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1 Introduction

Distributed algorithms are often informally described. An advantage of an informal description is
the seeming ease with which they can be produced and studied. It is not necessary to understand
a formal system, before finding out the ideas behind the algorithm.

However, a major disadvantage in providing only informal arguments is that errors are easily
made. It is our experience that distributed algorithms which seemed to be correct, and were even
informally proven to be correct, in fact were wrong.

For example, during our research ([3]), we once were convinced to have designed a correct
distributed algorithm. By coincidence, we noticed that in some cases the update algorithm did
not terminate. In our proof we showed that the algorithm would terminate after any update, by
presenting a function whose value decreased in every step of the algorithm and was bounded from
below. Unfortunately, this function could have an infinite value, in which case the lower bound
would never be reached.

It was decided to use a formal method to be more sure of a correct outcome. UNITY ([1])
was chosen, a formalism which is claimed to be helpful in the design of distributed and concurrent
programs. In [1], Hoare claims that UNITY is a complete theory of programming because it
includes the following important aspects:

e It is a method for specification of programs.
¢ It is a method for reasoning about specifications.
o It is a method of developing programs together with a proof that they meet their specification.

o It is a method of transforming programs to achieve high efficiency on the machines available
for their execution.

The design and study of algorithms using a formalism can be extremely tiresome, although
rewarding. It is our experience that formal methods (including UNITY) soon become very complex
when studying nontrivial problems. Therefore, an informal description may be very helpful.

In [3] we introduced the distributed hierarchical routing algorithm that operates on a hier-
archically divided network, i.e., a network that is divided in domains and each domain, in turn,
is divided in subdomains, etc. As a result of hierarchically dividing the network, the size of the
routing tables remains small. The size of the tables for nodes in a hierarchically divided network
containing N nodes can be reduced to O(log N) entries.



It is our goal to formally design a distributed update algorithm on a hierarchically divided
network upon which the distributed hierarchical routing algorithm operates. Before using UNITY
on our update algorithm, we have decided to first gain some experience in using UNITY on a
simpler problem. This algorithm to be derived is used to obtain and maintain the maximum value
of a set of frequently changing inputs. Every node in a hierarchically divided network is associated
with precisely one element of this set of inputs, and every node has to maintain the maximum
value of the inputs of all nodes.

This problem and the problem of keeping topological information about a hierarchically divided
network bear some similarities. The network can be considered as a set of nodes. With each node
in this set corresponds a possibly changing set of paths from a source node to that node. Every
node must, for every other destination node in the set, obtain and maintain the best path of the
set of paths to that destination node, according to some metric (for example the hop-count).

The problem of maintaining this routing information is for two reasons more complex than the
problem of keeping the maximum value. In the first place, it deals with a set of sets, viz., for each
node in the set of destination nodes there is a set of paths to it.

The second reason is that every node has to deal with a different set of paths for the same
destination node. In keeping the maximum value of a set of inputs, each node has to deal with
one, and the same, set of integers. .

We are, however, convinced that the (formal) derivation of a distributed algorithm for keeping
the maximum value of a frequently changing set of inputs, that operates on a hierarchically divided
network, will help us in the (formal) derivation of an update algorithm.

In Section 2 the topological model is described. The description of the algorithm consists of two
parts. Because, as stated above, an informal description may be very helpful, we have included
in Section 3, a traditional description and solution of the problem. In that part we develop
an algorithm by first designing an abstract algorithm that operates on a virtual datastructure.
In the next step, this algorithm is transformed into a distributed algorithm that operates on a
hierarchically divided network. Also a more traditional proof of the distributed algorithm is given.

In Section 4, these steps are formalized.

2 Model

In this article we describe a distributed algorithm on a network that is identified with a bidirectional
graph, the network graph. The nodes of this graph represent processors in the network, the
edges represent communication links between them. Every node has local computing capacity and
memory to which no other node has (direct) access. Nodes cooperate by exchanging messages over
the links connecting them. These links are assumed to be fault-free and have a FIFO behaviour.

Upon the graph a hierarchical structure is imposed ([3]): nodes are grouped into domains,
which, in turn, are grouped into superdomains, etc. Nodes are viewed as the smallest possible
domains. The graph, thus divided, is called a hierarchically divided graph. The division of the
graph is modeled as a tree, called the division tree. The network domain (the domain comprising
the whole network) corresponds to the root of this tree. Subdomains of a domain correspond to
sons of the tree-node corresponding to the domain. The leaves of the division tree correspond to
the processors in the network.

When tree-node m in the division tree is a son of tree-node n, we write: m < n. Analogously,
when domain C in the hierarchically divided network is a subdomain of domain D, we write:
C <4 D. Tree-node n in the division tree is visible to tree-node m, if n is the son of a tree-node on
the path in the division tree to m, but is not on that path itself. Analogously, domain D in the
hierarchically divided network is visible to domain C if D is a direct subdomain of a domain E of
which C is a descendant, too, and C is not contained in D.

Note that, by definition, if a domain D is visible to domain C, then D is visible to every node
in C. Also, subdomains of a domain that is visible to a node are not visible to that node. As a
consequence, internal details of a domain are hidden from domains, especially from nodes, outside
that domain. This will result in a reduction of the storage complexity of the algorithms to be



developed: only a single item of information has to be stored at a node n for each domain vigible
to n, and not for every single node in it.

On the hierarchical division we impose the following restriction: every domain is connected. In
other words: a message routed between two nodes does not have to leave the least common domain
of those nodes. In order to meet this constraint, it is possible, as described in [3], that subdomains
are shared between domains, i.e., domains may be overlapping.

3 Traditional Description
3.1 Problem

In this section we describe the problem that is solved in the rest of this article.

We assume that every node in a hierarchically divided network has an associated data item,
called its input. The inputs are, not necessarily unique, elements from a totally ordered set.
Furthermore, every node possesses a variable in which it keeps the maximum of all inputs in the
network.

Inputs of nodes may change spontaneously, and as a result the global maximum may change. If
this is the case, all nodes in the network are required to have updated their maximum value within
finite time after the update has occurred. If multiple changes occur, nodes must have updated
their maximum value within finite time after the last update.

3.2 Update Algorithm on a Division Tree

In this section we present an update algorithm that operates on a division tree after the input of
a leaf has changed. In this algorithm, leaves as well as internal tree-nodes of the division tree are
assumed to be capable of performing actions and of storing values (of variables). Keep in mind,
however, that in a physical network, nodes are the only entities having these properties. Since
internal tree-nodes in the division tree model domains in the hierarchical division of the network,
the actions of the domains have to be emulated by the physical nodes ”on behalf of the domains.”

The following questions, then, have to be answered. Which nodes simulate the actions corre-
sponding to a domain? Do we need special nodes, or can the domain actions be established by all
nodes (in the domain) constituting a part in it?

In Section 3.3 we will describe a transformation of the abstract algorithm, to an algorithm in
which the only active entities are nodes in a hierarchically divided network.

Every tree-node n in the division tree maintains the following variables:

f(n): the father of tree-node n in the division tree,

m(n): the m-value of n, defined as the input of n if n is a leaf, and (an approximation of)
max{m(s) | s < n} if n is an internal tree-node, and

ma(8): the current estimate of m(s), for every son s of n, if n is an internal tree-node.

We assume a correctly initialized datastructure, i.e., every leaf n has got an input m(n), and
for every internal tree-node n, m(n) = max{mn(s) | s n} and for every son s of n, mn(s) = m(s).
Thus, m(r) contains the maximum value of all leaves in the tree if r is the root of the division tree.

We now describe the distributed algorithm that is performed as a result of a change in the input
of a leaf. The update algorithm is straightforward. Upon detecting a change in m(n), tree-node
n reports this change to f(n). In response, f(n) updates its value and, if it changes, recursively,
reports this to f(f(n)).

The resulting algorithm is presented slightly more formally below.



Algorithm I (division tree)
o Upon detecting a change in m(n) to m’, leaf n sends message UPD(n, m') to f(n).
o Upon receipt of UPD(s, m'), internal tree-node n performs the following actions:
mu(s) 1= m';
m(n) = max{mn(s) | 5 < n};
if m(n) changed and n is not the root

then send UPD(n,m(n)) to f(n)
fi

a

3.3 Update Algorithm on a Hierarchically Divided Graph

In this section we will distribute the algorithm on a division tree as described in Section 3.2. A
domain (an internal tree-node in the division tree) is simulated by the cooperation of all nodes
contained in it. For that purpose we distribute the information kept by any internal tree-node D in
the division tree in Algorithm I over the nodes contained in domain D in the hierarchically divided
network. This is realized by a ”projection” in the division tree of all information onto every leaf
in the subtree below the tree-node containing the information. As a result, every node keeps the
m-values of its superdomains and the m-values of its visible domains.

We denote by my, (D) the m-value of domain D stored at node n. In a stable state (for example
before any changes occur) all nodes in domain D will have the same value for m,(D).

In Section 3.3.1 we handle the update of data after a single change has occurred. In Section 3.3.2
we extend the algorithm to perform the necessary actions after multiple changes have occurred ”at
the same time.” In Section 3.3.3 this algorithm is proven to be correct.

3.3.1 Updating a Single Change

In the following description, let n be a node with direct superdomain D, which has direct super-
domain F (i.e., n <4 D q F). If n’s input changes to m’y, every brother of n, i.e., every node d
in D, has to update its value mq4(n). This is established by broadcasting within D the message
UPD(n,m'y,), using Propagation of Information, see [5].

