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In distributed databases and file-systems data is replicated to achieve greater avail-
ability and fault-tolerance. Here the problem of strategically distributing a file over
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Abstract

We study a problem that arises when one considers the segmentation of
a file in a network without redundancy. This problem translates to a graph
coloring problem: perfect k-colorability. A perfect k-coloring of a graph is a
coloring with k colors such that for every node of the graph every color is used
exactly once for this node or one of its neighbors. Perfect k-colorings can only
exist for (k — 1)-regular graphs. Determining whether a perfect coloring of a
(k —1)-regular graph exists is equivalent to finding a distance-2 coloring of the
(k — 1)-regular graph which uses exactly k colors, and to finding a covering of
the (k — 1)-regular graph on K.
In this paper we prove several basic results for perfectly k-colorable graphs.
We show how to generate all perfectly k-colorable graphs, and we characterize
some simple classes of perfectly k-colorable graphs. On the other hand, we
prove that the problem of deciding whether a given (k — 1)-regular graph is
perfectly k-colorable is N P-complete for every fixed k& > 4.
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a given communication network is of great importance. Typically, communication-,
memory-, query- and update-costs have to be minimized by this strategic distribu-
tion of the file. Constraints like upperbounds on the available memory per site,
upperbounds on the number of messages to retrieve data, etc., limit the solution
space. Several of the problems that arise have been reviewed in [DF82]. In general
these problems are N P-complete.

In this paper we study a very simple variant of the file distribution problem. We
assume that the files that must be distributed over the communication network are
large and that it is not appropriate to assign a complete copy of the file to every node
of the network, as this would mean too much of a burden on the available memory
at the nodes. At the same time we do not want to spend too many messages on data
retrieval, which means that a centralized solution is not desired either. This leads to
the following segmentation problem for files in a network: Given a connected network
modelled by a graph G = (V,E) and a file F, assign to each node v € V a proper
segment F, C F such that for all v € V the union of F, and all the filesegments F,,
assigned to nodes w within a fized distance d of node v is equal to F.

Although there are many interesting versions of this problem, we only study
a very restricted form of it here. We assume that the file is to be divided into a
fixed number of nonoverlapping segments F; and we ask for an assignment of these
segments to the nodes of the network such that (i) each node holds exactly one
segment and (ii) each node together with all its neighbors contains all the segments
without any redundancy. This problem can be reformulated as a “perfect” coloring
problem for the underlying graph. A perfect k-coloring of a graph is a node coloring
of the graph with k colors such that for every node of the graph we have that every
color is used ezactly once for this node or one of its neighbors. It is shown in
[KL90a] that several classical regular processor interconnection-networks such as
the d-dimensional hypercube, the d-dimensional torus, the cube connected cycles
and the chordal ring are perfectly colorable. A main result of this paper states
that the problem of deciding the perfect colorability for regular graphs in general is
N P-complete.

The paper is organized as follows. In Section 2 we state several elementary
results concerning perfectly colorable graphs, and characterize some simple classes of
perfectly colorable graphs. In Section 3 two alternative characterizations of perfectly
k-colorable graphs are given. Firstly, we show that a (k — 1)-regular graph G is
perfectly k-colorable iff G has a distance-2 coloring with k colors. Secondly, we
prove that G is perfectly k-colorable iff there exists a covering of G on the complete
graph Kj. In Section 4 we give an effective procedure for generating all perfectly
colorable graphs. In Section 5 we show that the problem of deciding whether a given
(k — 1)-regular graph is perfectly k-colorable is N P-complete for every fixed k > 4.
Finally in Section 6 some conclusions and open problems are given.



2 Basic Properties of Pei‘fectly Colorable Graphs

In this section we introduce perfectly (k-)colorable graphs and discuss some of their
elementary properties.

Notation: Let G = (V,E) be a graph, with V = V(G) the set of nodes and
E = E(G) the set of edges. We usually denote |V| by n. Let C = {cy,...,cx} be a
set of k colors, k € N, k > 1. Let the nodes of G be colored with the colors from
C. We denote the color of a node v by ¢(v). For each set of nodes V' C V we let
C(V') C C denote the set of colors of the nodes v € V", i.e., C(V') = {c(v) | v € V'}.

Notation: Let G = (V,E) be a graph. For every node v € V the set of
immediate neighbors of v is defined as the set Ny(v) = {w | w € V and (v,w) € E},
and we let N;[v] = N;(v) U {v}.

Definition 2.1 Let G = (V,E) be a graph and k € N, k > 1. G is perfectly k-
colorable iff there ezists a coloring of G using colors from C = {c,, ..., cx} such that
for all v € V : C(M[v]) = C and there do not ezist wy,w; € NM[v], w; # wy :
c(w1) = c(wy).

Note that a perfect k-coloring is a very special kind of k-coloring. We will assume
throughout that k£ € N, k£ > 1 whenever (perfect) k-colorings are considered.
Consider a perfect k-coloring of a perfectly k-colorable graph G = (V, E). Then for
all nodes v € V' : C(IVy[v]) = C and every two nodes of the neighborhood N;[v] have
different colors. It follows that |N;[v]| = k. Hence G necessarily is a (k — 1)-regular
graph.

