Covering ‘a set of points with fixed size
hypersquares and related problems

T.F. Gonzalez

RUU-CS-90-32
October 1990

Utrecht University

SSso -
; “2 Department of Computer Science
7 Y Padualasn 14, P.O. Box 80.089,

Y 3508 TB Utrecht, The Netherlands,
Tol. : ... +31- 30- 531454

Covering a set of points with fixed size
hypersquares and related problems

T.F. Gonzalez

Technical Report RUU-CS-90-32
October 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

I88M:0924~3275

COVERING A SET OF POINTS WITH FIXED SIZE HYPERSQUARES
AND RELATED PROBLEMS

by

Teofilo F. Gonzalez}
Department of Computer Science
Utrecht University
the Netherlands

ABSTRACT: Let P = {P1,P2 ..., pn) be a set of points in d-space. We study the problem of covering
with the minimum number of fixed size orthogonal hypersquares (CS,; for short) all points in P. We
present an improved polynomial time approximation scheme and fast approximation algorithms that
generate provably good solutions to these problems quickly. A variation of the CS, problem is the CR,,
covering by fixed size orthogonal hyperrectangles, where the covering of the points is by hyperrectangles
with dimensions D 1» D2, ..., D, instead of hypersquares of size D . Another variation is the CD, problem

generalized to handle these two problems.

KEYWORDS: 4 -Space, covering by hypersquares, hyperdiscs and hyperrectangles, efficient
approximation algorithms, polynomial time approximation scheme,

On Sabbatical leave from the University of California, Santa Barbara.

September 20, 1990

I. INTRODUCTION.

Let P = {p1, p2, ... pn} be a set of points in the plane (E2). Point pi is located at (x1(p), x2(p)),
and we assume that x;(p;) 2 0, for all i and j. The problem of covering with fixed size orthogonal
squares, CS,, consists of finding a minimum cardinality set of D by D squares covering all points in P,
i.e., each point in P must be inside or on the boundary of one of the squares in the cover. A generaliza-
tion to 4 dimensions (the set of points belongs to d-dimensional space and instead of covering the points
with squares one uses orthogonal hypersquares of dimension D) of the CS problem is called the CS,
problem. We define / as the smallest hyperrectangle orthogonal to the axes that includes all points in P
and assume the hyperrectangle includes the origin, otherwise the points can be translated. We use /4, /5,
.. Ig 10 represent its dimensions. A variation of the CS, problem is the CR,, covering by fixed size
hyperrectangles, where the covering of the points is by orthogonal hyperrectangles with dimension D,
D, ..., D4 instead of hypersquares of size D. Another variation is the CD,4 problem in which we cover
the points with hyperdiscs of diameter D. A related problem is that of packing squares is discussed in
section V. In what follows when we refer to a square (rectangle) or hypersquare (hyperrectangle) we
assume it is orthogonal to the coordinate axes.

These problems have many interesting applications ((FPT], [HM]). The most popular application is
the problem of locating the least number of emergency facilities such that all potential users are located
within a reasonable small distance from one of the facilities. This corresponds to the CD; problem. The
CD,4, CR; and CS, problems for d = 2 are known to be NP-hard ([FPT], [MIH] and [S]). Johnson [J]
discusses several variations of these problems. Heuristics to solve the CS, problem have been presented
in [T] and [TF]. A polynomial time approximation scheme is given in [HM], i.e., for every constant € >0
they give an algorithm that generates solutions such that Fapx | Fopr <1 + € with time complexity
0(n O (l7e))

For any integer / 2 1, the algorithm for the CS; problem given in [HM] has time complexity bound
O(l4 n9*+1) and the approximation bound is Fapz | Fopy < (1 + 1/1)4. It is important to note that the
above bound disagrees with the one in [HM] because there is a typo in that paper. To achieve an approxi-
mation bound of 27 it takes O(n4+!) time. To achieve an approximation bound of 2.25, for d = 2, it takes
O(n®) time. The only approximation bound that can be guaranteed in practical situations is the bound of
24 when d is small, since to guarantee a solution within 24-! the worst case case time complexity bound
cannot even be bounded by O(n%) whend = 2.

For the CD, problem and any integer / 2 1 the algorithm in [HM] has worst case time complexity
o4 (I Vd)y @2n)dltdl “+1) and the approximation bound is Foapx | Fo S (1 + 1/I¥. Ford =2, t0
guarantee solutions within 4 of optimal, the worst case time complexity bound is O(n°) and a bound of
2.25 the time complexity is O(n!%). These large time complexity bounds make the algorithms unusable
even when n is small.

