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ABSTRACT: We study the on-line d-dimensional dictionary problem. This problem consists of
executing on-line any sequence of operations of the form: INSERT(p), DELETE(p) and
MEMBERSHIP(p ), where p is any point in d-space. To represent the set of points we use a new
generalization of balanced binary search trees, which we call d-dimensional balanced binary search trees.
We show that any of the above operations can be implemented to take
O(d + log n) time, where n is the current number of points in the set, and each INSERT and DELETE
operation requires no more than a constant number of rotations. Our procedures are almost identical to
the ones for balanced binary search trees. The main difference is in the way we search for an element.
Our search strategy is based on the principle "assume, verify and conquer” (AVC). We apply this
principle as follows. To avoid multiple verifications we shall assume that some prefixes of strings match.
At the end of our search we must determine whether or not these assumptions were valid. This can be
done by performing one simple verification step that takes O(d) time. The elimination of multiple
verifications is important because in the worst case there are Q( log n ) verifications each taking O(d)
time.

KEYWORDS: d-dimensional dictionaries, balanced binary search trees, efficient algorithms, assume-
verify-and-conquer.

1 On Sabbatical leave from the Department of Computer Science, University of California, Santa Barbara.
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I. INTRODUCTION.

The on-line 1-dimensional dictionary, or simply the dictionary, problem consists of executing any
sequence of instructions of the form INSERT(p ), DELETE(p ) and MEMBERSHIP(p ), where each p is a
real number. It is well known that any of these three instructions can be implemented to take O(log n)
time, where n is the current number of elements in the set. The set can be represented by AVL-trees, B-
trees (of constant order), 2-3 trees, balanced binary search trees (i.e., symmetric B-trees, half balanced
trees or red-black trees), or weight balanced trees. All of these trees are binary search trees, with the
exception of the B-trees which are m-way binary search trees. The balanced binary trees are the only
ones that require only O(1) rotations for both the insert and the delete operation ([O], [T]).

In this paper we consider the dictionary problem when the set of points is defined in d-space. In
this case we refer to the problem as the on-line d -dimensional dictionary problem. The problem consists
of executing on-line any sequence of the following operations: INSERT(p), DELETE(p) and
MEMBERSHIP(p ), where p is any point in d-space (i.e., the universe is the set of points in d-space).
The set of points is denoted by P and point p € P has coordinate values given by (x1(p), x2(), ...,
x2(p)). We examine several data structures to represent a set of points P and develop algorithms to per-
form any sequence of on-line d -dimensional dictionary operations. We show that any of the three opera-
tions can be performed in O(d + log n) time, where n is the current number of points in the set and d is

the number of dimensions. Furthermore, only O(1) rotations are required for each INSERT and DELETE
operation.

As noted by Mehlhorn [M], "balanced tree schemes based on key comparisons (e.g., AVL-trees, B-
trees, etc.) lose some of their usefulness in this more general context”. Because of this, TRIES have been
combined with different balanced tree schemes to represent multikey sets (i.e., points in d-space). Let us
now elaborate on this method. A TRIE is used to represent strings (assume all have the same length) over
some alphabet I by its tree of prefixes. There are several implementations of TRIES:

(1) Each intemal node in a TRIE is represented by a vector of length m, where m is the number of ele-
ments in X. A function, normally computable in constant time, transforms each element in X into
anintegerin {0, 1, ..., m-1} (see structure in figure 1, where Z = {0, 1, 2, 3}).

(2) (Sussenguth [S]) Each internal node is represented by a linear list (see structure in figure 2).

(3) (Clampett [C]) Each intemnal node in the TRIE is represented by a binary search tree (see structure
in figure 3).