The change of n’s input may affect the m-value of D. For example, if n’s input was the maximal
input in D, and it decreased, D’s m-value decreases too (unless another node in D has this same
maximal input). An increase of n’s input on the other hand, may result in an increase in D’s
m-value. Anyway, if D’s m-value changes, the new m-value can be determined by every node d
inside D by computing m4(D) = max{m4(n;) | n; < D}. This changed value has to be reported to
all other nodes in F. This is established by a broadcast of UPD(D, m'p), where m’'p is the new
m-value of D. Nodes in D with neighbour-nodes outside D but in F, called border nodes of D,
start broadcasting the new m-value.

Analogously, this change in D may affect F’s m-value, necessitating the same actions of the
nodes in F and in the direct superdomain of F. This procedure is repeated on every level for which
the change has an effect.

The resulting algorithm is presented below. The notation {n,n’} is used to denote a link
between nodes n and n'.

Algorithm II (network, single change)
e Upon detecting a change in m(n) to m',, node n performs Accepts(n,my).
e Upon receipt of UPD(D, mp), node n performs the following actions:

if mp(D) #mp
then Accept, (D, mp)
fi,



where

Accept,(D,mp) =

Let DQ F in

{mn(D) := mp;
forallli={n,f},f¢DASfEF
do send UPD(D,mp) to f

od;

if m,(F) # max{mn(D;) | D; q F}
then /* new round necessary */

Acceptn (F: max{mn(Di) | D; q F})

fi

}

0

Note, that the algorithm requires at most two update messages to be sent over every link in the
network. Moreover, the update messages are confined to the lowest level domain with a subdomain
of which the input changes.

3.3.2 Updating After Multiple Changes

In this section we extend Algorithm II to deal with the case of multiple changes of inputs occurring
at the same time. When the input of a node changes, the node starts reporting this change using
Algorithm II. It is possible, however, that during this process another node changes its input, too.
Since the information about this change will not immediately reach the first node, this node may
start a broadcast based on out-of-date information. Therefore, update messages reporting different
m-values of the same domain may be in transit at the same time.

As before, in order to simulate the actions of a domain by the cooperation of the nodes in
it, every node in the domain maintains the m-value of each of its subdomains. Because of this
projection of all information in the division tree onto every leaf, nodes are not aware of the internal
structure of their visible domains. Specifically, nodes do not keep the m-values of subdomains of
their visible domains. Nodes, therefore, are not able to determine whether the information received
from a visible domain is up-to-date or not (i.e., whether the value equals the maximum of the inputs
of the subdomains).

To distinguish between succeeding broadcasts for a domain we introduce a sequence number
([5]) per domain. In [4], Perlman describes a broadcast algorithm of routing information that
stabilizes in reasonable time without human intervention after any malfunctioning equipment is
repaired or disconnected. It is shown why in a network without globally synchronized clocks the
sequence number scheme is better suited than local clocks for determining whether a received
packet is older or newer than the last received packet. The problems with sequence numbers, such
as the possibility of wrap-around, must also be considered using logical clocks. However, the logical
clock scheme requires hardware that is not always available in packet switches. It is also described
how the sequence number scheme can be extended to deal with failures, such as the possibility of
long delayed packets, network partitions and hardware failures.

Every broadcast started by a border node will be labeled with a higher sequence number than
the one known so far. On receiving an update message with information that is more up-to-date
than the information currently available, a node accepts this information by executing Algorithm II
in Section 3.2. A node accepts a message as being more up-to-date, if the sequence number in the
message is higher than the one kept until then. Nodes, therefore, maintain sequence numbers for
every visible domain. Border nodes also have to keep sequence numbers for the domains of which
they are border nodes. In order to keep this information up-to-date, every time an update of this
number takes place, a broadcast of it is performed in the domain.

Using the same scenario as before, it can be shown that two broadcasts started by different
border nodes for a domain D, labeled with the same sequence number, need not have the same
value. However, in this case, at least one border node has not yet received at least one update



message of a broadcast for a subdomain of D currently in the network. It is guaranteed that this
border node will receive the missing information within finite time and start a new broadcast for
domain D. This new value may be the same value the other border node broadcasted for D. The
same value may then be accepted twice by some nodes. The algorithm can be adapted to loose
this inefficiency. Since optimizing our algorithm is beyond the scope of the work presented here,
we do not deal with this issue.

We denote by S, (D) the sequence number of a domain D stored at node n. Initially for every
node n, S,(D) and m,(D) contain 0 and —oo, respectively, for every domain D of which n is part
or which is visible to n. The set Border(D) contains the border nodes of D. A broadcast of a
value mp for domain D labeled with sequence number Sp is done by sending UPD{D, mp, Sp) to
all nodes in the superdomain of D.

Algorithm ITI (network, multiple changes)
o Upon detecting a change in m,(n) to m’,, node n performs Acceptn (n, mj,, Sp(n) + 1).
e Upon receipt of UPD{D, mp, Sp), node n performs the following actions:
if Sp > Sa(D) '
thenifne D
then S, (D) := Sp;
Broadcast,, (D, mp, Sp)
/* broadcast new sequence number of D */
else Accept,(D,mp,Sp)
/* update the m-value and
sequence number of D */

fi
fi,
where
Broadcast, (D, mp, Sp) =
Let DQ F in
{for all {n,f},f€F
do send UPD(D,mp,Sp) to f
od
}
Acceptn(D) mp, SD) =
Let D F in
{mn(D) := mp;
Sn(D) := Sp;
Broadcast, (D, mp, Sp);
if m,(F) # max{mn(Di) | D; « F}
then if n € Border(F)
then Accept, (F, max{m,(D;) | D; < F},S.(F)+1)
/* accept new value for F, broadcast it and
check m-value of the superdomain of F */
else Accept, (F,max{m,(D;) | D; q F}, Sa(F))
/* accept new value for F' and check m-value
of the superdomain of F */
fi
fi
}
O



3.3.3 Correctness Proof

In this section we prove that Algorithm III is correct. This proof consists of two parts. First,
the property that after the algorithm has terminated (i.e., no node is involved in a broadcast)
all nodes have correct values is shown to hold. Next, it is proven that the algorithm terminates
within finite time, after the last change in a node’s input has occurred. Before proving correctness,
some notation is introduced. Node n accepts UPD(D,mp, Sp) if as a consequence of the receipt
of this message, Accept, (D, mp, Sp) is executed. The algorithm has terminated for domain D if
no update message containing a value of D exists in the network and the algorithm has terminated
for every subdomain of D.

Lemma 3.1 Suppose that the algorithm has terminated for domain D and for all nodes d,d’ € D:
mq(C) = ma(C), for all C a4 D. Then the following holds for nodes n,n’ € F, with D q F:

e m,(D) = max{m,(C) | C < D}, ifne D.
e m,(D) = mu/(D).
e S,(D) = Sn(D).

Proof: From the algorithm it directly follows that m,(D) = max{m,(C) | C « D}, if n € D.
Therefore, especially after termination this equality holds. It now follows from the fact that all
nodes in D hold the same values for the subdomains of D, that if n,n’ € D: m,(D) = max{m,(C) |
cC4q D} = max{m,,:(C) I cdqa D} = m,.:(D).

Let mp be this final value all nodes in D have for D and Sp = max{S,(D) | n € D}. All
nodes increment their sequence number if there is a neighbour with a higher sequence number
for the same domain. Only border nodes are able to increment their sequence number for D to
start a broadcast. Therefore, Sp = max{Sn(D) | n € Border(D)}. Every (border) node, which
started a broadcast labeled with Sp, must have sent UPD(D, mp, Sp) to neighbour-nodes within
the superdomain F. If this is not the case, a node n received the value mp later and started a
broadcast labeled with S, (D) > Sp, which is in contradiction with the assumption that Sp is the
maximum sequence number for D.

Every node n receiving UPD(D, mp, Sp), accepts it unless already Sn(D) = Sp (and m,(D) =
mp, if n € D). From the connectiveness of every domain it easily follows that every node n € F,
receives at least once UPD(D, mp, Sp).

O

Lemma 3.2 Suppose the algorithm has terminated for all domains C 4 D. Then within finite
time the algorithm has terminated for domain D.

Proof: Let Sp = max{S,(D) | n € Border(D)} at the moment the algorithm has terminated
for all C 4 D. After the algorithm has terminated for domains C < D, no node n € Border(D)
will start a new broadcast for domain D. The last broadcast for domain D (labeled with highest
sequence number) must be labeled with Sp. As before, from connectiveness of every domain, it
follows that every node n € F, must receive UPD(D, mp, Sp) at least once. After a node accepts
UPD(D,mp, Sp), it will not accept any update message labeled with a number less than or equal
to Sp. Therefore, all earlier broadcast messages will be ”"absorbed” within finite time (because of
the assumption that messages are not on a link for an infinite amount of time).

0

Theorem 3.1 Within finite time after the last m,(n) has changed:
o the algorithm terminates for the whole network and

e the nodes contain correct values for all domains they are supposed to have a value for.



Proof: We prove by induction on the structure of the hierarchical division that within finite time
the algorithm terminates for every domain D and every node in the superdomain of D has correct
values for D.

Base: D is a node. Because D does not have any subdomain, this case directly follows from
Lemmata 3.1 and 3.2.

Step: Suppose D is not a node. From the induction hypothesis, within finite time the algorithm
terminates for every C <1 D and for all nodes d,d’ € D : mg(C) = ma(C). From Lemmata 3.1 and
3.2 the step follows.