September 20, 1990

In this paper we present fast algorithms for the CSa problem with worst case approximation bound
of 24 and 24-1, We also discuss several implementations of these algorithms. The best of the implemen-
tations that requires only O(n) space, takes O(dn + n log s) time, where s is a lower bound on the
number of hypersquares in an optimal solution. The constant associated with the time and space com-
plexity bounds are very small, thus usable in practical situations. We also present an efficient algorithm
for the /4-slab problem (which we define in section IIN). This algorithm can be easily combined with the
polynomial time approximation scheme given in [MH] to generate a solution to the CS,4 problem with
approximation bound (1 + 1//)4~! in O(/4-1 4 (214-1.1)pd @*I-1#1) time, Our new algorithms can also be
adapted to the CD,; and the CR,; problems as well as the packing problem discussed in [MH]. The
approximation and time complexity bounds for the CD,4 problem are not identical to the ones for the CSy4
problem; however, they are improvements over the ones for previous algorithms. We discuss these exten-

sions in section IV. The approximation algorithms are presented in section II and the approximation
scheme is given in section 1.

II. APPROXIMATION ALGORITHMS FOR THE CSs PROBLEM

In this section we present several new approximation algorithms for the CS; problem. The worst
case approximation bound of these algorithms is 2¢ and 29-!, We also discuss several implementations
for these algorithms. The best of the implementations that requires only O(n) space takes
O(dn + n log s) time, where s is a lower bound on the number of hypersquares in an optimal solution.
The constants associated with the time and space complexity bounds are very small, thus usable in practi-
cal situations. This section is divided into four subsection. In each of these subsections we present a dif-
ferent approximation algorithm. Let us now discuss the first approximation algorithm and the different
implementations for its basic operations. None of these algorithms performs better than the other ones on
all problem instances. Each of the algorithms has a domain in which it outperforms the other algorithms.
This is why we present all the algorithms together with their different implementations.

(A) MAXIMAL SET OF INDEPENDENT POINTS APPROACH.

Before presenting our algorithm based on finding a maximal set of independent points, we define
some useful terms. Points p; and pj (in P) are said to be independent if no hypersquare (with side size
D)) can cover both of them. Otherwise, we say that point p; is dependent on point pj orvice-versa. A set
S C P is said to be a maximal set of independent points if every pair of distinct points in § is independent
and every point in P is dependent on at least one point in S. Whenever we refer to S, a maximal set of
independent points, we use s to denote its cardinality.

September 20, 1990

4

The idea behind our algorithm is to find a maximal independent set of points. Since no two points
in an independent set of points S may be covered by the same square, we know that Fope 21S1. For the
case when d = 2, the set of points dependent on each point in set S can be covered by four squares (see
figure 1). From this set of squares one can easily delete a maximal set of useless squares, i.e., squares that
contain points each of which is inside at least another square. Therefore ford =2, F,;, <41S|. Combin-
ing these two bounds, we know that Foapx | Fopy <4. Ford > 2 the approach is similar, but to cover all the
points dependent on a point in set S one introduces 24 hypersquares. Figure 1 shows the cover for the
case when d =3. Our first approximation algorithm (MS) is given below.

Figure 1: Covering of all points dependent on a pointp.

Algorithm MS(P={py,ps, ...p»}, D)
S « O
fori =1ton do
if p; is independent from every point in S then S « § U {pi}s
endfor
Cover all points dependent on each point in § using the rule given in figure 1;
end of algorithm MS

In what follows we discuss several methods to implement the test condition in the if statement. Let
us consider first a straight forward implementation of the test condition. Testing whether a point is
independent from all other points in set S can be accomplished by comparing it against each point in set
S. Each test can be accomplished by performing O(d) arithmetic operations and comparisons. There-
fore, the overall time complexity for procedure MS is O(d s n).

The above implementation of the algorithm does not take advantage of properties of the set of
points in S. Let us now consider these properties in more detail. We begin with the case when d = 2.
For any point p € S, all points located at a distance D along each axis from it are dependent on point D.
Therefore, the test "if ¢ is independent from each point in S" can be reduced to testing whether or not a
point is inside a set of squares with dimensions 2D by 2D, where the center of each of these squares is a .
point in set S. These squares are called t—squares (target squares). The set of t—squares is not static, as
the algorithm progresses the number of t—squares increases. One important property of the t—squares is

September 20, 1990

that all of them have identical dimensions (2D by 2D). Another important property is the fact that the
center of a t—square is never inside another t—square .

Partition the positive quadrant uniformly into squares of size D by D in such a way that a square
has its bottom-left comer located on the origin. The squares are called g—squares (grid squares). We
refer to each g —square by a tuple (i,j) for i,j 2 0 (from left to right and bottom-up, with the bottom-left
square labeled (0,0)). Since x;(p;) 2 0, the function ij(p;) defined as | x;(p;)/D | determines the
g—square where point p; belongs. We use int(p;) to identify the g —square where p; belongs. Since the
t—squares have dimensions 2D by 2D and no center of a t—square is inside another t—square , there is
at most one center of a t—square inside a g—square . l.e., the maximum number of independent points in
each g —square is at most one. Determining whether a point p is inside a t—square can be tested as fol-
lows. First we find the g—square (i1(p).i2(p)) to which it belongs. Then, we construct the set S” of all
independent points in S that belong to neighboring g—squares, i.., belong to g —square (i1 i) such that
li-i1(p) < 1and liz-io(p)l < 1. Clearly, for d = 2, there are at most 32 = 9, and in general there are at
most 3¢ of such neighbors. Since the dimension along each axis of each of the neighboring g —squares is

D, it then follows that p is independent from each t—square iff p is independent from each ¢—square
whose center is in set S,

Let us now define the abstract data type RD. The ADT consists of the set T of d-dimensional
integer points. The operations to be performed on T are:

INSERT(p) [add a point to the set of points T'],

DELETE(p) [delete a point from the set of points T'],

MEMBER(p) [test whether or not p is in the set T'], and

RANGE-1(p) [list all points in T that differ from p along each axis by at most one unit).