Definition 2.2 Let G = (V, E) be a graph with a given perfect k-coloring with colors

C = {c1,...,cx}. Foralli€ {1,...,k} we define the colorclass V; C V as the set of
nodes v € V' that have color c;.

Notation: If a graph G has a perfect k-coloring with colorclasses Vi, ..., Vi, then
we denote the perfect k-coloring by [V, ..., Vi].

Recall that a dominating set of a graph G is any set of nodes such that every
node of G is either an element of this set or a neighbor of at least one element of
this set. The next theorem states that every colorclass of a perfectly colored graph
is a minimum dominating set of this graph. From the proof it is obvious that this
minimum dominating set is also a maximal independent set, i.e., a maximal set such
that no two nodes of this set are adjacent. (In fact, it can be observed that no two
nodes of this independent set can have distance less than 2 from each other.) Hence
every perfect coloring consists of a collection of rather special, mutually disjoint
maximal independent sets.



Theorem 2.3 Let G = (V, E) be a graph with a perfect k-coloring [V4, ..., Vi]. Then
Vi is a minimum dominating set and of size n/k, for everyi € {1,...,k}.

Proof. Let i € {1,..., k}. By definition we have C(N;[w]) = C for allw € V-V,
Thus for every w € V there exists a v € V; such that w € N [v]. Hence V; is a
dominating set of G and |J,ey, N1[v] = V. By definition, there exists no node that
has two neighbors with the same color. It follows that for all vy, v, € V;, v; # Vg :
Ni[vi]NNz[v;] = ¢. From this we conclude that ¥y, |N1[v]| = |V|. G necessarily is
a (k—1)-regular graph, thus [N;[v]| = k, for every v € V. It follows that |V;| .k = |V|
and thus |V;| = n/k for every i. This is the minimum size a dominating set of a

(k — 1)-regular graph can have. Therefore V; must be a minimum dominating set of
G. m)

A perfect coloring [V],...,Vi] of a graph consists of a collection of mutually

disjoint maximal independent sets V;. It is well-known [AM70] that if a graph
G = (V,E) has M maximal independent sets, these sets can be enumerated in
O(poly(|V'|).M) time. Now one can do a backtrack search on the M maximal in-
dependent sets to search for a perfect coloring of G. Hence for all classes of graphs
with a polynomially bounded number of maximal independent sets this gives a poly-
nomial time algorithm for deciding perfect colorability. For example, the class of
chordal graphs is such a class.
However, this may not be the most efficient way to determine whether a given
graph is perfectly colorable. In [KL90a] several classes of graphs have been stud-
ied for which there exist nice characterizations of the perfectly colorable members.
There it is shown that the following regular interconnection networks are perfectly
colorable:

o The hypercube C,, if and only if n = 20 — 1,7 > 0.

o The d-dimensional torus of size l; x ... x lj if [; mod ¢ = 0, with ¢ such that
{¥/2d + 1 | q for some integer r > 0.

o The cube connected cycles CCCy, if and only if d > 2, d # 5.

o The chordal ring network with chord length 4p—1(p > 0) and 4kp—t(0 < t < p)
nodes, if and only if :

. t .
1. k and t are even and (if ¢ > 0) gody) 18 even, or
t .
2. k, zdin) and g_ccf(t—,;) are odd and t + p is even.
o The hexagonal network of size m x n, if and only if m,n mod 7 = 0.

Thus, perfect colorability is an interesting notion for further analysis.
We now derive a number of general properties of perfectly colorable graphs. The
following simple, but useful fact is immediate from Theorem 2.3.
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Corollary 2.4 If G = (V,E) is perfectly k-colorable, then k|n (k divides n).

A similar technique of node-partitioning as used in the proof of Theorem 2.3
can be applied to obtain the following interesting characteristic of all perfectly k-
colorable graphs (for all k > 3).

Theorem 2.5 Every connected perfectly k-colorable graph is biconnected (for k >

3).

Proof. Let G be a connected perfectly k-colorable graph, and assume that some
perfect k-coloring of G is given (some k > 3). Suppose that G is not biconnected.
Consider any biconnected component H of G that is an end-block, i.e., a biconnected
component that contains exactly one cutpoint z of G. (The existence of end-blocks
follows e.g. by considering the block-cutpoint tree of G, cf. [B79].) Clearly z is the
only node in H with an “incomplete” neighborhood, as it is the only node that has
one or more neighbors outside of H. Yet all the remaining nodes of H must have
(k — 1) neighbors inside H each, by the perfect coloring. This is not possible, by
the following argument. Let = have ¢ neighbors inside H, for some 1 < ¢ < (k — 2),
including some node y. (Note that y must have at least one more neighbor inside
H, thus H is a non-trivial block.) Let ¢(z) =“red” and ¢(y) =“blue”.