(]

4 Formal Description

In this Section we formalize the steps as given in Section 3. The theory UNITY, a computational
model and a praof system, is used. We assume the reader to be familiar with the notation used
for the programs and the logic for the specification, design, and verification of UNITY programs.
This theory can be found in chapters 2 and 3 of [1].

4.1 Problem specification

Let G be a graph in which an input is associated with each node. Inputs of nodes may change
spontaneously. It is required to compute and maintain the maximum of all the inputs. Here, we
describe and derive in UNITY notation the algorithms as described in Section 3.

4.1.1 Notation
o The set node(G) contains the nodes of the graph G.

Vn € node(G) : m(n) contains the input of node n.

Variable m(G) should contain the maximum of the inputs.

Let [a1,a2,...,a,] denote the bag, or multiset, of elements ay, a3, ..., an.
If ny,...,n, are the nodes of G, then nodesval(G) = [m(n1), m(n2),...,m(n;)].

M denotes a bag of integers.

When the algorithm has terminated with value v we say that term(G,v) holds. Then, the
variable m(G) equals the maximum v of all inputs, i.e.,

term(G,v) = v=m(G) = (maxn:n € node(G) :: m(n)).

4.1.2 Specification

The specification of maintaining and obtaining the maximum value of the inputs in a network G,
where each node has an input, can be formulated as follows:

SP1: term(G, v) A nodesval(G) = M unless nodesval(G) # M
SP2: nodesval(G) = M — 3v : term(G, v) V nodesval(G) # M

4.2 Maximum computation on a division tree

Upon the graph G a hierarchical structure is imposed, which can be modeled as a division tree.
Let the inputs of the graph G be placed as values at the leaves of this tree. By computing (i.e.
obtaining and maintaining) at every internal node a value which is the maximum of the values at
its sons, the root node of the tree obtains and maintains the maximum value of the inputs in G.



4.2.1 Notation

For every node D (of the tree):
e The set leaf(D) contains D itself if D is a leaf or else the leaves under the node D.
e m(D) is D’s view of the maximum of the inputs under D.
e mp(C) is D’s view o.f m(C) for C q D.

o Let ++ be the bag-union. Then leavesval( D) is defined as follows:
leavesval( D) = [m(D)), if D € leaf (D).
Otherwise, let Cy,...,Cz be the sons of D, then
leavesval( D) = leavesval(Cy) ++ leavesval(Cy) ++ . . . ++ leavesval(C;).
Note: leavesval(R) = nodesval(G), if R is the root of the division tree corresponding with
the hierarchical division on G.

e The value of a node D must be made known to its father. fatherknows(D,v) is true if the
father of D has a correct view of m(D).

fatherknows(D,v) = (AF : D Q F :: mp(D) = v).
If R is the root of the division tree, we define fatherknows(R,v) = true.

¢ The algorithm is finished in some internal node D if the variable m(D) contains a value v
that is the maximum of all the values of its sons, and the algorithm has terminated (which
is defined next) in these sons.

v =m(D) if D € leaf(D)
hfinished(D,v) = v=m(D) = (maxC :C A D ::mp(C)) A
VC Q D : hterm(C,m(C)) otherwise.

e The algorithm has terminated in some internal node D if the algorithm is finished in D and
the value of D is known by the father of D.

hterm(D,v) = hfinished(D,v) A fatherknows(D,v).

Note: hterm(R,v) = hfinished(R,v), if R is the root of the division tree.

4.2.2 The Solution Strategy: Formal Description

The specification of obtaining and maintaining the maximum value of the inputs at the leaves
under a node D in a division tree, can be formally formulated as follows:

SP3: hfinished(D, v) A leavesval(D) = M unless leavesval(D) # M

SP4: hterm(D,v) unless -Afinished(D, v)

SP5: VC < D : hterm(C, v.) — (3v : hfinished(D,v)) V (3C : -hfinished(C, v.))
SP6: hfinished(D,v) — hterm(D,v) V ~hfinished(D, v)

4.2.3 Proof of Correctness of the Solution Strategy

We prove that the unless-relation (SP1) and the progress-condition (SP2), given in the problem
specification (in Section 4.2.1), are met by any strategy that satisfies conditions SP3, SP4, SP5
and SP6.

The proof that SP1 is met, follows directly from Lemma 4.1 which is presented next.



Lemma 4.1 hterm(D,v) = v = m(D) = (maxn : n € leaf(D) :: m(n)) A fatherknows(D,v) A
VC 4 D : hterm(C, m(C)).

Proof: To prove the lemma, we use induction on the structure of the division-tree.

Base: D is a leaf. From the definition of hterm(D,v), with D a leaf of the division-tree, this
case directly follows.

Step: Suppose D is not a leaf and the lemma holds for all sons of D, i.e., VC <D : [hterm(C,v.) =
ve = m(C) = (maxn :n € leaf(C) :: m(n)) A fatherknows(C,v.) A VB <« C : hterm(B, m(B))].
Then the following holds:
hterm(D,v)
hfinished(D,v) A fatherknows(D,v)
=v=m(D)= (maxC:C A D ::mp(C)) AVC q D : hterm(C,m(C)) A
Jatherknows(D, v)
{hterm(C, m(C)) = (mp(C) = m(C))}
=v=m(D) = (maxC:C < D:m(C)) AVC « D : hterm(C,m(C)) A
fatherknows(D, v)
{Induction hypothesis}
=v =m(D) = (maxC : C 4 D :: {(maxn:n € leaf(C) :: m(n))) A
VC < D : hterm(C,m(C)) A fatherknows(D,v)
= v = m(D) = (maxn : n € leaf(D) :: m(n)) AVC Q D : hterm(C, m(C)) A
fatherknows(D, v).

‘This proves the induction step. ,

We can conclude that hterm(D,v) = v = m(D) = (maxn : n € leaf(D) :: m(n)) A VC QD :
hterm(C,m(C)) A fatherknows(D,v).
O

Corollary 4.1 If R is the root of the division iree corresponding to a hierarchical division on G,
il is possible to define: hterm(R,v) = term(G,v).

In the following we will use this definition. SP1 directly follows from this and SP3. We will
now prove that SP2 is met.

Lemma 4.2

(VC < D : (hfinished(C, v.) A leavesval(C) = M.)) —
(YC < D : hterm(C, v.)) V ~(YC Q D : leavesval(C) = M.).

Proof:

PSP theorem on SP3 and SP6:
(hfinished(C, vc) A leavesval(C) = M.)) —
[(hterm(C,vc) V —hfinished(C,vc)) A hfinished(C,v.) A leavesval(C) = M)
v-(leavesval(C) = M,).
Rewriting the right side:
(hfinished(C, v.) A leavesval(C) = M.)) —
[hterm(C, v.) A leavesval(C) = M.V —(leavesval(C) = M.).
Rewriting the right side:
(hfinished(C, v.) A leavesval(C) = M.)) —
hterm(C, v.) V ~(leavesval(C) = M,).
Conjunction over the C’s on the above:

10



VC < D : [(hfinished(C, vc) A leavesval(C) = M.)) —
hterm(C, v.) V ~(leavesval(C) = M.)].

From SP4:

VC < D : [(hterm(C, v.) unless ~(hfinished(C, vc)))].
The generalization theorem of the completion theorem on the above two:

VC < D : (hfinished(C, v.) A leavesval(C) = M.) —

(VC q D : hterm(C,vc)) V—(VC < D : leavesval(C) = M. A hfinished(C, v.)).

From SP3, using simple conjunction:

VC < D : (hfinished(C, v.) A leavesval(C) = M.) unless ~(YC < D : leavesval(C) = M,).
The PSP theorem on the above two:
VC < D : (hfinished(C, v.) A leavesval(C) = M.) —
[((YC q D : hterm(C,vc) V ~(YC < D : leavesval(C) = M. A hfinished(C, vc)))
A(VC < D : leavesval(C) = M, A hfinished(C, v.))]
v—(YC Q D : leavesval(C) = M.).
Rewriting the right side:
VC < D : (hfinished(C, v.) A leavesval(C) = M.) —
VC < D : [hterm(C,vc) A leavesval(C) = M, A hfinished(C,v.)]
V~(YC < D : leavesval(C) = M.).
Weakening the right side:
VC < D : (hfinished(C, v.) A leavesval(C) = M.) —
(YC <1 D : hterm(C,vc)) V~(YC < D : leavesval(C) = M.).

m]
Lemma 4.3

VC < D : (hterm(C, v.) A leavesval(C) = M.)
(3v : hfinished(D,v)) V~(VC A D : leavesval(C) = M.).

Proof:

From SP3, using simple conjunction:
VC < D : (hfinished(C, v.) A leavesval(C) = M.) unless ~(YC < D : leavesval(C) = M.).
The PSP theorem on SP5 and the above:
YC q D : (hterm(C, v.) A hfinished(C, vc) A leavesval(C) = M) —
[(Qu : hfinished(D,v) V ~(YC < D : hfinished(C,vc)))
AYC Q D : (hfinished(C,vc) A leavesval(C) = M.)]
V=(YC < D : leavesval(C) = M.).
Rewriting the left- and right side:
YC < D : (hterm(C, v.) A leavesval(C) = M.) —
[3v : hfinished(D,v) AVC < D : (hfinished(C,vc) A leavesval(C) = M.)]
v~(VC Q D : leavesval(C) = M..).
Weakening the right side:
VC < D : (hterm(C, v.) A leavesval(C) = M.)
(3v : hfinished(D,v)) V~(VC < D : leavesval(C) = M.).

