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1

In this paper Linear Type Theory (LTT) [2] will be considered as being a decompo-
sition of the usual type theory belonging to the typed lambda calculus. The main
feature of this decomposition is the decomposition of the exponential type construc-
tor = into two new type constructors —o and !. The type A = B may then be
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Abstract

Girard categories (GC’s) were defined in [14] as categorical models for
linear logic. It was shown that the Kleisli category of a GC is Cartesian
closed.
We show that the category of sets and relations Rel nearly is a GC, but
not quite. This situation is studied in more abstract terms: using the semi-
category theoretical notions of [3], weak GC’s are defined. It is shown that
the semi-Kleisli category of a weak GC is weak Cartesian closed.
The Karoubi envelope construction can be used to transform various semi-
notions to normal notions [3]. We show that the Karoubi envelope of a weak
GCis a GC. _
By applying these constructions to Rel we find that the Karoubi envelope of
Rel is a simple example of a cancellative GC, and that the Karoubi envelope of
the Kleisli category of Rel is equivalent to the category of continuous lattices
and continuous functions.
Another example of a weak GC is the category of weak coherence spaces and
linear mappings. The structure of this category is similar to, but more natural
than the structure on the well-known GC of coherence spaces and linear stable

mappings [2]. In particular the units of tensor product and tensor sum are
not collapsed into a single object.

One idea behind this paper is that semi-notions are perhaps more important
in domain theory than is usually realised.

Introduction

1



written as !{(A)—oB. Following the propositions-as-types rule [7], there is a corre-
sponding decomposition of logic into linear logic.

Of course this is only a very rough explanation of LTT. For example, there is also
a linear type operator — which behaves as a sort of negation in the sense that
~mA = A. Clearly this operator pertains more to the logical side.

As is well-known, typed lambda calculi correspond to Cartesian closed categories
(CCC’s). In [14] categorical models of LTT, called Girard categories (GC’s), are
defined. Corresponding to the decomposition of type theory into LTT, each GC C
is a decomposition of a CCC, which may be regained by taking the Kleisli category
of C. Roughly, the Kleisli category K I(C) of C has the same objects, but an arrow
A — Bin KI|(C) is an arrow !4 — B in C. For example, the category Cohs of
coherence spaces, which alternatively can be viewed as graphs or as a special kind of
domains, and stable continuous functions is a CCC [2]. Girard found that Cohs may
be constructed out of the category Cohls via the Kleisli category construction. The
category Cohls has the same objects as Cohs, but linear stable continuous functions
as arrows. It is a GC and was one of the first models of LTT.

In domain theory it is more common to take continuous functions as arrows, instead

Domains
[ Karoubi
Cohs Coh
Kleisli ’ Kleisli
Cohis ?

of stable continuous functions. However, the category Coh of coherence spaces and
continuous functions is not a CCC. Yet it seems to be an important category. For
example, by results of [5] it follows that, in a certain sense, Coh underlies the cate-
gory of coherent Scott domains and continuous functions. Technically, the Karoubi
envelope of Coh is equivalent to this category of Scott domains. Various datatypes
and constructions such as universal domains may be defined in the “easy” category
Coh, and may then be “translated” to the more complicated category of coherent
Scott domains.

Although Coh is not a CCC, it turns out that it has a somewhat weaker property:
it is a weak Cartesian closed category (wCCO) [3, 11]. Like there is a correspon-
dence between CCC’s and typed lambda calculi, there is a correspondence between
wCCC’s and non-eztensional, typed lambda calculi (i.e. lambda calculi without n-
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rule).

In this paper we shall try to decompose the type theory of non-extensional lambda
calculi. Working entirely on the semantical level, we weaken the definition of GC
to that of weak GC (wGC). The main difference between GC’s and wGC’s is that
the linear type constructor ! must be a functor on a GC, whereas it need only be
a semi-functor on a wGC. Semi-functors are defined like functors, except that they
need not preserve identities. By means of the semi-Kleisli category construction we
may construct wCCC’s out of wGC’s. In particular, the decomposition of Coh is a
simple and natural category.

The remainder of this paper is organised as follows. In section 2 the very simple
WGC Rel of sets and relations is described to motivate the abstract definitions in the
next section. In section 3 wGC'’s are defined, and in section 4 some constructions on
wGC’s are described, viz. the Karoubi envelope and the semi-Kleisli category. It is
shown that the Karoubi envelope of a wGC is a GC, and that the semi-Kleisli cate-
gory of a wGC is weak Cartesian closed. In section 5 these constructions are applied
to Rel. The Karoubi envelope of Rel is a particular simple example of a cancellative
GC, and the semi-Kleisli category of Rel underlies the category of continuous lat-
tices. In section 6 we decompose the weak Cartesian closed structure of Coh, i.e. we
find a category which relates to Coh like Cohls relates to Cohs. It turns out that we
not only have to take different morphisms, but also to relax the definition of coher-
ence spaces. The category WCohl of weak coherence spaces and linear mappings is
defined and proved to be a wGC. The relevant structure on WCohl is similar to, but
simpler and more natural than the structure on Cohls. In particular WCohl does not
collapse the units of "tensor product” and ”tensor sum” into a single object, just as
in the more complex model of [15], but unlike Cohls. The semi-Kleisli category of
WCohl is equivalent to Coh. In section 7 qualitative domains are considered. They
nearly form a wGC, but not quite: the negation in this category is intuitionistic
rather than classical, i.e. it is not always the case that ——A 2 4.