Let H contain r red nodes (including z) and b blue nodes (including y). By the
perfect coloring, the neighborhoods of the red nodes partition H and thus : |H| =
(r — 1)k + 1+ e. But so do the neighborhoods of the blue nodes, which implies
that |H| = bk. We conclude that (r — 1)k 4+ 1 4+ & = bk and hence that k | (1 + ¢€).
Contradiction. m]

It would be of interest to have a complete characterisation of the perfectly k-
colorable graphs in simple, graph-theoretic terms. It is easy to see that for k = 1,2
a graph G is perfectly k-colorable iff G is (k — 1)-regular.

Proposition 2.6 A connected graph G = (V, E) is perfectly 3-colorable iff G is
2-regular and 3|n.

Proof. <= The only connected graphs that are 2-regular are rings. If the number
of nodes of a ring is a multiple of 3 then a perfect 3-coloring of the ring is right at
hand: assign the colors a, b and c alternatingly clockwise around the ring.
= If a graph is perfectly 3-colorable, then it must be 2-regular. By Corollary 2.4
we know that 3|n. o

A similar characterization of the perfectly 4-colorable graphs is not known. In
fact, we will show in Section 5 that the problem of deciding whether a 3-regular graph
is perfectly 4-colorable is NP-complete, which makes it very unlikely that an easy
characterization of perfect 4-colorability exists or, indeed, of perfect k-colorability
for any k > 4. We do have the following necessary condition.
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Lemma 2.7 IfG = (V, E) is perfectly 4-colorable, then G cannot have simple cycles
of length 5.

Proof. Assume G is perfectly 4-colorable. Let (v1,v2), (v, v3), (v3,v4), (v4,vs),
(vs,v1) be a simple cycle in G of length 5. Then we can assume w.l.o.g. that vy, v,
and vz are colored with different colors ¢;, c; and c3, respectively. Node v, cannot
have color ¢, or ¢3, nor can it have color ¢;. Therefore v4 must have color ¢;. But
similarly vs cannot have colors c;, ¢z, c3 and ¢;,. Hence this node must be colored
with a fifth color, in contradiction to the fact that G is perfectly 4-colorable. O

By a similar argument one shows that a perfectly 4-colorable graph cannot have
K>3 as a subgraph. (K33 = ( {v1,...,vs}, {v1,v2} x {v3,v4,v5}) is a complete
bipartite graph.)

If one colorclass of a perfectly 4-colorable graph is deleted, a perfectly 3-colorable

graph remains, i.e., a collection of rings of size divisible by 3. In general the following
holds.

Theorem 2.8 Let G = (V, E) be a perfectly k-colorable graph, and let [Vi, ..., Vi] be
a perfect k-coloring of G. Then for everyi € {1,...,k} the subgraph G’ of G induced
by V -V, is perfectly (k—1)-colorable and [V, ..., Vicy, Viga, .., Vi] is a perfect (k—1)-
coloring of G'.

Proof. Let : € {1,...,k}. Let G' = (V', E’) be the subgraph of G induced
by V' — V.. Consider the coloring [V, ..., Vi1, Vit1,.., Vi] of G’. Then C(N;[v]e/) =
C(M[v]g) — {ci} for every i € {1,...,k}. The condition that colors of neighboring
nodes are different is unaffected. Hence it is a perfect (k — 1)-coloring of G'. O

Looking at its colored neighborhoods, every perfectly k-colorable graph seems to
have some resemblances to the complete graph Kj.. For example, every perfectly 3-
colorable graph contains subgraphs H that are homeomorphic to K3 (see e.g. [H69]
for the definition of homeomorphic graphs) and for every node v a subgraph H can
be found that is homeomorphic to K3 and that contains v. (This follows immediately
from the simple structure of perfectly 3-colorable graphs.) On the other hand, this is
not true in general. For example, there are perfectly 5-colorable graphs that contain
no homeomorphic copy of Kj at all. The following result appears to be the strongest
that one can get.

Theorem 2.9 For k > 4, every perfectly k-colorable graph G contains a subgraph
H that is homeomorphic to K4 and for every node v a subgraph H can be found that
is homeomorphic to K, and contains v.

Proof. Let G be a perfectly k-colorable graph, v a node of G, and assume that
v is colored “d”. Choose three additional colors “a”, “b” and “c” and omit all nodes
that have a color that is not in the set {a, b, ¢,d}. By the previous theorem it is clear

6



that this leaves a set of perfectly 4-colored components. As we will no longer be
referring to the original graph, we let G denote the component that contains v. We
will be exploiting the following kind of argument. Let a, 8 and + be three different
colors and w a node with ¢(w) = a. Starting at w and going to a-, 3- and ~v-colored
neighbors alternatingly, traces a uniquely defined path through G (because of the
perfect coloring condition) that must ultimately close itself at w again. It is thus
appropriate to speak of the “afy-cycle” that starts at w. (Note e.g. that the ayf-
cycle that starts at w traces the same cycle, in opposite order.)