0

Lemma 4.4 For all domains D:

(leavesval(D) = M) — 3v : hfinished(D, v) V —~(leavesval(D) = M).

11



Proof: We will give a prove by induction on the structure of the division-tree.
Base: If D is a leaf, this case trivially follows.
Step: Suppose D is an internal node.

From Induction Hypothesis:
VC 4 D : [(leavesval(C) = M,) — v, : hfinished(C, v.) V —(leavesval(C) = M.)].
Rewriting the right side:
VC < D : [(leavesval(C) = M,) —
(3. : hfinished(C,v.) A leavesval(C) = M.) V —(leavesval(C) = M.)].
From SP3:
YC < D : [(hfinished(C, v.) A leavesval(C) = M.) unless ~(leavesval(C) = M.)].
Using the generalization of the completion theorem on the above two relations:
(YC < D : leavesval(C) = M,) —
[VC < D.: (3v. : hfinished(C,v.) A leavesval(C) = M.)
V=(YC < D : leavesval(C) = M.)].
The cancellation theorem on the result of Lemma 4.2 and the above:
(YC < D : leavesval(C) = M,) —
VC <« D : (3v. : hterm(C,v.)) V—(YC < D : leavesval(C) = M.)].
Rewriting the right side:
(YC < D : leavesval(C) = M.) —
VC 4 D : (3v. : hterm(C, v.) A leavesval(C) = M)
V—~(YC 4 D : leavesval(C) = M,).
Using transitivity on the result of Lemma 4.3 and the above:
(VC Q D : leavesval(C) = M,) —
(3v : hfinished(D,v)) V~(VC Q D : leavesval(C) = M.).
Rewriting the left- and right side concludes the induction step, thereby proving
the lemma.

a

Theorem 4.1 SP2 is met by SPS, SP4{, SP5 and SP6.

Proof: Let R be the root of the division tree, then from Lemma 4.4 and corollary 4.1:
(leavesval(R) = M) — v : hterm(R, v) V —(leavesval(R) = M).

Because (leavesval(R) = nodesval(G)) and (hterm(R,v) = term(G, v)), SP2 follows.
O

4.2.4 Derivation of a Program from the Specification

A program follows directly from the specification of the solution strategy. The function inp(n)
delivers initially the input of some leaf n. The possibility of the alteration of an input m(n), of
some leaf n, is implemented by the assignment m(n) := g(n).

Program {maximum computation on a division tree}
initially
(1D :
m(D) = inp(D) if D€ leaf(D)~ —oco if ~(D € leaf(D))
i

(IC:C<aD:mp(C)=-o0)

12



assign

(ID

m(D) :=g(D) if D € leaf(D) ~
(maxC :C a4 D::mp(C)) if ~(D € leaf(D))

1

(IC:C<aD:mp(C):=m(C))

end {maximum computation on a division tree}

4.3

Maximum computation on a divided graph

We now derive the distributed algorithm on a hierarchically divided network.

If D is an internal node of the division tree corresponding with the hierarchical division on the
network, D corresponds with a domain in this network, and vice versa. Therefore in the following
D may denote a node in the division tree or a domain in the hierarchically divided network. From
the context it will always be clear what is meant.

4.3.1 Notation

For every domain D:

The set leaf(D) contains D itself if D is a node or else the nodes in domain D.
my (D) contains the value of D stored at node n.
Sn(D) contains the sequence-number of D stored at node n.

Let ++ be the bag-union. Then Dleavesval(D) is defined as follows:
Dleavesval(D) = [mp (D)), if D € leaf(D).
Otherwise, let Cy,...,C; be the subdomains of D, then

Dleavesval(D) = Dleavesval(C1) ++ Dleavesval(C2) ++ ... ++ Dleavesval(C.).
Note: Dleavesval(D) = leavesval(D)

Dfatherknows(D, v) holds iff all nodes in the superdomain of D has v as value for D, i.e.,

Dfatherknows(D,v) = (AMn:n€FADQF ::my(D)=1v)

Let n € D, n is ready for D iff the value v, as stored by n for D, equals the maximum of the
values of the subdomains as kept by n.

) _ v = m,(D) if D € leaf (D)
Nfinished(n, D,v) = { v=mu(D) = (maxC:C q D ::my(C)) otherwise

Dhfinished(D, v) holds iff all nodes are ready for D with value v and all subdomains have
terminated (which is defined next), i.e.,

Dhfinished(D,v) = (An:n € leaf(D) :: Nfinished(n, D, v)) A
VYC « D : (3v. : Dhterm(C,v.))

Dhterm(D, v) holds iff domain D has terminated with value v, that is all nodes in D are
ready for D with value v and all nodes in the superdomain of D has v as value for D.

Dhterm(D,v) = Dhfinished(D,v) A Dfatherknows(D,v)

equal(F,D,5) = (An:n¢€leaf(F)ADQF ::S,(D)=5)

13



mazs(D,S) = §= (maxn:DqF An € leaf(F) :: S.(D))

4.3.2 The Solution Strategy: Formal Description

The specification of obtaining and maintaining the maximum value of the inputs at the nodes in
a domain D by all the nodes in D, can be formally formulated as follows:

SP7: Dhfinished(D,v) A Dleavesval(D) = M unless Dleavesval(D) # M
SP8: Dhterm(D,v) unless ~Dhfinished(D, v)
SP9: VC Q D : Dhterm(C, v.) +— (3v : Dhfinished(D,v)) vV (3C <4 D : -~ Dhfinished(C, v.))
SP10: Dhfinished(D,v) A mazs(D,S) — equal(F, D,S)V -~ Dhfinished(D, v)
SP11: Invariant
Dhfinished(D,v) A equal(F, D,S) = Dhterm(D, v)

4.3.3 Proof of Correctness of the Solution Strategy
By defining,

(mp(C) =v) & (An : n € leaf(D) :: my(C) = v)
the following equalities hold:

fatherknows(D, v)
hfinished(D, v)
hterm(D,v)

Dfatherknows(D, v)
Dhfinished (D, v)
Dhterm(D,v)

o

From above SP3, SP4 and SP5 directly follow from SP7, SP8 and SP9 respectively.
We will now prove that SP6 is met by SP10 and SP11. Note that there is always a S such that
mazs(D,S) holds.

Suppose mazs(D,S), then from the implication theorem:
Dhfinished(D,v) — Dhfinished(D,v) A mazs(D,S)
Transitivity on the above and SP10:
Dhfinished(D,v) + equal(F, D, S) V ~Dhfinished(D, v)
Rewriting the right side:
Dhfinished(D, v) — (equal(F, D, S) A Dhfinished(D,v)) V ~Dhfinished(D, v)
SP11:
Dhfinished(D,v) — Dhterm(D,v) V ~Dhfinished(D, v)

From above and the observations made SP6 follows.

4.3.4 Derivation of a Program from the Specification

The set E contains all links existing in the network. A link between nodes n and b is denoted by

{n,b}.

Program {maximum computation on a divided network using shared memory}
initially
(In,D,F:n€FADQF :: my(D), Sp(D) =inp(n),1 if n=D~
—o0, 0 if =(n = D)
)

14



assign

(In::
(ID,F:ne DADQF:
myu (D), Sa(D) :=g(n), Sp(D) + 1 ifn=D ~
(maxC : C q D :: my(C)), Sn(D) + 1
if (mp (D) # (maxC : C 4 D :: my(C)))
A(n # D))
|§|b :b€ FA{n,b} € E :: S,(D) := Sy(D) if (S3(D) > S (D))
)

[
(ID,F:~(ne DIA(DQF)A(n€F)::
§|b :b € FA{n,b} € E :: my(D), Sp(D) := my(D), Sp(D) if (Sp(D) > Sa(D))

)
)

end {maximum computation on a divided network using shared memory }

The proof that the program satisfies the solution strategy is rather straightforward. SP7, SP8,
SP9 and SP10 follow directly from the program text. SP11 follows from the following invariant,
which can be easily proven from the program text. In the following variables i and j range over
the set {1,...,z}, with z > 1.

invariant
[(ne F)A(ng D)A(DQ F)]=>
(3ng,...,nz: :
ng € D/\(An;nj‘ wn; € DAn; € F/\((i;’:j) =>(n.- # nj)))/\n, =n:
[(Sni(D) = Sn,_, (D) Amn,(D) = mn,_, (D)) V (Sn;(D) < Sn;_, (D))

This program can be implemented on a distributed system in the obvious way. The variables
mn(D) and S,(D) are then local to n. A change in one of these variables is made known to the
neighbours of n, which are in the superdomain of D, by sending it over the channels to these
neighbours.

5 Conclusion

In this paper we derived a distributed algorithm on a hierarchically divided network. Every node
in the network has an associated input-value and a variable in which it keeps the maximum of all
inputs. These inputs may change spontaneously. Within finite time after a change, every node has
updated its maximum value of the inputs.

The algorithm is developed in stages. After the problem description, an abstract algorithm on
a (virtual) division tree is given. Next, the algorithm is transformed in the distributed algorithm
that operates on a hierarchically divided network.