Finally, we have the following table:

(semi) GC | (semi) Kleisli category | Karoubi envelope of Kleisli category
Cohls Cohs .

Rel continuous lattices

WCohl Coh continuous coherent dcpo’s

WQdI Qd continuous Scott domains

If we take the Closure Karoubi envelope [5] instead of the Karoubi envelope, then
we get various categories of algebraic domains. It is the theme of this paper that

perhaps semi-notions rather than normal notions underlie the structures worked
with in domain theory.



2 The Category of Relations

In this section the category Rel of sets and relations is described, and some properties
of it are stated. In the next section we shall see that by these properties Rel is an
example of a wGC.

2.1 Rel

Definition 1 Rel is the category with as objects sets A and as arrows R : A — B
relations R C A x B.

The identity idg : A — A in Rel is the identity relation: a idjqa’ < a = a'. The
composition SoR: A — C of relations R: A - Band S: B — C is as usual:
aS o Rc < b(aRb&bSc).

The empty set is both an initial and a terminal object in Rel (the unique arrows
from and to it are the empty relations). The (categorical) product in Rel of two sets
is not the Cartesian product, but the disjoint union of the sets. The coproduct in
Rel of two sets also is the disjoint union, so product and coproduct have the same
underlying object.

We can reintroduce the Cartesian product in Rel as the functor ®, called tensor
product.

Definition 2 The tensor product ® : Rel x Rel — Rel is defined on objects as
A®B={<a,b>|a€ Abe B}, and on relations R: A — A’ and S - B — B as
<a,b>RQ®S <d,l >& aRa'&bSV.

The tensor product is commutative and associative (up to isomorphism), and has
as unit the one-point set I = {*}.

The category Rel is not Cartesian closed, but it is monoidal closed with respect to the
tensor product ®. A monoidal closed category is defined just as a Cartesian closed
category, except that in the definition the categorical product is replaced by a tensor
product. Indeed there is an "exponent functor” —o : Rel®” x Rel — Rel provided with
natural isomorphisms between the Hom-sets Rel(A® B,C) and Rel(A4, B—C).

Definition 3 The functor —o : Rel® x Rel — Rel is defined on objects as A—oB =
{<ab>]a€e Abce B}, and on relations R : A' - Aand S : B — B as
<a,b> R-oS < a,bt >& a'Rab&ebSV .

Note that on objects the functor —o is the same as the tensor product, but on arrows
it differs, being contravariant in its first argument. The isomorphism between the
Hom-sets is easy to describe: given R: A® B — C wehave B’ : A — B—oC defined
by aR' < b,c >4< a,b > Rc. The other way round one uses "evaluation arrows”
eB,c : (B—C)® B — C defined by << bi,c1 >,by > ecy & by = bykicy = c,.

As a special case, one obtains the (contravariant) functor (—)—ol : Rel°® — Rel by



fixing I = {*} as second argument. On objects, one has A—oI 2 A, but on arrows
R—oid; = R™1, the inverse relation. Hence this functor is - up to isomorphism - its
own inverse.

2.2 Powersets

A semi-functor is defined just as a functor, except that it need not preserve identities.

Definition 4 The semi-functor ! : Rel — Rel is defined on objects as!A = {X|X C
A and X finite }, and on relations R: A — B as X!RY & Vb€ Y3a € X(aRb).

Note that ! applied to the identity relation gives us subset inclusion: X!(id4)X’
X' C X. This is not equal to the identity on !4: X idi X' & X = X' 1.

There is some more structure related to the semi-functor !. For example, the mem-
bership relation is a natural transformation.

Definition 5 The natural transformationn :! — I dRe| has componentsny :!1A — A
defined by Xnqa < a € X.

Set-union can be considered as a natural transformation.

Definition 6 The natural transformation u :! —!! has components py 'A —!1A
defined by Xppa & Ja C X.

It is easy to see that !(n4)o pa and 4 0 p4 are equal to set inclusion. The equality
A O g =!(ﬂA) O lA also holds.

The semi-functor ! relates the product-structure and the tensor product-structure in
a certain way. First ! applied to the unit of x (the terminal object) is isomorphic to
the unit of ®, i.e. /(@) = I. Furthermore the elements of !(A x B) can be considered
as disjoint unions X WY of subsets X C A and Y C B. Hence there is an obvious

natural isomorphism between !(A x B) and !A®!B, this last set consisting of pairs
<X,Y >.