Omitting the d-colored nodes for a moment, the nodes colored a, b and ¢ divide
into perfectly 3-colored components which are exactly the abc-cycles of G. Thus
G consists of “islands” (abe-cycles) and d-colored nodes, and edges between islands
and d-colored nodes such that every d-node has exactly one neighbor of the colors
a, b and c respectively.

We will now show that there is a subgraph H that is homeomorphic to K, and
contains v. Let v,, vy and v, be the neighbors of v in G. We assume w.l.o.g. that
c(va) = @, () = b and ¢(v.) = ¢. Let D be the dca-cycle that starts at v. Observe
that it first visits v, traces through a number of islands (entering a c-colored node
and leaving at the neighboring a-colored node), and ends by visiting v, and making
a final step from v, to v. Now consider the dba-cycle that starts at v. (Call it E.)
E first visits vy and then traces through G until it reaches the b-colored neighbor
of v,, steps to v, and finishes at v. Trace E from v onward, and let C’ be the first
island reached that is also visited by D. (Note that C’ exists, because D and E
ultimately meet on at least one island, namely the island that contains v,. Also note
that E cannot hit D for the first time in a d-colored node, because it would violate
the requirement that this node has only one a-colored neighbor.) Let w. and w, be
the two consecutive nodes on C’ as they appear along D, and let w;, be the node
where E hits on C’. We necessarilly have ¢(w,) = ¢, ¢(w,) = a and c(w;) = b. It is
now easy to see that the nodes v, w,, w, and w,. span a homeomorphic copy of Kj.
(Note that w,,w, and w, are connected along C’, and v is connected to w. and w,
by the disjoint halves of D and to w, by the part of E that leads to it.) O

Observe that if the graph G in Theorem 2.8 is bipartite then G’ is also bipartite
because no new edges have been inserted. For bipartite graphs we have the following
necessary conditions to be perfectly colorable.

Lemma 2.10 Let G = (V, E) be a perfectly k-colorable bipartite graph, then 2k|n.

Proof. Let G be bipartite and let [V}, ..., Vi] be a perfect k-coloring of G. By
Corollary 2.4 we know that for all 1 € {1,...,k} : |V;| = n/k. Let G’ = (V',E’) be
the subgraph of G induced by V — (V,U...U V). From Theorem 2.8 and the previous
observation it is clear that G’ is a perfectly 3-colorable bipartite graph. Hence G’
consists of one or more bipartite perfectly 3-colorable rings R;. As R, is bipartite,
we have that 2||R;|. And as R; is perfectly 3-colorable we also have that 3||R;|.
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Hence for all i € {1,...,k} we have: 6 | |V'| = 3|V}|, hence 2| |Vi| = n/k and thus
2k | n. o

Theorem 2.11 If G = (V,E) is a (k — 1)-regular bipartite graph with 2k nodes,
then G is perfectly k-colorable.

Proof. By induction. It is easy to see that for k£ = 1,2 the theorem holds. Let
k > 2. As G is a (k — 1)-regular bipartite graph there exists a partition of V into,
say, V1 and V; with V4|, |V2| > (k — 1) such that the edges of G connect between
nodes of V; and V; only. Because G is regular, it is easily seen that V; and V, must
have the same size. Hence |Vj| = |V;| = k, and there must be nodes v € V; and
w € V; which are independent, as shown in Figure 1.

Figure 1

Let G’ be the subgraph induced by V — {v,w}. Note that G’ is a (k — 2)-regular
bipartite graph with 2(k — 1) nodes, and that v is connected to all nodes in the
bottom row and w is connected to all nodes in the upper row. By induction G is
perfectly (k — 1)-colorable, say with perfect coloring [V4, ..., Vik-1)]- Then it is clear
that [V, ..., Vik-1), {v, w}] is a perfect k-coloring of G. o

We note that Theorem 2.11 cannot be generalized. There exist (k — 1)-regular

bipartite graphs G = (V, E) with 2k | n that are not perfectly k-colorable. An
example is given in Figure 2.

The graph in Figure 2 is a 3-regular bipartite graph with 16 nodes that is not
perfectly 4-colorable, although 2.4 | 16.



Recall that a Hamiltonian circuit in a graph G is a simple circuit that includes all

nodes of G. If G has a Hamiltonian circuit, then G is called Hamiltonian. We have
the following result.

Theorem 2.12 Every perfectly k-colorable graph with < 2k (k > 3 ) nodes is Hamil-
tonian.

