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Abstract

In this paper data structures and algorithms are presented to efficiently
maintain the 2- and 3-edge-connected components and the 2-vertex-connected
components of a graph, under insertions of edges in the graph. At any
moment, the data structure can answer the following type of query: given
two nodes in the graph, are these nodes 2- or 3-edge-connected or 2-vertex-
connected. Starting from an “empty” graph of n nodes, the algorithms run in
O(n+m.a(m,n)) time, where m is the total number of queries and edge inser-
tions. The data structure allows for insertions of nodes also. Besides, a linear
time algorithm is presented for maintaining the 2-edge-connected components
in case the initial graph is connected.

1 Introduction

Dynamic algorithms are known for several graph problem. Examples are e.g. com-
puting transitive closures (cf. [12, 13, 14], or f. [22] for planar graphs), minimal
spanning trees (cf. [4, 5]), incremental planarity testing (cf. [3]), maintaining short-
est paths (cf. [23]) and nearest common ancestors in trees ([8]).

In this paper we consider the problem of maintaining the 2- and 3-edge-connected
components and the 2-vertex-connected components of a graph under insertions
of edges (and vertices), where k-edge-connectivity and k-vertex-connectivity are
defined as follows. Let G be an undirected graph. Two nodes z and y are called

*This research was partially supported by the ESPRIT Basic Research Action No. 3075 of the
E.C. (project ALCOM).



k-edge-connected in G (k > 1) if after the removal of any set of at most k — 1
edge(s) z and y are (still) connected (i.e., there is a path between z and y). Nodes
z and y are k-vertex-connected if either there is no edge between z and y and after
the removal of any set of at most k — 1 node(s) = and y are (still) connected or
there are [ > 1 edges between z and y and after the removal of any set of at most
m < min{k — 1,1} edges and k — m — 1 vertices, z and y are (still) connected.

In [18] a data structure with algorithms is presented for maintaining the 2- and 3-
edge-connectivity relation of a graph. The algorithm starts from an “empty” graph
of n nodes (i.e., a graph with no edges) in which edges are inserted one by one
and where at any time for any two nodes the query whether these nodes are 2-
or 3-edge-connected can be answered in O(1) time. The insertion of e edges takes
O(nlogn + €) time altogether. In this paper we present a data structure, called
fractionally rooted tree. We show that by means of this data structure the above time
bounds can be improved for maintaining the 2- and 3-edge-connected components of
a general graph, i.e., starting from an “empty” graph of n nodes. The solution has
a running time of O(n + m.a(m,n)) where m is the number of edge insertions and
queries, and where a(m, n) denotes the inverse Ackermann function. We also give a
solution for 2-vertex connectivity with the same time bounds. Recently, Westbrook
and Tarjan [28] independently obtained the same time bounds for 2-edge/vertex-
connectivity. The methods though are quite different. Very recently, Galil and
Italiano [10] independently obtained results with these time bounds for a special
case of the problem of maintaining 3-edge-connected components of graphs, viz., in
which the initial graph is connected. Finally, we also present a linear time solution
for maintaining 2-edge-connected components in case the initial graph is connected.
This solution uses the linear RAM-algorithm of [9] for Union-Find problems.

The paper is organized as follows. Section 2 contains the preliminaries. In Section 3
the specifications of the operations on fractionally rooted trees are given. In Sec-
tion 4 the maintenance of 2-edge-connected components is considered. In Sections 5,
6 and 7 the fractionally rooted tree is presented. To be precise, in Section 5 observa-
tions and ideas are given, in Section 6 division trees are described, being the building
elements for fractionally rooted trees, and in Section 7 the fractionally rooted trees
are presented. The complexity is considered in Sections 8 and 9. The results are
presented in Section 10. In Section 11 the maintenance of 3-edge-connected com-
ponents is considered. Finally, in Section 12 the maintenance of 2-vertex-connected
components is considered.



2 Preliminaries

2.1 Graphs and Terminology

Let G =<V, E > be an undirected graph with V the set of vertices and FE the set of
edges. The edge set E consists of edges with the incidence relation in the following
form: an edge is a triple (e,z,y), where e is the edge name and z and y are the end
nodes of the edge. The order of the end nodes z and y of an edge is not relevant
(hence, (e,z,y) = (€,9,%)). Moreover, all edge names are required to be distinct.
Therefore we can denote an edge by its name only. A graph is called empty if it
consists of nodes without edges.

We use the following notions (see also [11]). Two nodes are called adjacent if there
is an edge with these nodes as end nodes. A path between two nodes z and y is
an alternating sequence of nodes and edges such that r and y are at the end of
this sequence and each edge is bracketed by its end nodes z and y. However, we
often consider a path to consist of the (sub)sequence of the nodes only. A path is
nontrivial if it contains at least 2 distinct nodes. A path is simple if no node occurs
twice in it. Two paths are called edge disjoint if they do not have a common edge.
Two (different) paths are called vertez disjoint if they do not have a common vertex
except for their end vertices. Two nodes are called connected if there exists a path
between them. A (elementary) cycle is a path of which the end nodes are equal and
in which no edge occurs twice. A cycle containing just one distinct node is called
trivial, otherwise it is called nontrivial. A cycle is simple if there is no node that
occurs twice in the sequence except for the end nodes.

We extend the terminology. Consider a tree T'. A set of nodes of T induces a subtree
of T if these nodes are the nodes of a subtree of T. A set of edges of T' induces a
subtree of T if these edges and their end nodes are the edges and nodes of a subtree

of T.

Suppose the vertex set of T is partitioned into disjoint subsets, where each set
induces a subtree of T. Suppose each induced subtree of T is contracted to a new
node, called contraction node. We say that the subset that induces that subtree
is contracted to that contraction node. We say that a node (or an edge) in such
a subtree is contracted to (or is contained in) that contraction node. For an edge
(e, z,y) that connects two different induced subtrees that are contracted to the nodes
p and g, the edge (e, p, q) is called the contraction edge of (e,z,y). Edge (e, z,y) is
called the original (in T') of (e, p, q). (We give an edge and its induced edge the same
name e.) A tree CT consisting of the contraction nodes and the contraction edges
is called a contraction tree of T and T is called to be contracted to CT. For a class
D of edges in T, the class of edges in CT induced by D consists of the contraction
edges in CT that have their originals in D.



If the tree T is contracted several times resulting in a tree CCT, then we say that
a node z € T is contracted to (or is contained in) contraction node ¢ € CCT if
the consecutive contractions result in node ¢ is we start from node z (i.e., we make

the relation transitive). Similarly we make the relation contraction edge a transitive
relation.

Now let tree T be rooted. The father node of an edge is the end node of the edge
that is closest to the root. Then father edge of a node z is the edge incident with
and with the father node of z. The father edge of an edge is the father edge of the
father node of that edge. For a subtree S of T the mazimal node of that subtree
is the (unique) node that is nearest to the root. We call an edge of subtree S a
mazimal edge if it is incident with the maximal node of S.

When we consider classes (sets) of nodes in a graph, we often refer to a class of
nodes that is represented by a node ¢ by "class c”.

A singleton class or set or a singleton tree is a class, set or tree that consists of one
element or node respectively.

Notation 2.1 For a set S, |S| denotes the number of elements in the set. For a
tree T, |T| denotes the number of nodes in the tree. For g list L, |L| denotes the
number of elements in the list. If to each element in a list L a sublists is attached,

then (still) |L| denotes the number of elements in the list (without considering the
sublists).

2.2 Connectivity

We give the definitions for k-edge/vertex-connectivity.

Definition 2.2 Nodes z and y are k-edge-connected (k > 1) if after the removal of
any set of at most k — 1 edge(s) z and y are (still) connected. If the removal of a
set of edges separates the vertices r and y (i.e., z and y are not connected), then
that set is called a cut edge set for z and y.

Definition 2.3 Two non-adjacent nodes x and y are k-vertez-connected (k > 1) if
after the removal of any set of at most k — 1 vertices T and y are (still) connected.
Two adjacent nodes r and y with | edges that have = and y as end nodes are k-vertez-
connected (k > 1) if after the removal of any set of at most m < min{k—1,1} edges
and k —m — 1 vertices, z and y are are (still) connected. If the removal of a set of
vertices separates the vertices z and y (as described in the cases above), then that
set is called a cut set for ¢ and y.

The following lemma due to Menger (cf. [21]) characterizes pairs of k-edge-connected
vertices.



Lemma 2.4 [Menger [21]] Two nodes z and y are k-edge-connected iff there exist
k edge-disjoint paths between x and y. Two nodes z and y are k-vertez-connected
iff there exist k different vertez-disjoint paths between z and Y.

It is easily seen that we may require that the paths referred to in the lemma are
simple paths, without affecting the lemma. Furthermore, it is easily seen that if two
nodes are k-edge-connected or k-vertex-connected, then they are k’-edge-connected
or k’-vertex connected for any k' with 1 < k' < k respectively. Note that for k = 2,
two nodes are 2-edge-connected iff they lie on a common elementary cycle, and two
nodes are 2-vertex-connected iff they lie on a common simple cycle.

Lemma 2.5 k-edge-connectivity is an equivalence relation on the set of nodes of a
graph.

The 2-edge-connected components of a graph G are the subgraphs of G that are
induced by the equivalence classes of nodes w.r.t. 2-edge-connectivity. To be precise,
2-edge-connected components are defined as follows.

Definition 2.6 Let G =< V,E > be a graph. Let C C V be an equivalence class
w.r.t. 2-edge-connectivity. Then < C,{(e,z,y) € Elz,y € C} > is a 2-edge-
connected component of G (induced by C).

In the sequel, we quote some lemmas from [18].

The following lemma is based on the observation that for two nodes that are k-
edge-connected (k > 2), there exist k edge-disjoint simple paths between them, and
hence, all the nodes on these paths are 2-edge-connected.

Lemma 2.7 Let G =< V,E > be a graph. Let H be a 2-edge-connected component
of G. Then H is a 2-edge-connected graph. Moreover, nodes z,y € H are k-edge-
connected in H iff they are k-edge-connected in G (k>1).

For an equivalence class C of nodes w.r.t. 3-edge-connectivity, we can define
the notion of a 3-edge-connected component (induced by that class) such that
Lemma 2.7 holds for 3-edge-connectivity too. We will not give the formal definition
here, but only state that it contains the edges of the graph that have both end nodes
in C, together with for each pair of nodes z and y in C, a number of new edges
between them that equals the maximal number of nontrivial edge-disjoint paths

between z and y that intersect with C at z and y only, and that intersect with
V\C.

Henceforth, we will usually call an equivalence class for 2-edge-connectivity a 2ec-
class, and an equivalence class for 3-edge-connectivity a 3ec-class.

By means of Lemma 2.7 the following corollary easily follows.
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Corollary 2.8 Let G be a graph. Let C; be a 2ec-class and let C3 be a 3ec-class of
G. Then either CoNCs =0 or Cs C Cy. Let H be the 2-edge-connected component
of G induced by C,. If C5 C C, then Cs is a 3ec-class of H.

Stated differently, each 3ec-class of G is a 3ec-class of some 2-edge-connected com-
ponent of G and vice versa.

Figure 1: The 2- and 3-edge-connected components of graph G.

Graph G 2-edge-connected 3-edge-connected
components components

In the observations in this paper, like in (18], we will represent the 2ec-classes and

the 3ec-classes of a graph by means of a “super” graph. To this end, we introduce
the notion of a class node.

Definition 2.9 Let G =< V,E > be a graph. Let V be partitioned into classes
and let some new node be related to each class, where each such node is called the
class node of the class which it represents. Let cc(z) be the class node of the class
containing node = (z € V). Then the induced node set cc(V), the induced edge set
cc(E') of a set of edges E' C E and the induced graph cc(G) are given by

ce(V) = {cc(z)|z € V}

ce(E) = {(e,cc(x), ce(y))l(e, 2,y) € E' A ce(z) # ccly)}
ce(G) = <ce(V),cc(E) >

Lemma 2.10 Let G =< V,E > be a graph and let k be a positive integer. Let V
be partitioned in classes and let some (new) distinct node be related to each class.
Suppose that any two nodes x and y that are in the same class are k-edge-connected.
Let cc(z) be the class node of the class in which = is contained (x € V). Then for
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all z,y € V and for all k' with1 < ¥ <k, z and y are k'-edge-connected in G iff
cc(z) and cc(y) are k'-edge-connected in cc(G).

In other words: “internal” edges of classes of k-edge-connected nodes are not relevant
for cut edge sets up to size k — 1.

We call a set S of at least 2 nodes a 2vc-class if the nodes are 2-vertex-connected
and if there does not exist a node not in S that is 2-vertex-connected with the
nodes of S (i.e., the class is maximal). Furthermore we define a quasi class to be
any set of two nodes that are the end nodes of a cut edge.

The 2-vertez-connected components of a graph G are the subgraphs of G that are
induced by the 2vc-classes of nodes. (Note that the 2-vertex-connected components

and the subgraphs induced by quasi classes as we defined them are usually called
the blocks of a graph.)

2.3 The Ackermann Function

The Ackermann function A is defined as follows. For i,z > 0 function A is given by

A(0,z) = 2z forz >0
A(z,0) = 1 fori > 1 (1)
A(l,z) = A(1-1,AG,z—1)) fori>1, z> 1.

The row inverse a of A and the functional inverse a of A are defined by

a(t,n) = min{z > 0|A(i,z) > n} (120, n>0) (2)
a(m,n) = min{i > 1|A(i,4[m/n]) > n} (m>0,n>1) (3)
Here we take [0] = 1. The above two definitions correspond to those given in

[7, 8, 15, 17]. It is easily shown that the differences with the definitions given in
[25, 27] are bounded by some additive constants (except for a(0, n) and a(1,n)). We
quote some results from [15].

Firstly A(:,1) = 2, A(5,2) = 4, A(i + 1,3) = A(i,4) and A(: +1,4) = A3, A(Z,4))
for 1 > 0.

Lemma 2.11 a(¢, A({,z)) =z (: >0, z > 0)

Lemma 2.12 Let AO)(i,y) := y and ACH(i,y) := A(:, AC)(i,y)) for i,z,y > 0.
Then A(i,z) = A®Ni—1,1) fori>1, z > 0.

Let a®(i,n) := n and aU)(i,n) := a(i,a@(i,n)) fori,j > 0, n > 1. Then
a(i,n) = min{jla¥)(i — 1,n) = 1} fori,n > 1.



By Lemma 2.12 it follows that for every i, A(: + 1,z) is the result of  recurrent
applications of function A(3,.). Hence we have

A(0,z) = 2z
A(l,z) = 27

22"2 } z two’s
A2,z) = 2

2y 922H WO tyog
2y 2% } . two’s

22% }2 two’s

A(3,z) = 2 _-
x braces

and
a(O’ n) = l—%-l
o(l,n) = flogn] = min{j|[#] =1}
a(2,n) = log*'n = min{j”log(’_) n} =1}
a(3,n) = min{j| log*m n=1}

where as usual, the superscript (j) denotes the function obtained by j consecutive
applications.

Lemma 2.13 a(m,n) = min{i > 1a(i,n) < 4.[m/n]}.

2
. 7Y 65536 two’
Finally, note that a(m,n) < 3forn < 22 } 5536 two’s

all practical values of n).

(which will be the case for

For simplicity, we extend the Ackermann function as follows:

A(i,—1) = 0 for all § > 0.

2.4 Representation and Data Structures

The algorithms and data structures that we present (except for the algorithm in
Subsection 4.2) can be implemented on both a Pointer Machine and a Random
Access Machine (RAM) with the same complexity. We first informally describe the
main aspects of these models of computation. (For a detailed description we refer
to [24, 26] and [20], respectively.) A Pointer Machine is a machine of which the
memory consists of (equal) records. A record in memory is only accessible by means
of a pointer to that record, which is a specification of that record (e.g., a pointer
can be seen as the internal address of the record in memory). Fields of a record may
contain either data values or pointer values. However, no arithmetic on pointers is
possible: the only operations on pointers are assignment and testing for equality.
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Therefore, a record can not be obtained by calculation of its address but only by
means of following a sequence of pointers. A Random Access Machine (RAM) is a
machine of which the memory consists of storage locations that are numbered 0,1,2,
... . W.lo.g. we interpret the locations as records also, where the values in the fields
are integers. A record in memory is accessible by means of its number. However,
the integer that can be stored in a field is limited to a size O(log n) (i.e., it consists
of O(log n) bits), where n is the problem size (i.e., the number of items considered
in the problem, like the number of nodes and edges in a graph).

A mentioned above, our algorithms and data structures (except in Subsection 4.2)
can be implemented on both a Pointer Machine and a RAM with the same com-
plexity. To be precise, the memory that is used by the implementation consists of
records that can only be accessed by means of pointers on which no arithmetic is
performed, where each record contains a bounded number of fields (that may contain
pointers), and where each field contains O(log n) bits. This kind of implementation
of an algorithm and its associated data structures is called a pointer/logn solution.

In order to deal with the maintenance problem we represent a graph as follows. All
nodes and edges of a graph are represented in memory by records, which we will
consider to be the actual nodes and edges. ILe., we do not distinguish between a
vertex (or an edge) and the record that represents it. Each vertex has an incidence
list, that conmsist of pointers to all edges that are incident with that vertex. Also,
each edge contains pointers to its two end nodes. (Hence, the vertices that are
adjacent to some vertex v can be obtained by the incidence list of v and by the
pointers from edges to their end nodes.) An edge that has to be inserted is given by
its record with the pointers to its end nodes as input for the algorithms. Moreover,
we will often not distinguish between a pointer to a record and the record itself.

Lemma 2.5 states that k-edge-connectivity is an equivalence relation. In our algo-
rithms we need operations on equivalence classes like joining classes and determining
in which class an element is contained. This problem is condensed in the Union-
Find problem. Many solutions have been proposed for the Union-Find problem (cf.
[15, 25, 27]): these solutions all take O(n 4+ m.a(m,n)) time for all Unions and m
Finds on n elements, which is optimal [6, 16]. We call such a structure an a-UF
structure.

In the sequel, the Union-Find structure is used to maintain the equivalence classes
for connectivity, 2-edge-connectivity and 3-edge-connectivity. These structures are
denoted by UF,, UF,.. and UF;,. respectively, where the corresponding Finds on
elements z are denoted by c(z), 2ec(x) and 3ec(x) respectively. Note that this can
easily be implemented by reserving a dedicated field for each type of (equivalence)
set in each of the considered nodes, where this field either contains (sub)field(s)
for the corresponding Union-Find structure, or where it contains a pointer to a
representative record of the node for the considered Union-Find structure. (This is
not made explicit in the algorithms.)



We consider the connectivity problem for edge insertions. Let G =< V,E > be a
graph. Suppose a sequence of edge insertions in G and queries whether two nodes are
connected is performed. The equivalence classes of connected nodes are represented
by a Union-Find structure on these nodes. The class to which node z belongs has
¢(z) as its name. Hence, nodes z and y are connected iff c(z) = c(y). If an edge
(e,,y) is inserted, there are two cases. If ¢(z) = ¢(y), then nothing needs to be
done. Otherwise, if ¢(z) # c(y) then x and y are not connected yet and the (old)
equivalence classes ¢(x) and c(y) are joined. Since apart from these Unions each
insertion takes O(1) time, it follows that all insertions and queries can be performed
in O(|E|) time plus the time needed for the Union and Find operations. In the
sequel, we use this algorithm for maintaining connectivity. However, we will not
make the above computations explicit in the future algorithms for maintaining 2 /3-
edge-connectivity and 2-vertex-connectivity.

For maintaining 3-edge-connectivity we also need a structure for a problem that is
closely related to the Split-Find problem (7, 17], viz. the Circular Split-Find problem
[17], which is given as follows. Let U be a collection of nodes, called elements.
Suppose U is partitioned into a collection of cyclic lists and suppose to each list
a (new) unique node is related, called set name. We want to be able to perform
the following operations: Find(z) and Split(x,y) (where = and y are in the same
list and z # y), i.e., given (pointers to) elements = and y, split the cyclic list that
contains z and y into two cyclic lists, viz. the part starting from .z up to but
excluding y and the part from y up to but excluding = and relate set names to the
two newly arisen cyclic lists. The occurring set names must satisfy the condition
that, at every moment, the names of the existing cyclic lists are distinct. In [17] fast
solutions for the Generalized Split-Find problem, especially the Circular Split-Find
Problem, are given which are optimal on pointer machines [16]. These solutions
closely correspond to the solutions in [7] for the ordinary Split-Find problem. The
solutions take O(n + m.a(m,n)) time for all Generalized (or Circular) Splits and m
Finds on n elements. We call such a structure an a-GSF structure. The Circular
Split-Find structure is used in [18]. It will not be used explicitly in this paper, but
we only chose appropriate Circular Split-Find structures when we apply the results
of [18].

