt(A) — Pt(B) : ¢ —
{6|3X C (X fb)} is a continuous function.

Proof: It is straightforward that Pt(f) is well-defined and continuous. =

Theorem 30 Pt : clS — BCCont is a functor.

Proof: It is straightforward that Pt preserves identities and composition. [ |

Every bounded complete continuous dcpo can be transformed into a cis.

Theorem 31 Let D be a bounded complete continuous dcpo, then Rep(D) is a cis,
where

® Dompey(p) is the basis of D.
® Conpep(p) is the set of bounded, finite subsets of the basis.
¢ X tpeppyaiffaVX.
Proof: We check the clauses in the definition of a cis.
1. 0 is bounded by the least element of D.
2. X CY, and Y is bounded, then X is bounded.
3. If a in the basis of D, then {a} is bounded.

4. IVbe Y(b< VX),thenVbe Y(b < VX) by theorem 5, hence Y is bounded
by VX.

5 X CYanda< VX, thena <« VX <VY, hence a € VY by theorem 5.

6. If a « VX, then by the weak interpolation theorem there is a b such that
aLbg VX
The other way round if a €« VY <« V X, then a « V X by theorem 5.

11



To extend Rep to a functor its value on continuous functions must be defined.

Theorem 32 Let D, E be bounded complete continuous decpo’s, and f : D — E a
continuous function, then the following defines a cam: Rep(f) : Rep(D) — Rep(E) :
XRep(f)b:=b< f(VX).

Proof: We check the clauses in the definition of a cam.

1. Vb e Y(b < f(VX)), then Vb € Y(b < f(V X)) by theorem 5, hence Y is
bounded by f(V X).

2. X C X' and b < f(VX), then b < f(VX) £ f(VX'), hence a <« f(VX')
by theorem 5.

3. If b € f(V X'), then by the weak interpolation theorem there is a b’ such that
b < V¥ < f(VX'). Furthermore, by the strong interpolation theorem there
exists an a such that ¥ < f(a) and a K V X".

The other way round if VX « VX'&VY « f(VX)&b <« VY, then b <
VY < f(VX) < f(VX'), hence b < f(V X').

Theorem 33 Rep : BCCont — clIS is a functor.

Proof: It is easy to see that Rep preserves the identity. We will show that it pre-
serves composition, using the strong interpolation theorem.

XRep(go fla &

a < g(f(VX)) &

Y (e < g(VY)&VY < f(VX)) &

Y (Y Rep(g)a& X Rep(f)Y) &

X(Rep(g) o Rep(f))a. L

The two functors Pt and Rep form an equivalence of categories between clS and
BCCont. This means that for every cis A: A = Rep(Pt(A)), and for every bounded
complete continuous dcpo D: D = Pt(Rep(D)). In fact these isomorphisms need
to be natural in A and D.

First we consider Rep(Pt(A)). The tokens of this cis are the elements of the basis
of Pt(A), which are the elements [X], with X € Con,. The consistent sets a of
Rep(Pt(A)) are bounded, finite sets of these tokens. The following lemma describes
the way below relation < in Pt(A), and because a Fpgeype(ay) [X] iff [X] < V a this
describes the entailment relation in Rep(Pt(A)).

12



Lemma 34 Suppose A is a cis, and z,y € Pt(A), then
r<Lye Y (zC[Y)&Y Cy)

Proof: This is an easy consequence of the fact that y = \/ § as proven in theorem
217. |

Theorem 35 Let A be a cis. The cam py : Rep(Pt(A)) — A defined by apsa &
a € Va, has inverse v4 : A — Rep(Pt(A)) defined by Yva[X] & [X] < [Y] and is
natural in A.

Proof:

® i1y 1S a cam.
We check the clauses in the definition of a cam.

1. Suppose ap,Y, then Y C \/ a, hence because \/ a is finitely consistent
Y € Cony,.

2. Suppose a C o and apaa, then a € Va C Vo, hence a € &, hence
o' pa.

3. 3a,Y(d' F adapsY&Y | a) &
Jdo,Y(Va < V&Y CVa&Y Fa) &
Jdo,Y,Z(Va C [2)&Z CVa'&Y CVa&Y }a) &
(«): Y CVd/, thenVa € YIAZ, CV/(Zs F a). Take Z = |J{Z,|a €
Y}, then Z C Vo' consistent, and Z - Y. Hence there exists Z’ such
that Z+ Z'+Y. Take o = {[Z']}.)
Y (Y C V&Y Fa) &
aceVad &
o' paa.