Definition 7 The natural isomorphism ~:!(—)®!(—) =!(~ x —) has components
~a4,8:!AQ!B =!(A x B) defined by < XY >~ p X'WY' & X' = X&Y'=Y.

Finally arrows )4 :!4 — 1 and §), :!A —!A®!A can be defined as ¢/, = i0!(t,) (where
1:0 = Tand t4: A — 0) and §y =~3Y ol(< ida,ids >), i.e. Xey* & true and
X(S:q < X]_,Xz > Xl UX2 = X

!Defining X!RY ¢ (Vb € Y3a € X(aRb)&V¥a € X3b € Y (aRb)) would have turned ! into a
functor. However, it would have been impossible to give a further (weak) comonad structure.



3 Weak GC’s

Linear type theory (LTT) has eight type constructors and four constant types. The
eight linear constructors are direct product X, tensor product ®, direct sum +,
tensor sum @, linear implication —o, linear negation —, of-course !, and why-not ?,
the four constants are 1,7,0 and L. Note that we use the (by category theoretical
notions inspired) notation of [14] for the operators.

Categorical models of LTT (called Girard categories (GC’s)) have been defined in
[14]. The category of relations Rel, as described in the previous section, fails only to
be a GC because ! is a semi-functor rather than a normalfunctor. This situation calls
for a generalisation of GC’s to weak GC’s (wGC’s). We consider such a generalisation
to be successful only if the Karoubi envelope of a wGC is a GC, and the suitably
adapted Kleisli category of a wGC is weak Cartesian closed, as we will see in the
next section.

To begin with we define linear categories ([12, 14]), which have enough structure to
interpret all linear operators except ! and 7.

Definition 8 A linear category < C, x,1,®,I,~0, L > is a category C such that:

1. The functor x : CxC — C is a chosen product in C, and 1 is a terminal object
in C.

2. < C,®,I > is a symmetric monoidal category, i.e. ® is a functor Cx C — C,
I is an object in C, and there are natural isomorphisms ppp : AQ B =
BRA, Ma:AQI=ZAand ayc:(A®B)QC = A® (B ® C) satisfying
certain commutative diagrams, the MacLane-Kelly coherence conditions (for
more details see [10]).

3. < C,®,I,—0 > is a symmetric monoidal closed category, i.e. —o is a functor
C? x C— C and (-) ® B is a left adjoint of B—o(—) (i.e. there is a natural
isomorphism C(A® B,C) = C(A, B—(C)).

4. L is a dualising object in C, i.e. for each object A the arrow T4 given by the
next derivation is an isomorphism:
(A—ol) %4 (A—ol)
(Aol)®A— L
AR (A—oLl)— L
AT (A—ol)—ol

In each symmetric monoidal closed category there are ”evaluation arrows” epc :
(B—C) ® B — C given by applying the natural isomorphism C(B—oC, B—C)
C((B—oC) ® B, C) to the identity on B—oC.

How are the linear operators and constants interpreted in a linear category? The
operators and constants x,®,—o,1, L and I are easy. Furthermore in a linear cat-
egory we can define a functor = : C? — C by taking = = (—)—oL. It can be shown
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([14]) that a linear category has finite coproducts, because 0 = —1 is an initial ob-
ject, and A 4+ B = ~(—A x -B) is a coproduct of A, B. Finally, we write A ® B for
ﬂ(—l A R - B )

Linear categories are not rare. See [12] for examples. By the results of the previous
section it follows that Rel is a linear category. Note that in Rel the following holds:
X=+8=0,1=0,and [ = 1.

Some extra structure is needed on a linear category for the interpretation of the
operators of-course ! and why-not ?. Here we diverge from the usual definition of a
GC to define a wGC, where ! need only be a semi-functor.

Definition 9 2 4 wGC < C,x,1,8,1,-0, L,!,n, 4,3, ~> is a linear category <
C, x,1,®,1,—0, 1. > such that

1. <, u > is a semi-comonad (also see appendiz), i.e. ! : C — C is a semi-
functor, and 5 :! = Idc and p:! —!! are natural transformations, such that:

(¢) maopa=Yna)ops=o04
(0) maopa="(pa)o pa
(¢c) paooa=pa
where the natural transformation o ;! —! has components o4 =!(id4) 1A —!A.
2. 1:11 = [ is an isomorphism, such that:
(a) tooy =1
3. ~a,B:!A®!B —!(A x B) is an isomorphism natural in A, B, such that:
(a) {(<!(7a,8),(T}4,B) >) 0 paxB =~1418 o(1ta ® up)o ~3'g
where 745 : AX B — A and T4, : AX B — B are projections, and < f, g >:

C — AXB is the unique arrow such that mo < fr9>=fandn'o < fg>=gq.

Note that 2 implies oy = id);.

If ! is a functor, then o4 = idi4 and the definitions of wGC’s and GC’s coincide. In
this case 1c) becomes trivial, and 1a,b) exactly say that < L, i > is a comonad (see
[10)).