Let us now rewrite our algorithm in terms of the above ADT.

Algorithm NMS (P={p1,p2,....pa}, D)
S « I
fori =1ton do
S’ « RANGE-1(int(p;))
if p; is independent from each point associated with a point in S” then
associate p; with int(p;);
INSERT(int(p;))in S;
endfor
Cover all points dependent on each point in § using the rule given in figure 1;
end of algorithm NMS

September 20, 1990

Let us now consider several implementations for ADT RD. If we represent S by a sequential list,
then RANGE-1 can be easily implemented to take O(d s) time and INSERT takes O(1) time. Therefore,

the overall time complexity bound is O(d s n). We also refer to this implementation as the straight for-
ward.

Gonzalez [G] discusses several implementations for the d-dimensional dictionary ADT (RD
without RANGE-1 queries). Each d -dimensional dictionary operation takes O(d + log m) time, where m
is the number of elements in the set. Any implementation for such ADT can be used for RD by simulat-
ing each RANGE-1 operation with either 39 MEMBER operations or s element comparisons. Using
Gonzalez’ [G] implementation (or an equivalent implementation [G]) for d-dimensional dictionaries
results in an algorithm with time complexity O(min{34,s} (d + log s) n). We call this implementation
the balanced tree implementation of algorithm NMS .

When there is a large amount of memory we may use the double-array representation suggested by
Aho, Hopcroft and Ullman [AHU] (exercise 2.12, page 71), in which a set of ¢ integers in the range [1,w]
can be represented by two arrays; one of size ¢ and the other of size w; and determining whether an ele-
ment is present in the set takes constant time. In this case the time complexity bound can be reduced as
follows. The set S is represented by a double-array with the d -dimensional elements compressed into a
single integer by row-major (or column-major) order. We assume that the maximum. value along each
dimension is known, otherwise it can be easily computed. A simple formula computable in O(d) time
can perform the mapping. The total time reduces to O(min{34, s} d n). It is important to note that the
amount of space required in this implementation may be very large (O([][/;/D])). We call this
implementation the double-array implementation of algorithm NMS.

One may reduce the additional space at the expense of increasing the time. First let us define the
term “connected components”. Then we explain how "pseudo connected components” may be efficiently
constructed. Define the graph G = (N ,E), where each node in N represents a point in set P and for i # j
there is an edge from n; to n; iff the distance from p; to p; is at most D along each of the d axes. The
term connected component is the same as the one in graph theory, i.e., two nodes belong to the same con-
nected component iff there is a path from one node to the other in G. It is important to note that if points
pi and p; belong to different connected components, then they are independent. Therefore, one can solve

the problem on each component independently. The straight forward implementation of the above pro-
cedure has worst case complexity Q(d n2) time.

Since finding the set of connected components is as hard as solving our original problem, we con-
struct a set of "pseudo” connected components which can be computed efficiently and it will help the
algorithm as much as the connected components. We shall define this set by construction. The first algo-
rithm transforms each point to a tuple that identifies the g ~square where it is located. The procedure
then sorts the points along the first component and partitions them whenever consecutive points are not
identical or adjacent integers. It then sorts along the second component each of the resulting sets, further

September 20, 1990

refining the sets. The final partition of the set of points (nodes) are the pseudo connected components.
This algorithm takes O(d n log n) time. We call this algorithm PCCS (pseudo connected components by
sorting). The second algorithm, PCCDA (pseudo connected components by double arrays), finds the con-
nected components without sorting the elements, but by following a procedure similar to PCCS. The par-
tition along the first dimension is obtained by using the double-array structure. In the first pass each point
in P is added to its corresponding bin. In the second pass we visit each point (which has not been
marked) and retrieve all points in adjacent bins. To avoid reporting elements more than once, whenever
we retrieve an element we mark it. It is simple to show that the time complexity of the above procedure
is O(d n) and the amount of space even though could be very large it is smaller than the implementation
called double-array. The amount to space is O(max [/;/D1).

Once the set of points has been partitioned into pseudo connected components, by using a double-
array representation one can solve the original problem in O(d min{39, s} n) time. The amount of space
is bounded by O(n¢). Table I summarizes our algorithms. It is worth while to mention that by prepro-

cessing the data, for example partitioning along the largest gap, one may further reduce the amount of
space.