® v, is a cam.
We check the clauses in the definition of a cam.

1. Suppose Yvsa , then [X] <« [Y] for all [X] € a, hence [X] C [Y]. It
follows that a is bounded by [Y].

2. Suppose Y C Y’ and Yvu[X], then [X] « [Y] C [Y], hence [X] « [Y]
by theorem 5. It follows that Y'v4[X].
3. W, a(Y' +FY&Yvpakat [X])) &
W, oY FY&Va g [Y&[X] < Va) &
X<« [Y] &
Y'VA[X]

13



4 The Karoubi-envelope

Considering the definitions of continuous information system and approximable
mapping, we see that the requirements on I and on an arbitrary cam f look very
much alike. We make this formal by showing that ¢IS can be constructed out of a
category in which both I and f are special kind of arrows: clS is equivalent to the
Karoubi-envelope of the category of qualitative information systems.

4.1 The category qlS

A qualitative information system A is a cis which satisfies X 4 a & a € X.
However, we will give a direct definition.

Definition 43 A qualitative information system (qis) A is a tuple < Dom4,Cony >
where

o Domy is a set, the set of tokens,
o Cony C Py(Domy), the set of consistent sets,
satisfying the following clauses (X,Y € Pg(Domy)):
1. 0 € Cony
2. XCY€Cony=XeCony
3. a € Domy = {a} € Cony
Maps between qualitative information systems also become very simple.

Definition 44 A qualitative approximable mapping (qam) f between qualitative
information systems A and B is a relation f C Cons x Domp which satisfies:

1. XfY =Y € Cong
2. (X C X'&Xfb) = X'fb

Define qIS as the category with as objects qis and as arrows qam. The functors
Pt and Rep from the previous section cut down to functors between qIS and Qd.
Because qualitative domains are so concrete, this forms an isomorfy rather than an
equivalence of categories.

Theorem 45 qIS =~ Qd

18



4.2 The Karoubi-envelope of qlS

Given a category C a new category can be formed with as objects certain arrows of

C.

Definition 46 Let C be a category. Define the Karoubi envelope K(C) of C as the
category with as objects idempotent arrows f : A — A of C (i.e. fof = f), and
as arrows ¢ : (f : A > A) - (9 : B — B) arrows ¢ : A — B of C such that
gogo f=¢, or equivalently god = ¢ and do f = ¢.

Consider the category K(qlS). It has as objects idempotent arrows f : A — A of qIS.
Hence f o f = f, or by definition of composition in qIS: Y (X fY &Y fb) & X fb.
This is exactly clause 6 in the definition of a cis writing -4 for f. Clause 4 and 5
hold because f is an arrow in qIS, and clause 1,2, and 3 because A is a qis. Hence
f:A— Ais a cis. The other way round each cis gives an idempotent F4: A — A
in qlS.

An arrow ¢: (f: A— A) — (¢: B — B) in K(qlIS) is a qam ¢ : A — B such that
godo f = ¢. Writing this out, we find that ¢ satisfies IX, Y (X' fX&X Y &Y gb) &
X'¢b, which is exactly clause 3 in the definition of a cam (writing F4,Fp for f,g).
Clause 1 and 2 are satisfied by ¢ because it is a gam. Hence ¢ is a cam. The other
way round it is easy to see that each cam gives an arrow in K(glS).

Theorem 47 clS = K(qlS).
Corollary 48 BCCont ~ K(Qd).

A nice characterisation of alS can also be given. The arrows in qlS are ordered by
FLf & (Xfb= Xf'b). It is clear that a qam f : A — A satisfies the axiom
of reflexity iff id4 C f. Hence the full subcategory of K(qlS) with as objects the
idempotents which satisfy id4 < f is equal to alS.

Definition 49 Let C be a category in which each hom-set is a poset. Define the
Closure Karoubi-envelope K (C) of C as the full subcategory of K(C) with as objects
closures, i.e. idempotent arrows f: A — A such that idy < f.