In general, implementation (1) uses the largest amount of space and implementation (2) uses the
least amount of space. Also, implementation (1) is the fastest and (2) is the slowest. The performance of
(3) is between that of (1) and (2).
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For d -dimensional dictionaries defined over the set of integers [0,m ), the TRIE method is applied as
follows. Under representation (1) each TRIE node is an m -element vector. The TRIE method treats a
point in d -space as a string with d elements defined over the alphabet X = {0, 1, ..., m-1} (see figure 1).
For large m or when instead of integers we have real numbers this method is not suitable. In this case we
can represent each node in the TRIE by a linear list of tuples each storing an element and a pointer (see
figure 2), or a binary search tree replacing the list (see figure 3). Bentley and Saxe [BSa] used this tech-
nique together with the following balancing scheme. The root of each subtree is a node such that its
*middle" subtree contains the terminal node of a median element in the set represented by the subtree.
Such a structure is very useful for static search problems like sorting or restricted searching ([K] and [H]).
Since fully balanced subtrees are very rigid structures which are not appropriate for dynamic updates,
they should be replaced by more flexible structures in dynamic environments. For example, the balancing
of these trees is performed by using techniques related to fixed order B-trees [GK], weight balanced trees
[M], AVL trees [V1], and balanced binary search trees [V2]. For these representations each of the three
operations in a d-dimensional dictionary can be implemented to take O(d + log n) time. However, the
number of rotations after each INSERT and DELETE operation is not bounded by a constant.

i,
A

s

Figure 1: TRIE representation.
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Figure 3: Binary search representation for TRIE nodes.
Solid arcs are binary search tree pointers and other arcs are TRIE pointers.

In this paper we investigate a representation which is based solely on binary search trees, rather than
on a combination of TRIES and binary search trees. Let us briefly explain the naive approach, which
does not achieve the proposed time complexity bound. In this method each point p; is stored at a node of
a binary search tree. The ordering in the binary search tree is lexicographic. Comparing two points can
be accomplished by performing at most d operations. It is simple to show that if there are n clements
currently being represented by an AVL, weight balanced, or balanced binary search trees, any of the three

September 29, 1990



dictionary operations can be carried out in at most O(d log n) time. Furthermore, there are problem
instances such that the straight forward implementation of procedures INSERT, DELETE and
MEMBERSHIP requires Q(d log n) time.

To achieve the proposed time complexity bound we represent the set of points P in a balanced
binary search tree in which additional information has been stored at each node. To distinguish this new
type of balanced binary search trees from the classic ones we shall refer to the former as d-dimensional
balanced binary search trees. For this representation we present procedures for INSERT, DELETE and
MEMBERSHIP which take O(d + log n) time and require only a constant number of rotations when exe-
cuting an INSERT and DELETE operation.

II. THE ALGORITHMS.

In this section we outline our algorithms and the structure to implement d -dimensional directories.
The representation is based solely on balanced binary search trees, rather than based on TRIES and binary
search trees. To achieve the proposed time complexity bound we represent the set of points P inad-
dimensional balanced binary search tree in which additional information has been stored at each node.
For this representation we present procedures for INSERT, DELETE and MEMBERSHIP which take
O(d + log n) time. It is important to note that our trees are identical to the ones in [T], except for the fact
that all the pointers to external nodes in [T] are replaced by null pointers in this paper. For example, an
internal node with two external nodes as children in [T] is a leaf node in this paper. Before explaining
our procedures, we define some terms as well as the additional information to be stored at each node.

Let p and ¢ be two points (in d-space). For 1 <i <d, we define diff (p.q.i) as the smallest
integer j greater than or equal to i such that x;(p) = x(q),i <k <j,and x;(p) #x;(q), unless no such j
exists, in which case j is d + 1. Each node in the tree has the following information in addition to the
information required to manipulate balanced binary search trees.