Table 1. Time and Space Complexity implementations of algorithm NMS.
implementation time complexity space complexity
straight forward Ods n) O(n)
balanced trees O(min(34,s} (d + log s) n) o)
double-array O(d min{34,s) n) O(I1l/D])
PCCS + double-array | O(d n logn +d min{34,5s} n) O(n4)
PCCDA + double-array O(d min{34,5} n) O(n? + max[I;/D7)

Theorem 1: Algorithm NMS generates a solution for the CS; problem with approximation bound 2¢4.
The time complexity for different implementations of the algorithm is given in Table L.
Proof: By the above discussion.

September 20, 1990

(B) SIMPLE AGGREGATION.

This algorithm is the simplest of the four and it generates its solutions quickly. Its worst case
approximation bound is identical to the one of the algorithm in the previous subsection and it has a
smaller worst case time complexity bound. The only drawback is that the solutions it generates are "nor-
mally" inferior, with respect to the objective function criteria, to the one generated by the algorithms in

the previous sections. This was our conclusion after 20000 experiments. However, in many instances its
solutions are superior.

The algorithm, which we refer to as SA, is very simple. First it finds the g—square where each
point belongs. Then it introduces a square for each g-square with at least one point in it. Let
Fapy =t be the total number of squares introduced. We claim that Fop 2 t/2¢ because no square in an

optimal solution may have points from more than 29 of the g—squares. Therefore, the approximation
bound is 2.

Let us now consider different implementations. Finding the g—squares where the points belong
takes O(d n) time. Once we have the g—squares, we eliminate multiple entries by sorting the
§—squares with points. The sorting takes O(dn + n log t) time when using the procedures discussed in
[G]. Therefore the overall time complexity of this implementation, which we call balanced tree imple-
mentation is O(dn + n log t) time. The other implementations for the second algorithm are similar to

- the ones for the first algorithm. For brevity we shall not discuss them in detail. The performance of our
algorithms is summarized in Table II.

Table II. Time and Space Complexity for several implementations of algorithm SA.
implementation time complexity space complexity
balanced tree Odn +nlogt) On)
double-array oW n) O(TI(/D])
PCCDA + double-array o n) O(n4 +max[1;/D7)

Theorem 2: Algorithm SA generates a solution for the CS, prbblem with approximation bound 2¢. The
time complexity for different implementations of the algorithm is given in Table II.
Proof: By the above discussion.

a

For any of the implementations discussed for this algorithm there are problem instances that achieve
the worst case approximation bound. This algorithm outperforms all the algorithms when ¢ is large and

September 20, 1990

there are many points per g —square .

(C) ORDERED MAXIMAL SET OF INDEPENDENT POINTS APPROACH.

Let us consider the third algorithm. The idea behind this algorithm is similar to the first one, except
that we find a maximal independent set in an orderly fashion. Let us consider first the case when d = 2.
We sort the points with respect to their x-coordinate values (in case of ties the order is not important).
We shall traverse the points in that order. Our third approximation algorithm (OMS) is given below.

Algorithm OMS(P,D)
Rearrange the set of points with respect to their first coordinate value;
I/ Le., x1(p1) <xi(p2) <. Sxi(pn) //
S « O,
fori =1ton do

if p; is independent from every point pinSthen S «S U {p;};
endfor

Cover all points dependent on each point in S using the rule given in figure 2;
end of algorithm OMS

As in the case of the analysis of procedure MS, it is simple to show that F,,, 2 ISI. For the case
when d = 2, the set of points dependent on a point p in § that are not located to its left can be covered by
two squares as shown in figure 2. It is important to note that when considering point p all the points pre-
viously visited can be covered by adding two squares for each point in the current maximal independent
set. Therefore, F,p, <2 IS1. Combining these two bounds, we know that Fapx | Fopy <2. Ford > 2, the
approach is similar, but to cover all the points dependent on a point in set P one introduces no more than
24-1 hypersquares. Figure 2 shows the cover for the case when d = 3.

Figure 2: Covering the set of points dependent on p; and located to the right of p;.

September 20, 1990

10

The straight forward implementation of OMS, which is similar to the one for MS has overall time
complexity O(n logn +d s n). The above implementation of the algorithm does not take advantage of
special properties of the sets we are dealing with. Let us now consider these properties in more detail.