The stages are described informally as well as in UNITY. This combination appeared to be an
ideal combination to design distributed and concurrent algorithms. It is our hope that the deriva-
tion and techniques used in the algorithm will be helpful in the future to design more distributed
algorithms on hierarchically divided networks.
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1 Introduction

Distributed algorithms are often informally described. An advantage of an informal description is
the seeming ease with which they can be produced and studied. It is not necessary to understand
a formal system, before finding out the ideas behind the algorithm.

However, a major disadvantage in providing only informal arguments is that errors are easily
made. It is our experience that distributed algorithms which seemed to be correct, and were even
informally proven to be correct, in fact were wrong.

For example, during our research ([3]), we once were convinced to have designed a correct
distributed algorithm. By coincidence, we noticed that in some cases the update algorithm did
not terminate. In our proof we showed that the algorithm would terminate after any update, by
presenting a function whose value decreased in every step of the algorithm and was bounded from
below. Unfortunately, this function could have an infinite value, in which case the lower bound
would never be reached.

It was decided to use a formal method to be more sure of a correct outcome. UNITY ([1])
was chosen, a formalism which is claimed to be helpful in the design of distributed and concurrent
programs. In [1], Hoare claims that UNITY is a complete theory of programming because it
includes the following important aspects:

o It is a method for specification of programs.
e It is a method for reasoning about specifications.
e It is a method of developing programs together with a proof that they meet their specification.

e It is a method of transforming programs to achieve high efficiency on the machines available
for their execution.

The design and study of algorithms using a formalism can be extremely tiresome, although
rewarding. It is our experience that formal methods (including UNITY) soon become very complex
when studying nontrivial problems. Therefore, an informal description may be very helpful.

In [3] we introduced the distributed hierarchical routing algorithm that operates on a hier-
archically divided network, i.e., a network that is divided in domains and each domain, in turn,
is divided in subdomains, etc. As a result of hierarchically dividing the network, the size of the
routing tables remains small. The size of the tables for nodes in a hierarchically divided network
containing N nodes can be reduced to O(log N) entries.



It is our goal to formally design a distributed update algorithm on a hierarchically divided
network upon which the distributed hierarchical routing algorithm operates. Before using UNITY
on our update algorithm, we have decided to first gain some experience in using UNITY on a
simpler problem. This algorithm to be derived is used to obtain and maintain the maximum value
of a set of frequently changing inputs. Every node in a hierarchically divided network is associated
with precisely one element of this set of inputs, and every node has to maintain the maximum
value of the inputs of all nodes.

This problem and the problem of keeping topological information about a hierarchically divided
network bear some similarities. The network can be considered as a set of nodes. With each node
in this set corresponds a possibly changing set of paths from a source node to that node. Every
node must, for every other destination node in the set, obtain and maintain the best path of the
set of paths to that destination node, according to some metric (for example the hop-count).

The problem of maintaining this routing information is for two reasons more complex than the
problem of keeping the maximum value. In the first place, it deals with a set of sets, viz., for each
node in the set of destination nodes there is a set of paths to it.

The second reason is that every node has to deal with a different set of paths for the same
destination node. In keeping the maximum value of a set of inputs, each node has to deal with
one, and the same, set of integers.

We are, however, convinced that the (formal) derivation of a distributed algorithm for keeping
the maximum value of a frequently changing set of inputs, that operates on a hierarchically divided
network, will help us in the (formal) derivation of an update algorithm.

In Section 2 the topological model is described. The description of the algorithm consists of two
parts. Because, as stated above, an informal description may be very helpful, we have included
in Section 3, a traditional description and solution of the problem. In that part we develop
an algorithm by first designing an abstract algorithm that operates on a virtual datastructure.
In the next step, this algorithm is transformed into a distributed algorithm that operates on a
hierarchically divided network. Also a more traditional proof of the distributed algorithm is given.

In Section 4, these steps are formalized.

2 Model

In this article we describe a distributed algorithm on a network that is identified with a bidirectional
graph, the network graph. The nodes of this graph represent processors in the network, the
edges represent communication links between them. Every node has local computing capacity and
memory to which no other node has (direct) access. Nodes cooperate by exchanging messages over
the links connecting them. These links are assumed to be fault-free and have a FIFO behaviour.

Upon the graph a hierarchical structure is imposed ([3]): nodes are grouped into domains,
which, in turn, are grouped into superdomains, etc. Nodes are viewed as the smallest possible
domains. The graph, thus divided, is called a hierarchically divided graph. The division of the
graph is modeled as a tree, called the division tree. The network domain (the domain comprising
the whole network) corresponds to the root of this tree. Subdomains of a domain correspond to
sons of the tree-node corresponding to the domain. The leaves of the division tree correspond to
the processors in the network.

When tree-node m in the division tree is a son of tree-node n, we write: m < n. Analogously,
when domain C in the hierarchically divided network is a subdomain of domain D, we write:
C a4 D. Tree-node n in the division tree is visible to tree-node m, if n is the son of a tree-node on
the path in the division tree to m, but is not on that path itself. Analogously, domain D in the
hierarchically divided network is visible to domain C if D is a direct subdomain of a domain E of
which C is a descendant, too, and C is not contained in D.

Note that, by definition, if a domain D is visible to domain C, then D is visible to every node
in C. Also, subdomains of a domain that is visible to a node are not visible to that node. As a
consequence, internal details of a domain are hidden from domains, especially from nodes, outside
that domain. This will result in a reduction of the storage complexity of the algorithms to be



developed: only a single item of information has to be stored at a node n for each domain visible
to n, and not for every single node in it.

On the hierarchical division we impose the following restriction: every domain is connected. In
other words: a message routed between two nodes does not have to leave the least common domain
of those nodes. In order to meet this constraint, it is possible, as described in [3], that subdomains
are shared between domains, i.e., domains may be overlapping.

3 Traditional Description
3.1 Problem

In this section we describe the problem that is solved in the rest of this article.

We assume that every node in a hierarchically divided network has an associated data item,
called its input. The inputs are, not necessarily unique, elements from a totally ordered set.
Furthermore, every node possesses a variable in which it keeps the maximum of all inputs in the
network.

Inputs of nodes may change spontaneously, and as a result the global maximum may change. If
this is the case, all nodes in the network are required to have updated their maximum value within
finite time after the update has occurred. If multiple changes occur, nodes must have updated
their maximum value within finite time after the last update.

3.2 Update Algorithm on a Division Tree

In this section we present an update algorithm that operates on a division tree after the input of
a leaf has changed. In this algorithm, leaves as well as internal tree-nodes of the division tree are
assumed to be capable of performing actions and of storing values (of variables). Keep in mind,
however, that in a physical network, nodes are the only entities having these properties. Since
internal tree-nodes in the division tree model domains in the hierarchical division of the network,
the actions of the domains have to be emulated by the physical nodes ”on behalf of the domains.”

The following questions, then, have to be answered. Which nodes simulate the actions corre-
sponding to a domain? Do we need special nodes, or can the domain actions be established by all
nodes (in the domain) constituting a part in it?

In Section 3.3 we will describe a transformation of the abstract algorithm, to an algorithm in
which the only active entities are nodes in a hierarchically divided network.

Every tree-node n in the division tree maintains the following variables:

f(n): the father of tree-node n in the division tree,

m(n): the m-value of n, defined as the input of n if n is a leaf, and (an approximation of)
max{m(s) | s < n} if n is an internal tree-node, and

mu(s): the current estimate of m(s), for every son s of n, if n is an internal tree-node.

We assume a correctly initialized datastructure, i.e., every leaf n has got an input m(n), and
for every internal tree-node n, m(n) = max{my(s) | s<a n} and for every son s of n, my(s) = m(s).
Thus, m(r) contains the maximum value of all leaves in the tree if r is the root of the division tree.

We now describe the distributed algorithm that is performed as a result of a change in the input
of a leaf. The update algorithm is straightforward. Upon detecting a change in m(n), tree-node
n reports this change to f(n). In response, f(n) updates its value and, if it changes, recursively,
reports this to f(f(n)).

The resulting algorithm is presented slightly more formally below.



Algorithm I (division tree)
e Upon detecting a change in m(n) to m’, leaf n sends message UPD(n,m') to f(n).
e Upon receipt of UPD(s, m'), internal tree-node n performs the following actions:
my(s) :==m';
m(n) := max{m,(s;) | s; < n};
if m(n) changed and n is not the root

then send UPD(n,m(n)) to f(n)
fi

O

3.3 Update Algorithm on a Hierarchically Divided Graph

In this section we will distribute the algorithm on a division tree as described in Section 3.2. A
domain (an internal tree-node in the division tree) is simulated by the cooperation of all nodes
contained in it. For that purpose we distribute the information kept by any internal tree-node D in
the division tree in Algorithm I over the nodes contained in domain D in the hierarchically divided
network. This is realized by a ”projection” in the division tree of all information onto every leaf
in the subtree below the tree-node containing the information. As a result, every node keeps the
m-values of its superdomains and the m-values of its visible domains.

We denote by my, (D) the m-value of domain D stored at node n. In a stable state (for example
before any changes occur) all nodes in domain D will have the same value for m, (D).

In Section 3.3.1 we handle the update of data after a single change has occurred. In Section 3.3.2
we extend the algorithm to perform the necessary actions after multiple changes have occurred ”at
the same time.” In Section 3.3.3 this algorithm is proven to be correct.

3.3.1 Updating a Single Change

In the following description, let n be a node with direct superdomain D, which has direct super-
domain F (i.e.,, n 9 D q F). If n’s input changes to m'y, every brother of n, i.e., every node d
in D, has to update its value m4(n). This is established by broadcasting within D the message
UPD(n,m',), using Propagation of Information, see [5].