Theorem 50 alS = K(qlS)

Corollary 51 BCAlg ~ K (Qd)

5 Constructions

In this section some constructions in clS are given. We shall take advantage of the
result proved in the previous section by defining some datatypes (such as products
and function types) in the easy” category qlS, and then translating them to clS by
the mechanism of the Karoubi-envelope.

19



Proof: The terminal object in K(C) is !7, and the unique arrow from an object
f:A— Aof K(C) to!ris!a.

Let f: A - Aand g : B — B be objects in K(C). The product f x g is
< fom,gox' >, and the projections ps,: f xg — fand p}, : f X g — g are for,
resp. gon'. f ¢ : h — f and ¢ : h — g are arrows in K(C), then < ¢,9 > is an
arrow in K(C)(h, f x g).

The exponent f7 is A(f o € o (¢dsas X g)), and the evaluation e : f9 x g — f is
foeo(idgs X g). If ¢: h x g = fis an arrow in K(C), then A(¢) is an arrow in
K(C)(R, f9). u

Definition 54 An ordered semi-CCC is a semi-CCC such that each Hom-set is
ordered, composition is monotone, and the following clauses are satisfied:

1.Iff<fland g< ¢, then < f,g ><< f', g >.
2. If £ < f, then A(f) < A(f)-
3 d<<m7w>
4. 1d < A(e)
Theorem 55 If C is an ordered semi-CCC, then K (C) is a CCC.

Proof: It is easy to show that if f, g are closures, then f x g and f9 as defined in
the proof of theorem 53 are closures. [ |

5.2 Constructions in qIS

We prove that qlS is a semi-CCC with finite products. Hence gIS has, among other
things, a terminal object and binair products.

Theorem 56 qlIS has a terminal object.

Proof: Let T be the gis defined by the following clauses:
e Domr =90
o Conr = {0}

If A is an other qgis, then there is an uniquecam @ : A — T'. [ |

21



Theorem 57 qlS has products.

Proof: Let A, B be qis. Define a new qis A x B as follows:
e Domsyxp = Doms ¥ Dompg
o Congup ={XWY|X € Cony,Y € Cong}

where W is disjoint union: SW R = {(s,1)|s € S} U {(r,2)|r € R}.

Define projections 1 : Ax B > Aand 7' : AXB — Bas XWYra & a € X,
resp. XWYrb& beY. If f: D — Aand g: D — B are cam, then define
<f,g>D—AxBasZ< f,g>ce ((c=(a,1)AZfa)V (c=(b2)A Zgb)).
It is easy to check that everything is well-defined, and that 7o < f,g >= f,
7’0o < f,g >= g. We shall prove that the equation < 70 f,7' o f >= f holds.
Z<wmof,rof>XWY &

Zno fX&Zn' o fY &

EIX],Xz,YE,}/z(fol W Yi’ll'X&Zsz U] er’R'IY) <

3X:, X0, 1, Y2 (Zf X1 W V& X C Xi&ZfX, 8 Y&Y CY;) &
ZfXWP&ZfowY &

ZfXwY [ |

Theorem 58 qIS is a semi-CCC with finite products.

Proof: We already know that qIS has binair products and a terminal object.
Let A, B be gis. Define a new qis B4 as follows:

¢ Dompga = {(X,b)|X € Cons,b€ Domp}

e Conpa = the set of all finite subsets {(Xo, b)), ...,(Xn,bn)} of Dompga which
satisfy VI C {0,...,n}(U{Xili € I} € Cony = {bi|i € I} € Conp).

Define evaluation €45 : B4 X A — Bas FW Xeypb <« (X',b) € F(X' C X). If
f:D x A— Bis aqam, then define A(f) : D — B4 as ZA(f)(X,b) & Z W X fb.
It is easy to check that everything is well-defined. For example, we shall prove
that A(f) satisfies clause 1 in the definition of a qam: Suppose ZA(f)F, then
for all (X,b) € F we have that Z & X fb. Take an arbitrary F/ C F such that
X' = {X|3b((X,b) € F'} € Cona. Define Y = {b|3X((X,b) € F')}. We show
that Y € Conp. For an arbitrary (X, b) € F' wehave X C X', hence ZWX C ZwX'.
For every b € Y there is a X such that (X,b) € F', hence Z & X fb. Therefore for
every b € Y it holds that Z & X’ fb, hence ZW X'fY and Y € Cong.