2.5 Problem Description

The problems that we consider in this paper are as follows. Let be given a graph.
Then the following operations may be applied on the graph.

insert((e,x,y)): insert the edge (e, z,y) in the graph

2ec-comp(z): output the name of the 2-edge-connected component (2ec-class)
which contains z

10



3ec-comp(z): output the name of the 3-edge-connected component (3ec-class)
which contains z

Is2ve(z,y): output whether z and y are two nodes in the graph that are 2-vertex-
connected and output the name of the 2-vertex-connected component (2vc-
class) in which they both are contained (if any)

We call a problem the 2ec-problem if operations insert and 2ec-comp are considered,
the 3ec-problem if operations insert, 2ec-comp and 3ec-comp are considered and the
2vc-problem if operations insert and Is2vc are considered. Note that the query
whether 2 nodes are 2-edge-connected (or 3-edge-connected) can be performed by
means of two calls of 2ec-comp (or 3ec-comp), namely, one call for each node.

In addition, the above collection of operations can be extended with the insertion
of a new (isolated) node in the graph. We will consider this operation only in the
last steps of our solutions.

We call the insertion of an edge an essential insertion for a given problem, if in
the graph either the connectivity relation changes, or for the 2ec-problem, the 2-
edge-connectivity relation changes, or for the 3ec-problem, the 2-edge-connectivity
relation or 3-edge-connectivity relation changes, or for the 2vc-problem, the 2-
vertex-connectivity relation changes. An insertion is called nonessential otherwise.

3 Fractionally Rooted Trees: the Operations

We give a formal description of the operations supported by fractionally rooted trees,
without considering the data structure itself yet.

Let a forest F be given. Suppose the collection of edges is partitioned into disjoint
classes such that each class induces some subtree of F'. Such a partition is called an
admissible partition.

Let z and y be two nodes in the same tree of F. Let P be the tree path between z
and y. We call a node z on tree path P an internal node of P if it is incident with
two edges of P that are in the same edge class. We call a node of P a boundary
node otherwise. Hence, a boundary node is either one of the end nodes z or y of
P, or it is a node for which its two incident edges on P are in different classes. A
boundary edge set for a boundary node z on P is a set of (0, 1 or 2) edges that
contains for each edge e of P that is incident with 2, exactly one edge e’ which is
incident with z and which is in the same edge class as e. (See Figure 2, where path
P is drawn with heavy lines, C; and C; are two different edge classes, {e;,e;} C C;
and {e3,eq} C Ca, and where {e1, €3}, {€1,e4}, {€2, €3}, and {e2, €4} are boundary
edge sets for z on P.) A boundary list for the two nodes z and y is a list consisting
of the boundary nodes of P, where each boundary node has a sublist that contains
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Figure 2: Boundary edge sets
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a boundary edge set for it on P. An edge class occursin a boundary list if an edge
of it occurs in a sublist in it. (Note that in a boundary list for z and y with = # y,
all nodes have a sublist with two edges except for nodes z and y that each have one
edge in their sublist. The boundary list for z and y with z = y consists of node z
with an empty sublist.) We say that z and y are related nodes, denoted by z ~ y,
if = y or if all the edges on P are in the same edge class. (Hence, z ~ y iff z and
y are the only nodes in a boundary list for z and y.)

A joining list J is a list of nodes with sublists of edges as follows. An edge class
occurs in list J if an edge of it occurs in a sublist of J. Let CJ be the collection
of edge classes occurring in J. It is required that the union of the classes in CJ
induces some subtree in F' (and hence yields a new admissible partition of the edge
set.) Moreover, the nodes in list J must be the nodes that are incident with edges
of at least two classes in CJ. For each node z in J , the sublist of z must contain an
edge for each class in C'J that contains an edge incident with z.

The following operations, called F RT-operations, may be performed on a forest F.

link((e,z,y)): Let z and y be nodes in different trees of forest F. Then link the
two trees containing z and y by inserting the edge (e, z, y).

boundary(z,y): Let z and y be in the same tree of F, with z # y. Then output
a boundary list for z and y.

joinclasses(J): Let J be a joining list. Then join all the edge classes of which an
edge occurs in the list.

equal-class-edges(z,y) : Return an edge incident with z and return an edge inci-
dent with y; these edges are in the same class if such edges exist. Return the
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names of the edge classes in which the edges are contained.

A call boundary(z,y) is essential if ~(x ~ y) and it is nonessential if z ~ y. (Note
that an essential call boundary outputs a boundary list with at least three nodes
and at least two edge classes occurring in it, and it outputs a boundary list with
two nodes and one edge class otherwise.)

An essential sequence is a sequence of calls of link, essential calls of boundary and
calls of joinclasses where every (essential) call boundary, returning a list BL, is
followed by the call joinclasses(J) such that the edge classes occurring in BL also
occur in J. (Note that by the definition of joining list this means that J consists
at least of the nodes in the boundary list BL that is output by boundary except
possibly for the end nodes in BL, where for each edge e in the sublist of z in BL
there is an edge e in the sublist of node z in J that is in the same edge class as e.)

A matching sequence is a sequence of calls of F RT-operations where the subsequence
of calls of link, essential calls of boundary and calls of joinclasses forms an essential
sequence.

4 Two-Edge-Connectivity

4.1 Graph observations

In this subsection we recall from [18] the observations for inserting edges in a graph.
Let G =<V, E > be a graph. The set V can be partitioned into equivalence classes
for 2-edge-connectivity . Recall that an equivalence class for 2-edge-connectivity
is called a 2ec-class. Let each 2-edge-connected equivalence class C be represented
by a new (distinct) node ¢, called the class node of C. Let 2ec(z) be the class node
of the 2-edge-connected class in which the node z is contained. We define the graph
2ec(G) as follows (according to Definition 2.9):

2ec(G) =< 2ec(V), {(e, 2ec(z), 2ec(y))|(e, z,y) € E A 2ec(z) # 2ec(y)} > .

Hence, 2ec(G) is the graph that is obtained if we contract each 2ec-class into one
(representing) class node. Since 2ec(V) represents the set of equivalence classes
for 2-edge-connectivity in G, it follows by Lemma 2.10 that 2ec(G) is a forest (cf.
Figure 3). An edge (e, z,y) in G is called an interconnection edge between (classes)
2ec(z) and 2ec(y) if 2ec(x) # 2ec(y). (Hence, the edges in 2ec(G) are the contraction
edges of the interconnection edges in G.)

We consider the 2-edge-connectivity relation under edge insertions by means of the
graph 2ec(G). Suppose a new edge (e,z,y) € E is inserted in graph G =< V, E >.
We distinguish three cases.
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Figure 3: Graph G and the corresponding graph 2ec(G).

%Ugﬁ.ﬁ:

Graph G Graph 2ec(G)

1. ¢(x) # c(y). Then by Lemma 2.10 2ec(z) and 2ec(y) are not connected in
2ec(G). Hence, (e,2ec(z),2ec(y)) connects two trees in 2ec(G) that have to
be joined into one tree.

2. 2ec(z) # 2ec(y) A c(z) = c(y). Then the edge (e,2ec(x),2ec(y)) arises as
an inserted edge in 2ec(G). Edge (e,2ec(z),2ec(y)) connects the class nodes
2ec(z) and 2ec(y) in a tree of 2ec(G) and a cycle arises. Hence, all class
nodes on the tree path P from 2ec(z) to 2ec(y) become 2-edge-connected in
2ec(G). By Lemma 2.10 all nodes in V' that are contained in the corresponding
classes become 2-edge-connected too. The update can now be performed in
the following way.

e obtain the tree path in 2ec(G) between 2ec(z) and 2ec(y).

e join all the classes "on” this tree path into one new class C’ and adapt
the related information.

3. 2ec(z) = 2ec(y) A c(z) = c(y). Then the edge (e,z,y) connects two nodes
that are 2-edge-connected in G, and insertion of this edge does not affect the
2-edge-connectivity relation (cf. Lemma 2.10).

4.2 Algorithms for Initially Connected Graphs

We consider the 2ec-problem in case the initial graph is connected.
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We represent the graph 2ec(G) by means of a spanning tree of G, denoted by ST(G).
Now, a 2ec-class induces a subtree in ST(G). This is seen as follows. Let the two
nodes z and y be 2-edge-connected. Then every node z that is on the tree path
between r and y is 2-edge-connected with z and y too. For, suppose that an edge is
removed from G. Then at least one of the tree paths between z and z or between y
and z is not affected. Moreover, there still exists a path between z and y in G since
z and y are 2-edge-connected. This yields that there still exists a path between z
and z and between 2z and y in G.

Since at any time, every 2ec-class induces a subtree of ST(G), and since the tree
ST(G) can be constructed in advance (i.e., the tree is not built on-line), we can
use the Union-Find algorithms of [9] to maintain these classes: this algorithm runs
in O(n + m) time for m Finds and n nodes for this special case of the Union-
Find problem. (It runs on a RAM but not on a pointer machine with this time

complexity.) Moreover, as remarked in [15], a Find can be performed in O(1) worst-
case time.

We give the algorithms in case the initial graph is a tree. Consider graph G that
initially is a tree (without additional edges). The initialisation of the data structure
we use is as follows: implement the tree as a rooted tree and initialise the Union-
Find structure of [9] accordingly. We recall from [9] that the name of a set in the
Union-Find structure is the (unique) node in the set that is closest to the root.

Suppose an edge (e, z,y) is inserted. Then we have two cases, according to the
above observations. If 2ec(z) = 2ec(y) then nothing needs to be done. Otherwise,
c(z) = c(y) A2ec(x) # 2ec(y). The tree path between 2ec(G) and 2ec(G) is obtained
like in [18] by traversing the root paths of 2ec(z) and 2ec(y) in 2ec(G) stepwisely in
an alternating way, i.e., by performing steps of the traversals of these root paths in
an alternating way, where a step consists of: obtain the node in ST(G) that is in the
current class and that is closets to the root, obtain its father and obtain the name
of the class in which it is contained. During this traversals, mark the encountered
class names and stop the traversals if one of the two path traversals encounters a
class name top that has been marked by the other traversal; path P between 2ec(z)
and 2ec(z) consists of the two parts of these root paths up to and including top.
Remove the marks. Then the classes on P are joined in the order of P (to meet the
conditions in [9]).

We consider the time complexity of the method as described for trees. A computa-
tion of a tree path P is done in O(|P|) time, since the traversed part P, of one of
the two root paths contains class nodes of P only, while the traversed part P, of the
other root path contains at most as many class nodes as P;: hence at most 2.|P|
class nodes are encountered in these traversals. Moreover, for each encountered class
name O(1) time is spent. Since the number of classes decreases by |P| — 1 (> 0),
since initially there are n classes and since the number of classes never increases, all
tree path computations take O(n) time altogether. Furthermore, all Unions and m
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Finds only take O(n + m) time. Finally, each insertion takes two Finds and 0(1)
time, apart from the cost of path computations and Unions.

In case the initial graph is connected but it is not a tree, then we do the following.
First obtain a spanning tree of the graph, and initialise the structure for this tree.
Then insert the edges of the graph that are not in the tree by means of the above
algorithm. Then the actual insertions can be performed. Obviously, this initialisa-
tion can be done in O(eo) time, if eq is the number of edges in the initial graph.
(Note that eo > n.)

Hence, we have the following theorem.

Theorem 4.1 There ezists a structure and algorithms that solve the 2ec-problem for
graphs G that are initially connected, and that can be implemented on a RAM, such
that the following holds. Starting from a connected graph G, m insert operations
take O(n +m) time, if n is the number of nodes in G. Any 2ec-comp(z) query and
any nonessential insertion can be performed in O(1) time. The initialisation can be
performed in O(eo) time and the entire structure takes O(n) space, where eq is the
number of edges in the initial graph.

4.3 Algorithms and data structures

In this subsection, we will give a solution for the general 2ec-problem with a time
complexity of O(n + m.a(m,n)) for n nodes and m queries and insertions.

We represent the structure 2ec(G) by means of a forest of spanning trees of G.
(Hence, each connected component is represented by a tree.) We denote the forest
together with additional information (defined below) by SF(G).

We follow a strategy based on observations for 2ec(G) in Subsection 4.1, We give
the further observations that lead to our algorithm.

Consider SF(G). We augment SF(G) with edge classes.

Let (e,z,y) be an edge in SF(G). If 2ec(z) = 2ec(y), then (e, z,y) is in
the edge class named 2ec(z). Otherwise, edge (e, ,y) forms a singleton
class on its own.

An edge class that is a singleton edge class consisting of one edge (e,z,y) with
2ec(z) # 2ec(y) is called a quasi class; otherwise it is called a real class. Hence,
interconnection edges form quasi classes and vice versa.

As observed in Subsection 4.2, a 2ec-class (of nodes) induces some subtree in S F(G).
Hence, in particular a non-singleton 2ec-class (i.e., with at least 2 nodes) induces
some subtree in SF(G). The set of the edges in that subtree is a real edge class.
Therefore, if each subtree in SF(G) that is induced by a real edge class is contracted
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to some node, then we obtain the forest 2ec(G) (up to edge names and node names).
(Note that the edges in forest 2ec(G) correspond to the edges in SF(G) that are in
quasi edge classes.)

From the above observations it follows that each edge class induces a subtree in

SF(G).

We consider the insertion of edge (e, z,y). We distinguish the two relevant cases of
Subsection 4.2.

If z and y are in different trees of SF(G) (and, hence, are in different components),
then these trees need to be linked (corresponding to linking the spanning trees of
two connected components if these are joined).

Now suppose z and y are in the same tree T of SF(G) (and hence classes 2ec(x) and
2ec(y) are in the same tree of 2ec(G)). Let P be the tree path in T between z and y.
We use the terminology of Section 3. By the definition of edge classes, a boundary
node of P is either one of the end nodes z or y, or it is a node for which its two
neighbours on P are not both in the same 2ec-class as itself. The two neighbours of
an internal node z on P are inside class 2ec(z) too. Therefore, if we compute the
boundary nodes of P only, then we obtain one or two nodes of each 2ec-class (of
nodes) that needs to be joined because of inserting (e, z,y).

We need some tree representation to compute boundary sequences efficiently while
trees are linked from time to time. One solution is to use rooted trees and, in case
of linkings of trees, to redirect the smallest one of the two trees that are linked.
However, this takes O(n.log ) for the linkings. To improve the time complexity, we
use the fractionally rooted trees structure FRT.

We solve the 2ec-problem by the so-called 2EC structure, which is given as follows.
We use the above forest SF(G) with the 2ec-classes and the above edge classes. A
node z in SF(G) that is not in a singleton 2ec-class, has a pointer assoc to an edge
(in SF(G)) that is incident with = and that is in the class named 2ec(z). (Such
an edge exists.) We call such an edge an associated edge for z. Forest SF(G) is
implemented as a FRT structure, denoted by F RT,... Moreover, all 2ec-classes of
nodes (in SF(G)) are implemented by a Union-Find structure, denoted by U F...
All connected components of nodes are implemented by a Union-Find structure,

denoted by UF..
A query 2ec-comp(z) now corresponds to a Find call 2ec(z).

The initialisation is as follows. For an empty graph consisting of n nodes, the
corresponding spanning forest SF is just the collection of nodes. For each node, its
pointer assoc is set to nil. Moreover, each node forms a singleton set in U Fy., and

UF..

Procedure insert,.. that implements the insert operation for the 2ec-problem is as
follows. A call inserts.((e, z,y)) for the insertion of edge (e, ,y) in graph G does
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the following. Three cases are distinguished.

1. ¢(z) # c(y). Then the operation link((e,z,y)) is performed. Moreover, the
two connected components ¢(x) and c(y) are joined (in U F,).

2. ¢(z) = c(y) A 2ec(z) # 2ec(y). Then boundary(z,y) is performed, returning
boundary list BL. All the classes in which the boundary nodes (in BL) are
contained, are joined in UF},.. For each node z in BL the associated edge of
z (if any) is obtained by means of pointer assoc. Then for each node z in BL
that does not have an associated edge yet (i.e. assoc = nil), an edge of its
sublist (in BL) is related to it as its associated edge (i.e., its pointer assoc is
set to it). Otherwise, if its (existing) associated edge is not in the same edge
class as the edge(s) in the sublist of z (which is tested by means of Finds), the
associated edge is inserted in its sublist. The end nodes of BL are removed
in case their sublists contain one edge only. Finally, if BL # 0 then operation
Jjoinclasses(BL) is performed.

3. 2ec(z) = 2ec(y). Then nothing is done.

In case the initial graph G is not empty at the beginning, the “initial” situation can
be obtained e.g. by starting from the empty graph and by inserting all edges of G
one at a time by procedure insert,,,.

Note that starting from a graph with n nodes, there are at most 2(n — 1) essential
insertions, since in each essential insertion at least two connected components or at
least two 2ec-classes are joined, and since initially there are at most n connected
components and n 2ec-classes.

Lemma 4.2 In a 2EC structure for a graph with n nodes, the time needed for a
sequence of essential insertions consists of the time for an essential sequence on n
nodes in F RT;,., the time for O(n) Unions in UF, and U Fy,,, the time for at most
O(n) nonessential calls boundary in FRT,., the time for at most O(n) Finds in
UFec and UF,, together with an additional amount of O(n) time. FEach nonessential
insertion takes O(1) time together with §(1) Finds in UF, and UF,,..

Proof. Obviously an essential call insert,,. takes 4 Finds in the Union-Find struc-
tures for connected classes and 2ec-classes, together with the time needed for calls
link, boundary and joinclasses and for the Unions in UFie. and UF,,,.

The subsequence of link, joinclasses and essential boundary calls of a sequence
of calls of procedure insert,.. yields an essential sequence of operations in F RTy,.,
which is seen as follows. Each essential call of procedure boundary(z,y) with output
BL is followed by a call joinclasses(J). The list J contains all nodes and edges of
BL except for possibly the end nodes z and y, in case their sublists contain one edge
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only. Hence, all classes occurring in BL occur in J too if at least 2 classes occur in
BL. 0

A 2EC(i) structure is the above structure where FRT;.. = FRT(3) and where
UFyee = UF(i) and UF, = UF(3).

Theorem 4.3 There erists a data structure and algorithms that solve the 2ec-
problem and that can be implemented as a pointer/logn solution such that the fol-
lowing holds. Starting from an empty graph with n nodes, the total time that is
needed for all essential insertions is O(n.i.a(i,n)), whereas a query and a nonessen-
tial insertion can be performed in O(z) time. The initialisation can be performed in
O(n) time and the entire structure takes O(n) space (i >1,n > 2).

Proof. By Theorem 10.1 (for FRT(:)) and [15] (for the complexity of UF (7)), it
follows that the initialisation can be performed in O(n) time.

Each nonessential call of boundary takes O(:) time. Each Find operation in UF(;)
takes O(:) time too. Hence, a query can be performed in O(7) time. By Lemma 4.2,
Theorem 10.1 and by the complexity of UF(7) [15], the lemma follows. O

We denote the Union-Find structures U Fiec and UF, together by UF. We consider
the UF structures to be one structure; hence, it is a structure on O(n) elements.

Now take FRT(a(n,n)) as FRT,, for a graph with n nodes, where a(n,n) is ob-
tained as in [15], and take for UF the a-UF structure. Then we obtain the following.

Theorem 4.4 There exists a data structure and algorithms that solve the Zec-
problem and that can be implemented as a pointer/logn solution such that the
following holds. The total time that is needed starting from an empty graph with
n nodes is O(m.c(m,n)) (where m is the number of edge insertions and queries),
whereas the f** operation is performed in O(a(f,n)) time if that operation is query
or a nonessential insertion. The initialisation can be performed in O(n) time and
the entire structure takes O(n) space.