Proof. The result is obvious for perfectly k-colorable graphs with & nodes. For
perfectly k-colorable graphs with 2k nodes we will prove the theorem by induction
on k. It is easy to verify that for £ = 3 the theorem holds. Let ¥ > 3 and G = (V, E)
be a perfectly k-colored graph with 2k nodes. Let v,w € V be two nodes that have
the same color. Let G’ be the subgraph of G induced by V — {v,w}. Then G’
is perfectly (k — 1)-colorable and has 2(k — 1) nodes. By induction there exists a
Hamiltonian circuit H in G'. Consider H as a subgraph of G. Let V, and V,, be the
sets of nodes that are connected to v and w, respectively. By the perfect coloring
Vo UV, = V' and necessarily |V,| = |V,| = (k — 1). If there are nodes v,,v, € V,
such that (v1,v3) € H, then there must also exist nodes wy,we € V,, such that
(w1,w2) € H. In this case it follows that G is Hamiltonian: just traverse H and,
upon reaching v; and w,, side-step to v and w and return at v, and w, respectively
and continue along H. On the other hand, if there do not exist nodes v1,v2 €V,
such that (vy,v;) € H, then there do not exist wy, w, € V,, such that (w1, w;) € H.
In this case, let ui,...,us € V' such that (uy,us), (uz,us), (us,us) € H. W.lo.g.
we may assume that u, € V,, and hence that uz € V, and uy,uq € V. It is now
easily verified that H' = (H — {(u1,u2), (us, ua)}) U{(11,v), (v, u3), (u2, w), (w, us)}
constitutes a Hamiltonian circuit in G. 0

3 Distance-2 Colorings, Coverings and Perfect
Colorability

In this section we consider two different ways of looking at perfect colorings. We first
consider the relation to distance-d coloring, which is a well-known generalization of
the traditional vertex coloring problem. Applications of this problem can be found
in e.g. computing approximations to sparse Hessian matrices [Mc81]. It turns out
that perfect colorability and distance-2 colorability are strongly related notions.

Definition 3.1 Let G = (V, E) be a graph and d € N,d > 1. A distance-d coloring
of G is a coloring of G such that if v,w € V are nodes such that c(v) = c(w), then
dg(v,w) > d. (Here dg(.,.) is the usual distance metric on graphs.)

For our purposes only distance-2 colorings are interesting., These colorings have
also be termed “strong colorings” and have been studied in detail in [KL90b).



Lemma 3.2 Let G = (V,E) be a (k — 1)-regular graph. Then G is perfectly k-
colorable if and only if G has a distance-2 coloring with k colors.

Proof. = Let [V}, ..., Vi] be a perfect k-coloring of G. Let v be a node of G. If
v € V;, then none of its neighbors is an element of V; or has another node of V; as
neighbor. Hence if v,w € V;, then dg(v,w) > 2.
< Assume G has a distance-2 coloring with k colors. G is (k — 1)-regular, thus for

all v € V(G) : |C(N1[v])| = k. From this it is clear that the coloring is also a perfect
k-coloring of G. O

In [Mc81] it is shown that for arbitrary graphs the problem of deciding whether
a given graph is distance-d colorable with k colors is N.P-complete for every d > 1.
In Section 5 we shall prove that the problem of deciding whether a given regular
graph is perfectly k-colorable is NP-complete for every fixed ¥ > 4. Hence the
distance-2 colorability problem is N P-complete even when restricted to the class of
(k — 1)-regular graphs, for every fixed k > 4.
The following result shows that distance-2 colorings essentially are “incomplete”
perfect colorings.

Theorem 3.3 A graph is distance-2 colorable with k colors if and only if it is a
subgraph of a perfectly k-colorable graph.

Proof. <« Every subgraph of a perfectly k-colorable, hence distance-2 k-colorable
graph clearly is distance-2 k-colorable again.
= Let G be any graph that is distance-2 colorable with k colors. Consider any
distance-2 coloring of G with k colors ¢y, ...,cx and let V4, ..., Vi be the correspond-
ing colorclasses. Assume that the coloring is not perfect, otherwise we are done.
In this case the coloring can be viewed as an “incomplete” perfect coloring, in the
sense that some neighborhoods lack some of the colors (and thus some nodes lack
the necessary “neighbors” for some of the colors). We show that G can be extended
to a (k — 1)-regular graph H that is perfectly k-colorable.
Consider the colorclasses Vi,..., Vi and let the largest one contain s nodes. Add
new nodes to the other colorclasses, when necessary, so they all have size s. This
defines the node-set of H and the intended coloring. To define the edge-set of H,
we begin by adding in the edges of G. We will now argue that we can add in further
edges such that all neighborhoods get all the different colors and the resulting graph
is perfectly k-colored. The procedure is simple : whenever there is a node v that
“lacks” a color ¢; in its neighborhood, look for a node w € V; that does not yet have
an edge to a node with color ¢(v) and add the edge (v, w) to H. It is clear that such
a node w can always be found because, if all s nodes of V; had a neighbor colored
¢(v) already, then all of these neighbor nodes would be distinct (by the fact that
we maintain a distance-2 coloring) and all s nodes colored ¢(v), including v itself,
would already have a ¢;-colored neighbor. Thus the procedure can continue as long
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as there is an incomplete neighborhood and terminates with a graph H that extends
G and is perfectly k-colored. O

Observe from the proof of Theorem 3.3 that if G is distance-2 colorable with k&

colors, then it is a subgraph of a perfectly k-colorable graph H with at most kn
nodes.

Corollary 3.4 A graph G is distance-2 colorable with k colors such that |V;| = ... =

|Vi| if and only if G is a subgraph of a perfectly k-colorable graph H with ezactly the
same number of nodes.