Finally there are some equations to check.

o co<A(f)og,h>=fo< g,h >
We have
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Ze < A(f)g,h> b &

3F,X(Z < A(f)g,h > F¥ Xeb) &

AF, X(ZA(f)gF&ZhX&F ¥ Xeb) &

3F, X, X', Z'(292'A(f)F&ZhX &(X',b) € F&X' C X) &

3F, X, X', Z/(Z2g2'&N(X", V') € F(Z'8 X" fb")&ZhX&(X',b) € F&X' C X)
&

X, X', 2'(Z29Z'&ZhX&2Z' & X' fb&X' C X) &

AX,2(292'&ZhX&Z' ¥ X fb) &

AX,Z'(Z < g,h> Z'8 X&Z' ¥ X fb) &

Zf<g,h>b

o A(fo<gomn'>)=A(f)og
We have
ZA(f < gm, 7' >)(X,b) &
Z¥vXf<grmn'>b&
A2, X"(ZWw X < gr,n' > 2’8 X' fb) &
7', X'(ZW XgnZ'&Z W X7'X'&Z' ¥ X' fb) &
3Z2',2", X' (ZW XnZ"&Z"9Z'&Z & X7'X'&Z' W X' fb) &
A7',2",X'(Z" C Z&2Z"9Z'&X' C X&Z'w X' fb) &
dZ'(ZgZ'&2Z' ¥ X fb) &
IZ2'(ZgZ'&Z'A(f)(X, b)) &
ZA(f)9(X,b)

s o<, >=¢
This is trivial because qIS has products, and hence < 7,7’ >=d.

|
Ordering the arrows in gIS as before, this theorem can be strengthened.
Theorem 59 qlS is an ordered semi-CCC with surjective pairing.
Proof: Composition in qIS is monotone. It is easy to check that < —,— > and
A(—) are monotone. Because qIS has products we have < 7,7’ >= id. Finally
id < A(e) is easy. u

5.3 Constructions in clS

Because qlS is an ordered semi-CCC we know that K(qlS) and K (qlS) are CCC’s
by theorem 53. Moreover, the proof of this theorem is constructive, and we can
translate the constructions in qlS to those of ¢IS and alS.
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Theorem 63 If U is universal for C, then idy is universal for K(C).

Proof: Suppose U is universal for C, and let f : A — A be an object of K(C). There
are arrows r € C(U, A) and s € C(A,U) such that ros = td4. It is clear that for €
K(C)(¢dy, f) and so f € K(C)(f,idy). Furthermore, forosof = fof = f =id;. ®

We shall define a countable gis U; such that each countable qis is a retract of
U;.
In general, there are two types of judgements which can be made about a qis A:

® D4, where p,(A) is true iff a € Domy
® gx, where gx(A) is true iff X ¢ Cony

A qis A can be completely described by judgements of these two kinds.

Now the tokens of U, (i.e. the elements of Domy;, ) will be these judgements. How-
ever, the tokens of an arbitrary A € qIS_, might be looked at as natural numbers,
because there is always an injective function u : Dom, — w. Hence, the tokens of
U; are of the following two sorts:

® p,,forn€w
o gn, for N € Py(w)

Technically, we take Domy, = wW Py(w), where (n,1) stands for p,, and (NV,2) for
gnN-

Let N W a be a finite subset of w ¥ Py(w), then N should represent a consistent set,
and o a set of inconsistent sets. Hence, N W « is consistent in U, iff these two pieces
of information do not contradict each other, i.e. VN’ € o(N' € N).

Theorem 64 The qis U; defined by

e Domy, = w (Py(w) - {0})

e NWa € Cony, & VN' € a(N'Z N)
is universal for qIS, 1.

Proof: It is clear that U; is a countable gis (note that the singleton {(0,2)} would
not be consistent!).