Proof. Each query and nonessential insertion corresponds to (1) Finds in the
UF structures. Moreover, all essential insertions take at most O(n) Finds. Hence,
by [15] the f** operation is performed in O(a(f',n)) = O(a(f,n)) time (where
f' = 8(f)+0(n) by Lemma 4.2) if that operation is query or a nonessential insertion.
The remaining statements follow by Theorem 10.1 (with n, < min{2m,n}, where
ne < {2m,n} is implied by Lemma 4.2, since the part of the graph that is operated
on contains at most min{2m, n} nodes), Lemma 2.13 (w.r.t FRT(a(n,n))), and by
[15]. ]

The above theorem can be augmented to allow insertion of new nodes in the
graph with a time complexity of O(n + m.a(m,n)): then o-FRT is used instead
of FRT(a(n,n)) (cf. Section 10). Then n, m, and f in the theorem denoté the
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current number at the moment of consideration. (Note that only O(min{n,m})
operations are performed in the o-FRT structure, since these operations are only
performed in essential calls of inserta..)

5 Fractionally Rooted Trees: Observations and
Ideas

We give some of the ideas and observations regarding fractionally rooted trees. We
consider a forest F, with an admissible partition of the edge set.

A tree T in F is partitioned into subtrees that all are (locally) rooted, i.e., each
subtree has its own root independent of the remainder of the tree and subtrees.
(The subtrees are independent of the admissible partition of the edge set.) Each
subtree is contracted to a new node, which yields a contracted tree T'. The collection
of edges of T" is partitioned into edge classes induced by the edge classes of T, where
an induced edge class in T” consists of the contraction edges of the edges in a certain
edge class in T'.

A boundary list B between two nodes z and ¥ in T can now be obtained as follows.

Let ¢ and d be the nodes in T' to which z and y are contracted respectively. If
¢ = d, then the tree path between x and y in T is entirely inside contraction node
c. Therefore, we assume c # d. Let P be the tree path between z and y in T. Let
P’ be the tree path between c and d in 7". Consider an internal node b of P'. Then
the edges of P’ that are incident with b are in the same class. Hence, the originals
of these edges (in T') are in the same edge class and, since an edge class induces a
subtree, all edges on P that are contained in contraction node b are in that edge
class too. Hence, all the nodes on P that are contained in b are internal nodes of P.
On the other hand, for each boundary node b of P’ , there is a boundary node of P
that is contained in b. For, either an-end node of P is contained in b or the edges
of P’ (in T") that are incident with b are in the different classes. In the latter case,
the originals of these two edges (on P) are in different edge classes, and hence there
is at least one node of P contained in b of which the two incident edges of P are in
different classes. Therefore, each boundary node of P is contained in a boundary
node of P’ and each boundary node of P’ contains a boundary node of P.

Now, suppose that b is a boundary node of P’. Consider the part P, of P inside
contraction node b. We consider the relation between boundary nodes in P, and P
(see Figure 4). Trivially, a boundary node of P that is contained in P, is a boundary
node of P, too. Now, let z be a boundary node of P,. Let the end nodes of P, be
u and v. If z € {u,v}, then z is a boundary node of P too, and a boundary edge
set for z on P, is a boundary edge set for z on P. If z € {u,v} and u # v, then z
is an end node of P, and hence a boundary edge set for z on P, contains only one
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edge, say edge e;. Let e; be the original of the edge in a boundary edge set for b
on P’ that is incident with 2z, if e, exists (i-e., if z & {z,y}). If e; exists, and if ¢,
and e; are in the same edge class, then z is an internal node of P. Otherwise, z is a
boundary node; then a boundary edge set for z on P, extended with e, (if e, exists)
is a boundary edge set of 2 for P. Finally, if z = u = v then P, consists of node z
only. Hence, a boundary edge set for z (= u =v) on P, consists of z with an empty
sublist. In that case the original(s) of the edge(s) in a boundary edge set for b on P’

form a boundary edge set for z on P. (Since otherwise, b would not be a boundary
node of P'.)

Figure 4: Considering a part B, of P.

contraction node b

path part P

AN

Hence, we can follow the following strategy. First we compute a boundary list B’ in
T for the nodes c and d. Then, for each boundary node bin B’, we obtain the above
nodes u and v as follows: if b & {c,d} then u and v are the nodes that are contained
in b and that are end nodes of the originals of the two edges in the sublist of b in
B'; otherwise, if b= ¢, then u = z and v is the node that is contained in b and that
is an end node of the original of the edge in the sublist of b; if b = d, then we have
the same situation for y. Subsequently we compute the “local” boundary list bl(b)
for u and v. (Note that this can be computed inside the subtree that is contracted
to b only.) Finally, we consider the end nodes u and v like above: if u (or v) is not
a boundary node after all, then it is removed from bl(b), and otherwise, its sublist,
containing boundary edge sets, is adapted like above. Then these local boundary
lists bl(b) for b € B’ are concatenated in the same order as that the corresponding
contraction nodes b occur in B’.

We will present fractionally rooted trees and algorithms for maintaining them that
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are based on the above observations.

6 Division Trees

6.1 Description of the Data Structure and the Operations

Division trees form an essential part of the fractionally rooted trees. For the termi-
nology regarding contractions we refer to Section 2.1.

Let F be a forest with an admissible partition of the edge set into edge classes.
Henceforth we call these edge classes global edge classes (to distinguish them from
other, local, edge classes that will be defined below).

Let T be a tree in F. Then T together with a set CN (T) of new nodes, called
contraction nodes, and with a set nodes(b) of nodes in T for each b € CN (T) is
called a division tree if the sets nodes(b) for b € CN(T) partition the node set of
T into disjoint subsets and if each set nodes(b) induces a subtree of T, denoted
by tree(b). A subtree tree(d) is called an elementary subtree of T. (Hence, each
elementary subtree can be considered to be contracted to a unique contraction node

in CN(T).)

The contraction tree CT(T) of a division tree T (with the sets as described above) is
the tree with node set C N(T) and with the edge set being the set of corresponding
contraction edges (hence, consisting of the edges (e, ¢, d) such that ¢ # d and there
exists an edge (e, z,y) with z € nodes(c) and y € nodes(d)).

For a subtree tree(b) of T we define the set of external edges of tree(b) as the edges
of T' that are incident with exactly one node of tree(b). (Note that if tree(b) =T,
then there are no external edges.) We define the extended tree of tree(d), denoted
by eztree(d), as the tree tree(b) extended with its external edges. Note that an
extended tree is therefore not a tree in the usual sense, since only one of the end
nodes of an external edge is in the tree. However, we will still apply the regular tree
notions on the nodes and edges in an extended tree, where if necessary the lacking
end nodes can be thought to be present in the extended tree, though. E.g., if tree(b)
is rooted, then the father relation is extended to extree(b) by taking for the father
node of an external edge its unique end node that is in tree(b). Moreover, note that
each node is contained in exactly one extended elementary subtree.

An edge that is contained in some elementary subtree tree(b) is called an internal
edge of T. An edge in tree T that is not contained in any elementary subtree is an
external edge of two elementary subtrees and, hence, is contained in two extended
subtrees (namely, in the two extended subtrees corresponding to the two contraction
nodes in which the end nodes of that edge are contained). These edges are called
the external edges of T.
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Let S be an extended elementary subtree of T. The edge set of S is partitioned into
the edge classes as follows. The edge classes of S are the nonempty intersections
of the global edge classes of T' with the set of edges of S. It is easily seen that the
edge classes of S form an admissible partition for S. We sometimes call these edge
classes local edge classes, in particular if we consider these classes in general (i.e.
not in the context of some extended subtree).

]

We describe some further aspects of the division trees.

A tree T in F is implemented in the common way: each node has an incidence list,
consisting of (pointers to) the edges of which it is an end node. Each node z in
T contains a pointer contr(z) to the contraction node b € CN(T) in which it is
contained (i.e., for which z € nodes(b)), and, conversely, for each contraction node
b € CN(T), the set nodes(b) is implemented as a list (which we denote by nodes(b)
too). An edge contains a status field indicating whether it is external or internal.
(Note that it can also be determined without status field whether an edge is external
or not, viz., by checking whether the end nodes of the edge are contained in the same
contraction node by comparing the contr pointers of these nodes.)

Note that each internal edge is in exactly one (extended) subtree, while each external
edge is contained in exactly two subtrees. The operations that may be applied on
division trees (as described in the sequel) may change edges from external to internal,
but not the other way around. Moreover, an external edge may contain different
information pertaining to the two extended subtrees in which it is contained. This is
implemented as follows. Each edge has two representatives called edge sides (or just:
sides), one for each of its end nodes (e.g. implemented as two records pointed at
from the edge, or two dedicated blocks of fields in the edge). The side of edge (e, z, )
for end node r is denoted by (e, z,y), (and similarly for y). For an external edge
(e,x,y), the side for end node z is the representative of e in the extended subtree
in which z is contained. Hence, if (e, z,y) is considered inside extree(b), then the
appropriate side is the side for the end node z € {z,y} with contr(z) = b, and hence
it can be obtained by comparing contr(z) and contr(y) with b. For internal edges,
both the sides are considered to be identical representations for the same subtree
(hence, (e, z,y). = (e,z,y),), where only one of them is taken (and distinguished)
to be the actual (and active) representative. Instead of speaking of “side (e,z,y),”
we will also speak of “edge (e, z,y) w.r.t. z”.

In the sequel the (local) edge classes for each extended subtree are implemented by
Union-Find structures (which is described below). For an external edge, the appro-
priate side for the extended tree is used. An internal edge, according to the above
implementation, actually “occurs” two times in a Union-Find structure, namely by
both its sides, of which one is a dummy and is not used explicitly in the struc-
ture. (This avoids the presence of a “remove” operation in a set in the Union-Find
structure.)

The extended subtrees in a division tree have the following additional implementa-
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tion.

Let b be a contraction node. We consider extree(b). Extended tree eztree(b) is
rooted at some node. Each node in the extended tree has a pointer to its father
node (if any) and to its father edge (if any).

Every edge class contains at most one edge that is marked by a so-called c-mark,
which is an external edge. The edge classes in extree(b) are represented by a Union-
Find structure (according to the above representation method with sides), called
the local class Union-Find structure. The class of edge e in extree(b) is denoted by
class(e) (which corresponds to a Find). (Note that actually we have to give the
appropriate side of e w.r.t. extree(b) as parameter of class. We will often omit this
if it is clear for which extended tree the edge is considered.) There are the following
pointers w.r.t. classes.

e For each edge class C in extree(b) there are the following pointers:

— pointer maz(C) to a maximal edge of C in the rooted tree extree(b)
Such an edge is called the maximal edge of that class. It is marked by an
m-mark.

— pointer ext(C) to an external edge in it (if there exists any).

— pointer edge(C) to the c-marked edge in it (if it exists).
These pointer are stored in (the record representing) the name of the class C.

e every c-marked edge e € extree(b) contains a pointer c(e) to the name of the
class in which it occurs.

Note that for a node z in extree(b) and for an edge class C in extree(b) that contains
an edge incident with z, the father edge of z is in C, or the (unique) m-marked edge
in C (which is the edge to which maz(C) points) is incident with z.

Also, note that the global edge classes of forest F are not implemented and therefore
only conceptually exist in a division tree: i.e., there is no Union-Find structure
present for the global edge classes in a division tree. (However, note the global
edge classes can be obtained from the local edge classes if all local edge classes that
contain a common edge are joined.)

We describe the operations that we want to perform on F.

basic-external-link((e,x,y)): Let z and y be nodes in two different trees 7, and
T,. Then link these trees by the edge (e,z,y), yielding tree T, where the
partition of the node set remains unchanged. This means that CN(T) =
CN(T:)UCN(T,) and for each b € CN(T), the set nodes(b) is not affected by
the operation. The new edge (e, z,y) (which is hence an external edge) forms
a new singleton class on its own in the extended trees in which it is contained.
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basic-internal-link((e,x,y),y): Let £ and y be nodes in two different trees T and
T,. Let ¢ = contr(z). Then link these trees by the edge (e, z,y), yielding tree
T, where the elementary subtree tree(c) is extended with the (internal) edge
(e,,y) and with the tree T,. lLe., CN(T) = CN(T;) and all sets nodes(b)
for b € CN(T,) remain unchanged except for nodes(c) that is augmented with
the nodes of T,.. The new edge (e, z,y) (which is hence an internal edge) forms
a new singleton class on its own in the extended tree in which it is contained.

basic-integrate(z, f): Let  be a node in tree T and let f be a (possibly new)
contraction node not occurring in CN(T). Then change the partition of T
such that it consists of precisely one elementary subtree with contraction node
f (hence, T itself). Le., afterwards CN(T) = {f} and nodes(f) contains (at
least) all the nodes of T.

basic-boundary(z,y): Let  and y be in the same elementary subtree S. Then
return a boundary list BL for nodes ¢ and y in S, where each edge in the

sublist of a node in BL either is the father edge of that node or it is m-marked
in S.

basic-joinclasses(J): Let J be a joining list containing precisely one node and such
that there is at most one edge class occurring in J that contains a c-marked
edge. Then join the edge classes of which an edge occurs in the list.

Note that elementary subtrees are changed in case of a call basic-integrate or basic-
internal-link. (For, the partition of the node set in subsets nodes(b) is altered.)
Therefore we call an edge affected by an operation, if for the extended trees extree(b)
and extree(d) in which it is contained before and after such a procedure call respec-
tively, b # ¥ holds. (Note that all edges in the tree on which basic-integrate is
performed, are affected then. For affected edges, the father relations and m-marks
of these edges (edge sides) may change during these calls.)

We show how to initialize a forest with an admissible partition on its edge set as
a forest of division trees, where each division tree contains exactly one elementary
subtree, namely the tree itself. We suppose that a list of nodes in the forest is
present and a collection of lists, one for each edge class, where a list contains exactly
the edges in that edge class. First for each tree T create a new contraction node c,
create two sides for each edge occurring in the tree, make the tree rooted (together
with the father relation on the nodes). The contraction pointers of all the nodes
are set to ¢ and the nodes are put in the list nodes(c). All edges are un-m-marked
and un-c-marked. Then for each list do the following. Initialise a set in the Union-
Find structure consisting of all the edges in the list. Then detect an edge in the set
that is maximal in the tree in which it is contained: first mark all edges in the set,
then detect for each edge whether its father edge (if any) is in the set too, i.e., it is
marked too, and if not (i.e., the father edge does not exist or it is not present), then
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that edge is a maximal edge. In this way a maximal edge for the set is selected and
m-marked and a pointer to it is stored in field maz of the name of the class. The
other fields ext and edge in the set name are set to nil. Note that all this can be
performed in linear time provided that the sets can be initialised in linear time in
the Union-Find structure that is used.

We summarize the pointers and representations. For a tree T in F we have the
following.

¢ Eachnode z in a tree T' contains the following information, where b = contr(z)

(b € CN(T)):
— an incidence list, consisting of (pointers to) the edges of which it is an
end node.
— a pointer contr(z) to node b

— a pointer to its father node (if any) and to its father edge (if any) in
extree(b)

e For each contraction node b € CN(T), the set nodes(b) is implemented as a
list (denoted by nodes(b) too).

¢ An edge (e,z,y) in T contains the following:

— a status field indicating whether it is external or internal.

— two edge sides (being its representatives), one for each of its end nodes:
(e,z,y); and (e, z,y),.

— side (e, z,y), contains a field for the local-class Union-Find structure
representing the edge classes in extree(contr(z)). (Similarly for y.)

— if (e,z,y) is c-marked in eztree(contr(z)), then (e,z,y), contains a
pointer c(e) to the name of the class in which it occurs. (Similarly for y.)

e For each edge class C in extree(b) for some b € CN(T'), there are the following
pointers:

— pointer maz(C') to the m-marked edge of C.
— pointer ex?(C) to an external edge in it (if there exists any).

— pointer edge(C) to the c-marked edge in it (if it exists).

These pointer are stored in (the record representing) the name of the class C.
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6.2 Implementation of the Operations

The operations are implemented as follows. We give the computations and we
intermix it with comments. (This subsection may be skipped at first reading.)

basic-external-link((e,x,y)): First edge (e,z,y) is inserted as an edge between
z and y: i.e., the edge in inserted in the incidence list of both its end nodes
z and y. Then the two sides of the new edge (e,z,y) are both inserted as
singleton sets in the local class Union-Find structure. For both the sides, the
pointers maz and ext are set to edge (e, z,y) itself. The sides are m-marked.

basic-internal-link((e,x,y),y): Let ¢ = contr(z). First the operation basic-
integrate(y, c) is performed. (Note that now y is the root of the tree in which
it is contained.) Then the operation basic-ezternal-link(e,x,y) is performed.
The two singleton classes consisting of the edge sides of (e, z,y) are joined,
yielding class C' (by performing a Union on the output of the Finds on the
sides). Then edge (e, z,y) is converted to internal and it is made the father
edge of node y. Make = the father node of y. (Note that since y is the root
of its tree, converting (e, z,y) to internal and making x the father of y yields
that the new resulting tree tree(c) is rooted again.) The pointers maz(C) and
ext(C) are set to (e, z,y) and to nil respectively. Finally, the pointer edge(C)
is set to nil and edge (e, z,y) is m-marked.

basic-boundary(z,y): Note that  and y are in the same elementary subtree. If
z = y then return the boundary list BL consisting of node z with an empty
sublist. Otherwise,  # y and the following is done. The boundary list BL is
obtained as follows. First the boundary nodes (together with boundary edge
sets) for the root paths of z and y are partially computed: viz., two boundary
lists s(z) and s(y) are computed as follows. The two lists s(x) and s(y) start
with r and y with empty sublists respectively. Then the two lists s(z) and
8(y) are stepwisely computed in an alternating way until a node top has been
visited by both computations. A computation step for sequence s(z) (or s(y))
is as follows: obtain the father edge (e, z, z’) of the last node z in the sequence,
(if any, otherwise skip the rest of the step), insert the edge in the sublist of
z, obtain the edge maz(class(e)) = (¢/,u,v) and obtain the father node of ¢’
(being u or v); then insert the father node at the end of the list and insert
edge (¢',u,v) in its sublist. (The stop condition can be checked by marking
all nodes that are visited: it becomes true if a node is visited that is already
marked. After the traversals the nodes are unmarked. Cf. [18].) (Note that
now s(z) and s(y) are boundary lists for their end nodes.) (It follows that
each edge in the sublist of a node is either its father edge or it is an m-marked
edge.)
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Adapt the lists as follows: remove all nodes in the lists occurring after top and
remove the father edge of top from its sublists (if present).

Now s(z) and s(y) are boundary lists for z and top and for y and top respec-
tively. Hence, both s(z) and s(y) contain the boundary nodes (together with
boundary edge sets) for the paths between z and top and between y and top
respectively. Moreover, note that all their nodes, except for possibly node top,
are on the the path P between z and y and hence are boundary nodes for P.
So it is left to verify whether top is a boundary node for P. If top € {z,y}
then top is a boundary node of P. Otherwise, each of the two sublists of top
(in s(z) and s(y)) contains exactly one edge. If the two edges in these sublists
are in the same edge class, then top cannot be a boundary node of P. Other-
wise, if they are not in the same edge class, then top is on P and hence it is a
boundary node of P, where the two edges form a boundary edge set. This is
the observation justifying the following part of the computations.

If each of the two sublists of top (in s(z) and s(y)) contains exactly one edge,
and if these two edges are in the same edge class, remove top from both its
lists. Otherwise, extend the sublist of top in s(z) with the sublist of top in s(y)
and remove top from s(y). Then the boundary list BL is created by appending
the reversed list s(y) to the list s(z).

basic-joinclasses(J): Let J be a joining list consisting of precisely one node for
some subtree S. For all edges in J, the corresponding classes must be joined
yielding one new class C.

First a list C'J is created consisting of all (names of) edge classes occurring
in J. (This is done by performing a Find operation class on each edge in the
list: for each edge (e, z,y) in the sublist of node z in J, obtain its class name

class((e, z,y)z).) |

We compute a maximal edge e,, of the (future) new class C as follows. For
each class name c in C'J, obtain the maximal edge maz(c) in its class. Check
whether the class of the father edge (e, z,y,) of z occurs in CJ (which can be
done by marking the class names occurring in CJ). If this is the case, then e,,

is the maximal edge of that class. Otherwise, e,, is any of the maximal edges
obtained above.