Clause 3a) is not in the original definition of a GC ([14]), but it seems to be a nec-
essary requirement if we want to have the (semi-)Kleisli category (weak) Cartesian
closed (see next section).

The interpretation of the linear operator ! in a (weak) GC is obvious. The linear
operator ? is interpreted as —!-.

It is left to the reader to check that the category Rel forms a wGC.

2A slightly different definition of wGC might be given by replacing (some of) the required
isomorphisms by semi-isomorphisms. For example, the isomorphism ~ 4,8:!A®!B =!(A x B) might
be replaced by two arrows ~%4 p!A®!B —!(A x B) and ~% p/(A X B) —!AQ®!B satisfying ~L g
o ~§,B= gaxB and "‘.24,3 ° "‘}1,B= cAQ0g.



4 Constructions on wGC’s

Two constructions on wGC’s are described. The first is the well-known Karoubi
envelope of a category C. It will be shown that the Karoubi envelope of a wGC is
a GC. The second construction is the semi-Kleisli category of a category C, a slight
generalisation of the Kleisli category construction. In analogy with the fact that the
Kleisli category of a GC is Cartesian closed, we find that the semi-Kleisli category
of a wGC is weak Cartesian closed. This is important because taking the Karoubi
envelope of a wCCC gives us a Cartesian closed category. In the next section these
constructions will be applied to the category Rel.

4.1 The Karoubi envelope

The Karoubi envelope construction can be applied to categories, (semi-)functors and
natural transformations.

Definition 10 If C is a category, then the Karoubi envelope K(C) of C is the
category with as objects idempotent arrows f : A — A of C (i.e. fof = f),
and as arrows ¢ : (f : A— A) - (g: B — B) arrows ¢ : A — B of C such that
gogof =g, or equivalently go ¢ = ¢ and po f = ¢. The identity tdy in K(C) on
an object f of K(C) is f itself, and the composition in K(C) is as in C.

Definition 11 If F : C — D is a semi-functor, then K(F) : K(C) — K(D) is
defined on objects as K(F)(f) = F(f) and on arrows as K(F)(¢) = F(¢).

Definition 12 If o : F — G is a natural transformation between (semi-)functors,
then K(a) : K(F) — K(G) is a naturdl transformation with components K(a) :
K(F)(f) = K(G)(f) defined by K ()5 = apom(s) © F(f).

In general the Karoubi envelope construction transforms semi-notions to the corre-
sponding strict notions.

Theorem 13 If F : C — D is a semi-functor, then K(F) : K(C) — K(D) is a

functor.

Proof: K(F) preserves identities: K(F)(ids) = F(f) = idp(s. n

Theorem 14 If < C,x,1,8,I,—, 1,9, u,i,~> is a wGC, then
< I{(C),K(x),idl,I{(@),id},K(—o),idJ_,K(!),K(T’),K([l),i,I{(N) > isa GC.

Proof: Straightforward. [ |



4.2 The semi-Kleisli category

In analogy with the construction of the Kleisli category of a category with a comonad,
the semi-Kleisli category of a category with a semi-comonad is defined.

Definition 15 If C is a category with a semi-comonad <!: C — C,n,u >, then the
semi-Kleisli category K1(C) of C is the category with as objects the objects of C, and
as arrows f : A — B arrows f :!A — B such that f o g4 = f. The identity id4 on
an object A in KI(C) is the arrowns :!A — A, and the composition g * f of arrows
f:A— Bandg:B— C in KI(C) is defined by g+ f = go!(f) o p4.

If the semi-comonad <!: C — C, 5, # > happens to be a monad (i.e. !is a functor),
then the semi-Kleisli category is the same as the usual Kleisli category.

The semi-Kleisli category of a wGC is not Cartesian closed (as is the Kleisli category
of a GC), but it has a somewhat weaker property.

Definition 16 A weak Cartesian closed category (WCCC) C ([3, 11]) is a category
C with a terminal object 1 and binary products A x B, and with the following data:

o For each pair of objects A,B € C an object A = B € C, and an arrow
eaB € C((A = B) x A, B). Furthermore, for each arrow f € C(D x A, B) an
arrow A(f) € C(D, A = B).

satisfying the following equations (omitting subscripts):
1. eo(A(f) xid) = f
2 A(fo (g xid) = A(f)og
We shall prove that if C is a wGC, then KI(C) is a wCCC.

Theorem 17 If < C,x,1,®,1,—0, L, 1,1, 4,5,~> is a wGC, then KI(C) has finite
products.

Proof: The terminal object 1 of C also is terminal in K1(C): the unique arrow
in KI(C)(A,1) is the unique arrow t4 € C(!4,1). This is well-defined because
tA 004 = tA.

The product A x B in C of two objects also is a product in K [(C): the projections
paB (AX B) > Aand p) g :!(A x B) - B are ngo!(r45) and ngo!(m) p), and
the unique arrow to the product is the same as in C. [ |

Theorem 18 If< C,x,1,®,I,-0, 1,9, u,i,~> is a wGC, then KI(C) is a wCCC.