Let A be an object of qIS,, and x : Domy — w an injective function. Define
E:A—- U by

e XE(n,1) ¢ Jda € X(u(a) =n)
¢ XE(N,2) & u~}(N) g Cony

n fact Uy is similar to the well-known universal domain 7% ([10])
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Define R : U; — A by
e NWaRa & (u(a) € N)&{N'|maz(N') < p(a)dep=(N') € Cony} C a

It is easy to prove that E, R are qam, and that Ro E = id,. |

Corollary 65 The gis U, is universal for clS,,.

It is more difficult to find an universal information system which is based on judge-
ments giving positive information, i.e. judgements that state that certain sets are
consistent. We consider the following kind of judgements:

® Da,a, Where p;o(A) is true iff a € Domy and VX € a(X € Con,)

Note that in one judgement we can declare more than one set to be consistent.
Basically, the qis U; has these judgements as tokens. We take Domy, = wXx PPy (w),
where < n,a > stands for ppq. A finite subset {< ni,01 >,...,< ny,am >} of
w X PsPs(w) denotes the set N = {ny,...,n,,}. Hence, it is consistent iff each
subset of N is declared to be consistent,i.e. VI C {1,...,m},|I| > 13 € I({n,|j €
I } S a.-).

Theorem 66 The ¢is U, defined by
e Domy, = w X P;Ps(w)

o {<ni,1>,...,<Np,am >} € Cony, &
VIC{1,...,m},|I| >1 i€ I({n;|j € I} € o).

is universal for qlS,.

Proof: It is clear that U, is a countable qis. Let A be a countable qis, and y :
Dom, — w an injective function. Define E : A — U, by

¢ XE <n,a >4 Ja€ X(n=pu(a)ka = {N'|maz(N') < n&u (N') € Con,}
Define R : U; — A by

o {<nm,m;>,...,<np,0m >}Ra &
Fi(pu(a) = ni&a; = {N'|maz(N') < n;&p~1(N') € Cony}

It is easy to check that E, R are qam, and that Ro F = id,. [ |

Corollary 87 The qis U, is universal for clS,.
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Appendix
A Notation

Category Objects Arrows

Dcpo dcpo’s continuous functions

Cont continuous dcpo’s ‘ continuous functions

BCCont bounded complete continuous dcpo’s continuous functions

Alg algebraic dcpo’s continuous functions

BCAlg bounded complete algebraic dcpo’s  continuous functions

Qd qualitative domains continuous functions

clS continuous information systems continuous approximable mappings

alS algebraic information systems algebraic approximable mappings

qlS qualitative information systems qualitative approximable mappings
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e Terminal object

The terminal object in clS is given by the terminal object in qlS, with as
entailment relation the arrow !7 which is the empty relation.

e Product
The product of two cis A, B in clS is given by their product in qlS, together
with the entailment relation given by <t4 ox,lg on’ >. If we write this out
we find that X WY Fapc e ((c=(a,))AX Faa)V(c=(b,2)AY Fpb)).
The first projection p: Ax B — AinclS is given by 4 o7, hence X WY pa &
X F4 a. The second projection is defined analogously.

e Exponents
The exponent of two cis A, B in ¢I§ is given by their (semi-)exponent in qlS,
together with the entailment relation given by A(F4 oe o (¢dasx Fp)). If
we write this out we find that F Fga (X,b) & {V|3X'((X',b) € F&X 4
X"} kb
The evaluation e : B4 x A — B is given by k4 oe o (id4sx Fp), hence
Fy Xeb & F lpa (X,0). The operation A(=) in clS is the same as in qIS.

The constructions in alS are the same as those in clS.

6 TUniversal Information Systems

Intuitively, an information system U is universal for a certain category C of infor-
mation systems iff U € C and each A € C can be "embedded” in U.

Definition 60 Let A, B be objects in a category C, then B is a retract of A iff there
are arrows r € C(A, B) and s € C(B, A) such that r o s = idg. In this case r is
called a retraction.

Definition 61 Let U € C, then U is universal for C iff each A € C is a retract of
U.

Example 62 Let Set,, be the category of countable sets and functions. A function
is a retract iff it is injective. Hence, the set of natural numbers w (and in general
every infinite countable set) is universal for Set,,.

It is clear that to find universal information systems we have to set a bound on the
cardinality. If C € {clS,alS,qlIS}, then C, denotes the full subcategory of C with
as objects information systems A such that Domy is countable. As in the previous
sections, these countable information systems correspond to the various kinds of
domains with a countable basis Bp.