Subsequently, the (unique) c-marked edge e, that is contained in one of the
classes in CJ is selected (if it exists). Moreover, one of the external edges of
the classes in C'J (if any) is selected as edge e..

Join the classes in C'J, resulting in one new class. Edge e, is related to ¢ as
c-marked edge: i.e., ¢(e.) is set to point to the name of the new class C (which
is obtained by performing a Find operation class(e.)) and edge(C) is set to
point to e.. An external edge is related to the resulting class C by setting
ext(C) to ec,.
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The m-markings are updated as follows: all maximal edges obtained above are
un-m-marked except for edge e,,. (Remark that a list containing these edges
that are un-m-marked can easily be returned by the procedure, if wanted.)
Then maz(C) is set to point to e,,.

basic-integrate(x,f): Let T denote the tree in which x is contained. First z is
taken as the root of T' and the father pointers of all nodes (to the resulting
father nodes and father edges) are adapted accordingly. Moreover, the pointers
contr of the nodes are set to f and the nodes are put in list nodes(f). For
each external edge e, the two classes in which its sides are contained are joined.
The external edges of T are set to internal and are (hence) un-c-marked. Then
c(e) := nil for all the processed edges and ext(C) := edge(C) := nil for all
occurring classes C' (since all edges in T are internal now). Moreover, all edges
are un-m-marked and for all occurring classes the pointer maz is set to nil. (All
this can be performed during a tree traversal algorithm.) Next, maximal edges
are related to the edge classes by checking for each edge e whether its father
edge is in the same class too: if this is not the case, and if maz(class(e)) = nil
then the pointer maz(class(e)) is set to e and e is m-marked. (There may be
several candidates for one class: then after the first candidate the maz-pointer
is not nil and hence no further changes occur.) (This can be performed during
a tree traversal algorithm.)

Finally, note that because of the insertion of edges Union-Find structures must
allow the insertions of elements. However, since the number of edges is less than the
number n of nodes in the forest, this can be implemented by using 2(n — 1) “free”
records, where 2 such free records are associated to an inserted edge (or: its edge
side) as its representatives w.r.t. the Union-Find structure. Then, (with a fixed
number of nodes) no insertions in the Union-Find structures are needed.

7 Fractionally Rooted Trees: the Data Structure

We now present the data structure called the fractionally rooted tree.

We consider a dynamic forest Fy with an admissible partition of its edge set into
(global) edge classes. The edge classes in Fy are represented by a Union-Find struc-
ture denoted by UF,. A Find in UF, on a edge e € F, (to obtain the name of its
edge class) is denoted by classo(e).

Let ¢+ > 1. Let F; be a forest consisting of trees that are contraction trees of trees in
Fo, where each tree in Fj has at most one contraction tree in F}, but where not for
all trees in Fy a contraction tree needs to be present in F; (already). (In that case
F; can be extended (from time to time) with a singleton tree being the contraction
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of such a tree in Fp.) The edge set of forest F; is partitioned into the edge classes
that are induced by the edges classes of Fj

We introduce the structures FRT(z) for F; for ¢ > 1.

Each tree of F; has a name in FRT(:), being some (new) unique node. We denote the
tree in F; that has the name s in FRT(:) by tree;(s) and we denote the corresponding
original tree in Fy by treeg(s). The FRT(:) structure consist of a collection of so-
called tree structures , one for each occurring tree name (i.e., for each occurring
tree in F;). A tree structure consists of a tree name s and a collection of at most :
layers, numbered from ¢ in a decreasing order (say, down to down(s)). Each existing
layer j (down(s) < j < 1) consists of a division tree, denoted by tree(s,j). For
layer i, tree(s, ) is the tree;(s) represented as a division tree. The tree tree(s, ;)
in an existing layer j (down(s) < j < i — 1) is the contraction of the division tree
tree(s,j+1) in layer j+1. (Hence, tree(s, j), with down(s) < j < 1, is a contraction
tree of treeg(s) too.) Each edge in a tree tree(s, j) has a pointer origo to its original
in Fy, which is called its O-original. The tree name s forms the contraction tree
of the division tree tree(s, down(s)) stored in layer down(s). Tree name s contains
a pointer contr being nil. (The above number down(s) is only used in the above
description and will not be used in the data structure itself.)

To each tree name some parameters are associated and the corresponding tree struc-
ture satisfies additional constraints w.r.t. these parameters, which will be given in
the sequel.

The collection of tree structures is changed by operations that are given in the
sequel.

Note that from the above description the following follows.

Firstly, the trees stored in layer ¢ of FRT(:) (i.e., the trees tree(s, 1)) form the forest
F;. Hence, two edges in a tree tree(s,7) are in the same global edge class (in F;) iff
their O-originals in Fj are in the same global edge class.

Secondly, all the nodes in the tree structure for tree name s contain a pointer field
contr. For tree name s pointer contr(s) is nil. For an existing layer j (down(s) <
J <'t) anode z in layer j the pointer contr(z) either points to a node in layer j — 1
(the contraction node in which z is contained) if layer j — 1 exists, or it points to
tree name s otherwise. Moreover, for a node z, nodes(z) is the list of the nodes y
for which the pointer contr(y) points to z (i.e., it represents the set of nodes that
are contracted to z).

Consider a structure FRT(z) for forest F;. The structure FRT(:) allows the following
operations on the nodes and edges of F;:

treename(z): r is a node. Then output the name s of the tree in which node z
occurs (i.e., for which z € tree(s,?)).
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link((e, z,y),s,%,7): s and t are tree names, s # ¢, € tree(s,7) and y € tree(d, ).
Then link tree(c,?) and tree(d,i) by the edge (e,z,y), where edge (e,z,9)
forms a new singleton class. Update the structure.

boundary(z,y,:): Let £ # y and z,y € tree(s,:) for some tree name s. Then
output a boundary list BL for nodes z and y in tree(s, ).

joinclasses(J,¢): Let J be a joining list. Then update the structure according to
the joining of the global edge classes occurring in the list.

candidates(z,y,i): Let x and y be two nodes, z # y. Return an edge e, incident
with z and an edge e, incident with y such that these edges are in the same
global edge class if such edges exist. Moreover, e, is the father edge of z, or
er is m-marked w.r.t. z, and similar for e, and y.

(Note that the above correspondence between z and s and between y and ¢ in
procedure link means that we can make distinction between the “first” node and
the “second” end node of edge (e,z,y). We can formalize this by adding new

parameters containing r and y in the procedure heading. However, we will not do
this here.)

Operation treename(z) is given by: if contr(z) # nil then return
treename(contr(z)), otherwise return z. Obviously (from the above description),
treename(z) outputs the name of the tree in which node c is contained. The other
operations will be given in the sequel.

The structures FRT(¢) are defined inductively in a way similar to [15]. We start
from a base structure FRT(1) that corresponds to the idea using ordinary rooted
trees. This structure takes O(n.logn) time for an essential sequence of operations.

7.1 The Structure FRT(1)

Structure FRT(1) is a structure for a forest F; that satisfies the following conditions.
(Recall that a tree in F with name s is denoted by tree(s,1) and that tree(s, 1) is
in layer 1, where C N(tree(s,1)) = {s}. (The entire tree tree(s,1) is “contracted”
to node s, the name of the tree.))

The Union-Find structure for local classes in F is UF(1).

For each tree name s we have a parameter weight(s,1) that contains the number
of nodes in tree(s,1): weight(s,1) = |tree(s,1)| (Note that we count the nodes of
tree(s, 1), cf. Notation 2.1.)

We give the algorithms for the operations.
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link((e,z,y),s,t,1): The trees tree(s,1) and tree(t,1) must be linked by edge
(e,z,y). W.lo.g. suppose that weight(s,i) < wetght(t,7). (Otherwise
interchange s,z and ¢,y in the description below.) Then basic-internal-
link((e, z,y), ) is performed.

boundary(z,y,1): The boundary list BL is obtained by a call basic-
boundary(z,y).

joinclasses(J,1): The joining of classes is performed by the
calls basicjoinclasses(J,) for each node z in J , where J, consists of z and
its sublist in J.

candidates(z,y,1): Note that = # y. Let e, be the father edge of z and let
ey be the father edge of y. Obtain the edges m, := maz(class(e;)) and
my := max(class(ey)). If m, is incident with y then e, := m, (and then e,
is m-marked for y) and if m, is incident with y then e, := m, (and then e,
is m-marked for z). Output the edges e, and e,. (Now e, is either the father
edge of z or it is m-marked for z and similar for e, and y.)

Procedure candidates(z,y,1) yields a correct pair of edges, since if r and y are
incident with edges of the same edge class C, then either the father edge of z is in
C or the maximal edge of C is incident with z. The same holds for y. Moreover, at
least one of the father edges of z and y must be in C (if z # y).

If FRT(1) is used directly on Fy (i.e., F; = Fy and hence tree(s,i) = treeg(s)
for all tree names s), and hence inside an environment not being FRT(2), then
UFy, = UF(1) (i.e., the global edge classes on Fy are implemented by a Union-Find
structure UF(1)).

If FRT(1) is used directly on Fp (i.e., F} = Fp), then the initialisation for some (sub-
Jeollection of nodes in singleton trees is as follows. Relate a tree name s to each
singleton tree. For each node z with name s for the singleton tree consisting of z, the
following initialisation is performed: contr(z) = s, nodes(s) = {z}, weight(s,1) =
1. (Note that the insertion of a singleton set consisting of a newly created node
can easily be performed in this way too.) If we want to initialise the structure
for some a forest Fy not necessarily consisting of singleton trees, where there is a
list of the names of the existing edge classes and for each name there is a sublist
with the edges in the corresponding class, then this can be performed as follows.
First the forest is initialised as a forest of division trees, where each division tree
contains exactly one elementary subtree, viz. the tree itself. This is done in the way
described in Section 6. Hence, for each tree there is exactly one (new) contraction
node. Then the contraction node s is taken to be the tree name in FRT(1) and
weight(s,1) = [the number of nodes in the tree).
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7.2 The Structure FRT(i) for i>1

Let 2 > 1. Structure FRT(?) is a structure for a forest F: that satisfies the following
conditions. (Recall that a tree in F; with name s is denoted by tree(s, ¢) and that
tree(s,?) is in layer z.)

The Union-Find structure for local classes in F; is UF(s).

For each tree name s we have a parameter weight(s,i) that contains the num-
ber of nodes of tree(s,i): weight(s,i) =| tree(s,i) |. Also, we have a parameter
lowindez(s,1) which is an integer > —1 that satisfies

2.A(1, lowindez(s, 1)) < weight(s,1). (4)

(The parameter lowindez is incremented from time to time by the algorithms.)

Two cases are distinguished.

o If tree(s,i) consists of precisely one node z (i.e., weight(s,i) = 1) then
CN(tree(s,1)) = {s} (Le., then contr(z) = s, nodes(s) = {z}. (Hence,
layer i — 1 does not exist in tree structure s.)

o Otherwise, if tree(s,:) contains more than one node (i.e., weight(s,i) > 1),
then recall that tree(s,?) is a division tree.

A contraction node b € C N(tree(s, ¢)) satisfies (besides | cluster(b) |> 2)

| nodes(d) |> 2.A(:, lowindez(s,1)). (5)

The contraction tree of the division tree tree(s, 1) is tree tree(s,i—1) in layer i—
1. (Hence, for each external edge (e,z,y) € tree(s, 1) there exists a contraction
edge (e, c,d) in layer i — 1 with ¢ = contr(z) and d = contr(y).) The global
edge classes in tree tree(s,7—1) are the edge classes induced by the global edge
classes of tree(s, i) (and hence induced by the global edge classes of treeo(s).)

If layer ¢ is removed then the remaining part, starting from tree(s,t — 1) in
layer i — 1, is a FRT(i — 1)-structure. (Where hence tree(s,i — 1) is a division
tree with edge classes induced by treeg(s).)

For an external edge (e,z,y) in tree(s,i) we have the following. Let ¢ =
contr(z) and d = contr(y). Then the contraction edge (e,c,d) contains a
pointer orig to its original edge (e,z,y) in tree(s, ) (besides the pointer that
this edge contains to its 0-original in Fy). The side (e, z,y). (i.e., the side for
z) is c-marked if the edge (e,c,d) is the father edge of ¢ or if the edge side
(e, ¢, d). is m-marked.
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Note that every edge class in extree(b) for some b € C N(tree(s, 1)) now contains at
most one c-marked edge, which is seen as follows. Let (e, z,y) be a c-marked edge in
extree(b), where contr(z) = b and contr(y) = c. Let (e, ,y) be contained in class
C of extree(b). Then either edge (e, c, d) is the father edge of contraction node ¢ or
the edge side (e,c,d). is m-marked. By applying the observations of Section 6 to
tree(s,i—1), there is not another edge in the local edge class of (e, c, d). in tree(s,1)
that is incident with ¢ and that has one of these two properties. Hence, there is not
another c-marked edge in class C.

We give the algorithms for the operations (intermixed with comments). Note that,
by (4), lowindez(s,i) > 0 implies that tree(s,i) consists of at least 2 nodes and
hence there exists a contraction node c at layer 7 — 1 (hence, ¢ # s)

link((e, z,y),s,t,4): The trees tree(s,i) and tree(t,i) must be linked by edge
(e;2,y). W.lo.g we assume that lowindez(s,i) > lowindez(t,i). (Other-
wise interchange «, s and y, d in the description below.)

Let newweight := weight(s,i)+weight(t,) and let Is := lowindez(s, ). Then
set weight(s,1) := weight(t,:) := newweight. There are three cases.

e lowindez(s,i) > lowindez(t,1). Let ¢ := contr(z). (Then c # s, since we
have lowindez(s,7) > 0. Hence, cis a node on layer i—1.) The following is
done. Then a call basic-internal-insert((e, z,y), y) is performed (yielding
the extension of subtree(c) with edge (e,z,y) and with tree(t,i) and
where all nodes the contain a pointer contr to c) and the old existing
layers j with j < i for tree structure ¢ are disposed, together with name
t itself.

¢ lowindex(s, ) = lowindex(t,1) Anewweight > 2.A(i,ls+1). Then a new
contraction node f is created in layer ¢ — 1. Then a call basic-external-
insert(e,z,y) is performed and subsequently a call basicintegrate(r, f)
for some arbitrary node in the tree (e.g. r = z). The old existing layers
J of tree structures s and ¢ with j < ¢ are disposed including tree name .
The tree name s is taken to be the name of the resulting tree: contr(f) :=
s. Finally, lowindex(s, 1) := lowindez(s,1) + 1, weight(s,i —1) := 1 and
lowindex(s,i—1) := —1. (Note that now the subtree subtree(f) consists
of tree(s,1) and tree(t, ) together with linking edge (e, z,y).)

¢ lowindex(s,) = lowindez(t,7) Anewweight < 2.A(i,ls+1). Then basic-
external-insert((e,z,y)) is executed. (Hence, edge (e, z,y) is inserted as
an external edge between = and y.)

Let ¢ = contr(z) and d = contr(y). (Then ¢ # s and d # ¢ since
0 < newweight < 2.A(%,1s + 1) implies Is > 0. Hence, ¢ and d are nodes
on layer i — 1.) A new edge (e,c,d) is created. Then orig(e,c,d) :=
(e,2,y) and origo(e, c,d) := origo(e,z,y). Subsequently a recursive call
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link((e,c,d), s, t,i — 1) is performed. (This is to link the contractions
tree(s,i—1) and tree(t,i—1); then one of the above cases occurs on a layer
7 with j < i.) Then all the affected edges in layer : — 1 are obtained (i.e.,
the edges processed by a call basic-integrate or basic-internal-insert on
layer ¢ — 1, which hence may change the father relations and m-marks of
these edges). (Note that these edges can easily be obtained by having the
recursive call link(i—1) returning a list of all these edges, where hence the
same must be done by calls basic-integrate and basic-internal-insert.)
For each original edge in layer i of an affected edge in layer : — 1 and for
edge (e, z,y), the following is done to update the c-marks. Let (¢, u,v)
be the considered edge and let (e, a, b) be its contraction edge with a =
contr(u) and b = contr(v). If (¢, a, b)a is m-marked or if it is the father
edge of node a, then ¢-mark the edge side (¢’,u,v),, obtain its edge class
k = class((e',u,v),) and set pointers c((¢/,u,v)y) := k and edge(k) :=
(¢/,u,v). Otherwise, un-c-mark (¢/,u,v)y. The same is done for edge side
(¢/,u,v),. (Note that now an edge class k' cannot have an edge-pointer
left to an ex-c-marked edge, since an edge class that contains an external
edge always contains a c-marked edge and hence its edge-pointer is set to
that edge.)

boundary(z,y,): The boundary list BL is obtained as follows.

Perform candidates(z,y,1) yielding edges e, and e,. If classo(origo(e,)) =
classo(origo(ey)) (i.e., e, and e, are in the same global edge class and hence

T ~ y), then the nodes x and y are put in BL with the edges e, and ey in
their sublists.

Otherwise we have ~(z ~ y) and we do the following. Let ¢ = contr(y) and
d = contr(y).

If ¢ = d, then z and y are both in the same tree tree(c). Then basic-
boundary(z,y) is performed that gives BL as its output.

Otherwise we have ¢ # d and the following is done (corresponding to the
observations of Section 5). A recursive call boundary(c,d,i — 1) is performed
that outputs a boundary list BB for ¢ and d, consisting of nodes and edges of
the contraction tree in layer ¢ — 1.

For each node f in BB a list bl(f) is computed as follows (according to the
observations in Section 5). First the original(s) in layer i of the edges in
the sublist of f are obtained. Let these edge(s) be the edge (e1,21,u) and
(if zz ¢ {c,d}) the edge (e2,22,v), where z, and 2, are the nodes in which
these edges are incident with tree(f). If f = cor f = d then let 23 =z or
%2 = y respectively. Then in subtree(f) a boundary list bl(f) for z, and 2z, is
computed by a call basic—boundary(zl, z2). The sublists of the nodes z; and
23 in bl( f) are extended with edge (e1,21,u) and (if f & {c,d}) edge (e2,22,v)
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respectively. Finally, a node z € {z,, 23} for which the sublist of z in sequence
bI(f) consists of two edges that are in a same edge class, is deleted from the
sequence (together with its sublist).

Then BL is obtained by concatenating the lists bl (f) in the order in which the
contraction nodes f occur in BB.

joinclasses(J,i): First a joining list JJ of nodes in layer ¢ — 1 is made as follows.
The nodes in JJ consist of the nodes contr(z) for nodes = occurring in JJ.
For ¢ € JJ, the sublist for ¢ is the concatenation of all sublists for z € J
with contr(z) = c. (JJ is constructed such that no contraction node occurs
more than once in JJ by having for each contraction node that is already
in JJ a pointer to its occurrence in JJ .) Then, for each node ¢ in JJ, the
classes are determined in which the edges in its sublist are contained in, and
its sublist is replaced by a sublist that contains for each of these classes one
external edge (if any). Remove all nodes of JJ that have a sublist that is
empty or that consist of one edge only. If J.J # 0 then perform recursively a
call joinclasses(JJ,i — 1). Delete list JJ. All the original edge sides of the
edge sides that are un-m-marked in layer 7 — 1 (and that hence are contained
in the edge classes occurring in JJ ), are un-c-marked in layer i (and the
related pointers are deleted). (Note that these edge sides in layer 7 — 1 can
be obtained by either having the recursive call Joinclasses(JJ,i — 1) return
these edge sides or by obtaining all the m-marked edges in layer : — 1 for the
edge classes occurring in JJ before the recursive call and by checking which
of these edges still are m-marked after the call.)

Now for each node z in J, execute basicjoinclasses(Jx), where J, contains z
and its sublist in J. (Note that at most one of the old classes still contains a
c-marked edge because of the previous un-c-marking).

candidates(z,y,:): Let ¢ = contr(z) and d = contr(y). If ¢ = d, then do the
same as for ¢ = 1 (we have the same situation now). Otherwise, perform
candidates(c,d,: — 1) that returns the edges e, and e, (where e, is either the
father edge of ¢ or it is m-marked w.r.t. ¢ and similar for e4 and d). Let
edge e; € extree(c) be the original (in layer i) of e.. Hence, ¢; and z are
in the same extended subtree and e1 is c-marked in the extended tree.. Let
ez := maz(c(e;)). If ey is incident with x, then e, := e, (hence e, is m-marked
w.r.t. z), otherwise e, is the father edge of . The same is done for y yielding
ey- Return the edges e, and €y.