t—v: point The element represented by the node. The point is represented
by a d -tuple which can be accessed via x 1E2V), X2t oV), ..., x4 (t V).
t —lchild: pointer  Pointer to the root in the left subtree of ¢.
t—rchild: pointer  Pointer to the root in the right subtree of z.
t —lptr : pointer Pointer to the node with smallest value of the subtree rooted z.
t —hptr . pointer Pointer to the node with largest value of the subtree rooted z.
t—jl: integer dif f t—>v,t>iptr—-v, 1).
t—jh: integer diff (¢ >v,t—hptr -v, 1).
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Our procedures perform two types of operations: operations required to manipulate balanced binary
search trees (which we refer to as standard operations) and operations for manipulating and maintaining
our structure (which we refer to as new operations). The standard operations are well known, therefore
we shall only explain them briefly. The MEMBERSHIP procedure is identical to the one for searching in
a binary search tree. The input to the search procedure is a value p. We start at the root and visit a set of
tree nodes until we either reach a pointer with value null which indicates that p is not in the tree, or we
find the element. In the former case we have identified the location where p could be inserted in order to
maintain a binary search tree, and in the later case we visit only those nodes which are predecessors of the
node with value p. For the INSERT operation, we first perform procedure MEMBERSHIP. If the ¢le-
ment is in the tree the procedure terminates, since we do not need to insert the element. Otherwise, pro-
cedure MEMBERSHIP will give us the location where the element should be inserted. The element is
inserted, and if needed we perform a constant number of rotations. Also, the information stored at some
nodes in the path from the root to the node inserted need to be updated. The delete operation is a little bit
more complex. First we need to perform operations similar to the ones in procedure MEMBERSHIP to
find out whether the element is in the tree. If it is not in the tree the procedure terminates, otherwise we
have a pointer to the node to be deleted. We use the following technique discussed in [GS] (which is
similar to the one used for AVL trees) to reduce the deletion of an arbitrary node to the deletion of a leaf
node. If the node to be deleted is not a leaf node, then we either find the next element or the previous ele-
ment in the tree which has at least one null pointer. If such a node is a leaf then the problem is reduced to
deleting that leaf node by interchanging the values in these two nodes, otherwise three nodes have to
interchange their values and again the problem is reduced to deleting a leaf node. Deletion of a leaf node
is performed by deleting it, performing a constant number of rotations and then updating some informa-
tion stored in the path from the root to the position where the node was deleted from the tree.

To show that all of the operations can be implemented in the proposed time bounds, we need to
show that the following (new) operations can be performed O(d + log n) time.

(A) Given an element p determine whether or not it is stored in the tree and if it is in the tree then return
a pointer to it.

(B) Given an element p which is not stored in the tree, find the place where it should be inserted in
order to maintain a binary search tree.

(C) Update the structure after adding a node (just before rotation).

(D) Update the structure after performing a rotation.

(E) Update the structure after deleting a node (just before rotation).

(F) Transform the deletion problem to deleting a leaf node.
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First we discuss procedure MEMBERSHIP(p ,t) to test whether or not point p given by (x1(p),
x2(p), ..., X4(p)) is in the d-dimensional binary search tree (or subtree) rooted at ¢. This procedure
implements (A) above, and as we shall see later on it can be easily modified to implement (B). At each
iteration, ¢, points to the root of a subtree, and if comp = low then j has a value between 1 and d such
that xj(p) # x;(t>lptr—ov)orj =d + 1; otherwise comp = high and j is an integer in [1,d] such that
x;(p) # xj(t—>hptr —>v)orj =d + 1. As we shall see, j also satisfies some additional properties. We
claim that at each step in our algorithm, one of the following three statements hold.

(@) If p is in the tree then t—iptr 5v < p S t—-hptr—ov and either j = dif f (p .t >lptr -v,1) when
comp = low, or j = diff (p t —>hptr —v,1) when comp = high .

(i) If p is not in the tree and t—lptr—v <p < t >hptr —v, then either j = dif f (p ,t—lptr —-v,1)
when comp = low , or j = dif f (p .t >hptr —-v,1) when comp = high .

(iii) If p is not in the tree, then either p < t—iptr—v orp > t—hptr —v.