We are interested in universal information systems for the category clS,. However,
just as in the previous section, we can work in the "easy” category qlS_, and translate
to clS,. In fact, the following theorem says that it is enough to find an universal
information system for qiIS,,.
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5.1 Semi Cartesian Closed Categories

A semifunctor is defined just like a functor, except that it need not preserve iden-
tities. Various definitions of category theory which apply to functors, can be gen-
eralised to semifunctors. For example [3] generalises the notion of adjunction to
the notion of semiadjunction. By using semifunctors rather than functors in the
definition of a Cartesian closed category (CCC) we get semi Cartesian closed cate-
gories (semi-CCC’s). Of course each CCC is a semi-CCC, just like each functor is
a semifunctor. We shall repeat the algebraic description of semi-CCC’s of [3].

Definition 52 A semi Cartesian closed category (semi-CCC) C is a category C with
the following data:

o An object T € C, and for each object A € C an arrow !4 € C(A,T).

o For each pair of objects A,B € C an object A x B € C, and arrows mpp €
C(A x B, A) and 7y g € C(A x B, B). Furthermore, for each pair of arrows
f,g9, with f € C(D, A) and g € C(D, B), an arrow < f,g >€ C(D, A x B).

o For each pair of objects A,B € C an object BA € C, and an arrow egp €

C(BA x A, B). Furthermore, for each arrow f € C(D x A, B) an arrow A(f) €
C(D, B4).

satisfying the following equations (omitting subscripts):
1. o f=!
.m0 < f,g>=f

.wlo< fig>=g

.0 < A(f)og,h>= fo< g,h >
. A(fo<gom,m>)=A(f)og

2
3
4. < f,g>oh=< foh,goh>
5
6
7. eo< m,x' >=¢

A semi-CCC C has finite products iff it satisfies < 7,7’ >= id and !z = idy. This
means that A x B is the categorical product in C, and that T is a terminal object.
If C also satisfies A(e) = id, then C is a CCC. ([7]).

The Karoubi-envelope transforms various semi notions to corresponding (normal)
notions. For example, if we apply the Karoubi-envelope construction to semifunctors
and semiadjunctions then we get functors, resp. adjunctions.

Theorem 53 If C is a semi-CCC, then K(C) is a CCC.
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2.
3.

fXCzanda<VX,thena€z.

If a € z, then there is a finite X C  such that a < \V X.

Theorem 36 Let D be a bounded complete continuous dcpo. The continuous func-
tion 8p : Pt(Rep(D)) — D : z + \/z has inverse ep : D — Pt(Rep(D)) : d —
Bp(d) and is natural in D.

Proof:

ép is a continuous function.

Define for an arbitrary element z the set S, = {V X|X C z, and X is finite }.
The set S, is directed, hence \/ S, exists, and \V S, = \/ z, hence \/ z exists. It
follows that §p is well-defined. It is easy to check that §p is continuous.

€p is a continuous function.
We check that ep(d) is an element of Pt(Rep(D)).

1. If X C ep(d), then Vd' € X(d' <« d), hence Vd' € X(d' < d), hence X is
bounded by d.

2.If X C ep(d) and ¢ « VX, then a € VX < d, hence a « d, and
a € ep(d).

3. If a € ep(d), then a < d, hence by the weak interpolation theorem there
exists an a’ such that a €« @’ <« d.

It is easy to check that ¢p is continuous.

5D O€p = ZdD
We have:
ép(ep(d)) =
dVBD(d) =

€D © 6p = tdpy(Rep(D))

We have:

en(6p(z)) =

ep(Vz) =

Bp(V z)

We have to show that this set is equal to . Suppose a € z, then there exists
a finite X C z such that ¢ €« V X. Hencea €« Y X € \/z, and a < \/ z. For
the reverse inclusion suppose a < \/z. Because \Vz < \ S, there is a finite
X C z such that a < \VX. But for each b € X there exists an Y; C z such
that b < VY. Take Y = |J{Y3|b € X}, then bk VY; < VY for each b € X,
hence b « VY, hence VX <« VY. It follows that « « VY with Y C «z,
hence a € z.
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® V40 pia = IRep(Pe(a))
We have:
avy o palX] &
Y (apsY&Y v4[X]) &
(Y € Va&(X] < [Y]) &
X]<Vea &
alpep(pe(ay) [ X]

o ppovg=1I,
We have:
Ypusovasa &
Ja(Ypaakavpa) &
Ja(Va < [Y]&a € Va) &
a€fY] &
Ytas
YIsa