The change of n’s input may affect the m-value of D. For example, if n’s input was the maximal
input in D, and it decreased, D’s m-value decreases too (unless another node in D has this same
maximal input). An increase of n’s input on the other hand, may result in an increase in D’s
m-value. Anyway, if D’s m-value changes, the new m-value can be determined by every node d
inside D by computing m4(D) = max{m4(n;) | n; < D}. This changed value has to be reported to
all other nodes in F. This is established by a broadcast of UPD(D,m'p), where m/p is the new
m-value of D. Nodes in D with neighbour-nodes outside D but in F, called border nodes of D,
start broadcasting the new m-value.

Analogously, this change in D may affect F’s m-value, necessitating the same actions of the
nodes in F and in the direct superdomain of F'. This procedure is repeated on every level for which
the change has an effect.

The resulting algorithm is presented below. The notation {n,n’} is used to denote a link
between nodes n and n’.

Algorithm II (network, single change)
¢ Upon detecting a change in m(n) to m’,, node n performs Accept, (n, m},).
e Upon receipt of UPD(D, mp), node n performs the following actions:

if mp,(D) # mp
then Accept, (D, mp)
fi,



where

Accept, (D, mp) =
Let DQ F in
{mn(D) := mp;
foralll={n,f},f¢DAfEF
do send UPD(D,mp) to f
od;
if m, (F) # max{m,(D;) | D; « F}
then /* new round necessary */
Accept, (F, max{mn(Di) | D; «q F})
fi
}

a

Note, that the algorithm requires at most two update messages to be sent over every link in the
network. Moreover, the update messages are confined to the lowest level domain with a subdomain
of which the input changes.

3.3.2 Updating After Multiple Changes

In this section we extend Algorithm II to deal with the case of multiple changes of inputs occurring
at the same time. When the input of a node changes, the node starts reporting this change using
Algorithm II. It is possible, however, that during this process another node changes its input, too.
Since the information about this change will not immediately reach the first node, this node may
start a broadcast based on out-of-date information. Therefore, update messages reporting different
m-values of the same domain may be in transit at the same time.

As before, in order to simulate the actions of a domain by the cooperation of the nodes in
it, every node in the domain maintains the m-value of each of its subdomains. Because of this
projection of all information in the division tree onto every leaf, nodes are not aware of the internal
structure of their visible domains. Specifically, nodes do not keep the m-values of subdomains of
their visible domains. Nodes, therefore, are not able to determine whether the information received
from a visible domain is up-to-date or not (i.e., whether the value equals the maximum of the inputs
of the subdomains).

To distinguish between succeeding broadcasts for a domain we introduce a sequence number
([5]) per domain. In [4], Perlman describes a broadcast algorithm of routing information that
stabilizes in reasonable time without human intervention after any malfunctioning equipment is
repaired or disconnected. It is shown why in a network without globally synchronized clocks the
sequence number scheme is better suited than local clocks for determining whether a received
packet is older or newer than the last received packet. The problems with sequence numbers, such
as the possibility of wrap-around, must also be considered using logical clocks. However, the logical
clock scheme requires hardware that is not always available in packet switches. It is also described
how the sequence number scheme can be extended to deal with failures, such as the possibility of
long delayed packets, network partitions and hardware failures.

Every broadcast started by a border node will be labeled with a higher sequence number than
the one known so far. On receiving an update message with information that is more up-to-date
than the information currently available, a node accepts this information by executing Algorithm I1
in Section 3.2. A node accepts a message as being more up-to-date, if the sequence number in the
message is higher than the one kept until then. Nodes, therefore, maintain sequence numbers for
every visible domain. Border nodes also have to keep sequence numbers for the domains of which
they are border nodes. In order to keep this information up-to-date, every time an update of this
number takes place, a broadcast of it is performed in the domain.

Using the same scenario as before, it can be shown that two broadcasts started by different
border nodes for a domain D, labeled with the same sequence number, need not have the same
value. However, in this case, at least one border node has not yet received at least one update



message of a broadcast for a subdomain of D currently in the network. It is guaranteed that this
border node will receive the missing information within finite time and start a new broadcast for
domain D. This new value may be the same value the other border node broadcasted for D. The
same value may then be accepted twice by some nodes. The algorithm can be adapted to loose
this inefficiency. Since optimizing our algorithm is beyond the scope of the work presented here,
we do not deal with this issue.

We denote by S, (D) the sequence number of a domain D stored at node n. Initially for every
node n, S,(D) and my,(D) contain 0 and —oo, respectively, for every domain D of which n is part
or which is visible to n. The set Border(D) contains the border nodes of D. A broadcast of a
value mp for domain D labeled with sequence number Sp is done by sending UPD(D, mp, S, D) to
all nodes in the superdomain of D.

Algorithm III (network, multiple changes)
e Upon detecting a change in my,(n) to m'y,, node n performs Accepty, (n, my, Sp(n) +1).
e Upon receipt of UPD(D, mp, Sp), node n performs the following actions:

if Sp > Sa(D)
thenifne D
then S, (D) := Sp;
Broadcast,, (D, mp, Sp)
/* broadcast new sequence number of D */
else Accept,(D,mp,Sp)
/* update the m-value and
sequence number of D */

fi
fi,
where
Broadcast, (D, mp,Sp) =
Let D F in
{for all {n, f},fEF
do send UPD{D, mp,Sp) to f
od
}
Accept,(D,mp,Sp) =
Let DG Fin
{mn(D) := mp;
Sn(D) := Sp;
Broadcast, (D, mp, Sp);
if m,(F) # max{m.(D;) | D; « F}
then if n € Border(F)
then Accept,, (F, max{m,(D;) | D; « F},Sn(F)+1)
/+ accept new value for F, broadcast it and
check m-value of the superdomain of F */
else Accepty, (F,max{m,(D;) | Di « F}, Sa(F))
/* accept new value for F and check m-value
of the superdomain of F */
fi
fi
}
O



3.3.3 Correctness Proof

In this section we prove that Algorithm III is correct. This proof consists of two parts. First,
the property that after the algorithm has terminated (i.e., no node is involved in a broadcast)
all nodes have correct values is shown to hold. Next, it is proven that the algorithm terminates
within finite time, after the last change in a node’s input has occurred. Before proving correctness,
some notation is introduced. Node n accepts UPD(D, mp, Sp) if as a consequence of the receipt
of this message, Accept, (D, mp, Sp) is executed. The algorithm has terminated for domain D if

no update message containing a value of D exists in the network and the algorithm has terminated
for every subdomain of D.

Lemma 3.1 Suppose that the algorithm has terminated for domain D and for all nodes d,d’ € D:
ma(C) = ma(C), for all C Q4 D. Then the following holds for nodes n,n’ € F, with DQ F:

e m,(D) = max{m,(C) |C«a D}, ifn€ D.
e mu(D) = mu (D).
e Sp(D) = Sn/(D).

Proof: From the algorithm it directly follows that m,(D) = max{m,(C) | C <« D}, if n € D.
Therefore, especially after termination this equality holds. It now follows from the fact that all
nodes in D hold the same values for the subdomains of D, that if n,n’ € D: mp(D) = max{m,(C) |
cq D} = max{m,,:(C) I cdq D} = m,.:(D).

Let mp be this final value all nodes in D have for D and Sp = max{S,(D) | n € D}. All
nodes increment their sequence number if there is a neighbour with a higher sequence number
for the same domain. Only border nodes are able to increment their sequence number for D to
start a broadcast. Therefore, Sp = max{S,(D) | n € Border(D)}. Every (border) node, which
started a broadcast labeled with Sp, must have sent UPD(D, mp,Sp) to neighbour-nodes within
the superdomain F. If this is not the case, a node n received the value mp later and started a
broadcast labeled with S, (D) > Sp, which is in contradiction with the assumption that Sp is the
maximum sequence number for D.

Every node n receiving UPD(D, mp, Sp), accepts it unless already Sn(D) = Sp (and m,(D) =
mp, if n € D). From the connectiveness of every domain it easily follows that every node n € F,
receives at least once UPD(D, mp, Sp).

a

Lemma 3.2 Suppose the algorithm has terminated for all domains C Q D. Then within finite
time the algorithm has terminated for domain D.

Proof: Let Sp = max{S,(D) | n € Border(D)} at the moment the algorithm has terminated
for all C q D. After the algorithm has terminated for domains C < D, no node n € Border(D)
will start a new broadcast for domain D. The last broadcast for domain D (labeled with highest
sequence number) must be labeled with Sp. As before, from connectiveness of every domain, it
follows that every node n € F, must receive UPD(D, mp, Sp) at least once. After a node accepts
UPD(D, mp, Sp), it will not accept any update message labeled with a number less than or equal
to Sp. Therefore, all earlier broadcast messages will be ”absorbed” within finite time (because of
the assumption that messages are not on a link for an infinite amount of time).

a

Theorem 3.1 Within finite time after the last m,(n) has changed:
o the algorithm terminaies for the whole network and

o the nodes contain correct values for all domains they are supposed to have a value for.



Proof: We prove by induction on the structure of the hierarchical division that within finite time
the algorithm terminates for every domain D and every node in the superdomain of D has correct
values for D.

Base: D is a node. Because D does not have any subdomain, this case directly follows from
Lemmata 3.1 and 3.2.

Step: Suppose D is not a node. From the induction hypothesis, within finite time the algorithm
terminates for every C < D and for all nodes d,d’ € D : m4(C) = mq(C). From Lemmata 3.1 and
3.2 the step follows.