Let us outline our strategy when searching for p at node ¢ and comp = low. Assume that p is in the
tree. Later on we explain how to modify our strategy to deal with the case when p is not in the tree. We
claim that at each step in the algorithm (i) holds true. Initially ¢ points to the root of the tree and j is set
to diff (p t >lptr —-v,1). Therefore, (i) holds initially. We now show that if (i) holds during the kth
iteration and our algorithm performs certain operations (that we specify), then (i) will hold at the k+1st
iteration. If j =d + 1, then we know that p is equal to ¢ —lptr -v and we return; otherwise, j <d + 1.
There are three cases.

p p
L2213 ]1x1 x>4 2=l 1 1 x<6
j=s tov j= t—v
L21314]s] Ll2lel T 1
t >lptr v t>lptr v 1
Li2i20314] t—jl=3 Ll2fal 11 t—jl=3
t t
t-jl <j tojl =jandxj(p) <xj(t—V)
Figure 4: Case 1.

case 1: t—jl < j or (t—jl = j and x;(p) < x; (¢ —v)) (see figure 4),

By assumption ¢t —Iptr »v <p St—hptr—v and j = dif f (p t—>lptr —>v ,1). From the conditions of the
case we know that p < t—v, so p is not t—v nor it is in the right subtree of t. Since p is in the tree, it
must be that t—Ichild # null. By definition ¢t —iptr = t—lchild—lptr and since p is in the tree p <
t —>Ichild —hptr —v . Therefore, after setting ¢ to t —lchild, we know that (i) holds.
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p p
|:|2|3|;| | x>4 1121314]1x x>5
=4 tov j=s tov
Li20314]5] 171 1 71 ]
t-iptr v t-iptr v
KA t—jl=5 112131414 t—jl=5
t t
tojl>j t—jl =jandx;j(p)>x;(t—>v)
Figure 5: Case 2.

case2:t—jl > jor(t—jl = j and x;(p) > % (t—v)) (see figure 5).

By assumption ¢t —Iptr —»v <p <t-—>hptr—v and j = dif f (p t—Iptr —v ,1). From the conditions of the
case we know that p > t—v, so p is not t—v nor it is in the left subtree of ¢. Since p is in the tree, it
must be that ¢ —rchild # null. By definition t —hptr is equal to t —rchild —>hptr and since p is in the
tree p = t—orchild—iptr—v. Let j « diff (p t—rchild—lptr —»v ,j). Since j < diff (p t—v,1) and
p is in the right subtree, it must be the case that j < diff (p ;t o rchild >lptr —»v ,1). So, j is equal to
diff (p t >rchild —lptr —-v ,1). Therefore, after setting ¢ to t—rchild and j to j', we know (i) holds.

p
[i]213]4] |
j=4 tov
Ml213]4] |
toiptr —-v
Ll2]3]2] | t—jl=4

t

t—jl =j and x; (p) = x;(t V)
Figure 6: Case 3.
case 3: t—jl = j and x;(p) = x;(t—>v) (see figure 6).
By assumption ¢t —lptr »v <p <t—hptr—v and j =diff (p t>lptr —-v,1). Let ' « diff (p tov.j).

Since j = t—jl, we know that j < diff (p t—v,1). Therefore, j =diff p.t—-v,1). If j =d + 1, then
p =t—v. When j <d, there are two separate subcases.
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p

|1|2|3|4|5|x x<6

v

j= t—
|1|2|3|4|5|6
t >lptr »v

OI2I3]20 | t—sjl=4

x;(p)<xf(t—-)v)

Figure 7: Subcase 3.1.

subcase 3.1: x7 (p) < xj (t—V) (see figure 7).