Proof: It has already been proved that KI(C) has finite products. For objects B,C
define B = C =!B—oC, and eg¢c € KI(C)((B = C) x B,C) as e © (g—o¢c ®
oB)o ~3'g. For f € KI(C)(A x B,C) define A(f) = (fo ~} p)* 0 o4, where
(=) : C(A® B,C) = C(A, B—C).

It is easy to see that epc and A(f) are arrows in KI(C). We have to check two
equations:

ex < A(f)*p,p' >=f
ex <A(f)*p,p' >
(0 ® 0) ~ (< (F ~)aal(ntm)u, ta’ >}
sz(n ® o) ~7I (< (f ~)*txlpu,nln’ >)p

e(n ® o) ~ (< (f ~)*lma,pln’ >)u

€=(n ® o) ~HN(< (f ~)tmypln’ >)p

(1 ® o) ~U((f ~)" X (<, 1o >
(7 8 )I(S ~)tn) ~H(<tr, )

e(nl((f ~)")®ln) ~1(<lr, ln' >

e((f ~)n®'n) ~~H(<!m, !’ >)u

™
VannY

(f ~)* ® id)(n®!n) ~~!(<!Im, 7' >)p
~ (n®ln) ~=1(<!m, I’ >)p

~ (n®'n) ~7~ (k@ p) ~1

~ (®n)(p® p) ~7

~ (np@lgu) ~1

B0l sl il ==

~ (0‘ ®a’) N—l

~ |
)
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The second equation:

A(fr<g=*p,p' >)=A(f)*g

A(fx < g*p,p >)

(FU< g (n'm)p, nin’ >)p ~)*o
(Fig x Mi(<!m, n' >)p ~)*o
(fig xn) ~ (p® p) ~~I~)*c

(g xn) ~ (4@ p))*o
(=f ~ (lgu®lnp))*o

(=f ~ (lgu ® 0))*e

(=f ~ (0 ® o)(lgn ® id))*o
(=fa ~ (lgp ® id))*o

(=f ~)*lgu

(=f ~)*olgu

X(f) *g

In general, the (semi-)Kleisli category of a wGC is only weak Cartesian closed,
as A(e* (f x id)) = (e(f ® 0))*o. However, if C is a GC, then ¢ = id and it follows

that K1(C) is a CCC.

By means of the Karoubi envelope construction wCCC’s can always be transformed

in Cartesian closed categories.

Theorem 19 If C is a wCCC, then K(C) is a CCC.

Proof: See [3],[5].

5 Constructions on Rel

The constructions described in the previous section are applied to Rel. The cat-
egory K(Rel) is a particular simple example of a (cancellative) GC. The category

11



K(KI(Rel)) is equivalent to the category with as objects continuous lattices and as
morphisms continuous functions.

5.1 | K(Rel)

A description is given of the Karoubi envelope K (Rel) of the category Rel, which, by
the results of the previous section, will be a GC. Its objects are transitive relations
R : A — A with the interpolation property, i.e. a;Ras = Jay(a;Ray Ras). An arrow
T:(R:A— A)— (S:B— B)isarelation T: A — B such that SoT o R=T.
The interpretation of linear logic propositions in K (Rel) are objects in K(Rel), i.e.
transitive relations with the interpolation property, and the various operators of
linear logic are roughly interpreted as follows:

¢ 2R X Sz’ & (zRz' or z57')

<a,b>R®S < d,V >& (aRa' and bSV)

< a,b> RS < a,b' >& (a'Ra and bS¥)

e a-Ra' & a’'Ra

zlz' & false

o xJ¥ & true

X!RX' & Va' € X'Ja € X(aRa')
e X?RX' & Va € X3d' € X'(aRa')

It is easy to check that + = x,0 =1, ® = ®, and 1L = I. By these last two
equations K (Rel) is an example of a cancellative GC ([12]).

The full subcategory of K'(Rel) with as objects reflexive, transitive relations is closed
under the above operations, and hence is a GC. The objects of this subcategory can
be more simply described as preorders, and the arrows R : (A,<4) — (B,<p) are
relations R C A x B satisfying a’ <4 aRb <g V' = a'RV.

5.2 KI(Rel)

The semi-Kleisli category K(Rel) has the same objects as Rel, viz. sets. However,
the arrows are different: f € KI(Rel)(A, B) iff f is a relation between 'A and B
such that

X CX'&Xfb= X'fb

This last requirement is equivalent to the requirement that foo = f. Intuitively it
says that the relations should be monotone.
By the results of the previous section it follows that KI(Rel) is weak Cartesian

12



closed. Also, a Cartesian closed category can be constructed by taking the Karoubi
envelope of KI(Rel). The objects of this new category are tuples A =< Dom 4, 4>,
where Dom, is a set and F4 a relation between Domi, and Dom A, such that

e XCX&XFpa=X"tpa
¢ IX(X'FaXtaa)e X' Faa

(writing X’ 4 X for Va € X(X’ b4 a)). The arrows f € K(KI(Rel))(4, B) are
relations f between Dom,4y and Dompg such that

e X CX'&Xfb= X'fb

o X, Y(X'b4y XfY Fp b) & X'fb
(writing X fY for Vb € Y(X fb)).
The category K(KI(Rel)) is in fact equivalent to a well-known category of posets,
viz. the category of continuous complete lattices ([13]) and continuous functions.