(Note that in this case candidates return a correct pair of edges indeed, which
is ssen as follows. By the specification of candidates(i — 1) the originals of the
edges e and ey in tree(s,i) are in the same global edge class in tree(s,1), if
such edges exist. Then the correctness follows by similar observations as those
fori=1.)
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We are left with the problem of how to obtain and store the values weight, lowindex
and the Ackermann values. All these values depend on both the tree name and the
layer number. The values lowindez(s, ) and weight(s, j ) for all relevant j are stored
in a list of records: each records contains these values for some layer J. The tree
name s contains a pointer to the begin and the end of the list of records. (The end
of the list is the record for layer i if for the FRT(z) structure we have F; = F, i.e.,
FRT(¢) is used in some environment not being a part of a FRT(; + 1) structure.)
For further details and for the problem of how to obtain Ackermann values we refer
to [15]. The approach is similar, where the pointers contr in the structures FRT(?)
correspond to the pointers father in the structures UF(z).

In the FRT(:) structure, UF (7) structures are used for 1 < J < i. Since the size
of the occurring sets of edges will not exceed 2n, and since the only way in which
the number of elements is relevant for the UF(y) algorithms, is in the size of the
Ackermann net that is present (which must be an Ackermann net for at least the
size of the largest set that ever exists), it follows that it suffices to use the UF(5)
structures with one Ackermann net that is used for all structures, where the net is
an Ackermann net for 2n.

If FRT(:) is used on Fy (i.e., F; = F} and hence tree(s, 1) = treeg(s) for all tree names
s), and hence inside an environment not being FRT(: + 1), then UF}, = UF(z) (ie.,
the edge classes on the original dynamic forest Fj, are represented as a Union-Find
structure UF(z)).

If FRT(¢) is used directly on F, (i.e., F; = Fp), then the initialisation for some (sub-
Jcollection of nodes in singleton trees is as follows. Relate a tree name s to each
singleton tree. For each node z with name s for the singleton tree consisting of z, the
following initialisation is performed: contr(z) = s, nodes(s) = {z}, weight(s,i) = 1,
lowindez(s,i) = —1. (Note that the insertion of a singleton set consisting of a newly
created node can easily be performed in this way too.) If we want to initialise the
structure for some a forest Fj not necessarily consisting of singleton trees, where
there is a list of the names of the existing edge classes and for each name there is
a sublist with the edges in the corresponding class, then this can be performed as
follows. First the forest is initialised as a forest of division trees, where each division
tree contains exactly one elementary subtree, viz. the tree itself. This is done in the
way described in Section 6. Hence for each tree there is exactly one (new) contraction
node. For a singleton tree, the contraction node is taken to be the tree name s in
FRT(7) and then weight(s,i) := 1, lowindez(s,i) := —1. For a tree T that is not
a singleton tree, let ¢ be its (new) contraction node ¢ created by the initialisation
as division tree. Relate a tree name s to tree T. Then make nodes(s) = {e},
contr(c) = s, weight(s,i — 1) = 1 weight(s,i) = [the number of nodes in the tree]
and lowindez(s,i) = lowindez(s,i — 1) = —1.
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8 Complexity of FRT(i)

We consider the time and space complexity of FRT(:) structures and their opera-
tions.

We denote the call of procedure link, boundary, joinclasses or candidates in layer 5
(ie.,in FRT(5)) by link(5), boundary(j), Joinclasses(j) or candidates respectively
(omitting the other arguments).

The execution of a call of treename in a FRT(¢) structure (¢ > 1) takes at most c,.;
time for some constant c,, since starting from the nodes in layer ¢ at most : pointers
in the successive layers have to be traversed before the tree name is reached.

The execution of a call of candidates(i) in a FRT(4) structure (¢ > 1) takes at most
Cc.t time for some constant c,. This is seen as follows. For FRT(1) it is easily seen
that candidates(1) takes 1 Find operation, which takes at most d, time since UF(1)
is used. For FRT(5) (¢ > 1) consider call candidates(z,y,1). If contr(z) = contr(y)
then we have the same situation as for candidates(1). Hence, since UF(7) is used
for the local edge classes, the time complexity is at most dy.t time. Otherwise, note
that all instructions except for the recursive call candidates(i — 1) can be done in

at most ¢, time for some constant c,. Therefore, by induction, a call takes at most
c..i time altogether, where ¢, > maz{d.,dy,c,}.

The execution of a nonessential call boundary(z,y,:) in a FRT() structure (i > 1)
takes at most ¢;.7 time plus the time for at most two Finds in U Fy, for some constant
¢s. This is seen as follows. If ; = 1 then, since z ~ y, the computations in the call
basic-boundary(z,y) are similar to those performed in candidates(z, y, 1). Ifi > 1
then in the call only candidates(z,y,1) is executed together with 2 Finds (viz., the
calls classg) in UF,. This gives the above bound.

We consider the complexity of the further operations, viz., the complexity of feasible
sequences. We determine the time complexity in steps, where one step denotes a
Find operation (in any involved Union-Find structure), a candidates operation, a
nonessential boundary operation or one ordinary elementary computation step not
included in these three operations. Hence, each candidates operation and each
nonessential call of boundary takes 1 step.

We obtain the following result.

Lemma 8.1 Let a FRT(i) structure for a forest with n nodes be gwen. The struc-
ture and the algorithms can be implemented as a pointer/logn solution such that
the following holds. An essential sequence in FRT(i) (c¢f. Section 8) needs a total
of O(ne.a(Z,n.)) steps (t > 1, ne > 2), where n, is the number of nodes that are not
contained in singleton trees after the ezecution of the sequence.

Note in the lemma that n, < n. The proof of the lemma is given in Section 9.
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9 Proof of Lemma 8.1.

Lemma 8.1 is proved by induction in a way similar to the proof in [15]. We consider
the net cost of the basic operations, i.e., the cost of the operations except for the cost
of Union operations and creations of new singleton sets in Union-Find structures.

basic-integrate(x,f): Let T be the tree containing r. This operation takes a net
cost of O(|T'|) steps, since all old subtrees of T can be integrated to one tree
by a simple traversal, while the updates for the edge classes takes a number of
Finds linear to the number of edges. Moreover, Unions occur on two different
classes, viz. in which the two sides of an (old) external edge are contained.

basic-external-link((e,x,y)): This operation takes net O(1) steps.

basic-internal-link((e,x,y),y): Firstly, basic-integrate(d) takes |T,| net steps,
where T, is the tree containing y. Then a basic-external-link((e, z,y)) and
the remaining updates take O(1) steps . Hence, the operation takes O(|T,|)
steps.

basic-boundary(x,y): A call basic-boundary(z,y) takes O(|BL|) steps if BL is
the resulting boundary list for z and Y. This is seen as follows. If z = Y,
this is obvious. Consider z # y. Then the computations take O(|s(z)| +
[s(¥)| + |BL| +1) steps. Moreover, [s(y)| ~ 1 < |s(z)| < [s(y)| + 1 and
hence [BL| > min{|s(z)| - 1,|s(y)| — 1,2}. Therefore |s(z)| < 2|BL| and
|s(y)| < 2|BL|. Hence all this takes O(|BL|) steps.

basic-joinclasses(J): This takes O(|E;|) steps, where E; is the number of edges
in J. This follows since for each occurring edge class in J, O(1) steps are
performed.

We now consider the complexity of the structures FRT(z). Like in [15], we do not
need to consider the complexity of storing and obtaining the information for each
layer that exists for a tree name, since this can easily be charged to other operations
by increasing their cost with O(1) time per operation.

We show that an essential sequence in FRT(:) (of procedure link(i) pathrep(i) and
joinclasses(i)) takes O(n.a(i,n)) steps on n nodes. Moreover, we show that the
number of times that an edge becomes affected in FRT(z) (by procedure basic-
internal-insert or basic-integrate, cf. Section 6) is at most a(i,n).

We prove this by calculating the net cost of the procedures link(i), (essential)
boundary(i) and joinclasses(i), the cost of unions and creations of singleton sets
in layer ¢ and the cost of essential recursive calls: for each call of the procedures
link(z), (essential) boundary(i) and joinclasses(i) in layer i we do not account for
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steps performed in an essential recursive call or steps regarding Unions or creations
of new singleton sets. Here, an essential recursive call is any recursive call of these
procedures with the restriction that recursive boundary calls are essential.

9.1 FRT(1)

We consider the cost of an essential sequence on n nodes (n > 1) in FRT(1).

We consider the net cost of each of the procedures and we consider the cost of unions
and creations of singleton sets.

procedure link(1): Consider procedure link. The execution of a procedure call
link((e,x,y),s,t,1) takes at most co.|weight(t,1)| steps (for some appropriate
constant co), where w.l.o.g. tree(t,:) is the smallest of the two sets to be
joined. Now charge the cost of such a linking to the nodes in tree(t, 1) by
charging to each node for at most ¢, steps. A node can only be charged to if it
becomes an element of a new tree whose size is at least twice the size of the old
tree it belonged to. Hence a node can be charged to at most |logn| < a(1,n)
times. Therefore, all these operations take at most di.n.|logn| < dj.n.a(1, n)
steps together.

On the other hand it follows in the same way that the number of times that
an edge is affected, is at most a(1, n).

procedure boundary(1): By the above considerations for procedure basic-
boundary a call boundary(z,y,1) takes O(|BL|) steps where BL is the re-
sulting boundary list for  and y. Note that at least |BL] — 1 different classes
occur in BL, which is > 1. Charge O(1) cost to the encountered classes. After
this procedure call, all classes occurring in BL are joined into one new class by
a call of procedure joinclasses, since we are considering an essential sequence.
Since during all operations there exist at most 2.(2n) —1 different edge classes
(since there are at most 2n edge sides), this gives that the total amount of

steps is linear to the number of classes that have existed in FRT(1), which
yields at most dy.n for some constant dp.

procedure joinclasses(1): Procedure call joinclasses(J,1) takes O(1) steps for
each class that is joined. Since during all operations there exist at most
2.(2n) — 1 different edge classes, the total amount of steps is at most d;.n
steps for some constant d;, apart from the time used for joinings.

Unions: There are at most 2n edge sides in layer 1. By [15), the time for the joinings
and insertion of edges in layer 1 is at most cy.n.a(1,n) for some constant cp.
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Concluding the above observations, FRT(1) takes at most d.n.a(1,n) steps for an
essential sequence on n nodes (n > 1) for some constant d. Moreover, the number
of times that a node is affected is at most a(1,n).

9.2 FRT(i) for i>1

We now consider the complexity of the execution of an essentijal sequence in FRT(z)
with ¢ > 1. We perform the analysis by means of induction on :.

Suppose FRT(: — 1) takes at most c.k.a(i — 1,k) steps for all operations link,
boundary and joinclasses on k nodes (k > 1) in an essential sequence, where ¢
is some arbitrary constant. Moreover, suppose that the number of times that an
edge in the FRT(i — 1) structure is affected, is at most a(i — 1, k).

We consider the cost for an essential sequence on n nodes (n > 1) in FRT(7). We
do this by considering the net cost of each of the procedures and by considering the
cost of unions and creations of singleton sets and the cost of essential recursjve calls.

procedure boundary(i): Recall that the call must be essential. Firstly, the call
of procedure candidates(t) and the check whether its output edges are in the
same class and the recursive call boundary(i — 1) takes at most ¢, net steps
(for some constant c;). (For, the call boundary(i — 1) takes net O(1) steps if
it is nonessential and it takes no stpes if it is essential.)

Then for each node f in BB a call boundary is performed in tree(f) that
returns bl(f), which takes O(|bi( f)|) steps. Note that then at most 2 nodes
may be removed from bl(f) in the subsequent computations, but stjll bl(f)
contains at least one node: since f is a boundary node in BB, there is at least
one boundary node left in bl( f) (cf. Subsection 5). Hence, the net cost of the
entire computation of bl(f) is at most c3.|bl( f)| steps for some constant cs3.

The remaining operations take at most ¢4 steps.

Note that afterwards, all classes occurring in BL (which are at least 2 classes
since the call is essential) are joined into one new class (b.m.o. procedure
Joinclasses). Note that each such (old) class has at most 2 edges in BL.
Therefore, charge at most 2(c2+ ¢34 ¢4) steps to each encountered class. Since
during all operations there exist at most 2.(2n) — 1 different edge classes (in
layer i), it follows that the total amount of steps is at most c;.n for some
constant ¢,. Hence, the total net number of steps for all these calls is at most
Cp.1.

procedure joinclasses(i): The procedure takes a net number of steps that is linear
to the number of classes that will be joined, apart from the steps for the
recursive call. Therefore, each step is charged to a current class that is joined
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(i.e., that is joined with another class). Hence, the total net amount of steps
is at most ¢;.n for some constant c;.

procedure link(z): Consider procedure Link((e, c,d), s,¢,%). We divide this proce-
dure into several parts.

1. The removal of parts of the structures.
2. The calls of procedure basic-internal-link and basic-integrate,
3. The recursive call link(i — 1) and resulting c-mark changes.

4. The rest of the procedure.

We compute the cost of each of the above parts for all executions of procedure
Link((e, z,y), s, t,?) together.

1. The removal of parts of structures: The removal of parts of structures can
be performed in O(1) time per item that must be removed. Therefore, we
charge the cost of the removal of an item to its creation. This increases
the cost of some operations by constant time only.

2. The calls of procedure basic-internal-link and basic-integrate: The ex-
ecution of the calls of basic-internal-insert and basic-integrate take at
most cs.(the number of processed nodes) steps. Therefore, we charge the
cost of the above statements to the processed nodes. Note that in both
cases the processed nodes will be contained in a new set that has a higher
lowindex value than the old set in which they were contained, and that a
node will never be contained in a set with a lower lowindez value. There-
fore the number of times that a node can be charged to is bounded by
the number of different lowindex values. Since there are at most n (> 1
elements in a set, there are by the definition of lowindes (cf. (4)) at most
a(i, [22])+2 < 3.a(4, n) different values. Therefore, the total cost of the
considered parts of the procedure is at most cs-n.a(i,n) steps for some
constant cg.

On the other hand it follows in the same way that the number of times
that an edge is affected, is at most a(z,n).

3. The recursive call Link(i — 1) We consider the cost of a recursive call
link(i — 1) in the recursive call part.
The cost for changing c-marks of edges (not being the inserted edge)
in procedure link(i) (and for the related computations) is linear to the
number of times that contraction edges are affected in the recursive call
link(¢ — 1). Later, in the part considering the recursive calls, we will
show that this is at most 3-7-a(i,n). (This is stated in Observation 9.4.)
Hence, this takes altogether c7.n.a(i, n) steps for some constant c;.
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4. The rest of the procedure: The execution of all statements except form
those considered above require at most cs time per call of Link(z). Since
there are at most n — 1 Links, this takes altogether at most cg.n time.

Hence, adding the above amounts, all calls of procedure link take net at most
c.n.a(i,n) steps for some constant .

Unions: There are at most 2n edge sides in layer i. By [15] the time for the joinings
and insertions of edges in layer i is at most cy.n.a(i,n) for some constant cy .

essential recursive calls: The essential recursive calls are performed on contrac-
tion nodes. We first consider contraction nodes and the conditions for a re-
cursive call Link(: — 1).

Observation 9.1 The operations on contraction trees (in layer i) by proce-
dure Link((e,z,y),1) are:

1. the creation of a contraction node, resulting in a singleton tree
2. the linking of contraction trees of nodes by Link((e,c,d),i — 1)

3. the removal of a complete contraction tree

The operations joinclasses(i) and boundary(i) do not change contraction
trees apart from joining edges classes inside a contraction tree (by operation
joinclasses(i)).

Similar to the proof of Claim 4.2 in [15] we can prove the following claim.

Claim 9.2 A recursive call Link((e,c,d), s, t,i—1) inside Link((e,z,y),s,t,1),
with ¢ = contr(z) and d = contr(y), is performed only if

1 < lowindex(s, i) = lowindex(t,) < a(i,n) A
weight(s, 1) + weight(t,1) < 2.A(, lowindex(s,1) +1).

For a contraction node ¢ € CN (tree(s,i)), we denote by lowindez(c) the
value lowindez(s,7). It is easily seen that a Link does not change the value
lowindez(c) for any contraction node ¢ that is not disposed by it (since then
the new tree name has the same lowindez value as the old one). Moreover,
the other operations do not change the value lowindez(c) either. Therefore for
any contraction node c the value lowindez(c) is fixed (i.e., c is a contraction
node for trees with some fixed lowindex only). We call a contraction node ¢
with lowindez(c) = [ an I-contraction node.

Similarly, we say that any recursive call Link((e,c,d),s,t,i — 1) is an Il-call if
I = lowindex(s,7) = lowindex(t,i). A recursive call boundary(c,d,i — 1) or
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joinclasses(JJ,i — 1) is an l-call if | = lowindez(s,3), where s is the name
of the tree on which the operation is applied. Obviously an I-call operates
on l-contraction nodes only, and I-contraction nodes are only operated on by
l-calls. We compute the cost of all I-calls for fixed value .

Let I be a fixed number satisfying —1 < [ < a(i,n). We consider the cost of
all recursive l-calls.

By Claim 9.2 and since [nodes(b)| > 2 for each contraction node b, it follows
in case of an l-call Link(s,t,i — 1) that we have I > 1 and that the size of
the set CN(tree(s,i — 1)) UCN(tree(t,i — 1)) is < A(i, 1 + 1). Therefore the
maximal size of any tree of [-contraction nodes that results from such an I-call
is < A(¢,1+1). By Observation 9.1 and since in an initialisation at most one
contraction node per tree is created, it follows that the maximal size of any
occurring tree of [-contraction nodes is < maz{A(s,! +1),1}.

Note that any occurring tree of I-contraction nodes with I < 0 consists of one
contraction node. Hence, an [-call of boundary(i — 1) and Joinclasses(i — 1)
occurs only if [ > 1.

Now let [ be fixed number with 1 < [ < a(i,n). Now partition the total
collection of all I-contraction nodes involved in I-calls into collections that
correspond to the maximal sets that ever exist (which is possible because
of Observation 9.1). Then the size of such a maximal collection is at most
A(3,1+1). We have the following observation (that will be proved further on)

Observation 9.3 The sequence of essential recursive l-calls on the nodes of
a mazimal set in FRT(i — 1) is an essential sequence.

For each such maximal collection of k contraction nodes, the cost of all essential
I-calls on these nodes in FRT(¢ — 1) is at most c.ka(i —1,k) < ck. a(i —
1,A(z,1 +1)). Hence, the total cost of all essential I-calls in FRT(: — 1) on
I-cluster nodes is at most c.(number of I-cluster nodes). a(i — 1, A(¢,1 + 1)).
Since for each I-contraction node b we have Inodes(b)| > 2.A(3,1) (cf. (5)),
and since as long as a node is contained in tree structures with lowindez value
l it has the same contraction node in which it is contained, there are at most

n/(2.A(4,1)) l-contraction nodes. Therefore, the total number of steps for all
essential /-calls is at most

n . .
C.m. a(z b 1,A(Z,I+ 1))
1 n . . .
= Ec.m. a(z it l,A(Z - l,A(l, l)))
< %c.n
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by using 7 > 1, Equation (1) and Lemma 2.11 respectively.

Since there are at most a(i, n) applicable values ! of lowindez to be considered
(viz. 1 with 1 < I < a(i,n)), this yields that the total number of steps used
for all these FRT(: — 1)-calls is at most zen.a(i.n).

We consider the number of times that contraction edges are affected, for use in
the analysis of procedure link. Similarly as above, by the induction hypothesis,
the number of times (for fixed / > 1) that I-contraction edges are affected in
the I-calls link(i — 1) on a maximal set of I-contraction nodes, having size k,
is k.a(i — 1, k), which yields again 1.n times for fixed I. Hence, we obtain the
following observation.

Observation 9.4 The number of times that contraction edges are affected in
the recursive calls link(i — 1) is 3.n.a(i,n) altogether.

We are left to prove Observation 9.3.