As with the case of algorithm MS, there are several implementations for algorithm OMS. The
implementations are similar to the ones in subsection (A). The main difference is that instead of
t—squares we have t—rectangles with dimensions D by 2D (rather than 2D by 2D). Also, when consid-
ering point p we only need to consider those t-rectangles whose distance (along the first coordinate
value) is at most D from it. Therefore, the cardinality of the set of r—rectangles may increase or
decrease as the algorithm advances. Remember that for algorithm MS the cardinality of the set of
t—squares only increased in size, there were no deletions. The "center" of a t—rectangle is the point on
the left boundary that is equidistant to the left corner points of the rectangle. We define the g ~squares as
a strip of width D that is constantly moving from left to right, in such a way that the current point is
located on its right boundary. Only those t—rectangles whose "center” is in this strip need to be con-
sidered. The g—squares are denoted by integer (i), for i 2 0 (the bottommost g-—square is labeled 0).
Since all of the t-rectangles have dimensions D by 2D and no "center" of a t-rectangle is inside
another t—rectangle, there is at most one "center” of a t—rectangle inside a g—square. le., the max-
imum number of independent points in each g—Square is at most one. Determining whether a point p is
inside a t-rectangle can be determined as follows: first we find the 8-square (i) to which p belongs.
Then, we construct the set S” of all independent points that belong to neighboring g —squares , i.¢., belong
to g—square (i) such that li-il < 1. For d = 2, there are 3, and in general there are 34-1 of such neigh-
bors. Since the x-length and the y-length of each of the neighboring g—squares is D , it then follows that
p is independent from each t—rectangle iff it is independent from each ¢—rectangle whose "center" is in
set S’

Let us now explain how to implement the above test efficiently. We define the set of elements S,
such that g —square (i) has a "center” of a t~rectangle inside it iff i’ € S. Associated with each element
k € S there a point, denoted by #; that represents the "center” of the t-rectangle inside g—square (k).
Given a point p; € P, by simple arithmetic operations we determine (i), the g —square that contains Di.-
Then we search in the set S for the elements that differ from i’ by at most 1. Once we have determined
which g-squares in the neighborhood have a "center” of a t-rectangle inside them, we test whether or
not p; is inside any of those t-rectangles. If the answer is yes, we just proceed to the next point, other-
wise, p; is independent from all points in S, so we have found a new t—rectangle. Remember that its
"center" belongs to g —square (i"). Therefore, we add (i) to S. We also associate pi with the entry i and
proceed to point p;,;. At this point we delete the t—rectangles that do not belong to the new grid. Dele-
tion in done in the FIFO fashion. The worst case time complexity for the new method is similar to the
one in (A), though it is not hard to see that in a large number of problem instances the third algorithm
would be faster.

September 20, 1990

11

The other implementations for the third algorithm are similar to the ones for the first algorithm. For

brevity we shall not discuss them in detail. The performance of our algorithms is summarized in Table
1L

Table IIZ. Time and Space Complexity for several implementations of algorithm OMS.
implementation time complexity space complexity
straight forward O(n logn +d s n) O(n)

balanced tree O(n log n + min{34-1, 5} (d+ log s) n) O(n)
double-array O(n log n +d min{34-1,5} n) O(T1l/D])

PCCS + double-array O n log n +d min{34),5} n) O(n4)

PCCDA + double-array O(n log n +d min{34-1,5} n) O(n? +max[1;/D7)

Theorem 3: Algorithm OMS generates a solution for the CS, problem with approximation bound 24-1,
The time complexity for different implementations of the algorithm is given in Table III.
Proof: By the above discussion.

(D) PARTITION INTO INDEPENDENT SUBPROBLEMS APPROACH.

The fourth algorithm is slightly different than the previous ones. Its approximation bound is identi-
cal to the one for the third algorithm, but it can be implemented to run faster. Before we explain it, let us
consider a restricted version of it which we call the slab problem, i.e., all points are located inside a rec-
tangle (whose sides are orthogonal to the axes) with height D. An optimal solution to the slab problem
can be obtained by projecting all points to the bottom side of the reétangle and applying an optimal algo-
rithm for the one dimensional case. An optimal algorithm for the one-dimensional problem considers all
points in increasing order. The leftmost point is covered by the leftmost end point of a line segment of
length D. All the points that fall inside this line segment are covered by the line. Then the leftmost
uncovered point is covered in a similar fashion. This procedure, referred to as the cover the leftmost point
Sirst (CLPF), has worst case time complexity of O(n log n) and generates a minimum cardinality cover.

The CLPF procedure is not the procedure with the best worst case time complexity bound to find an-
optimal solution to the slab problem. Let us now present a better algorithm (fastCLPF) whose worst case

September 20, 1990

12

time complexity bound is only O(n log s), where s is the number of elements in an optimal cover. The
idea behind the procedure is to sort the elements with respect to their {y(p) values. The elements are
placed in sets Sy, S», ..., Sk, where all elements in set S; have identical i {(p) values and the i1(p) value of
the elements in set S; is smaller than those in Si+1. Clearly, no element in S; can be with an element in
Si42 in the same square in a feasible solution. The idea behind the algorithm is to apply the CLPF pro-
cedure in such a way that it uses the above properties of the sets Sy, S, ..., Sk.