This can be proved as in [5]. Here we shall describe how an object of K(KI(Rel))

gives rise to a continuous lattice.

Definition 20 An element x of an object A of K(KI(Rel)) is a subset z C Domy,
such that

a€z e IXCz(Xtya)
where X is finite.

Let Pt(A) denote the set of elements of A.

Theorem 21 If A is an object of K(KI(Rel)), then Pt(A) ordered by subset inclu-

ston C is a continuous lattice.

Proof: See [5]. n

6 Weak Coherence Spaces
In this section we shall decompose the category Coh of coherence spaces and con-

tinuous functions into a wGC. The linear structure on this wGC is similar to, but
simpler than the linear structure on the GC Cohls.
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6.1 Cohs and Cohls

First, we recollect the definitions of coherence space and (linear) stable continuous
function ([2]). We shall give very concrete representations of coherence spaces as
certain graphs and (linear) stable continuous functions as certain relations.

Definition 22 A coherence space A is a tuple < Domy,— >, with Dom, a set
and —2C Domy X Dom, a symmetric, reflezive relation.

The relation 4 is called the consistency relation associated with A, and a;,a, €
Domy are consistent iff a; — 4 a;. A subset X C Domy is pairwise consistent iff all
pairs a;,a; € X are consistent. Define PC(Domy) as the set of all finite, pairwise
consistent subsets of Dom 4.

Definition 23 A stable mapping R : A — B between coherence spaces A, B is a
relation R C PC(Dom,) x Domp such that

1. XRb&XRb, = b, —p b, (output consistency)
2. X C X'&XRb = X'Rb (monotonicity)
3. XiRb& X, Rb& X, U X; € PC(Domy) = (X1 N X,)Rb (stability)

The category Cohs with as objects coherence spaces and as morphisms stable map-
pings is a CCC. ,

It turns out that the Cartesian closedness of Cohs is the consequence of some deeper
structure.

Definition 24 A linear stable mapping R : A — B between coherence spaces A, B
is a relation R C Domy x Domg such that

1. a1 Rbi&ayRby&ay 4 a; = by —p by (consistency preserving)
2. a1 Rbi&ayRby&ay — 4 as&ay # a3 = by # by (stability)

The category Cohls of coherence spaces and linear stable maps 1s a GC, and the
Kleisli category of Cohls is equal to Cohs.

6.2 WCohl

Define Cohl as the category with as objects coherence spaces and as as morphisms
(non-stable) linear mappings, i.e. R € Cohl(A, B) iff R C Domy x Dompg and

® a Rb &a;Rby&ay — 4 a3 = by —p b, (consistency preserving)
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The category Cohl is not a wGC because there is not a dualising object.

However, if we relax the definition of coherence spaces slightly, we can get a wGC.
A weak coherence space is defined as a coherence space, except that the consistency
relation need not be reflexive. The category of weak coherence spaces and linear
mappings is a wGC. In particular the linear structure on weak coherence spaces is
similar to, but simpler than the linear structure on coherence spaces.

Definition 25 A weak coherence space A is a tuple < Dom 4, — 4>, with Domy a
set and — 4 a symmetric relation — 4C Domy X Domg.

Define WCohl as the category with as objects weak coherence spaces and as mor-
phisms linear mappings. We will show that WCohl is a wGC.

Definition 26 The tensor product ® : WCohl x WCohl — WCohl is defined on
objects as Domugp = {< a,b> |a € Domy,b € Domp}, < a,b >w—ag< d, b >&
a —p a'&hb —p V', and on linear mappings R : A — A' and S : B — B’ as
<a,b>RQ®S <dad,bt >& aRa'&bSV.

The tensor product has unit I with Dom; = {*} and * — *.

Definition 27 The functor —o : WCohl°® x WCohl — WCohl is defined on objects
as Dom,_op = {< a,b > |a € Domy,b € Domp}, < a,b > o< d ¥V >&
(a w4 @ = b —p ¥V, and on linear mappings R : A’ > A and S : B — B’ as
<a,b> R-oS < a,t >& a'Ra&bSV.

It is not difficult to see that these functors make WCohl into a monoidal closed
category. Note that the tensor product is the same as in Cohls, but that linear
implication is simpler. '

The dualising object 1 in WCohl has Dom; = {*} and —,;= 0. Contrary to
Cohls the equation I = 1 does not hold in WCohl. We can now describe negation:
Dom_4 = Domy and a; -4 a3 & —(a; —4 az).