Proof of Observation 9.3. We are left to prove Observation 9.3. Sup-
pose some essential operation boundary(i — 1) is executed inside operation
boundary(i), returning boundary list BB. For each node f in BB with edges
e1 and e; in its sublist, there are edges €| and €3 in bl(f) such that the orig-
inals of ¢} and e; are in the same edge set in Fy and similarly for e; and
ez. Since the operations in FRT(:) yield a feasible sequence in FRT(7), the
call boundary(i) is followed by a call joinclasses(z) that joins the classes of
€} and e} inside extree(f). Since these two classes each have at least one
external edge in FRT(:), viz., orig(e;) and orig(ez), there is a recursive call
joinclasses(i — 1) with a joining list that contains node f together with two
edges in its sublists that are in the same edge sets as e; and e, respectively.
This proves that the sequence of essential recursive l-calls on the nodes of a

maximal set in FRT(i — 1) is a feasible sequence. This concludes the proof of
Observation 9.3. O

Combining the above results yields that the total number of steps is at most
. . 1 .
&%-n +¢;.n + c.n.a(i,n) + cy.n.a(i,n) + Ec.n.a(z, n).

Note that this is at most c.n.a(i, n) steps if ¢ > maz{d,2.(cs + ¢c; + ¢ + cvr)}.

Since the constant ¢ was arbitrary and since , ¢j, ¢ and cy do not depend on c,

we can take ¢ = maz{d,2.(c, + ¢; + ¢ + cyy)}. Then it follows by induction that an
essential sequence in FRT (%) takes at most c.n.a(i,n) steps.
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9.3 FRT(i) for i> 1

From subsections 9.1 and 9.2, it follows that an essential sequence in FRT(:) on n
nodes takes at most c.n.a(i,n) steps. By the observation, that all nodes that still are
in singleton trees after executing the sequence are not involved in the algorithms,
Lemma 8.1 follows.

10 FRT Structures

Starting from now on we only consider a FRT(:) structure to be used in some
environment not being FRT(i+1), i.e., F; = Fy. We have the following aspects.

Firstly, we now consider the operations as described in Section 3. We express
these operations in the operations described in Section 7. Note that the opera-
tions boundary and joinclasses match in both sections if the appropriate ¢ is used.
The operation link((e, z, y)) corresponds to the operation

link((e, z,y), treename(z), treename(y), i)

in the FRT(:) structure. Hence, the time needed for a link operation is now extended
with two treename operations, being two steps. Hence , this does not increase the
order of time complexity of this operation. The operations equal-class-edges(z,y)
can be performed by a call candidates(z, y,1) returning two edges e, and ey and by
performing the Find calls classo(e;) and classo(e,) (in U Fy). Hence, the time needed
for such a call is the time for candidates and two Find operations in U Fy, which is
O(1) steps. Therefore, we can consider the operations as described in Section 3 with

the same order of complexity. Thus, Lemma 8.1 remains valid for these operations
(in order of magnitude).

Secondly, for UF; (that represents the edge classes in Fy) UF(2) is used. Now each
operation joinclasses(J,1) performed in FRT\(7) also joins all classes in F} occurring
in J (in UFp). (This obviously can be done in O(|J|) steps apart from the time
needed for performing the Union operations themselves. Hence, these steps do not
increase the total time complexity of the FRT(:) structure).

Henceforth, we denote by an FRT(z) structure a thus adapted FRT(:) structure.

Note that all Union-Find structures used in FRT(i) are UF(j) structures with 1 <
J < i, and that UF, is UF(¢). Therefore it follows that a step, as defined in the
Previous subsection, is O(%) time.

By [15] an Ackermann net for n can be computed in O(log ) time and takes O(log n)
space. Moreover, it is readily verified that the initialisation of F RT(z) can be per-
formed in O(n) time. Finally, by induction to i it easily follows that the total space
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complexity of FRT(:) is O(n), since layer i — 1 has at most 3-n contraction nodes
since for each contraction node b we have Inodes(b)| > 2.

By Lemma 8.1, by the above observations and since UF(:) takes O(n..a(i,n.)) time
for n. elements, we obtain the following result.

Theorem 10.1 Let ¢ FRT(i) structure for a forest with n nodes be given. The
structure and the algorithms can be implemented as a pointer/logn solution such
that the following holds. An essential sequence (of the operations link, boundary and
joinclasses) in FRT (i) needs a total of O(ne.1.a(i,n.)) time (i > 1, n, > 2), where
Ne is the number of nodes that are not contained in singleton trees after the execution
of the sequence. (Of course, n, < n.) Each equal-class-edges operation takes O(z)
time. Each nonessential call boundary takes O(t) time. The initialisation can be
performed in O(n) time and the entire structure takes O(n) space (i > 1, n > 2).

By using the same solution as in Theorem 6.1 of [15] for the augmentation of the
Ackermann net that is used, the above lemma can be extended with the insertion of
new (isolated) nodes in the structure with the same complexity bounds, where the
insertion of a new node takes O(1) time.

We define an o-FRT structure (for n nodes) as follows. Initially, a FRT(a(n,n))
structure is used. From time to time, a transformation is performed, replacing a
FRT(z) structure by a FRT(; — 1) structure, viz., each time that a(q,n) decreases
by one, where at any moment ¢ is the number of queries equal-class-edges and
boundary performed until then. This is performed similar to the way in the proof of
Theorem 5.2 of [15] (the full paper), where hence now the queries equal-class-edges
and boundary play the role of the Find operations, and where link and joinclasses
play the role of the Union operations. The building of the new structure FRT(:—1)
is done like in Theorem 5.2 in [15], but instead of building parts of FRT(; — 1)
during equal-class-edges and boundary operations, and using parts of both FRT(2)
and FRT(: — 1), we do the following. We have all pointers in the forest Fy in
duplicate, say version 1 and version 2, and we either use version 1 or version 2 of all
the pointers. When for FRT(z) version 1 is used, then FRT(z — 1) is builded with
version 2 and starting from the moment that FRT(i — 1) is completed the version 2
pointers are used (instead of version 1 pointers).

Then we obtain the following result.

Theorem 10.2 Let an o-FRT structure for an “empty” forest with n nodes be
given. The structure and the algorithms can be tmplemented as a pointer/ logn
solution such that the following holds. A matching sequence M of operations
link, boundary, joinclasses and equal-class-edges in a-FRT needs a total of
O((ne + m).a(m,n)) time, where m is the number of operations equal-class-edges
and boundary that is performed, and where n. is the number of nodes that are con-
tained in non-singleton trees at the end (and, hence, the essential subsequence of M
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consists of 6(n.) operations). The ¢** call of the operations equal-class-edges and
boundary takes O(a(q,n)) time if it is a call of equal-class-edges or a nonessential
call of boundary. The initialisation can be performed in O(n) time and the entire
structure takes O(n) space.

The proof is similar to the proof of Theorem 5.2 in [15]. However, for the initial
case, i.e., 2 = &(n, n), an essential sequence takes O(n,.i.a(i, n.)) = O(n,.i) time (by
Theorem 10.1 and Lemma 2.13). For rebuilding a FRT(%) structure to a FRT(: —1)
structure, we now charge to each of the last [1f] operations equal-class-edges and
boundary for O(3) time, based on Equation (13) in [15] (note that now f > n). This
O(?) is then included in the cost of these operations, hence augmenting their cost
by a constant factor only. Thus, if m < n, we have i = a(n,n), and the total cost
is O((ne + f).a(m, n)). Otherwise, charge the O(n,.i) cost for FRT(a(n,n)) to the
first n operations equal-class-edges and boundary, hence augmenting their costs by
a constant factor again. Then, the cost of these operations equal-class-edges and
boundary is computed like in Theorem 5.2 in (15], yielding the required result.

Note that the number m in this lemma refers to the number of calls of operations
equal-class-edges and boundary that are performed in the environment. Le., a call
equal-class-edges inside operation boundary is not relevant. (However, if these calls
inside other operations are counted for too (but not the recursive calls), this still
does not affect the above statement.)

Note that the adapted building strategy (where the building of a new structure is
distributed over several operations) is important only if we want queries like equal-
class-edges (or nonessential boundary calls) to have a O(a(g,n)) worst-case time.
Otherwise, the building can be done straightforward during one of the operations
and the two versions of the pointers in F, are not needed.

By using the same techniques as in Theorem 6.2 in [15], the above theorem can
be extended with the insertion of new (isolated) nodes in the structure with the
corresponding complexity bound O(n + (n. + m).a(m,n)) (where m, n, ne, and
q denote the current number at the time of consideration). The strategy is again
to start with a structure FRT(¢/(n,n)) (where o/(m,n) is defined below, satisfying
o'(m,n) = §(a(m,n))), and to replace FRT(:) by FRT(3") (for some ¢’ # i) in case
@'(g,n) decreases or increases (with additional constraints), where at any moment g
is the number of queries equal-class-edges and boundary performed until then, and
n is the number of nodes actually present in the structure at that moment, while
the insertion of a new node in the structure is deferred until that node is operated
on (viz., by operation link: it then becomes part of a non-singleton tree). (The
deferring of insertions in the actual data structure guarantees, that at any time,
Npres = MNe, Where n, is as before, and where Npres is the number of nodes present in
the thus adapted structure.) All this is performed similar to the method in the proof
of Theorem 6.2 in [15] (the full paper), where now the queries equal-class-edges and
boundary play the role of the Find operations, where link and Joinclasses play the
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role of the Union operations, and where the building of the new structure FRT(3’)
is done like in Theorem 6.2 in {15] with the previous adaptations. We want to
remark that if at any time m = O(n) (i.e., at any time the number of operations
performed until then is at most linear in the number of nodes present at that time),
then the above transformation techniques can be simplified by replacing m by n in
the conditions; then only a(n,n) is used and maintained, and only rebuildings from
FRT(z) to FRT(:+1) are performed, viz., if a(n, n) increases. (This situation occurs
in the 2ec-and the 3ec-problem.)

We describe further changes for the above situation w.r.t. the proof of Theorem 6.2
in [15]. Firstly, instead of the inverse Ackermann function a(m,n), a variant is
taken, viz.,

o'(m,n) = min{i > 1|i.(a(i,n) — 5) < 5.[m/n]}.

We have o'(m,n) = 6(a(m,n)). The checking of the transformation condition can
be done in a way similar as in [15], and the only necessary arithmetic operations still
are addition, subtraction and comparison. Then the complexity part of the proof
of Theorem6.2 in [15] is changed as follows. Lemmas 2.10, 2.11 and 2.12 in {15] are
adapted to deal with ¢.a(z,n) instead of with a(z,n). The cost function in the proof
of Theorem 6.2 in [15] is slightly adapted (viz., its constants are changed, and ngq,e
is replaced by npgse.ap). Since at any moment, the number Npres Of Nodes actually
present in the structure satisfies nyye, = 1., and since an insertion takes O(1) time,
the resulting time complexity becomes O(n + (n. + m).o/(m,n)) = O(n + (n. +
m).a(m,n)).

11 Three-Edge-Connectivity

We will now extend the results to the maintenance of 3-edge-connected components
in a graph, with a time complexity of O(n + m.a(m, n)) for n nodes and m queries
and insertions. We first state the combinatorial observations of [18]. For details we
refer to [18]. In Subsection 11.1 we consider maintaining the 3-edge-connectivity

relation within 2-edge-connected graphs and subsequently in Subsection 11.2 we
consider the problem for general graphs.

Let G =< V,E > be a graph. The set V can be partitioned into equivalence
classes for the 3-edge-connectivity relation, called Sec-classes. Each 3ec-class C is
represented by a new (distinct) node ¢, called the class node of C. Let 3ec(z) be the
class node of the 3ec-class in which the vertex z is contained. We define the graph
3ec(G) as follows:

3ec(G) =< 3ec(V), {(e,3ec(x),3ec(y))|(e, z,y) € E A 3ec(z) # 3ec(y)} > .

Hence, 3ec(G) is the graph that is obtained if we contract each 3ec-class into one
representing (class) node (see Figure 5 if G is 2-edge-connected). By Lemma 2.10
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it follows that 3ec(G) does not contain pairs of distinct class nodes that are 3-edge-
connected in 3ec(G).

11.1 Two-edge-connected graphs

Throughout this subsection, we suppose that the graph G is 2-edge-connected. We
give some observations. By Lemma 2.10 for 2-edge-connectivity, every two distinct
class nodes must lie on a common elementary cycle in 3ec(G). On the other hand,
simple cycles cannot intersect in more than one class node, since 3ec(G) does not
contain pairs of distinct class nodes that are 3-edge-connected. Therefore, it follows
that each edge in 3ec(G) is on exactly one simple cycle in 3ec(G).

Let Cyc(3ec(@G)) be the graph that is constructed from 3ec(G) as follows. Each non-
trivial simple cycle (i.e., consisting of at least two distinct class nodes) is represented
by a distinct node, called cycle node. Let cn(3ec(G)) be the set of cycle nodes. For
a cycle node s let cycle(s) be the set of all class nodes that are on the cycle s. Then

the graph Cyc(3ec(G)) is defined uniquely up to the choice of (distinct) edge names
by

Cyc(3ec(G)) =
< 3ec(V) U en(3ec(G)), {(e, ¢, 8)|c € 3ec(G) A s € cn(3ec(G)) A ¢ € cycle(s)} > .

Hence, Cyc(3ec(G)) consists of the class nodes and cycle nodes of 3ec(G), where
a class node c is adjacent to a cycle node s in Cyc(3ec(G)) iff ¢ lies on cycle s in
3ec(G) (i.e., c is “incident” with cycle s). Therefore, graph Cyc(3ec(G)) shows the
incidence relation for class nodes and cycles. Moreover, graph Cyc(3ec(G)) is a
tree. We call graph Cyc(3ec(G)) the cycle tree of G. The structure of Cyc(3ec(G))
is illustrated in Figure 5, where the cycle nodes are drawn as boxes.

11.1.1 Edge insertions

We maintain the 3-edge-connectivity relation under insertions of edges by means of
the graph Cyc(3ec(G)).

Suppose a new edge (e, z,y) is inserted in the 2-edge-connected graph G =< V, E >
((e,z,y) € E). Because G is 2-edge-connected, we have two cases. If 3ec(z) =
3ec(y) then the edge connects two nodes that are 3-edge-connected in G, and, hence
(by Lemma 2.10), insertion of this edge does not affect the 3ec-relation and the
graphs 3ec(G) and Cyc(3ec(G)) remain unchanged. So we can assume that 3ec(r) #
3ec(y) A 2ec(z) = 2ec(y). Then edge (e,3ec(z),3ec(y)) arises as an inserted edge in
3ec(G) and it connects two class nodes 3ec(z) and 3ec(y) in 3ec(G).
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Figure 5: A 2-edge-connected graph G and the related graphs 3ec(G) and
Cyc(3ec(Q)).

Graph G Graph 3ec(G) Graph Cyc(3ec(G))

Lemma 11.1 [18] Let G be a 2-edge-connected graph. Suppose edge
(e,3ec(z), 3ec(y)) is inserted to the graph 3ec(G). Then all the class nodes on the
tree path from 3ec(z) to 3ec(y) in Cyc(3ec(G)) become $-edge-connected in 3ec(G),
while the other pairs of distinct class nodes in 3ec(G) stay only 2-edge-connected.

By Lemma 11.1 all class nodes on the tree path from 3ec(z) to 3ec(y) in Cyc(3ec(G))
become 3-edge-connected in 3ec(G) and, hence, by Lemma 2.10 all the correspond-
ing classes form a new class. The update can now be performed in the following
way.

e obtain the tree path in Cyc(3ec(G)) between 3ec(x) and 3ec(y)
¢ join all the classes "on” this tree path into one new class ¢’

o adapt the cycle tree Cyc(3ec(G)) into Cyc(3ec(G’)) accordingly (where G’ is
the result graph after the insertion of the edge).

The update is illustrated in Figure 6. The cycle tree changes as follows. Consider
the simple cycle s and the class nodes ¢ and d (¢ # d) such that s,c and d are on
P and ¢,d € cycle(s). Then classes ¢ and d are joined into the new class ¢’. The
original simple cycle s splits into two ”smaller” simple cycles, each one consisting
of the class node ¢ for the new class and of the class nodes of one of the two parts
of the cycle between ¢ and d, in the same cyclic order (cf. Figure 7). One or both
of these two new cycles may be a trivial cycle: i.e., consisting of class node ¢’ only
(which is the case if one of the parts mentioned above of the cycle is empty).
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Figure 6: Adapting the tree path between 3ec(z) and 3ec(y).

| 3ec(x) 3ec(y)

Figure 7: Splitting cycles.
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Lemma 11.2 [18] Given a 2-edge-connected graph G of n nodes with a cycle tree,
there ezists a data structure for the 3ec-problem (that also maintains a cycle tree)
such that the following holds. The total time for m insertions and queries is O(m+n)
time plus the time needed to perform O(m + n) Finds and O(n) Unions and Splits
in a Union-Find or a Circular Split-Find structure for O(n) elements. The data
structure takes O(n) space.

11.2 General Graphs

11.2.1 Observations

We now extend the solution of the previous section to general graphs. We first state
observations of [18]. For detecting the 3ec-classes it suffices to detect the 3ec-classes
inside the 2-edge-connected components. Therefore, our algorithms for general
graphs maintain the 2ec-classes (as in Section 4), and they maintain the 3ec-classes
by using solutions for 3-edge-connectivity within 2-edge-connected components.

We denote the forest of all cycle trees for the 2-edge-connected components by
Cyc(3ec(G)). We call Cyc(3ec(G)) a cycle forest of G.

Suppose edge (e, z,y) is inserted in graph G yielding graph G'. Then the following
changes occur. We distinguish three cases.

If ¢(z) # c(y), then the 2ec-classes and the 3ec-classes do not change.

Otherwise, if 2ec(z) = 2ec(y) then (e,z,y) is inserted inside a 2-edge-connected
component and the changes as described in Subsection 11.1 occur.

Otherwise we have 2ec(z) # 2ec(y) A ¢(z) = c(y). Then consider 2ec(G). Let P;
be the tree path between 2ec(z) and 2ec(y) in 2ec(G) (consisting of the class nodes
only) (cf. Subsection 4.1) and let C'S; be the cyclic list obtained from P; by inserting
the interconnection edges between consecutive class nodes of P, and by inserting the

edge (e, z,y) between class nodes 2ec(z) and 2ec(y). Then the major changes are
the following:

1. all 2ec-classes corresponding to class nodes on P, form one new 2ec-class (cf.
Subsection 4.1) '

2. for each 2ec-class C on P,, the 3ec-classes inside C (and hence the correspond-
ing cycle tree) are changed: several 3ec-classes may form one new 3ec-class

3. a new cycle s of 3ec-classes arises; the new cycle node s links the (updated)
cycle trees that correspond to the 2ec-classes on C'S,

We consider the changes more precisely.
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1. This part is identical to Subsection 11.1.

2. We consider the changes of the 3ec-classes that occur in 2ec-classes on P;.
Consider a particular 2ec-class C on P, in 2ec(G). Let u and v be the two
nodes in C that are end nodes of interconnection edges on C'S;. Then there is
a new path between u and v in G’ that does not intersect with C except for u
and v, where such a path did not exist in G before. Hence, considered within
C only, this corresponds to inserting a temporary edge between the nodes u
and v (cf. Figure 8), since the 3ec-classes are completely determined by the

Figure 8: Tree path versus temporary edges.

2ec(u) M

3ec(u)=39c(v)'

2ec(G) together with 3ec(2ec(u)) after inserta(e,u,v)

2-edge-connected components in which they are contained (and hence by the
nodes in C together with edges of G that have both their end nodes in C. Cf.
Corollary 2.8). The update of the 3ec-classes (and hence the cycle tree) can be
performed in C by the insertion of a temporary edge in the 2-edge-connected
component C.

3. Now suppose all these “local” insertions are performed in the 2ec-classes on P,.
Then the two edges in C'S; that are incident with one 2ec-class C on P, have
their end nodes in the same (updated) 3ec-class in C. Call such a 3ec-class
the interconnection 3ec-class in C. Then all these interconnection 3ec-classes
form a new cycle s. Then the updated cycle tree T in each 2-edge-connected
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component C on P, is linked to the new cycle node s by an edge between cycle
node s and the class node of the interconnection 3ec-class in C. All these cycle
trees are linked to s and hence now form one new tree together.