O

4 Formal Description

In this Section we formalize the steps as given in Section 3. The theory UNITY, a computational
model and a proof system, is used. We assume the reader to be familiar with the notation used
for the programs and the logic for the specification, design, and verification of UNITY programs.
This theory can be found in chapters 2 and 3 of [1].

4.1 Problem specification

Let G be a graph in which an input is associated with each node. Inputs of nodes may change
spontaneously. It is required to compute and maintain the maximum of all the inputs. Here, we
describe and derive in UNITY notation the algorithms as described in Section 3.

4.1.1 Notation
e The set node(G) contains the nodes of the graph G.
e Vn € node(G) : m(n) contains the input of node n.
e Variable m(G) should contain the maximum of the inputs.

o Let [ay,as,...,a,) denote the bag, or multiset, of elements a,,ay,...,an.
If ny,...,n, are the nodes of G, then nodesval(G) = [m(n1), m(nz),...,m(n;)].

e M denotes a bag of integers.

e When the algorithm has terminated with value v we say that term(G,v) holds. Then, the
variable m(G) equals the maximum v of all inputs, i.e.,

term(G,v) = v=m(G)= (maxn:n € node(G) :: m(n)).

4.1.2 Specification

The specification of maintaining and obtaining the maximum value of the inputs in a network G,
where each node has an input, can be formulated as follows:

SP1: term(G, v) A nodesval(G) = M unless nodesval(G) # M
SP2: nodesval(G) = M + v : term(G, v) V nodesval(G) # M

4.2 Maximum computation on a division tree

Upon the graph G a hierarchical structure is imposed, which can be modeled as a division tree.
Let the inputs of the graph G be placed as values at the leaves of this tree. By computing (i.e.
obtaining and maintaining) at every internal node a value which is the maximum of the values at
its sons, the root node of the tree obtains and maintains the maximum value of the inputs in G.



4.2.1 Notation

For every node D (of the tree):
o The set leaf(D) contains D itself if D is a leaf or else the leaves under the node D.
e m(D) is D’s view of the maximum of the inputs under D.
e mp(C) is D’s view of m(C) for C «q D.

o Let ++ be the bag-union. Then leavesval( D) is defined as follows:
leavesval(D) = [m(D)), if D € leaf(D).
Otherwise, let Cy,...,Cy be the sons of D, then
leavesval(D) = leavesval(C1) ++ leavesval(C3) ++ . . . ++ leavesval(Cy).
Note: leavesval(R) = nodesval(G), if R is the root of the division tree corresponding with
the hierarchical division on G.

o The value of a node D must be made known to its father. fatherknows(D,v) is true if the
father of D has a correct view of m(D).

fatherknows(D,v) = (AF : DQ F :: mp(D) = v).
If R is the root of the division tree, we define fatherknows(R,v) = true.

e The algorithm is finished in some internal node D if the variable m(D) contains a value v
that is the maximum of all the values of its sons, and the algorithm has terminated (which
is defined next) in these sons.

v = m(D) if D € leaf(D)
hfinished(D,v) = { v=m(D)= (maxC:C a4 D:mp(C))A
VC < D : hterm(C,m(C)) otherwise.

e The algorithm has terminated in some internal node D if the algorithm is finished in D and
the value of D is known by the father of D.

hterm(D,v) = hfinished(D,v) A fatherknows(D,v).

Note: hterm(R,v) = hfinished(R,v), if R is the root of the division tree.

4.2.2 The Solution Strategy: Formal Description

The specification of obtaining and maintaining the maximum value of the inputs at the leaves
under a node D in a division tree, can be formally formulated as follows:

SP3: hfinished(D,v) A leavesval(D) = M unless leavesval(D) # M

SP4: hterm(D,v) unless ~hfinished(D, v)

SP5: VC < D : hterm(C, v.) — (3v : hfinished(D,v)) V (3C : -~hfinished(C, v.))
SP6: hfinished(D,v) — hterm(D,v) V ~hfinished(D, v)

4.2.3 Proof of Correctness of the Solution Strategy

We prove that the unless-relation (SP1) and the progress-condition (SP2), given in the problem
specification (in Section 4.2.1), are met by any strategy that satisfies conditions SP3, SP4, SP5
and SP6.

The proof that SP1 is met, follows directly from Lemma 4.1 which is presented next.



Lemma 4.1 hterm(D,v) = v = m(D) = (maxn : n € leaf(D) :: m(n)) A fatherknows(D,v) A
VC < D : hterm(C, m(C)).

Proof: To prove the lemma, we use induction on the structure of the division-tree.

Base: D is a leaf. From the definition of hAterm(D,v), with D a leaf of the division-tree, this
case directly follows.

Step: Suppose D is not a leaf and the lemma holds for all sons of D, i.e., VC <D : [hterm(C, v.) =
ve = m(C) = (maxn : n € leaf(C) :: m(n)) A fatherknows(C,v.) A YB A C : hterm(B, m(B))].

Then the following holds:

hterm(D, v)

= hfinished(D,v) A fatherknows(D,v)

=v=m(D) = (maxC :C 4 D :: mp(C)) AVC < D : hterm(C,m(C)) A
Jatherknows(D, v)

{hterm(C,m(C)) = (mp(C) = m(C))}

=v=m(D)= (maxC:C < D :m(C)) AVC q D : hterm(C,m(C)) A
fatherknows(D, v)

{Induction hypothesis}

=v =m(D) = (maxC : C qQ D :: {maxn: n € leaf(C) :: m(n))) A
VYC < D : hterm(C,m(C)) A fatherknows(D,v)

= v = m(D) = (maxn : n € leaf(D) :: m(n)) AVC q D : hterm(C,m(C)) A
Jatherknows(D, v).

This proves the induction step.

We can conclude that hterm(D,v) = v = m(D) = (maxn : n € leaf(D) :: m(n)) A VC A D:
hterm(C,m(C)) A fatherknows(D,v).
[m]

Corollary 4.1 If R is the root of the division tree corresponding to a hierarchical division on G,
il is possible to define: hterm(R,v) = term(G,v).

In the following we will use this definition. SP1 directly follows from this and SP3. We will
now prove that SP2 is met.

Lemma 4.2

(YC < D : (hfinished(C, v.) A leavesval(C) = M.)) +
(VC q D : hterm(C,v.)) V~(VC < D : leavesval(C) = M.).

Proof:

PSP theorem on SP3 and SP6:
(hfinished(C, ve) A leavesval(C) = M.)) —
[(hterm(C,v.) V —hfinished(C,v.)) A hfinished(C,v.) A leavesval(C) = M
V- (leavesval(C) = M.,).
Rewriting the right side:
(hfinished(C, v.) A leavesval(C) = M.)) —
[hterm(C, v.) A leavesval(C) = M. V ~(leavesval(C) = M.).
Rewriting the right side:
(hfinished(C, vc) A leavesval(C) = M.)) —
hterm(C,v.) V —(leavesval(C) = M,).
Conjunction over the C’s on the above:
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VYC < D : [(hfinished(C, v.) A leavesval(C) = M,)) —
hterm(C,v.) V —(leavesval(C) = M.)).
From SP4:
VC <a D : [(hterm(C, v.) unless =(hfinished(C, vc))].
The generalization theorem of the completion theorem on the above two:
YC < D : (hfinished(C, v.) A leavesval(C) = M.)

(VC 4 D : hterm(C, vc)) V —~(¥C < D : leavesval(C) = M. A hfinished(C, vc)).

M,).

From SP3, using simple conjunction:

YC < D : (hfinished(C, v.) A leavesval(C) = M_) unless ~(VC < D : leavesval(C) =

The PSP theorem on the above two:
VC 4 D : (hfinished(C, ve) A leavesval(C) = M.) —

[(VC < D : hterm(C,vc) V—~(VC < D : leavesval(C) = M. A hfinished(C,v.)))

A(VC < D : leavesval(C) = M. A hfinished(C,v.))]
V-(YC < D : leavesval(C) = M,).
Rewriting the right side:
VYC < D : (hfinished(C, vc) A leavesval(C) = Aic) —
VC q D : [hterm(C,vc) A Ieavesval(C) M. A hfinished(C,v.)]
v=(VC <« D : leavesval(C) = M.).
Weakening the right side:

VYC < D : (hfinished(C, vc) A leavesval(C) = M.)
(YC < D : hterm(C,vc)) V—~(YC < D : leavesval(C) = M,).

a

Lemma 4.3

VYC < D : (hterm(C, v.) A leavesval(C) = M) —
(3v : hfinished(D,v)) V~(VC < D : leavesval(C) = M.).

Proof:

From SP3, using simple conjunction:

YC a D : (hfinished(C, vc) A leavesval(C) = M,) unless ~(YC < D : leavesval(C) =

The PSP theorem on SP5 and the above:
YC Q D : (hterm(C, v.) A hfinished(C,vc) A leavesval(C) = M)+
[(Qu : hfinished(D,v) V ~(YC < D : hfinished(C, vc)))
AVC < D : (hfinished(C,vc) A Ieavesval(C) M.))

v~(VC <« D : leavesval(C) = M.).
Rewriting the left- and right side:

VC 4 D : (hterm(C, v.) A leavesval(C) = M.) —
[3v : hfinished(D, v) AVC < D : (hfinished(C, vc) A leavesval(C) = M.)]

v~(VC < D : leavesval(C) = My).
Weakening the right side:

VC < D : (hterm(C, v;) A leavesval(C) = M,) —
(3v : hfinished(D,v)) V ~(VC Q D : leavesval(C) = M,).
O

Lemma 4.4 For all domains D:

(leavesval(D) = M)+ v : hfinished(D,v) V —(leavesval(D) = M).