Theorem 3.3 can be extended, although it tends to require a considerably larger
graph H. In [KL90b] the following result is shown.

Theorem 3.5 A graph G is distance-2 colorable with k colors if and only if it is an
induced subgraph of a perfectly k-colorable graph H.

Another way of approaching perfect colorings is through coverings. A covering
is a mapping that maps the nodes of a given graph onto the nodes of an other
(smaller) graph such that the local structure of the graph is preserved. Coverings
have applications in various fields. For example, in the design of parallel algorithms
it is usually assumed that the processors are connected by suitable networks with a
number of nodes depending on the size of the problem to be solved. In practice these
algorithms will be executed on networks that are much smaller. Therefore in some
way the larger, virtual network has to be simulated on the smaller actual network.
This problem can be formalized with the help of coverings (cf. [BL86] , [B89] ). In
this section we will show that perfect k-colorability is related to coverings of Ky, the
complete graph on k nodes.

Definition 3.6 Let G = (V,E) and H = (V',E') be graphs. A mapping f :
V(G) — V(H) covers G on H iff

1. f is surjective.
2. for all v,w € V(G) : if (v,w) € E(G), then (f(v), f(w)) € E(H).

3. for all v € V(G) : |Ni(v)] = |N1(f(v))| and for every w' € Nyi(f(v)) there
exists a w € Ny(v) such that f(w) = w'.

We say that G covers H iff there ezists a mapping f that covers G on H (or: a
covering of G on H).

Theorem 3.7 A graph G = (V, E) is perfectly k-colorable if and only if G covers
K.

11



Proof. = Let [V, ..., Vi] be a perfect k-coloring of the graph G. Let {vy, ..., v}
be the set of nodes of the complete graph K. Define the mapping f : V(G) —
V(Kk) by f(v) = v; iff v € V;. Clearly f is surjective. Furthermore if (v, w) € E(G),
then v and w belong to different colorclasses. Thus f(v) # f(w) and (f(v), f(w)) €
E(Kyx). G is (k — 1)-regular and for every v € V(G) all nodes w € N;[v] belong to
a different colorclass. Thus it is clear that for all v € V(G) : |[Ny(v)| = (k- 1) =
|V1(f(v))| and for every w' € Ny(f(v)) there exists a w € Nj(v) such that f(w) = w'.
Hence f covers G on Kj.
< Let f: V(G) — V(K}) be a covering of G on the complete graph K. Then for
all v € Vi |Ny(v)| = |[N1(f(v))| = (k= 1). Thus G is (k — 1)-regular. Define for
every i € {1,...,k} : Vi = f(v) = {v | f(v) = v;}. As f is a covering, the images
of a node v and all its neighbors are all different, i.e., they all belong to different
classes V. Hence it is clear that [V, ..., Vi] constitutes a perfect k-coloring of G.

0

Corollary 3.8 Let H = (V',E') be a perfectly k-colorable graph. If G = (V,E)
covers H, then G is perfectly k-colorable.

Proof. It is given that G covers H. H is perfectly k-colorable thus, by Theo-
rem 3.7, it covers K. In [B89] it is proven that if G covers H and H covers a further
graph I, then G covers I. We conclude that G covers K. Hence by Theorem 3.7 G
is perfectly k-colorable. O

Define for every k € N,k > 1 the graph By = (V', E') with V' = {v},..., v},
v}, ..., vk}, with (v},v?), (v},v}) € E' for all i € {2,...,k} and (v},v?) € E' for all
i,J € {2,...,k}, ¢ # j. The graph By, is the smallest perfectly k-colorable bipartite -
graph (see Theorem 2.11). In fact, up to isomorphism it is the unique graph with
2k nodes that is bipartite and perfectly k-colorable. This graph can be used to
characterize the class of perfectly k-colorable bipartite graphs.

Theorem 3.9 A graph G = (V, E) is bipartite and perfectly k-colorable if and only
if G covers Byy.

Proof. <= We know that By is perfectly k-colorable (Theorem 2.11). By Corol-
lary 3.8 it follows that G is perfectly k-colorable. Let f : V — V'’ be a covering of G
on Bji. B is bipartite, hence we can divide its set of vertices V' into two disjoint
sets V) and V; of equal size such that if v, w are neighbors, then they do not belong
to the same set V/,V;. Define W; := {v | v € V and f(v) € V/}. Then it is clear
that W;, W, define a partition on G and that the edges of G connect nodes of W,
and W, only. Hence G is bipartite.
=> Let G be bipartite and [V, ..., Vi] a perfect coloring of G. Let V(G) be parti-
tioned into W and W; respectively. Let V' be divided into the two disjoint sets
W = {v},...,vi} and V = {v},...,v}}. Define the mapping f : V — V' by: f(v) = v}

12



iff v € V;and v € Wy, and f(v) = v? iff v € V; and v € W,. It is now straightforward
to check that f is a covering of G on By;. O

The preceding results show that the study of perfect k-colorings is really the
study of coverings on K. There also is a connection between perfect k-colorings
and edge-colorings of a graph. Recall that an edge-coloring of a graph G is a coloring
of the edges such that all edges adjacent to the same node have different colors. The

minimum number of colors that are required in an edge-coloring of G is called the
chromatic indez of G.