11.2.2 Algorithms

We have the following observation for inserting an edge in a 2-edge-connected
graph G (or 2-edge-connected component). The changes in the 3-edge-connectivity
relation and the change of Cyc(3ec(G)) are only determined by the 3ec-classes in
which an inserted edge is contained. Therefore, only the 3ec-classes in which the
end nodes of a new edge are contained are relevant, and not the actual end nodes
themselves.

Consider some graph G =< V, E >. We change the cycle forest Cyc(3ec(G)) by
on the one hand augmenting the collection of nodes of G and on the other hand
partitioning the thus obtained 3ec-classes into subclasses. We do this as follows.

Each 3ec-class in G may be extended with an arbitrary number of new, auxiliary
nodes that are considered to be nodes in that 3ec-class. The new additional edges
that should make this 3-edge-connectivity relation true are not given explicitly (but
of course linking such a new node with some other node by 3 edges will do). In the
following, the auxiliary nodes are not distinguished from the original nodes.

Each (extended) 3ec-class C of G is partitioned into subclasses of nodes. To each
subclass a (new) distinct node is related as its name, called the subclass node. We
call these subclass nodes the subclass nodes for C. The subclass node of the subclass
to which a node r belongs is denoted by sub(z). An augmented cycle forest AFg
for G for this collection of subclasses is a forest that has the subclass nodes and the
cycle nodes of Cyc(3ec(G)) as its nodes such that

o for each 3ec-class C of G, the subclass nodes for C induce a subtree of AFg

e Cyc(3ec(G)) is obtained (up to edge names) if for each 3ec-class C the subclass
nodes for C are contracted into the corresponding class node of C.

Note that the edges between a cycle node and a subclass node in AFg correspond
to the edges in Cyc(3ec(G)), viz., for each edge in Cyc(3ec(G)) between class node
¢ and cycle node s there is precisely one edge between s and some subclass node ¢
for class c. We call the (other) edges that connect two subclass nodes (that hence
correspond to the same class) connectors. A connector that links two subclass nodes
of a 3ec-class C is called a connector for 3ec-class C.

Stated informally, AFg can be obtained by replacing each class node in Cyc(3ec(G))
by some tree of subclass nodes and connectors. See Figure 9.
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Figure 9: Augmented cycle forest

We consider the insertion of an edge (e,z,y) in a 2-edge-connected graph in terms
of an augmented cycle forest AFg for G. Let 2ec(z) = 2ec(y) A 3ec(z) # 3ec(y). All
class nodes on the tree path from 3ec(z) to 3ec(y) in Cyc(3ec(G)) become 3-edge-
connected in 3ec(G) and the corresponding classes form one new class. Note that
these classes are the classes that have at least one subclass on the tree path P in

AFg between sub(x) and sub(y). Hence, we can update the structure according to
the following observations (also cf. Subsection 11.1).

e Two successive subclass nodes on P (without a cycle node in between) corre-
spond to the same class. Hence, it suffices to obtain all the subclass nodes on
P that are adjacent to a cycle node on P.

o All the classes of which a subclass node is “on” P must be joined into one new
class C'.

o The augmented cycle tree AFg must be adapted to be an augmented cycle tree
for the resulting graph. Hence, all subclass nodes for C’ must form a tree and
no cycle node may occur in between. In particular, this can be done by joining
for each cycle node s on P the two subclass nodes that are its neighbours on
P and to split cycle s in AF; accordingly.

Therefore updates are locally performed in the way as for cycle trees, viz., for
each maximal part of P that does not contain two adjacent subclass nodes
(and hence that is locally similar to a cycle tree)

Note that we only join subclasses with subclass nodes that are adjacent to a cycle
node and, hence, belong to different classes.
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Our goal structure is now as follows. For a graph G, we have a forest bc(G) (not being
a forest inside G) and an augmented cycle forest AFg that satisfy the following. The
graph G =< V, E > is extended with a collection of auxiliary nodes, which may be
extended from time to time. Each auxiliary node is considered to be in some existing
3ec-class that consists of at least one original node (i.e., a node in V). The additional
edges that should make this true are not given explicitly. The (thus extended) vertex
set is partitioned into disjoint sets, called basic-clusters. Each basic-cluster has a
(new) unique node as its name, called cluster node. The nodes of forest bc(G) are
these cluster nodes. We call the edges of bc(G) be-edges. The following constraints
are satisfied.

o Each 3ec-class C is partitioned into subclasses obtained by intersecting C' with
the basic clusters. To each subclass, a unique node is related as the subclass
node. The subclass nodes of G are the subclass nodes in AF;. Then AFg is
an augmented cycle forest for G.

e Each subclass node is considered to be contained in the basic cluster that
contains its subclass. Then for a basic-cluster b, the subclass nodes that are

contained in b together with appropriate cycle nodes of AF; induce a subtree
of AFg, denoted by tree(b).

o The edges of AFg of which the end nodes are in different basic-clusters are
connectors.

¢ There is a connector with end nodes in the basic-clusters b, and b, iff there is
bc-edge between b, and b,.

By the above constraints, it follows that for a cluster b, tree(b) does not have two
adjacent subclass nodes. Therefore, tree(b) is a cycle tree of a 2-edge-connected
graph that has the nodes of basic-cluster b as its nodes together with appropriate
edges that induce the 3-edge-connectivity relation as represented by tree(b). E.g.
it has all edges of G with end nodes in basic-cluster b together with additional edges
between each pair of nodes in basic-cluster b that are 3-edge-connected.

Note that bc(G) can be obtained from AFg by contracting all subclass nodes in a
basic-cluster b to its cluster node b. Note that the only edges in AFg with images
in bc(G) are the connectors.

We thus have a structure of clusters with bc-edges in between, where the original
connector of such a bc-edge “connects” the occurrences in AFg of some 3ec-class of
G inside the two corresponding basic-clusters (viz., the 3ec-classes determined by
the end nodes of the connector). See Figure 10 for the example of Figure 9.

We define edge classes on bc(G) as follows:
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Figure 10: A forest be(G)

The bc-edge set of bc(G) is partitioned into disjoint classes, where a be-
edge class consists of the bc-edges of which the original connectors in
AFg are connectors for the same 3ec-class.

Note that if two bc-edges are incident with a cluster node b and if they are in the
same bc-edge class, then their original connectors in AFg have the same subclass
node as end node (in cluster b).

The above strategy (in terms of an augmented cycle forest) for inserting an edge
(e,z,y) in a 2-edge-connected graph is transformed in terms of bc(G) into the
following. Let ¢ = clus(z) and let d = clus(y). Suppose that ¢ # d.

e Let P be the tree path in bc(G) between ¢ and d. Let P’ be the tree path in
AFg between sub(r) and sub(y).

The two incident bc-edges of an internal node b on P are in the same bc-edge
class. Hence, the two connectors that are their originals both are connectors
for some 3ec-class C. Moreover, these connectors are on P’. Hence, only one
subclass node of P’ is in cluster b. Since edges between subclass nodes and
cycle nodes in AFg occur inside clusters only, this gives that there is no cycle
node on P that is in cluster b. Hence, we do not need the internal nodes of P.

A boundary node b of P is either one of the end nodes c or d, or it is a node
for which its two incident bc-edges e; and e, on P are not both in the same be-
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edge class. In the latter case this means that the two connectors that are their
originals are connectors for different 3ec-classes. Moreover, these connectors
are on P’. Hence, at least two different subclasses on P’ and at least one cycle
node on P’ are in cluster b.

Hence, to obtain the relevant path parts of P’, it suffices to obtain a boundary
list BL for ¢ and d and to consider the boundary nodes.

o For each such cluster b with b € BL, a local update of the local cycle tree
must be performed by joining all subclasses on the part P} of P’ inside cluster
b and by updating the local cycle tree correspondingly. Note that this update
corresponds to the update for inserting a temporary edge between any two
nodes of G that are contained in the two subclasses that correspond to the
subclass nodes that are the ends of P]. The end nodes of P, are the end nodes
(in cluster b) of the originals of the bc-edges on P that are incident with b,
where if there is only one such bc-edge, sub(z) or sub(y) is the other end node
of Pj. Note that by the definition of bc-edge classes we still obtain the same
end nodes if we substitute these bc-edges by other be-edges in the same bc-edge
classes. Therefore we can use the bc-edges in the sublist of b in BL to obtain
the end nodes of Pj.

We describe a structure, called 3EC structure that solves the 3ec-problem.
We distinguish between the different layers of representation.

The representation for the graph G itself is as follows. Firstly, there is a structure
2EC to maintain the 2ec-classes of G. This structure works on the regular nodes
only and hence the additional nodes are not involved. There is Union-Find structure
for implementing the 3ec-classes of nodes of G, called the global Union-Find struc-
tures and denoted by UFj... Note that in the 2EC structure there are Union-Find

structures for the connected components and the 2ec-classes of G, denoted by UF,
and U Fpe.

A query 3ec-comp(z) now corresponds to a Find call 3ec(z).
The vertex set of G may be extended from time to time with auxiliary nodes.

Each (original or additional) node z has a pointer clus(z) to the cluster node in
which it is contained.

Forest bc(G) is implemented as a fractionally rooted tree structure (FRT'), denoted
by FRT3.. (Also the forest be(G) has a regular implementation as a forest, i.e.,
with incidence lists for its nodes.)

The augmented cycle forest AFg is not implemented as a whole. In fact, it is imple-
mented in parts, viz. by cycle trees inside basic-clusters and by separate connectors.
To be precise, we have the following implementation.
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Note that AFg has connectors (being the originals of bc-connectors) which have end
nodes being subclass names. Note that subclasses are joined from time to time.
Therefore, instead of having a subclass node as end node, a connector has a node of
such a subclass as end node. Then the subclasses that are the ends of a connector
(e,z,y) are sub(z) and sub(y).

Recall that for a basic-cluster b, the part of AFy inside basic-cluster b, viz. tree(B),
is a cycle tree on the nodes of basic-cluster b. Then tree(b) is implemented as a
cycle tree independent of the rest of AFg or G. It is implemented and maintained
as the cycle tree in the former solution of Lemma 11.2. (for maintaining 3-edge-
connectivity inside a 2-edge-connected graph). We refer to this solution as the local
structure. The Union-Find and the Circular Split-Find structures used in the local
structure are denoted by UF},. and GSF},.. The Find operation in U F},. for a node
z (returning the name of its subclass) is denoted by sub(z). The insertion operation
in a local structure is denoted by insertlocs.

A bc-edge has a pointer to its original connector in AFg as represented above (which
actually is an artificial edge between to nodes of G), and, conversely, a connector in
AFg has a pointer to the bc-edge that is its contraction edge.

We relate to each subclass of nodes that occurs inside some basic cluster a connector
that has one of its end nodes in that subclass (if such a connector exists). Such a
connector is called an associated connector for that class. (Notice the similarity
with the associated edges for nodes in the 2ec-problem.) A pointer assoc to that
connector is stored in the subclass node.

Remark that the edge classes in bc(@) can now be described as follows:

Let (e,c,d) be a bc-edge. Let (e,z,y) be its original connector. Then
(e,¢,d) is in the edge class called 3ec(z) (this name is only used in the
description, not in the algorithms).

(Recall that for a connector (e, z,y) we have 3ec(z) = 3ec(y).)

The initialisation for an empty graph is straightforward. (Note that each node in
the graph forms a singleton basic-cluster on its own, and, hence, for each node, a

cluster node is created representing the singleton basic-cluster that is formed by the
node.)

Suppose some new edge (e, z,y) is inserted in G, resulting in graph G’. Let the
corresponding clusters for z and y be ¢ and d. Then procedure inserts((e, z,y))

updates the structure as follows. If 3ec(z) # 3ec(y), then the following cases are
considered.

L. ¢(z) # c(y). Then an insertion is performed as for 2-edge-connectivity, viz.,
by a call inserty((e, z,y)).
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2. c¢(z) = c(y) A 2ec(z) = 2ec(y) A 3ec(z) # 3ec(y). Let glob be an empty list.
Let ¢ = clus(z) and d = clus(y). If ¢ = d then BL is the list consisting of ¢
with empty sublist; otherwise, boundary(c, d) is performed in F RT,., yielding
boundary list BL in be(G). List BL is copied as list J, but with empty sublists.

For each basic cluster bin BL, the original(s) of the bc-edge(s) in the sublist of b
are obtained (if any). If b = ¢ = d then let u = z and v = y. Otherwise, if b= ¢
or b = d then let v = z or v = y respectively, and let node u the end node of
the above original edge that is in basic-cluster b. Otherwise, let nodes u and v
be the end nodes of the above original edges that are in basic-cluster b. (Note
that if 3ec(u) = 3ec(v), then v € {z,y}, since otherwise the two above bc-
connectors in the sublist would be in the same edge class.) If 3ec(u) # 3ec(v),
then the following is done. A call insertlocs((€’,u,v)) of a temporary edge
(€¢/,u,v) in basic-cluster b is performed (being an insertion in the local cycle
tree for b, causing an update of it). Obtain an associated connector for each of
the subclasses that are joined in cluster b. Put the corresponding bc-connectors
in the sublist in J related to cluster node b. One of these connectors (if any)
is assigned to the resulting subclass as its associated edge. For each subclass
involved in the joining, obtain a node z of that subclass and put it in list glob.

Note that J consist of the cluster nodes in BL, where the sublists contain the
associated edges of the old subclasses that are joined in the clusters (and hence
for each bc-edge e in the sublist for a node b & {c,d} in BL, there is at least
one bc-edge in the sublist for b in J that is in the same bc-edge class as e).

All the classes in which the nodes in glob are contained are joined: on each
node z € glob the Find call 3ec(z) is performed, all these outputs are put in
a list such that every 3ec-class name occurs at most once in the list (which
can be done by means of marking), and then Union operations are performed
on these names in UF3,... If the sublist of ¢ or d is empty, then that node is
removed from J. Finally, the F RT3, structure is updated by means of call
Jjoinclasses(J).

3. c(z) = c(y) A 2ec(x) # 2ec(y). Firstly, the 2ec-classes that will be joined into
one new class are determined. This is done as follows. A boundary list BL for
z and y is computed in 2EC (this is the first part of the call insert,((e, z, y))).
Subsequently the names of the 2ec-classes are obtained, where to each such
name k a sublist is related that is the concatenation of all sublists for z € BL
with 2ec(z) = k. These names are stored in a temporary list TL. Then all
edges in the sublists are removed from the sublists that have both their end
nodes in the same 2ec-class. (Hence, we are left with a list TL where the
sublist of each 2ec-class name k contains the interconnection edges that are
incident with 2ec-class k, and with another class of which the name is in T'L.
Such a sublist consists of exactly two edges except for the sublists of 2ec(z)
and 2ec(y).) Then a list L is constructed from T L consisting of the names and
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their sublists in TL such that the (1 or 2) neighbours in L of each 2ec-class ¢
in L are the 2ec-classes in which the end node(s) of the edges in its sublists are
contained (apart from 2ec-class ¢). (Note that this can be done by obtaining
each for 2ec-class C the other 2ec-classes in which the end nodes of the edges
in its sublist are contained, and by setting pointers from C to these 2ec-class
names.) (Now L contains the class nodes of the tree path P between 2ec(z)
and 2ec(y) in 2ec(G) in the proper order, where the sublist for each class node
¢ contains the interconnection edges between class ¢ and its neighbour(s) on
P. Hence, the sublist of 2ec-class name ¢ consists of the interconnection edges
that are incident with class ¢ and with the (one or two) neighbours classes in

L)

For each 2-edge-connected component C in L the following is done. If C ¢
{2ec(z),2ec(y)} then u and v are the two nodes in C that are the end nodes of
the edges in the sublists of C. If C' = 2ec(z) (or C = 2ec(y)) then u is the node
in C that is the end node of the edge in the sublists of C and v = (orv=y).
If 3ec(u) # 3ec(v) then a temporary edge between u and v in C is inserted
by a call inserts((e’,u,v)). (Hence, then the local 3ec-classes are updated as
above for the case 2ec(u) = 2ec(v).) Afterwards, create a new node, which we
denote by z¢, and insert it in the (updated) 3ec-class 3ec(u) (= 3ec(v)) (the
interconnection 3ec-class). A connector (¢, z¢, z¢) is created between z¢ and
some node z¢ of 3ec-class 3ec(zc). Replace the sublist of C in L by the sublist
consisting of zc and the connector.

Then a new basic cluster with (new) cluster name b is created from these new
nodes z¢ for C' € L: each of the nodes ¢ is provided with a pointer clus(zc) to
b. Then the subclasses in b are initialised: each node zc forms a singleton sub-
class in the cluster on its own. Subsequently a cycle tree corresponding to the
(single) cycle of the new subclass nodes in B is initialised: these nodes sub(z¢)
occur in the same order as the 2-edge-connected components C in L. (The
cycle of these subclass nodes correspond to the cycle of the interconnection
3ec-classes in the new graph 3ec(G).)

Then the 2ec-classes in L are joined by performing a call insert,((e, z,y)) in
2EC (of which actually the first part was already executed in the beginning
of the computations in this case, viz. the computation of a boundary list in

2EC).

Cluster node b is linked with the involved trees in be(G) (corresponding to
the 2-edge-connected components that are involved) by means of new be-
edges as follows. For each auxiliary node zo (in L) together with connector
(¢'yzc,2¢), let ¥ = clus(z,). Then a new be-connector (¢’,b,b) is created
(with the appropriate pointer between (€¢/,zc,2¢) and (€', b, b)), and the tree
in be(G) containing ¥ is linked with b by means of call link((e’,b,¥)). The edge
(€', 2¢, 2¢) is related to sub(z¢) as its associated edge. If sub(z}) does not have
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an associated edge yet, then (€, z¢, 2;) is related to sub(zf) as its associated
edge. Otherwise, the following is done. Let (e”,z",2") be the associated
edge for sub(z;). Then the operation joinclasses(J) is performed, where J
consists of the node ¥’ with the bc-edges (€/, b, b’) and (e”, clus(2’), clus(z")) in
its sublist (to reflect that these two edges are in the same bc-edge class).

We consider some aspects of the above insert; algorithm.

Suppose the initial graph G, has n (regular) nodes. Note that Gy contains at most
n 2-edge-connected components. Then the total number of new (auxiliary) nodes
(in the graph) that is created by the algorithm is at most 2n — 1, since a new node
is created for each 2-edge-connected component that is joined with other 2-edge-
connected components. Hence, the final number of nodes is at most 3n — 1 = O(n),
and the GS Fj,. structure is a structure on O(n) nodes. On the other hand, the total
number of clusters created by the algorithm is at most n — 1, since a new cluster
is created only in case of the joining of 2-edge-connected components, and in that
case, the total number of 2-edge-connected components decreases by at least one.
Hence, we only need a F RT-structure for at most 2n — 1 cluster nodes. (Note that
this can be done e.g. by initially having a collection of n—1 “free” (“isolated”) nodes
available that serve as the nodes to be taken as the new cluster nodes. (Hence, we
do not need a structure for increasing number of nodes yet.)) The same holds for
the Union-Find structures on nodes of G: we do not need to insert new elements in
these structures from time to time if we start from a situation with 2n — 1 auxiliary
“free” nodes.

We denote all the Union-Find structures used independently in 3EC (i.e., not as
part of FRT;. etc.) by UF. We consider the UF structures to be one structure;
hence, it is a structure on O(n) elements.

We consider the complexity of the above algorithm. Note that there are at most
3(n—1) essential insertions possible in the 3ec-problem, since in each essential insert,
at least two connected components, two 2ec-classes, or two 3ec-classes are joined.

Lemma 11.3 In a 3EC structure for a graph with n nodes, a nonessential insertion
takes O(1) time together with the time for §(1) Find operations in a UF structure.
The time needed for a sequence of essential insertions in 3EC is at most linear to the
time for an essential sequence on O(n) nodes in FRTs.. and an essential sequence
on O(n) nodes in FRT,,., the time for O(n) Unions in the UF structures and
O(n) Circular Splits in the GSF,. structure, the time for O(n) nonessential calls
boundary in FRTy.. and FRTs,., the time for all O(n) Finds in the UF structures
and the GS Fio. structure, together with an additional amount of O(n) time.