® L4 is natural in A.
Let f : A — B be a cam. We have to show that pg o Rep(Pt(f)) = f o pa.
First we consider Rep(Pt(f)).
aRep(Pt(f))[Y]
[Y] < Pt(f)(Va) &
3Z([Y] C [2]&Z C PH(f)(Va)) &
3z([Y] C [2]&2 C {bEX C V a(Xf8)})
We have:
a(pp o Rep(PH(f)))¥ «
3B(cRep(Pt(f))B&Busl) &
36, 2(Z C {bAX C V(X f8)}&V B C (2} €V B) &
((=): Vb€ 23X, C Va(Xpfb). Take X = [J{Xs|b € Z}, then X C Va,
hence X is consistent. X C X and X fb for each b € Z, hence X fb. It
follows that X fZ. Furthermore, & € \/ 8 C [Z], hence Z | ¥/, hence X f¥'.
(<=): Suppose 3X(X C Va&X fb'). There is an Y such that X fY | ¥/, and
hence there is an Z such that XfZ + Y  ¥'. Take 8 = {[Y]}.)
IX(X CVa&XfV) &
AX(apa X&X f¥) &
o(f o pa)b'.

We consider Pt(Rep(D)), with D a bounded complete continuous dcpo. A point

z € Pt(Rep(D)) is an element of Rep(D). Hence z is a subset of the basis of D
satisfying the following:

1. If X C z and X finite, then X is bounded.
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e §p is natural in D.
Suppose f : D — E is a continuous function. We have to show that ég o
Pt(Rep(f)) = f o bp.
6e(Pt(Rep(f)(z)) =
6e({e|3X C z(XRep(fe)} =
6e({e|3X Cz(e < f(VX))}) =
V({el3X Cz(e < f(VX))}) =
V{f(VX)IX Cz} =
f(VS:) =
fVz) =
f(ép(z)).

3.3 Entailment consistency

There is a subcategory of cIS which is equivalent to the whole category ciS.

Definition 37 A cis A is entailment consistent iff it satisfies
VX € ConsVa € Domus(X Faa= X U {a} € Cony)

Define clS,.. as the full subcategory of cIS with as objects the entailment consistent
cis. clS,. is a subcategory of clS.

Example 38 Let A be the following cis:
¢ Domy =[0,1]
e Conyg = {X|X C[0,1)&1 & X&X finite } U {{1}}
e Xhtqga=a< VX

The cis A is not entailment consistent. For ezample {1} k4 0, but {0,1} is not
consistent.

For a entailment consistent cis clause 4 in the definition of a cis is unnecessary.

Theorem 39 Clause 4 in the definition of a cis is the result of clause 2,5 and
entailment consistency.

Proof: Suppose X | Y, then we prove by induction to the size n of Y that X UY €
Cony4 using only clause 5 and entailment consistency.

basis f n =0,then X UY =X U0 =X € Cong,.
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An algebraic approximable mapping is fully determined by giving the pairs of the
form X f{b}. Hence we can give an alternative definition of an algebraic approx-
imable mapping as a relation between Cong x Domp.

Definition 17 An algebraic approximable mapping (aam) f between algebraic in-
formation systems A and B is a relation f C Cong X Domp which satisfies:

1. XfY =Y € Conp
2. AX,Y (X' Fa X&X FY&Y Fp b) = X'fb
where we abbreviate Vb€ Y(X fb) as X fY.

The identity aam I, : A — A is defined as XIqa & X 4 a. Let f: A — B and
g : B — C be aam, then their composition go f : A — C is defined as X(g o f)c :=
Y (X fY&Y gc). alS is the category with as objects algebraic information systems
and as arrows algebraic approximable mappings.