Definition 28 The product A x B of weak coherence spaces A, B is defined by
Domaxp = Doms ¥ Dompg and z, — 4xp z, & (#1 ~a 23V ~p 2V (2; €
Dom &z, € Dompg)).

Although the operators + and © can be defined with the help of the other operators
we shall give their definition directly.

Definition 29 The coproduct A+ B of weak coherence spaces A, B is defined by
Domyyp = Domy & Domp and z; —4.p x5 & (x1~4 22V T —B T,).

Definition 30 The functor ® : WCohl x WCohl — WCohl is defined on objects
as Domyop = {< a,b > |a € Domu,b € Domp}, < a,b > 08< b >&
a~—4 a’'Vb —p ¥, and on linear mappings R : A — A’ and S : B — B’ as
<a,b>ROS<da,tV >& aRa'&bSV.
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Compare this with the more difficult definition of ® in Cohls:
<ab>—yo< a b >& ((a—4d&a#a)V(b—pb&b# V)V (a=d&b=1))
Finally, the semi-functor ! is defined.

Definition 31 The semi-functor | : WCohl — WCohl is defined on objects as
Domyy = {X C Domyu|X finite and pairwise consistent}, X —y X' & X U X'
pairwise consistent, and on linear mappings R: A — B as X!RY & Vb€ Yda €
X (aRb).

It is left to the reader to define the various natural transformations (they are the
same as in Rel) and to check the equations of a wGC.

Theorem 32 WCohl is a wGC.

6.3 Constructions on WCohl

The Karoubi envelope of WCoh! is a GC which does not collapse the units of tensor
product and tensor sum, just as in the model of de Paiva [15].

The semi-Kleisli category KI(WCohl) has the same objects as WCohl, viz. weak
coherence spaces. However, the arrows are different: R € KI(WCohl)(A, B) iff R is
a relation between !A and B such that:

o XiRb&X;Rby& X 14 X2 = by —B by
e Roos=R
It is easy to see that these requirements are equivalent to
o XRh&XRb, = b —pb,
e X CX'&XRb= X'Rb

i.e. Ris a mapping. The elements of Dom 4, Domp that are not self-consistent (i.e.
a — 4 a does not hold) are of no account: they are not in Domi4 and if X Rb then
b —p b. Hence the proof of the following theorem is not difficult.

Theorem 33 KI(WCohl) ~ Coh

As in [5] we may now take the Karoubi envelope of KI(WCohl) and obtain a category

equivalent to the category of continuous coherent complete dcpo’s and continuous
functions.
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7 Qualitative domains

Qualitative domains were defined by Girard in [1]. We shall give an alternative but
equivalent definition.

Definition 34 A qualitative domain A is a pair < Dom,,Con, >, with Dom, a
set and Cony4 a set of finite subsets of Dom 4, such that

1. 0 € Cony
2. a € Domy = {a} € Conyu
3 X'CX€EConyg=X"€Cony

It is not difficult to see that coherence spaces are in fact a special kind of qualitative
domains, viz. qualitative domains which satisfy

X € Cony & Vay,a; € X({a1,a3} € Cony)

The category Qds with as objects qualitative domains and as arrows stable mappings
is Cartesian closed. However, in [5] we showed that non-stable mappings are also
interesting.

Definition 35 A mapping R : A — B between qualitative domains A, B is a rela-
tion R C Cony X Dompg such that

1. VbE Y(XRb) = Y € Cong
2. X C X'&XRb= X'Rb

The category Qd with qualitative domains as objects and mappings as arrows is weak
Cartesian closed, and underlies an important category of domains: the Karoubi enve-

lope of Qd is equivalent to the category of continuous Scott domains and continuous
functions ([5]).

A natural question is whether there is a wGC underlying Qd. The answer to this
question is partially affirmative.

Definition 36 A weak qualitative domain A is a pair < Domy,Cony >, with
Domy a set and Cony a set of non-empty, finite subsets of Dom 4, such that

1. X’CX€eCong=>X'€Cony

Definition 37 A linear mapping R : A — B between qualitative domains A, B is a
relation R C Domy4 x Domp such that for non-empty Y

1. Vbe Yda € X(aRb)&X € Cony = Y € Cong
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Define WQdI as the category with as objects weak qualitative domains and as mor-
phisms linear mappings. The operators and constants of a wGC can be defined on
WQdI analogous to WCohl. However, the dualising object | =< {*},0 > of WCohli
is not dualising in WQdl: =—A = A need not be true. This means that negation in
WQdI is intuitionistic rather than classical, and that WQJI is a model of intuition-
istic linear logic ([15]).

Negation is not used in the semi-Kleisli category construction so it follows that
KI(WQdI) is a wCCC. In fact we have the following theorem.

Theorem 38 KI(WQdl) ~ Qd
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Appendix
A Categories

Category Objects Arrows

Rel sets relations

Coh coherence spaces mappings

Cohs coherence spaces stable mappings

Cohl coherence spaces linear mappings

Cohls coherence spaces linear stable mappings
WCohl weak coherence spaces linear mappings

Qd qualitative domains mappings

Qds qualitative domains stable mappings

WQdI weak qualitative domains linear mappings

B Semi-comonads and Semi-adjunctions

In analogy with the connection between comonads and adjunctions, we establish a
connection between semi-comonads and certain semi-adjunctions. Semi-adjunctions
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are defined in [3, 9].