Proof. We define a step be an ordinary computational step or a Find operation in

any UF or GS Fj,. structure. We consider a collection of essential insert, operations
in the considered graph, including the (essential) inserts operations called in the
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execution of operation insert; itself. Therefore, we do not consider the cost of an
essential call insert; inside procedure inserts: we already consider it in the above
collection. (We may think of such an :nserts call to occur just before the call inserts
in which it was invoked.)

The sequence of calls link, joinclasses and essential calls of boundary in FRT;,.
as performed during the insert; operations yield an essential sequence in F RT3,.,
which is seen as follows. Procedure boundary(c,d) is explicitly called in part 2 of
procedure inserts only. Then an essential call boundary(c,d) with output sequence
BL is followed by joinclasses(J), where all bc-edge classes occurring in BL also
occur in J if the boundary call was essential.

Moreover, operation boundary in F RT3 is performed at most once in an essential
inserts call. Hence, there are at most O(n) nonessential boundary calls.

All calls insertye. in the calls inserts.. are essential. Therefore, by Lemma 4.2 the
claim regarding the operations present in 2EC is true.

We consider the net cost of the procedure calls of inserts: i.e., the cost of the parts
of the computations apart from the computations considered above, from O(1) steps
per call inserts and from the Unions in UF structures and the Circular Splits in
the GS Fj,. structure.

1. Case ¢(z) # ¢(y). Then there is no net cost.

2. Case 2ec(z) = 2ec(y) A 3ec(z) # 3ec(y). Consider a call inserts. Firstly a
boundary list BL is computed, which does not contribute to the net cost.
Then the basic-clusters in BL are handled as: for each such b € BL first O(1)
steps are performed, and then a call ¢tnsertloc; may be performed in cluster b
if it is an essential insertion in the local structure. Finally, for each subclass
that is joined with at least another subclass (in any local insertion) O(1) steps
are performed in inserts.

Note that there are at most 2 basic-clusters b € BL in which no subclasses
are joined: the O(1) steps performed for these classes are charged to the
procedure call inserts, hence not contributing to the net cost. For each other
basic-cluster b € BL, the O(1) steps are considered to be included in the O(1)
steps performed in one of its subclasses that are joined.

We now add up all these costs for all calls insert; together.

Since there are at most 3n — 1 nodes present, and since these nodes are parti-
tioned into disjoint clusters in which the local structures are applied, at most
O(n) essential calls insertloc may occur. By Lemma 11.2 this takes time
linear to the time for Unions and Splits in the structures UF},. and GSFj,.
respectively, which does not contribute to the net cost, together with O(n)
Finds in these structures.
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Since there exist at most O(n) different subclasses during the entire process,
the total number of steps regarding the above O(1) steps per joined subclass
is O(n). (There are O(n) different subclasses, since initially there are at most
n subclasses and since new nodes each yield one new subclass.)

Hence, the net cost of all calls in this case is O(n) steps.

3. ¢(z) = c(y) A2ec(z) # 2ec(y). Note that the computation of a boundary list in
2EC at the beginning of this case is a part of an essential call insert; (that is
actually called later on in inserts) and, hence, can be considered to be included
in the above parts for 2EC. (Or observed in another way, this computation of
the boundary list is executed twice: one time her and one time later in the
“entire” execution of the insertion procedure. This increases the cost with a
factor 2 at most.)

The construction of L from BL takes O(|L|) steps (note that |L| = 6(|BL|)).
Then O(1) steps are performed for each 2-edge-connected C € L. Subse-
quently for each 2-edge-connected component a temporary edge is inserted
by a call inserts in case that that edge has end nodes in different 3ec-classes:
hence such an insertion is essential and its cost is included in the previous
case (case 2). Moreover, for each 2-edge-connected component a new node
is created, together with a new connector. A new cluster consisting of these
nodes is created and some additional computations are performed. All this can
be done in O(the number of new nodes) steps. Since, the 2-edge-connected
components occurring in L are joined, the net cost of all these computations
can be seen as O(1) steps per 2-edge-connected component that is joined.

Since there are at most 2n —1 2-edge-connected components during the entire
process, the net cost of all the calls in this case is O(n) steps.

Hence, the lemma follows for the essential insertions. The lemma is obvious for
nonessential insertions. m]

A 3EC(4) structure is a 3EC structure where F RT3, = FRT (i), F RTy.. = FRT(i),
UF =UF(i) and GSF = GSF(i).

Theorem 11.4 A 3EC structure with the algorithms solves the 3ec-problem and
can be implemented as a pointer/logn solution such that the following holds. The
total time that is needed for all essential insertions starting from an empty graph
of n nodes is O(n.i.a(i,n)), whereas the queries and nonessential insertions can be
performed in O(3) time. The initialisation can be performed in O(n) time and the
entire structure takes O(n) space (1 > 1, n > 2).

Proof. It is easily seen that the initialisation can be done in O(n) time. By
Lemma 11.3, Theorem 10.1 and [15, 17] (for UF(:) and GSF(7)) the theorem follows.
O

65



The a-3EC structure is a 3EC structure for a graph with n nodes where FRT},. =
FRT(a(n,n)), FRTy. = FRT(a(n,n)) (where a(n,n) can be obtained as in [15]),
UF = a-UF and GSF = o-GSF, where in the latter structures the number of
Finds is replaced by the number of insert operations and queries. Then we obtain
the following.

Theorem 11.5 There ezists a structure and algorithms that solve the 3ec-problem
and that can be implemented as a pointer/logn solution such that the following
holds. The total time that is needed starting from an empty graph with n nodes
is O(m.a(m,n)) (where m is the number of edge insertions and queries), whereas
the f** operation is performed in O(a(f,n)) time if that operation is a query or a
nonessential insertion. The initialisation can be performed in O(n) time and the
entire structure takes O(n) space.

Proof. Like the proof of Theorem 4.4. O

By using the a-3EC structure where FRTs,, = o-FRT and FRT,,. = o-FRT
instead, the above theorem can be augmented to allow insertions of new nodes in
the graph with a time complexity of O(n + m.a(m,n)) (cf. Section 10). Then n,
m and f denote the current number at the moment of consideration. (Note that at
any time, at most O(n) operations boundary are performed on one of the two FRT
structures, which simplifies the insertions of new nodes in the FRT structure. Cf.
Section 10. A similar remark holds for the structures GSF and U Floc.)

12 Two-Vertex-Connectivity

We will now consider the problem of maintaining the 2-vertex-connected com-
ponents in a graph, and we will present algorithms with a time complexity of
O(n + m.a(m,n)) for n nodes and m queries and insertions.

12.1 Graph Observations

Let G =< V,E > be a graph. We define the graph 2vc(G) as follows. For each
2vc-class or quasi class there is a unique (new) node related to that class, called
the class node. The vertices of 2v¢(G) are the nodes of G together with these class
nodes. For each node x there is an edge between z and each class node ¢ such that

x is contained 2vc-class ¢. (Thus we obtain a collection of trees corresponding to
so-called block trees.)

Lemma 12.1 Graph 2vc(G) is a forest, where each tree in 2v¢(G) corresponds to

a connected component in G, i.e., it consists of class nodes together with the nodes
of a connected component in G.
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Hence, two distinct 2vc-classes have at most one node in common and, conversely,
for any two nodes there exists at most one 2vc-class that contains them.

Lemma 12.2 If edge (e,z,y) is inserted in graph G, then all the classes of which
the class node is on the tree path in 2vc(G) between z and y form one new 2vc-class
together, while the other 2vc-classes and quasi classes remain unchanged.

Proof. Let G’ be the graph G together with edge (e,z,y). Let P be the tree path
between z and y in 2vc(G). Let u and v be any two nodes that are adjacent to a
class node on P.

Suppose u and v are not adjacent in G. Suppose a node w ¢ {u,v} is deleted from
G'. We show that there is a path from u to v in G'. Delete w in 2vc(G). Then there
is a path P, between u and node z or node y in 2v¢(G). Since each class node ¢
on P, can be replaced by a path in G between any two nodes (# w) in class ¢ such
that it does not contain w (because the corresponding class is either a 2vc-class or
it consist of two nodes with an edge in between), this gives that there exists a path
between u and node z or node v in G that does not contain w. The same can be
obtained for v. Since there exists an edge (e, z,y) in G’ this yields that « and v are
still connected. Hence u and v are 2-vertex-connected.

Now suppose u and v are adjacent in G. Then either v and v are in the same
2vc-class, in which case we are done, or they are in a quasi class c. In the latter
case it follows that ¢, u and v are on P. Suppose the edge ¢’ between z and y is
deleted from G’. We show that there is a path from u to v in G'. There exists a
path between u and z or y not using ¢ and hence, like before, there exists a path
between u and node x or node y in G that does not contain e’. The same can be
obtained for v. Hence r and y are 2-vertex-connected.

On the other hand if 4 and v are not in the same class, and they are not both
adjacent to class nodes on P, note that the removal of any node of G that is on the
tree path P’ in 2vc(G) between u and v separates u and v. Since u and v are not
both adjacent to a class node on P, there is a node w € G on P’ that is not on P.
Then the deletion of w in G separates either u from v, z and y or z from u, z and
y. Hence, after the insertion of edge (e, z,y) in G w is still a cut node.

Finally, if u and v are in the same quasi class and they are not both adjacent to a

class node on P, a similar observation yields that the edge between u and v still is
a cut edge in G'. a

We represent 2vc(G) by means of a spanning forest of G. Consider a spanning forest
SF(G) of G. We augment SF(G) with edge classes on its set of edges. An edge
class contains all the edges that connect two vertices that are in some 2vc-class or
quasi class. An edge class consisting of a cut edge of G is called a quasi edge class

(and hence the end nodes of the class form a quasi class). Otherwise the edge class
is called a real class.
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Now a class of edges together with the end nodes of these edges induces a subtree in
SF(G), which is seen as follows. For two nodes z and y that are 2-vertex-connected,
all nodes on the tree path P between r and y are 2-vertex-connected with them
too. Therefore, all these nodes are in the same 2vc-class and hence the edges on P
are in the same edge class. This implies that each edge class induces a subtree in

SF(G).

Note that this implies that the collection of edge classes thus yields an admissible
partition of SF(G),

From the above observation it follows that two nodes z and y are 2-vertex-connected
iff z and y are incident with 2 edges of the same real edge class.

On the other hand, a maximal class of 2-vertex-connected nodes induces some
subtree in SF(G) and the set of the edges in that subtree is an edge class. Hence, if
we relate to each edge class a new unique node as its class node, if we extend SF(G)
with these class node and if each edge (e, ,y) in an edge class is replaced by two
edges (€', c) and (e”,y, c), then we obtain the forest 2v¢(G) (up to the choice of the
class names and the names of edges). Therefore, we use the names of edge classes
as the names of the corresponding 2vc-classes and quasi classes.

We define the predicate 2vc(z, y) to be true iff nodes z and y are 2-vertex-connected.

We consider the insertion of an edge in a graph in terms of edge classes by means of
Lemma 12.2. Suppose a new edge (e, ,y) € E is inserted in graph G =< V, E >.
We distinguish three cases.

1. ¢(z) # c(y). Then z and y are not connected in SF(G). Hence, (e,z,y)
connects two trees in SF(G) that have to be joined into one tree.

2. ~2vc(z,y) A ¢(z) = c(y). Edge (e,z,y) connects the nodes z and y in a tree
of SF(G) and a cycle arises. Then all edge classes of which an edge is on the
tree path between z and y must be joined into one edge class.

3. 2vc(z,y) A c(z) = c(y). Then the edge (e,z,y) connects two nodes that are
2-vertex-connected in G, and, hence, insertion of this node will not affect the
2-vertex-connectivity relation.

12.2 Algorithms

We use a fractionally rooted tree structure FRT for the operations on the forest
SF(G), denoted by FRT,,. All quasi edge classes are marked as being quasi. All
other classes are not marked (in particular, classes with at least 2 edges are auto-
matically unmarked.) There is a Union-Find structure for connected components,
denoted by UF.. The initialisation for an empty graph is straightforward.
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A query Is2vc(z,y) is now performed by first performing a call equal-class-
edge(z,y); then false is returned if the returned edge class names are distinct or
correspond to a quasi edge class, while true and the (common) edge class name are
returned otherwise.

We consider the insertion of an edge in a graph. Suppose a new edge (e,z,y) € E
is inserted in graph G =< V, E >. We distinguish three cases.

L. ¢(z) # c(y). Perform the operation link((e,z,y)) to connect the two trees in
SF(G) containing z and y respectively. Moreover, the two connected compo-
nents ¢(z) and c(y) are joined (in UF,).

2. ~Is2vc(z,y) A c(z) = c(y). We need to determine the edge classes that have
an edge on the tree path between z and y and then join these classes:

e obtain a boundary list BL for z and y in SF(G) by a call boundary(z, y).

¢ If BL contains nodes = and y only, then z and y from a quasi class.
Then unmark the edge class of the edge obtained in the call T s2ve(z,y),
reflecting that the edge class is real now.

e Otherwise, if BL contains more than the 2 nodes z and ¥, delete the
nodes r and y from BL (their sublists contain one edge only). Join all
the edge classes occurring in BL by means of the call Jjotnclasses(BL).

3. Is2vc(z,y) A c(x) = c(y). Nothing is done.

A 2V C(7) structure is the above structure where F RT. = FRT(i) and where
UF. = UF(:). Then we obtain the following result in a way similar to Subsection 4.3.

Theorem 12.3 There ezxists a data structure and algorithms that solve the 2vc-
problem and that can be implemented as a pointer/logn solution such that the fol-
lowing holds. The total time that is needed for all essential insertions starting from
an empty graph of n nodes is O(n.i.a(s,n)), whereas a query and a nonessential in-
sertion can be performed in O(i) time. The initialisation can be performed in O(n)
time and the entire structure takes O(n) space (i > 1, n > 2)..

Now take a-FRT as FRTy,. for a graph with n nodes, and take a-UF for UF.,.
Then we obtain the following result in a way similar to Subsection 4, where now
Theorem 10.2 is used instead of Theorem 10.1.

Theorem 12.4 There exists a data structure and algorithms that solve the Zvc-
problem and that can be implemented as a pointer/ logn solution such that the fol-
lowing holds. The total time that is needed starting from an empty graph with n
nodes is O(m.a(m,n)) (where m is the number of edge insertions and queries),
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whereas the f** operation can be performed in O(a(f,n)) time if it is a query or
a nonessential insertion. The initialisation can be performed in O(n) time and the
entire structure takes O(n) space.

The above theorem can be augmented to allow insertion of new nodes in the graph
with a time complexity of O(n + m.a(m,n)) (cf. Section 10). Then n, m and f in
the theorem denote the current number at the moment of consideration.

We can augment the 2vc-problem as follows. Note that a node z can be in several
2vc-classes. Suppose that z has a representative for each class in which it occurs.
Then we can maintain this representative as follows. For a node z we partition
the collection of edges incident with z in sets, so-called incidence sets, that are the
intersections with the edge classes. (L.e., a set consists of the edges incident with
that all are in the same edge class.) These sets are implemented as a Union-Find
structure. For each such set, its set name is the representative of the node for the
corresponding 2vc-class. Note that thus an edge is element of two such Union-Find
structures: one for each of its-end nodes. This can be implemented by using one
Union-Find structure on all the edge sides: each edge has a representative, called
“side”, for each of its end nodes.

A query Is2vc(z,y) obtains two edges that are incident with these nodes and that
are in the same edge class (if any). These edges can be used (b.m.o. the above
Union-Find structure) to obtain the representatives for the common class.

The updates of the sets of edges related to a node can be done as follows. Consider
the insertion of an edge (e, z,y). In case 1 of the procedure, edge (e, z, y) forms a set
on its own for both z and y. In case 2 of the procedure, for each node u occurring in
the joining sequence BL for procedure joinclasses, the incidence sets in which the
edges in the sublist of u are contained, must be joined. Note that this takes only
O(1) additional Finds and other steps per edge in a sublist (apart from the time to
join the incidence sets), yielding the same time bounds as before.

Note that we can also obtain the representative of a node for a given 2vc-class: for
a class C and a node z € C, the representative of z for C can be obtained by
taking two nodes of C, say u and v, and then perform either 2ve(z, u) (if z # u)
or 2vc(z,v) (if £ = u). Finally, we want to remark that we do not really need the
above Union-Find structure on the edge sides. For, the query 2vc(z, y) outputs two
edges e, and e, incident with z and y respectively. Edge e, is either the father edge
of z in the FRT(:) structure that is used, or it is m-marked w.r.t. z. For some edge
class C that has an edge incident with z, either the father edge of z is in C , or the
m-marked edge in C that is in the extended subtree containing z, is incident with
z. Hence a query always outputs the same edge for = with various y from a given
2vc-class C. We can take this edge as a reference to the representative of z in C.
Then the only thing to do is updating these references in case of a joining of classes
and in case the father and m-marks are changed. We will not give the details.
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13 Concluding Remarks

We have presented solutions for the problem of maintaining the 2-edge-connected
and the 3-edge-connected components of graphs and the 2-vertex-connected
components of graphs under insertion of edges and vertices. The solutions take
O(n + m.a(m,n)) time, starting from the graph < 0,0 >, and are optimal on
Pointer Machines and Cell Probe Machines. For 2-edge-connectivity and 2-vertex-
connectivity, the optimality of solutions that run in O(n + m.a(m,n)) time is
proved in [28] (where for our results we use that the insertion of a node takes (1)
time). (Note that the complexity of the algorithms in [28] is O(m'.a(m',n)), where
m' = m + n, since we consider m to be the number of queries and edge insertions
and n to be the final number of nodes, whereas m’ in [28] includes both.) (Actually,
the above proofs are for Pointer Machines with the Separation Condition, but by
using the results of [16], the bounds follow for general Pointer Machines.) We give
the proof for the 3ec-problem. Like in [28] we use reductions to the Union-Find
problem. Consider the Union-Find problem for some collection of elements. For
each element z there is a triple of nodes z,, z; and z; with edges (z1, z3), (22, z3)
and (z3,;). Then a query Find(z) is performed by a query 3ec-comp(z,) in the
graph. Moreover, the joining of two sets is as follows: for each set a triple of nodes
for some element in that set is taken, say z,, z; and z3, and y;, y;, and y3, and
then the edges (z1,1), (22,¥2) and (z3,ys) are inserted in the graph. This yields
that every set corresponds to a 3ec-class in the graph. By the lower bounds for the
Union-Find problem on both Pointer Machines and Cell Probe Machines [6, 16}, the
lower bound of Q(n + m.a(m, n)) follows for the 3-edge-connectivity problem, if we
use that the insertion of a node takes (1) time.
2 3

Note that a(m,n) < 3 for n < 9% } 65536 two ®. Therefore in practice there
is no need to perform transformations of FRT structures like those occurring in
Section 10: structures FRT(2) and FRT(3) are suited for all practical situations.
The same remark holds for the UF and the GSF structures that we use: UF(z) and
GSF(i) with ¢ € {2,3} are suited for all practical situations too.

The time bound for an essential sequence in FRT(3) is ¢.3.n.a(3,n) < 12.c.n for
such n, where c is not too large a constant (cf. Sections 8 and 9 for its definition).
An essential sequence on n nodes in FRT(2) takes < ¢.2.n.a(2,n) < 8.n time for
n ZS 218 = 65536 and takes < 10.c.n time for very large practical values n <

. ?
2” } 5 two's _ 285336 Similar remarks hold for UF(:) and GSF(7) with : € {2,3}.
Moreover, in all practical situations for FRT(z), UF(z) and GSF(z) with ¢ € {2,3}
only the nontrivial Ackermann values 16 and 65536 need to available (being A(2, 3)
and A(2,4) = A(3,3)) respectively), so there is no need to compute Ackermann
values or to have Ackermann nets in practice (neither in the initialisation nor in
case new elements are inserted like in Section 10).
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Thus, in practice there is no need to perform transformations of UF, GSF, or FRT
structures, and, moreover, in all practical situations there is no need to compute Ack-
ermann values. Therefore, we conjecture that FRT(2), 2EC(2), 3EC(2) and 2VC(2)
are fast structures (i.e., with practically linear time complexity) for all practical
situations, with constant-time queries and constant-time nonessential insertions.

Finally we want to remark that the problem of maintaining the 3-vertex-connected
components of general graphs can be solved with an (optimal) complexity of O(n +

m.a(m,n)) time for m insertions and queries for a graph with n nodes too. We refer
to [19].
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