Algorithm fastCLPF(P, D)
Sort the elements with respect to ii(p)into sets Sy, Sy, ... Si;
J<2 ReS,USy;
while R # @ do
q «min{x,(p)Ip e R};
All points at a distance at most D (with respect to x;) from q inR and ¢ are removed from R ; and
we define Q to contain only those elements;
output(Q)
while j < k and R contains elements from at most one of the sets in {S1,82,...,8¢} do
jej+1; Re<RUSj;
endwhile
endwhile
end of algorithm fastCLPF;

We claim that the cover generated by the above procedure is identical to the one generated by pro-
cedure CLPF. The reason is that when R has elements from two adjacent sets, S; and S;.,1, ¢ must be in
set S; and no element in S;,, or higher indexed set can be dependent on point g. We also claim that the
time complexity is O(n log s). Sorting takes O(n log s) time since at least there are k/2 independent
pointsinS; US, U ..US;. The min operation is performed on each element of S; at most twice and the
test in the while statement can be computed in constant time by associating with each element in R the
set S; where it belongs. Therefore, the overall time complexity is O(n log s).

Now let us use the above procedure to obtain a fast approximation algorithm for the CS, and then
for the CS, problem. When d = 2, the set of points is partitioned into two sets, R; and R,. For each of
these two problems we find an optimal cover. For simplicity, let us explain our algorithm in terms of the
&—squares introduced for the first algorithm. All the points that belong to the g—squares (i,j) such that
J is odd belong to problem R and the ones such that j is even belong to subproblem R,. Let us consider
problem R . It is simple to see that all the points in R belong to slabs (with height D) and which are D
units apart. Therefore, an optimal solution to R consists of finding an optimal solution to each of the
slabs which we know can be done in O(n log 5). Let us now formally define procedure PARTION-

September 20, 1990

13

FIRST based on the above strategy.

Algorithm PARTITION_FIRST(P={p{,p2,...p»},D)

partition the elements with respect to (i2(p), ..., iz(p)) into sets Py, Py, ..., Py;
apply the fastCLPF procedure to each set;
end of algorithm PARTITION_FIRST

The partition can be done by sorting the elements. Sorting can be done by the algorithm in [G] (or
an equivalent algorithm) in O(d n + n log s) time. The second part applies procedure fastCLPF which
takes overall time O(n log s). Therefore, the overall time complexity of our procedure is
O(dn+n log s). We call this implementation the balanced tree implementation. Let us now consider the
double array implementation of procedure PARTITION_FIRST. By using the double-array structure one
can find the partition of the elements in O(d n) time. Procedure first-CLPF can also be implemented in
O(d n) time by using double arrays. The idea is to first use the double-arrays to partition the elements
into classes that have the same i;(p) value. Then "adjacent” classes are grouped together. The problem
defined over each group of classes can be solved independently by applying the fast-CLPF procedure.
The outcome would be the same as in the previous implementation, the only difference is the order in
which the output is generated by the algorithm. By using pseudo connected components one can also
decrease the space complexity. Table IV lists the time and space complexity for several implementations
of our procedure.

Table IV. Time and Space Complexity for several implementations of algorithm PARTITION_FIRST.
implementation time complexity .Space complexity

balanced tree Odn +nlogs) O(n)

d
double-array O(dn) o([1/D] +11 [1;/D])

1=

PCCS + double-array O n logn) O(n?)

PCCDA + double-array O n) O(n? + max[1;/D7)

Theorem 4: Algorithm PARTITION-FIRST generates a solution for the CS, problem with approxima-

tion bound 24-1, The time complexity for different implementations of the algorithm is given in Table
IV.
Proof: By the above discussion. O

September 20, 1990

14

III. POLYNOMIAL TIME APPROXIMATION SCHEME.

Let us now consider the /5-slab problem, i.e., all points lie in E2 inside a rectangle with height ID,
for some integer ! > 1. First we show that the [2-slab problem can be solved in O(4/n*) time via
dynamic programming. Then we generalize the method to solve the /;-slab problem (i.e., all points lie in
E“ inside a hyperrectangle in which all dimensions, except the first, have length /D). Finally, we present
an improved polynomial time approximation scheme by showing how to combine the algorithm for the
l4-slab problem with the polynomial time approximation scheme in [HM].

The idea behind the dynamic programming procedure is to find all covers that satisfy certain proper-
ties and cover at least points p 1, p», ..., pi- The fact that the cover satisfies some special properties (which
we specify later on) is important as otherwise there is an infinite number of such covers. The properties
are very important because if we only specify simple properties then the number of distinct covers could

be exponential on n. As we shall see, a careful definition reduces the number of covers to a number
bounded by a polynomial on n.

Let us assume that the set of points are sorted with respect to their first coordinate value, i.e., x1(p 1)
sx1(p2)S... <x1(p,). A squarein ¢; in a cover C is said to be an a-square (anchored square) if there
is a point r in P located on the left side of ¢i and a point 5 in P (not necessarily different than r) located
on the top side of ¢; that are not contained (are not located inside or on the boundary) in any other square
in the cover C. For an a—square c; in cover C, the point p; with least index located on the left (top)
boundary of ¢; which is not contained in any other square in C is called the left (top) anchor of ¢; in C.
We shall also refer to the two points as simply anchors. A cover is said to be an a—cover (anchor cover)
if all the squares in it are a—squares. It is simple to show that any cover can be transformed to an
a—cover without increasing the number of squares in it. Let Cope be the set of optimal a—covers for
some problem instance. Assume that the number of squares in each of these covers is t. We define b; as
the x, coordinate value of the left anchor of square c; in the optimal a—cover C. Assume without loss of
generality that each optimal a —cover C has been rearranged so that b1<by<..<b.