Lemma 3.10 Let G = (V, E) and H = (V', E') be graphs such that G covers H. If
H is edge-colorable with k colors, then G is edge-colorable with k colors.

Proof. Let f : V — V' be a covering of G on H. Assume we have an edge-
coloring of H with k colors. By definition of f, if (v,w) € E, then (f(v), f(w)) € E'.
Define a coloring of the edges of G by assigning the color of (f(v), f(w)) to (v, w),
for every (v,w) € E. To verify that this indeed defines a (valid) edge-coloring of
G, let v an arbitrary node of G. All its neighbors w are mapped by f to different
nodes f(w) in H that are all neighbors of node f(v). Because H was edge-colored,
all edges adjacent to f(v) have different colors. Hence all edges adjacent to v must
have different colors. We conclude that G has an edge-coloring with & colors. O

A theorem of Vizing [V64] implies that every (k — 1)-regular graph is edge-
colorable with (k — 1) or k colors. In [LGB83] it is proven that it is NP-hard to
determine the chromatic index of regular graphs. We can however conclude the
following result, first observed in [KL90b)].

Theorem 3.11 If G is perfectly k-colorable and k is even, then G is edge-colorable
with (k — 1) colors.

Proof. Let k € N,k > 1, be even. Then Kj is edge-colorable with (k — 1) colors
[K36] . As G is perfectly k-colorable we know from Theorem 3.7 that G covers Kj.
By Lemma 3.10 we conclude that G is edge-colorable with (k — 1) colors. o

Note that (k — 1)-regular bipartite graphs are always edge-colorable with (k —1)
colors [K36). However, for every k odd it is possible to construct perfectly k-colorable
graphs that are not bipartite but edge-colorable with (k — 1) colors. The problem
of finding an efficient algorithm that computes the chromatic index of perfectly
colorable graphs is still open.

4 Generating All Perfectly Colorable Graphs

There are several approaches to the generation of perfectly colorable graphs. One
approach uses the fact that, if we delete one colorclass of a perfectly k-colorable
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graph, we obtain a graph that is perfectly (k — 1)-colorable (Theorem 2.8). In this
approach we start with a perfectly 1-colorable graph, and by inserting new color-
classes we can build every perfectly k-colorable graph. The other approach uses the
fact that for a perfectly k-colorable graph G there exists a covering on K} and that
all perfectly k-colorable graphs are characterized in this way (Theorem 3.7). Here
we start with the appropriate number of complete graphs K; and by rearranging

pairs of edges we can build every perfectly k-colorable graph. In this paper we only
discuss the last method.

Lemma 4.1 Let G = (V, E) be a perfectly k-colorable graph with perfect coloring
VA .-y Vi]. Letvy,vg € V; and wy,w, € Vi, (¢ # 7) be such that (v1,w), (vs, we) € E.
Then the graph G' = (V, E') with E' = (E — {(v1,w1), (v2, w2)}) U {(v1, w2), (v2, w1)}
has perfect coloring [V, ..., Vi] also.

Proof. By deleting the edges (vy,w1) and (v, w;) the given coloring of G is not a
perfect coloring anymore. This is because nodes v, and v, do not have any neighbor
with color ¢(w;) and c(w,), respectively, anymore and similarly nodes w; and w,
do not have any neighbor with color ¢(v;) and ¢(v;), respectively. This situation is
resolved by inserting the new edges (v1,w;) and (vq, w,). ]

Let £ € N,k > 1 be given. By Theorem 2.3 it is clear that only perfectly k-
colorable graphs G = (V, E) can be constructed for which |V| = tk for some ¢t € N.
This and the previous lemma are the main motivations for the following algorithm.
On inputs k,t € N, this algorithm constructs a perfectly k-colorable graph with tk
nodes.

Procedure Generate-Perfectly-Colorable-Graph(k, t)
{ This procedure generates a perfectly k-colorable graph G; with tk nodes. }
Go:={H;|i € {1,...,t}, each H; a “new” copy of K} ;
Let [W, ..., Vi] be a perfect k-coloring of Gy ;
1:=1;
repeat
Take two different edges (v1,w1), (v2,w2) € E(G(i-1))
such that ¢(v;) = c¢(v;) and ¢(w;) = c(wy) ;
Gi = (G(i-1) — {(v1, w1), (v2, w2)}) U {(v1, w2), (v2,1)} ;
t:=1+4+1
until : = finished
{ “finished” depends on the desired number of iterations, which can be
taken to be some random number. }

It is easily shown by induction that every graph obtained from the procedure
must be perfectly k-colorable (and has tk nodes). Because no pair of edges needs
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to be selected more than once, the number of iterations in the repeat-until loop
need not be larger than O(t2k*). In the next theorem we prove that the procedure
is capable of generating every possible perfectly k-colorable graph with ¢k nodes.