11
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Proof: We will give a prove by induction on the structure of the division-tree.
Base: If D is a leaf, this case trivially follows.
Step: Suppose D is an internal node.

From Induction Hypothesis:
VC 4 D : [(leavesval(C) = M,) — v, : hfinished(C, vc) V ~(leavesval(C) = M.)].
Rewriting the right side:
VC 4 D : [(leavesval(C) = M.) —
(v, : hfinished(C,v.) A leavesval(C) = M.) V ~(leavesval(C) = M.)].
From SP3:
VC < D : [(hfinished(C, v.) A leavesval(C) = M.) unless ~(leavesval(C) = M.)].
Using the generalization of the completion theorem on the above two relations:
(VC < D : leavesval(C) = M,) —
[VC < D : (v, : hfinished(C, v) A leavesval(C) = M)
V—(VC 4 D : leavesval(C) = M.)].
The cancellation theorem on the result of Lemma 4.2 and the above:
(VC < D : leavesval(C) = M.) —
[VC < D : (Jv. : hterm(C,v.)) V(VC < D : leavesval(C) = M.)).
Rewriting the right side:
(YC < D : leavesval(C) = M,) —
VC < D : (v, : hterm(C, v.) A leavesval(C) = M)
V~(YC < D : leavesval(C) = M.).
Using transitivity on the result of Lemma 4.3 and the above:
(VC < D : leavesval(C) = M.) —
(3v : hfinished(D,v)) V ~(VC < D : leavesval(C) = M.).
Rewriting the left- and right side concludes the induction step, thereby proving
the lemma.

a

Theorem 4.1 SP2 is met by SP3, SP4, SP5 and SP6.

Proof: Let R be the root of the division tree, then from Lemma 4.4 and corollary 4.1:
(leavesval(R) = M) +— 3v : hterm(R, v) V —~(leavesval(R) = M).

Because (leavesval( R) = nodesval(G)) and (hierm(R,v) = term(G, v)), SP2 follows.
a

4.2.4 Derivation of a Program from the Specification

A program follows directly from the specification of the solution strategy. The function inp(n)
delivers initially the input of some leaf n. The possibility of the alteration of an input m(n), of
some leaf n, is implemented by the assignment m(n) := g(n).

Program {maximum computation on a division tree}
initially
(ID ::
m(D) = inp(D) if D € leaf(D) ~ —oo  if (D € leaf(D))
|

(IC:C<aD:mp(C)=—o0)

12



oy
m(D) :=g(D) if D € leaf(D) ~
(maxC:C QD :mp(C)) if ~(D € leaf(D))
1
\ (IC:C<aD:mp(C):=m(C))

end {maximum computation on a division tree}

4.3 Maximum computation on a divided graph
We now derive the distributed algorithm on a hierarchically divided network.

If D is an internal node of the division tree corresponding with the hierarchical division on the
network, D corresponds with a domain in this network, and vice versa. Therefore in the following
D may denote a node in the division tree or a domain in the hierarchically divided network. From
the context it will always be clear what is meant.

4.3.1 Notation

For every domain D:
o The set leaf(D) contains D itself if D is a node or else the nodes in domain D.
e my, (D) contains the value of D stored at node n.

e Sn(D) contains the sequence-number of D stored at node n.

o Let ++ be the bag-union. Then Dleavesval(D) is defined as follows:
Dleavesval(D) = [mp(D)), if D € leaf(D).
Otherwise, let C},...,C, be the subdomains of D, then

Dleavesval(D) = Dleavesval(Cy) ++ Dleavesval(Cz) ++ . . . ++ Dleavesval(Cy).
Note: Dleavesval(D) = leavesval(D)

o Dfatherknows(D,v) holds iff all nodes in the superdomain of D has v as value for D, i.e.,
Dfatherknows(D,v) = (An:n€ FADQF :m,(D)=v)

e Let n € D, n is ready for D iff the value v, as stored by n for D, equals the maximum of the
values of the subdomains as kept by n.

. _ v =my(D) if D € leaf(D)
Nfinished(n, D,v) = { v=mp(D) = (maxC:C < D::my(C)) otherwise

o Dhfinished(D, v) holds iff all nodes are ready for D with value v and all subdomains have
terminated (which is defined next), i.e.,

Dhfinished(D,v) = (An:n € leaf(D) :: Nfinished(n, D,v)) A
VC Q D : (v, : Dhterm(C, v.))

e Dhterm(D,v) holds iff domain D has terminated with value v, that is all nodes in D are
ready for D with value v and all nodes in the superdomain of D has v as value for D.

Dhterm(D, v) = Dhfinished(D, v) A Dfatherknows(D, v)

equal(F,D,S) = (An:n€leaf(F)ADQF :: Sp(D) =75)

13



mazs(D,§) = S = (maxn:D<QF An € leaf(F) :: So(D))

4.3.2 The Solution Strategy: Formal Description

The specification of obtaining and maintaining the maximum value of the inputs at the nodes in
a domain D by all the nodes in D, can be formally formulated as follows:

SP7: Dhfinished(D,v) A Dieavesval(D) = M unless Dleavesval(D) # M
SP8: Dhterm(D,v) unless ~Dhfinished(D, v)
SP9: VC < D : Dhterm(C, v.) — (3v : Dhfinished(D,v)) V (3C < D : ~Dhfinished(C, v.))
SP10: Dhfinished(D,v) A mazs(D,S) — equal(F, D,S) V ~Dhfinished(D, v)
SP11: Invariant
Dhfinished(D, v) A equal(F, D, S) => Dhterm(D, v)
4.3.3 Proof of Correctness of the Solution Strategy
By defining,

(mp(C) = v) & (An : n € leaf(D) :: mp(C) = v)
the following equalities hold:

fatherknows(D, v)
hfinished(D, v)
hterm(D, v)

Dfatherknows(D, v)
Dhfinished(D, v)
Dhterm(D, v)

muon

From above SP3, SP4 and SP5 directly follow from SP7, SP8 and SP9 respectively.
We will now prove that SP6 is met by SP10 and SP11. Note that there is always a § such that
mazs(D, S) holds.

Suppose mazs(D, S), then from the implication theorem:
Dhfinished(D, v) ~ Dhfinished(D, v) A mazs(D,5)
Transitivity on the above and SP10:
Dhfinished(D,v) v equal(F, D,S) V —~Dhfinished(D,v)
Rewriting the right side:
Dhfinished(D, v) — (equal(F, D,S) A Dhfinished(D,v)) V —~Dhfinished(D, v)
SP11:
Dhfinished(D,v) — Dhterm(D, v) V ~Dhfinished(D,v)

From above and the observations made SP6 follows.

4.3.4 Derivation of a Program from the Specification

The set E contains all links existing in the network. A link between nodes n and b is denoted by

{n, b}.

Program {maximum computation on a divided network using shared memory}
initially
(In,D,F:n€ FADQF :: m,(D),Sp(D) =inp(n),1 if n=D~
—00, 0 if =(n = D)
)

14



assign

(In::
(ID,F:n€e DADQF ::
my (D), Sn(D) :=g(n), Sa(D) +1 if n=D ~
(maxC : C 4 D :: ma(C)), Sn(D) +1
if ((mn(D) # (maxC : C 4 D :: m,(C)))
A(n # D))
(b : b € F A{n,b} € E :: Su(D) := Sp(D) if (Ss(D) > S (D))
)
)

|
(ID,F:~(n€ D)NDQF)A(n€F):
§Ib :b € F A{n,b} € E :: my(D), Sa(D) := my(D), S3(D) if (Sp(D) > Sn(D))
)
)

end {maximum computation on a divided network using shared memory }

The proof that the program satisfies the solution strategy is rather straightforward. SP7, SP8,
SP9 and SP10 follow directly from the program text. SP11 follows from the following invariant,
which can be easily proven from the program text. In the following variables i and j range over
the set {1,...,z}, with z > 1.

invariant
(neF)A(ngD)A(Da F)] =
(3no,...,ns:
no € DA(Aninj =n; € DAn; € FA((I#H)2>Mmi#En)))An,=nz
[(S"i(D) = S"i-l(D) A mm(D) = mm-x(D)) v (S,,‘-(D) < S,..._‘(D))])

This program can be implemented on a distributed system in the obvious way. The variables
my (D) and S, (D) are then local to n. A change in one of these variables is made known to the
neighbours of n, which are in the superdomain of D, by sending it over the channels to these
neighbours.

5 Conclusion

In this paper we derived a distributed algorithm on a hierarchically divided network. Every node
in the network has an associated input-value and a variable in which it keeps the maximum of all
inputs. These inputs may change spontaneously. Within finite time after a change, every node has
updated its maximum value of the inputs.

The algorithm is developed in stages. After the problem description, an abstract algorithm on
a (virtual) division tree is given. Next, the algorithm is transformed in the distributed algorithm
that operates on a hierarchically divided network.

The stages are described informally as well as in UNITY. This combination appeared to be an
ideal combination to design distributed and concurrent algorithms. It is our hope that the deriva-
tion and techniques used in the algorithm will be helpful in the future to design more distributed
algorithms on hierarchically divided networks.
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