DefineC,as {C IC € Com and by for C is maximum amongst all covers in Cop } and
Cjas {C 1C e Cj4 and b for C is maximum amongst all covers in Cjul.
A cover C in C is said to be a maximum index cover. We say that an a—cover is a s—cover if every
vertical line does not partition into two nonempty parts more than 2!-1 squares in the cover. To show
that the time complexity of our algorithm is bounded by a polynomial on n, we prove the following
lemma which states that every problem instance has an s —cover among the set of optimal covers.

Lemma 1: Every /2-slab problem has an s —cover among the set of optimal covers.

Proof: As mentioned above, every problem instance has at least one a—cover among the set of optimal
covers. We now show that at least one of these a—covers in the set of optimal covers is an s —cover. The
proof is by contradiction. Suppose that all optimal a—covers are not s—covers. Let C’ be a maximum

September 20, 1990

15

index cover among all optimal a—covers. By assumption there is a vertical line that partitions into two
nonempty parts at least 2/ squares in C’. Transform C’ by the rule given in figure 3 and then move the
newly introduced squares down and to the right until all of them are anchored or some can be deleted
because all points have been covered. Let C be the new cover. If C has fewer squares than C’, then it
contradicts that C’ is an optimal cover. So assume that there are the same number of squares in C and
C’. So C is an a—cover in the set of optimal covers. If C is not an s—cover , then we contradict the fact
that C’ is an a—cover of maximum index because the maximum index coverin {C, C’} is C. So it must
be that C is an s—cover in the set of optimal covers. This contradicts the assumption that there is no
s—cover in the set of optimal covers and thus completes the proof of the lemma. [l

: >

Figure 3: Transformation rule when!l = 3.

Before presenting our algorithm we need to make a few more definitions. Deleting a subset of
_squares from an a—cover C results in a partial a—cover which we call C’. If points
pP1.pP2 ... pi are covered by a partial a—cover C’, and all the left anchors of the squares in C’ are points
from the set {p1, p2, ... pi }, then C’ is called an i-partial a—cover. Two i-partial a—covers are said to
be equivalent if the left and top anchors of every square partitioned into two nonempty parts by any verti-
cal line "immediately to the right" (any line between p; and p;, where j is the smallest index of a point
that appears to the right of p;) of p; are identical in the two i-partial a—covers. The i-partial a—cover C
dominates i-partial a—cover C’ iff C and C’ are equivalent and C has fewer squares that C’. An i-
partial a—cover is said to be an optimal i-partial a—cover if there is an s—cover in the set of optimal
covers with an i-partial a—cover equivalent to it. Procedure DP processes the points in the order p1, p2,
...» Pn. During the i th iteration we construct the set of all irreducible i-partial a—covers, i.e., set of all i-
partial a—covers such that no one of them dominates another and no two of them with the same number
of squares are equivalent. To show correciness we prove in lemma 2 that all optimal i-partial a—covers
are in the set of irreducible i-partial a—covers .

September 20, 1990

16

Algorithm DP(p,,p2, ..., Pn)
sort the elements so that x;(p1) Sx1(P2) < ... < x1(pp);
FS « {©@}; /* a set with one element whose value is an empty list of squares */
fori =1ton do
newFS « O;
for each partial a—cover C in FS do
case
pi is coveredin C: Add {C} to newFsS;
‘there are less than 2/ -1 squares partitioned by a vertical line "immediately to the right" of p;:
Add { C’ |1 C’ is C plus an a—square with p; as its left anchor } to newFS;
:else: /* newFS remains unchanged */;
endcase
endfor;
Let FS be a maximal cardinality subset of irreducible a —covers in newFS ;
endfor;

Output any cover with the least number of squares in FS
end of algorithm DP

Lemma 2: For every /,-slab problem, algorithm DP outputs an optimal cover.
Proof: It is simple to show that the proof of the lemma reduces to showing that at the end of each itera-
tion FS contains the set of optimal i-partial a—covers. This can be proved by induction.

O

To establish our time complexity bound we need to specify some implementation details. We find a
maximal subset of irreducible a—covers in newFS as follows. Each a—cover in newFsS is characterized
by the anchors of the squares that extend to the right of p; and the number of squares in the cover. We
sort via radix sort the elements in newFS using as keys the indices of the points which are anchors (in
sorted order) of the squares that extend to the right of p;. Associated with each key there is the number of
squares in the cover. Deletion of dominated i-partial a—covers and equivalent i-partial a—covers with
the same number of elements can be easily done by traversing the list once. Thus, if newFS has m ele-
ments, the overall time taken to execute the step is ¢ (m+n) time, where ¢ is the maximum number of
anchor points in an i-partial a—cover. The above bound can be achieved through radix sort since the
keys are ¢ dimensional points whose value along each axis is an integer in the range [1,n].