Clearly, p <t—v, so p is not t—v nor it is in the right subtree of ¢. Since p is in the tree it must be in
the left subtree, therefore t —ichild # null. By definition ¢t —>iptr is equal to t —lchild —lptr , and since
p is in the tree it must be that p < t—ichild —hptr—v. Let j° « diff (p t—lchild —hptr —v J)-
Since j = diff(pt—v,]) and p is in the left subtree, it must be that j <
dif f (p ;t >lchild —hptr —v ,1). Therefore, j" is equal to dif f (p .t —ichild —>hptr —v D Ifj =d +1,
then p is equal to t—lichild —>hptr —v. Otherwise, since p is in the tree we know that x;-(p) <
xj-(t—>lchild —hptr—v). Therefore, after setting ¢ to t—lchild, j to j" and comp to high, we know
that (i) holds.

September 29, 1990



10

p
[1[2131al5]x x>6

34

j=4 t—
|:|2|3|4|5|6
t >lptr »v

[i]213]2] | t—jl=4
t

xp(p)>xp(t—v)

Figure 8: Subcase 3.2.

subcase 3.2: x7 (p) > xy (t—>V) (see figure 8).

Clearly, p > t—v, s0 p is not t—v nor it is in the left subtree of ¢. Since p is in the tree it must be in the
right subtree, therefore t —rchild # null. By definition t —hptr is equal to t —rchild —hptr , and since p
is in the tree it must be that p = t —rchild >lptr »v.Let j* « diff (p t—rchild —>lptr —v, J’). Since j’
= diff (p,t—v,1) and p is in the right subtree, it must be that j < diff (p .t —rchild—iptr —v,1).
Therefore, j* is equal to diff (p t—orchild—iptr—v,1). If j" =d + 1, then p is equal to
t—rchild —>lptr —v. Otherwise, since p is in the tree we know that x;-(p) > x;-(t —rchild > Iptr -v).
Therefore, after setting ¢ to t—rchild and j to j*, we know that (i) holds.

The case when comp = high is similar. When p is not in the tree, the procedure is slightly different
since additional statements need to be added. In this case the path followed during the search starts at the
root and continues through all those nodes for which t—iptr —v S p < t—hptr—v. If at some point
both of the direct descendants of a node do not satisfy the above condition, then either the search ter-
minates with an answer false, or (iii) will hold from that point on. The specific details about the search
strategy are spelled out in our procedure. It is important to note that once (iii) holds, j has no meaning.
However, to guard against reporting that p is in the tree when it is not, we perform an additional test.
This is why we call it AVC. Let us now outline procedure MEMBERSHIP(p ,¢) to test whether or not
point p is in the subtree rooted at ¢.
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MEMBERSHIP(p ,t);

*Is (x1(p), x2(p), ... Xa(p) inthe d -dimensional balanced binary search tree rooted at ¢ */
comp « low;

j « diff @—lptr—v p.1);

while ¢ # null do

case
:comp = low .
if j = d+1 thenif p =t—>iptr -v then return(true) else return(false);
case
ajl<jort—jl=j and x;(p) <x;(toV)):

t « t-olchild;
it—ojl > j or (¢—jl = j and x;(p) > x;(t5V)):
if t = rchild = null then return(false);
j & diff (p torchild—>lptr —v.,j);
if j/ =d+1 thenif p =t —orchild —lptr —v then return(true) else return(false);
ifxp(p)<xp @t —rchild —>Iptr —v) then return(false);
t «t—rchild; j « J;
celse: /*t—jl =j and x;(p) =x;(t V) */
j e diff p t-v.j)
if / =d + 1 thenif p = t—v then return(true) else return(faise);
case
Xy (p)<xp(t—v): /* try left subtree */
j" « diff (p t—lchild—hptr =v ,j’ ),
if j" =d + 1thenif p = t>lchild —hptr —v then return(true) else return(false);
if x;-(p) > x;-(t >ichild —hptr —v) then return(false);
comp « high; t « t—lchild; j « j;
Xy (p) > xj (t—v): /* try right subtree */
j" < diff (p torchild>iptr —v,j');
if j" =d + 1thenif p = t—rchild —lptr v then return(true) else return(false);
if xj-(p )< xj-(t —rchild —>lptr —v) then return(false);
t «torchild; j «j;
endcase
endcase
:comp = high:
/* This section of code is omitted since it is similar to the one for comp = low. */
endcase
endwhile
return(false);
end of procedure MEMBERSHIP

Following arguments similar to the ones for the case when p is in the tree, one can easily prove the
following lemma. It is trivial to modify the procedure so that when it returns the answer true it also
returns a pointer to the place where the element is stored, for brevity we did not include such instructions.