We shall not go into the precise manner in which an algebraic information system
presents a Scott domain, and in which we can transform an arbitrary Scott domain
into an algebraic information system (see [8, 11]). In the next section a more general
situation will be considered.

Theorem 18 alS ~ BCAlg

3 Continuous information systems

In this section we define the category of continuous information systems and approx-
imable mappings. Continuous information systems are concrete representations of
bounded complete continuous dcpo’s. This correspondence is similar to that between
algebraic information systems and Scott domains.

3.1 The category clIS

Definition 19 A continuous information system (cis) A is a tuple < Dom 4,Cona,Fa>
where

e Domy, is a set, the set of tokens,

o Cony C Py(Domy,), the set of consistent sets,

o FoC Conys x Domy,, the entailment relation,
satisfying the following clauses (X,Y € Py(Dom,)):

1. 0 € Cony

2. XCY€Conyp=Xe€Cony



1

Scott domains (i.e. bounded complete algebraic dcpo’s) are a special kind of posets
which are used in the mathematical semantics of programming languages. In general,
Scott domains are rather abstract structures. In [11] an alternative type of structures
was defined, called information systems. These information systems are much more

Continuous Information Systems

R. Hoofman
Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
July 31, 1990

Abstract

In this paper we generalise the notion of algebraic information system
([8],[11]) to that of continuous information system. Just as algebraic infor-
mation systems are concrete representations of bounded complete algebraic
dcpo’s (Scott domains), continuous information systems are concrete repre-
sentations of bounded complete continuous dcpo’s.

A certain subclass of information systems, consisting of the so-called qual-
itative information systems, which corresponds to the class of qualitative
domains ([1]), is basic in the sense that all other information systems are
generated by this class. It follows that the category of bounded complete con-
tinuous dcpo’s and continuous functions is equivalent to the Karoubi-envelope
of the category of qualitative domains and continuous functions.
Furthermore, we show how certain constructions on qualitative information
systems (such as product and function space) can be "translated” to construc-
tions on continuous information systems. Among other things, it is proven
that the category of qualitative domains and continuous functions is a semi
Cartesian closed category ([3]). Finally, two universal information systems
are defined.

Introduction

intuitive than Scott domains.

However, it was proven that information systems are concrete representations of
Scott domains. Each Scott domain can be presented as an information system, and
the other way round each information system can be converted into a Scott domain.
Technically, there is an equivalence of categories between the category BCAlg of Scott
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domains and continuous functions and the category alS of information systems ([8]).
Some important data types can not be represented as Scott domains. For example,
the set of real numbers with the usual ordering is not a Scott domain. Therefore
the class of Scott domains is widened to the class of continuous Scott domains (i.e.
bounded complete continuous dcpo’s [2]). In this paper we shall define continuous
information systems, which are concrete presentations of continuous Scott domains.
To avoid confusion the usual information systems will be called algebraic information
systems. Just as in the algebraic case, we are able to prove that the category
BCCont of continuous Scott domains and continuous functions and the category clS
of continuous information systems are equivalent.

The category alS is a full subcategory of clS, corresponding to the inclusion between
BCAlg and BCCont. In fact, algebraic information systems are exactly the reflezive
continuous information systems.

Another important subcategory of clIS (and alS) is the category qIS of qualitative
information systems. These structures are more simple than general information
systems. It is easy to show that qualitative information systems correspond to
qualitative domains ([1]), i.e. there is an equivalence of categories between the
category Qd of qualitative domains and continuous functions and qlS.

alS ~ BCAlg

Qd ~ qlS

clS ~ BCCont

The category qlS is basic in a special sense: both cIS and alS can be constructed
out of qlS in a very natural way. Technically, we shall prove that the Karoubi enve-
lope K(qlS) is equivalent to clS, and that the Closure Karoub: envelope K.(qlS) is
equivalent to alS. Among other things, this implies that the Karoubi envelope of the
category of qualitative domains Qd is equivalent to the category of Scott domains
BCAlg. Hence qualitative domains underlie Scott domains in a certain sense.

In a way this seems strange, because the category Qd is for example not even Carte-
sian closed. For that reason in [1] the Cartesian closed subcategory of Qd was
considered with the same objects as Qd, but with stable continuous functions as
arrows. However, we shall see that Qd comes very close to being a Cartesian closed
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