September 20, 1990

17

Lemma 3: For every /,-slab problem, algorithm DP takes O(4/ n¥) time.

Proof: By lemma 1 and the fact that there are at most two anchors per square, IFS| < n4-2. Since for
each element in FS at most n elements are added to newFS, InewFS| < n4-1, Using the procedure dis-
cussed above the maximal set of irreducible covers in newFS can be identified in O((4/-2)n%-1) time.
The above operation is repeated n times, therefore the overall time complexity is O(4l n¥).

a

For the /;-slab problem, the number of squares partitioned by a hyperplane passing through p; is at
most 2/4-1-1 instead of 2/-1, and the number of anchors per square is d instead of two. Therefore, the
time complexity for the /;-slab problem is O(d (219-1-1)pd@*-11+1),

This algorithm can be easily incorporated with the polynomial time approximation scheme given in
(HM]. The idea is to apply the algorithm to /¢ problem instances of the /;-slab problem. The /4 problem
instances can be partitioned into /4~! groups of problems such that in each group the number of points in
all the problems is #. This results in an overall time complexity bound O([4-! d(214-1-1)pd @7 -1)+1),
The approximation bound is (1+1/1)d-1.

Theorem $: Combining algorithm DP with the polynomial time approximation scheme in [HM] results
in a procedure that generates a solution to the CS; problem with approximation bound (1+1//)4-! and
time complexity O(14-1 d (214-1-1)pd@4--11+1

Proof: By the above discussion.

IV. DISCUSSION.

Let us now discuss some postprocessing procedures for the approximation algorithms in subsections
(A) and (C) in section II. We only discuss the case when d = 2, since the other cases are similar. The
procedure in subsection A (C) introduces four (two) squares for each independent point. An improved
solution may be obtained by noting that one can cover all points without having to introduce 4s squares.
Heuristics to generate least cardinality covers can be easily developed.

All our techniques can also be adapted to the CR; and the CD, problem. For the CR; problem the
approximation and time complexity bounds are identical. For the CD, problem the algorithms in section
II have identical time complexity bounds; however, the approximation bounds are [2Vd] 4, [2Vd] 4,
[2Vd]4-{Vd], and 29-Vd)] 9, respectively. For the polynomial time approximation scheme, the
approximation bound is 2(1 + 1//)! and the time complexity bound is

September 20, 1990

18

O(14-1d[2Vd| [1Nd] 4-1 pdl2%d1 441y Tpe same techniques can be adapted to the packing problem stu-
died in [MH]. The approximation and time complexity bounds are smaller than for the CS, problem. For
brevity we do not discuss this further. As pointed out in [HM] it is important to develop fast approxima-
tion algorithms for the /;-slab problem. These algorithms would imply a much better time complexity
bound for the CS; problem at the expense of a slightly larger approximation bound.

From our algorithms one can define a heuristic which we believe has a reasonable behavior with
respect to the time complexity and the approximation. The idea is to assign the points to the g —squares
first. Then the g—squares with points are partitioned into two groups. Those with a single point and
those with at least one point. The heuristic then applies our polynomial time approximation scheme to
the problem defined by all the points belonging to single point g—squares. An optimal solution will be

generated quickly for this subproblem. The remaining problem is solved by any of the approximation
algorithms in section II.

V. REFERENCES.

[AHU] Aho, A, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1975.

[FPT] Flower, R. J., M. S. Paterson, and S. L. Tanimoto, "Optimal Packing and Covering in the Plane
are NP-complete," Information Processing Letters 12, 1981, 133 - 137.

[G] Gonzalez, T., "The On-Line d -Dimensional Dictionary Problem", Technical Report, University
of Utrecht, July, 1990.

[HM] Hochbaum D. S. and W. Maass, "Approximation Schemes for Covering and Packing Problems
in Image Processing and VLSL," Journal of the ACM, Vol. 32, No. 1, January 1985, 130 - 136.

1) Johnson, D., "The NP-Completeness Column: An Ongoing Guide," Journal of Algorithms 3,
182 - 195, 1982.

[MIH] Masuyama, S., T. Ibaraki, and T. Hasegawa, "The Computational Complexity of the m-center
problems on the Plane," Transactions IECE of Japan E64, 1981, 57-64.

(S] Supowit, K. J., "Topics in Computational Geometry,” Report No. UIUCDCS-R-81-1062,
Department of Computer Science, University of Illinois, Urbana, 111., 1981.

[T] Tanimoto, S. L, "Covering and Indexing an Image Subset,” Proceedings of the 1979 IEEE
Computer Society Conference on Pattern Recognition and Image Processing, 239 - 245, 1979.

[TF] Tanimoto, S. L. and R. J. Fowler, "Covering Image Subsets with Patches,” Proceedings of the
5th International Conference on Pattern Recognition, 835 - 839, 1980.

September 20, 1990