Lemma 1: Given a point p procedure MEMBERSHIP(p, ¢) determines whether or not p is in the d-
dimensional balanced binary search tree rooted at ¢ in O(d + log n) time.
Proof: The proof follows arguments similar to those we used for the case when p is in the tree.
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We have identified an algorithm that implements (A) within the proposed time complexity bound.
Let us now consider how to implement (B), i.e., if p is not in the tree then find the position where it
should be inserted. The node where procedure MEMBERSHIP terminates may not be the correct place
where insertion should take place. However, while executing procedure MEMBERSHIP we can save the
path traversed in the tree while searching for p. By the path traversed, we mean all the nodes to which ¢
pointed to plus the next node that would be visited (i.e., the procedure returns false just before # is set to
t—rchild or t—lchild and such a pointer was not null). Suppose that the path traversed is given in
figure 9. The a; are pointers to the nodes. Suppose that the node pointed at by a3 is the last node and it
is not a leaf node. The small triangles are subtrees and the dot in it represents the place where an element
smaller (larger) than all the elements in the subtree would be inserted. We label those positions bo, b1, ...,
by,. Later on we define the procedure for performing this labeling.

Figure 9: Tree nodes searched.

Since (ii) or (iii) hold at each step in the traversal, it must be that all the nodes for which (ii) holds
are visited before all the nodes for which (iii) holds. Furthermore, there is at least one node for which (iii)
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holds. To determine the the place where p must be inserted, we find the last node (if any) in the path for
which (ii) holds. Consider figure 9. If (ii) does not hold for the node pointed at by a1, then p should be
inserted at location b or b1z; if the last node for which (ii) holds is the one pointed at by ai, then p
should be inserted at by; and so forth. Note that it cannot be that the last node for which (ii) holds was the
node pointed at by a,. Using the above strategy it is simple to write a procedure that given the last node
for which (ii) holds determines where the element should be inserted. Let us now show how to find such
anode. Let py, pa, ... point to nodes with values a1 —v, a2—v, ..., a12—V. There are O(log n) ele-
ments in the list, since the length of the path is O(log n). One can easily construct the list sorted in

O(log n) time by traversing the nodes in the path top-down. The sorted list of elements for the path given
in figure 9 is:

ar—V <as—v <as—v <ar-v <ag—ov <ag—v <

AV <ap—dv <ap—v <daeodV <a4/ovV <ay-ov.

In this list we need to find the appropriate place for p. This can be accomplished as follows. Let k
= 1. First let us eliminate all the elements which disagree with component k of p in the list. This can be
accomplished by traversing the list top-down and bottom-up. The top-down (bottom-up) traversal
advances if the element in the list has a value smaller (larger) than the one in p. If there remain no ele-
ments then the place where the search ends is the location where p belongs. Otherwise, we increase the
value of k and repeat the above process. Eventually the appropriate position will be found. Clearly this
process takes O(d + log n) time since there are O(log n) elements. All of the above observations are
summarized in lemma 2. For simplicity of exposition we separated this part of the algorithm from pro-
cedure MEMBERSHIP; however, it is simple to see how it can be incorporated into that procedure.

Lemma 2: Given a point p which is not in the tree ¢, an algorithm based on procedure
MEMBERSHIP(p, t) and the above observations determines where p should be inserted in the d-
dimensional balanced binary search tree rooted at ¢ in O(d + log n) time.