Definition 39 A semi-adjunction < F,G, o, 8 > consists of semi-functors F : C —

D, G : D — C and collections of arrows {aa,B,B4,8} 4eC peD Such that the four
squares in the following diagram commute.

Q4B

B D(FA, B) C(A,GB) A
A,B

f fo_oFyg Gfo_og g
QA B!

B D(FA',B') C(4',GB') A
A',B!

We consider semi-adjunctions < F,G,a,8 > in which G is a functor. Such semi-
adjunctions give rise to semi-comonads.

Theorem 40 If < F,G,a,8 > is a semi-adjunction and G is a functor, then <
L,n,pu > ts a semi-comonad, where

o !=FQG
* 18 = fB,B(*daB)
¢ up = F(agB,reB(idraB))

Proof: For example, 7 is a natural transformation:

nol(f) = A(id) o FG(f)
= B(G(f))
= f o B(id) o FG(id)
= f o B(id)
=fon
Furthermore, the equation !(n) o 4 = o is satisfied:

Yo = FG(A(id)) o F(a(id)
= F(G(B(:id)) o a(id))
= F(a(p(1d) o F(id))
= FG(id)

=0

It is left to the reader to check the remaining details. |

Given a semi-comonad, there may be many different associated semi-adjunctions.

Definition 41 Given a semi/comonad M =<!:D — D,n,u >, a resolution of M
is a semi-adjunction < F,G,a, > with G a functor, satisfying
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o ! =F@G
* 78 = fB,B(tdcB)
¢ up = F(ags,res(idrga))

For example, the semi-Kleisli category construction of the semi-comonad gives rise
to a resolution.

Theorem 42 If M =<!,n,p > is a semi-comonad, then < F; : KI(D) — D,G; :
D — KI(D), a1, 51 > is a resolution of M, where

e F\(B)=!B
RA(f:B— B)=!(f)ous
® GI(B) = B

Gl(fZB—)B')=f0nB
e oi(u) =uoo
o fi(u)=u

The resolution given by the semi-Kleisli category construction is the "least” one. To
make this precise we first define the category of resolutions.

Definition 43 Given a semi-comonad M =<!: D — D,n, u > the category Res(M)
has as objects resolutions of M, and as arrows K :< F:C — D,G,a,8 >—< F':
C'—-D,G,d,B > functors K : C = C' such that

s KG=G'
e 'K =F
¢ Kasp=0akap
i ﬂf{A,BK = BB
Now we can state the following theorem.

Theorem 44 If M =<!,n,pu > is a semi-comonad, then < Fy,Gy,aq, 5 > is an
initial object in Res(M).
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C Reflexive Objects

A reflexive object in a (weak) Cartesian closed category C is an object A satisfying

e A= A=A

It is well-known that reflexive objects are models of the untyped lambda calculus. In
analogy, we define a linear reflezive object in a (weak) GC as an object A4 satisfying

e Ao0A=A
o IAX A
The proof of the following theorem is straightforward.

Theorem 45 If A is a linear reflezive object in a (weak) GCC, then A is a reflezive
object in KI(C).

An example of a linear reflexive object is the set of natural numbers w in the GC
Rel. It is easy to see that w—ow and !w are denumerable, and hence isomorphic to
w. Notice that w also satifies the following clauses:

o WX wWw=Ew
o WRW=Ew
o Ww=w

It follows by the theorem that w is reflexive in the category K [(Rel). In fact, this is
the well-known Graph Model Pw 3.

D PRel

A wGC which is in some sense intermediate between the categories Rel and WCohl
is the category PRel. The objects A of this category are sets with predicates, 1.e.
tuples < Doma,ps > where py C Dom,. We shall write pa(a) for a € py. The
arrows R : A — B are relations R C Dom x Domg which preserve truth, i.e. ps(a)
and aRb implies pg(b).

On the Dom-part of the objects of PRel the linear operators are the same as in Rel.
We shall describe their actions on the predicates.

® paxB(< Z,i>) & (i=1Apa(z))V(i=2 A pp(z))

o pr(*) & true

30One may wonder how it is possible that w => w = w, whereas there is only a retraction between
Pw and its functionspace. Just remember that Ki(Rel) is weak Cartesian closed.
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* pagB(< a,b>) & (pa(a) A pa(b))

* pa—op(< a,b>) & (pa(a) = pa(d))
o p,(*) & false

¢ pao(< a,b>) & (pa(a) Vv pa(b))

¢ pua(X) & Va € X(pa(a))

e p24(X) & Ja € X(pa(a))

e p-4(a) & —pa(a)

It is easy to see that in PRei the equalities x = + and 0 = 1 hold.
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