Proof: The proof is based on lemma 1 and the arguments that appear before lemma 2.

a

We have identified an algorithm that implements (B) within the proposed time complexity bound.
Let us now consider (C). If the tree is empty just before the insert operation, then the update of a single
node is trivial. Suppose now that element p is added to a non-empty tree. Let ¢ point to the node added.
Now we must update the structure to reflect the new value at some nodes that are predecessors of node q.
Let r be the predecessor to ¢ closest to the root and such that the path from 7 to g contains at least one
arc and consists only of rchild or Ichild (but not both) tree arcs. Let us assume the path consists of only
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rchild (Ichild) tree arcs. Then, the hptr (iptr) of all of these nodes must now point to the new node. The
value jh (jl) in the path must be updated. If we update them one by one without reusing partial results,
the time complexity will not be the proposed one. However, the values stored at each of these nodes are
increasing (decreasing). Therefore, the jh (jl) values are also increasing (decreasing). The correct values
can be easily computed in O(d + log n) time by reusing previously computed jk (jl) values. Lemma 3
summarizes our observations.

Lemma 3: After inserting a point p in a d -dimensional balanced binary search tree and just before rota-
tion the structure can be updated in O(d + log n) time.
Proof: By the above discussion.

a

We have identified an algorithm that implements (C) within the proposed time complexity. It is
simple to see that a similar procedure can be used to implement (E). We now need to consider how 1o
implement (D), i.e., rotations. This is the simplest part. Consider the rotation given by figure 10. Clearly
the only nodes whose information needs to be updated are ay and a,. Clearly, since there is a fixed

number (2) of them the operations can be implemented to take O(d) time. This result is summarized in
lemma 4.

Lemma 4: After a rotation in a d -dimensional balanced binary search tree the structure can be updated in
O(d) time.
Proof: By the above discussion.

b3 by

Figure 10: Rotation.

Using arguments similar to the ones in lemmas 3 and 4, one can easily show that (F) can be imple-
mented to take O(d + log n) time. Our main result which is based on the above discussions and the lem-
mas is given below.
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Theorem 1: Any on-line sequence of operations of the form INSERT(p), DELETE(p) and
MEMBERSHIP(p ), where p is any point in d-space can be carried out by the above procedures on a d -
dimensional balanced binary search trees in O(d + log n) time, where n is the number of points, and each
insert and delete operation requires no more than a constant number of rotations.

Proof: By the above discussion, the lemmas and the fact that only O(1) rotations are needed for each
INSERT and DELETE operations on balanced binary search trees [T].

a

1. DISCUSSION.

It is interesting that our technique cannot be adapted to AVL trees, weight balanced trees or B-trees
of fixed order, because the number of rotations in those structures might be large (Q(log n)). Therefore,
the claims on the proposed time complexity would not hold. The main reason why they hold on balanced
binary search trees is that only O(1) rotations are needed.

For very large 1-dimensional data sets one normally uses B-trees of high order (degree) and the
information is stored in external devices. The time required for insert and delete is not O(log n), but the
number of nodes visited is small. The objective in this case is to minimize the number of nodes visited
since that is equal to the number of times one retrieves records from the extemnal device which is the time
consuming part of the algorithm. Our techniques can be adapted to handle the general case when the
points are in d-space. The number of nodes visited will be small. The TRIE plus binary search tree
approach using B-trees [GK] does not have this property since the number of nodes accessed could be as
large as d. Another promising altemative for this case is to use the normal B-tree without any additional
information stored at the nodes. Remember that the objective is just to visit the least number of nodes.

The TRIE plus binary search tree approach requires less space to represent the elements than ours.

However, our procedures are simple and only a constant number of rotations are required after each
INSERT and DELETE operations.

For simplicity we defined the procedures for MEMBERSHIP in multiple phases. It is simple to see
that the multiple phases may be performed concurrently while traversing the tree from the root. It is
important to note that procedures based on our techniques can be easily coded, for brevity we did not
include the detailed procedures.
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