Theorem 4.2 Every perfectly k-colorable graph G = (V, E) can be constructed by
the procedure Generate-Perfectly-Colorable-Graph.

Proof. Let G = (V, E) be an arbitrary perfectly k-colorable graph with perfect
coloring [V, ..., Vi]. Assume w.lo.g. that t = |V;|. By Theorem 2.3 we know that
P = {N[v] | v € W1} is a partition of G into ¢ disjoint sets. Let G' = Go = {H; |: €
{1,...,t}, H; a copy of K3 }. It is clear that G’ is perfectly k-colorable. Let [V}, ..., V]
be a perfect coloring of G’. By mapping the elements of P to the elements of G’ in
a coloring preserving way, it follows that there is a function f : Vg — Vi such that:

1. f is a bijection.
2. foralli € {1,...,k}: (v € V; iff f(v) € V).
3. for all v € Vj and w € V : if (v,w) € Eg, then (f(v), f(w)) € Eg.

Color all edges (v,w) € Eg with (f(v), f(w)) € Eg “white” and color all the re-
maining edges of G “black”. If there are no black edges in G, then G and G’ are
isomorphic and we are done. Thus assume there are black edges in G. We will show
that there exists an execution of the algorithm such that in each iteration of the
repeat-until loop the number of black edges in G decreases by at least one, and
which stops the moment all edges of G are colored white.
Assume that (v,w) € Eg is a black edge, i.e., (f(v), f(w)) € Eg:. We want the
procedure to pick the right edges such that it transforms G’ into a new graph
that continues to be perfectly colored but contains the edge (f(v), f(w)). As
G' is perfectly colored there exist neighbors w' and v’ of f(v) and f(w), respec-
tively, with c(w’) = ¢(f(w)) and c(v') = c(f(v)). Observe that (v/,w') ¢ Eg
and also that (f~'(w’),v) € Eg and (f~!(v'),w) € Eg because v and w already
block the corresponding colors in their neighborhoods. Now let the procedure
choose the edges (f(v),w’) and (f(w),v’) and transform G’ into the graph (G’ —
{(F(v), ), (f(w), )}) U {(f(0), f()), (/,w')}. Then the edge (v, ) is colored
white in the new graph G’. Furthermore, if (f~1(v'), f~!(w")) € Eg, then it is clear
this was a black edge that is now colored white also, as (v',w’) is now an edge of G'.
If (f~1(v'), f~}(w')) &€ Eg, then there are no extra changes of colors of edges of G.
This shows that there exists an execution of the procedure such that at each itera-
tion of the repeat-until loop the number of black edges decreases by at least one. If
we let the procedure stop the moment all edges of G are colored white, the function
f is an isomorphism from G to G'. Hence G can be constructed by the procedure.
O
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Observe that the procedure could take any perfectly k-colored graph on tk nodes
as a start instead of the particular graph Gy, and the result of Theorem 4.2 would
continue to hold. It would be interesting to analyze the probability that a certain
perfectly k-colorable graph with tk nodes is generated by the procedure above and
to determine whether it is sufficiently “random”. Another interesting open problem

is to determine the exact number of different perfectly k-colorable graphs with tk
nodes.

5 The Complexity of Perfect Colorability

For k = 1,2,3 we were able to completely characterize the classes of perfectly k-
colorable graphs. This characterization gave us an easy test to determine whether a
given graph from one of these classes is perfectly k-colorable. For k > 4, only some

necessary conditions for a graph to be perfectly k-colorable are known. We consider
the following problem (for fixed k > 4).

Problem: PERFECT k-COLORABILITY
Instance: A (k — 1)-regular graph G = (V, E).
Question: Is the graph perfectly k-colorable ?

Our main result is the following. (We assume that the reader is familiar with
the theory of NP-completeness, cf. [GJ79].)

Theorem 5.1 PERFECT 4-COLORABILITY is N P-Complete.

Proof. The perfect 4-colorability problem is clearly in N P, since a non-deterministic
algorithm can always guess a coloring of the given graph and check whether this col-
oring is a perfect 4-coloring in polynomial time.

To prove the problem N P-complete we use a transformation from 3-SAT:

Problem: 3-SAT

Instance: A set X = {z,...,z,} of variables. A collection C =
{c15 ...y ¢m} of clauses over X such that each clause ¢ € C has |c| = 3.
Question: Is there a satisfying truth assignment for C ?

Assume an instance of 3-SAT is given. We show that the instance of 3-SAT can
be transformed to a graph G = (V, E) such that: G is perfectly 4-colorable iff there
is a satisfying truth assignment for the set of clauses of the given instance of 3-SAT.
The transformation incorporates several types of “building blocks”, i.e., subgraphs,
that are used to construct the graph G. There are 4 different types of subgraphs.
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The subgraphs of Type 1, Type 2, Type 3 and Type 4 are shown in Figure 3a, 4a,
5a and 6a, respectively. The graph G and its important components are pictured
in Figure 7 and beyond. To simplify the drawings, the diagrams shown in Figures
3b, 4b, 5b and 6b are used to denote the subgraphs of Type 1, Type 2, Type 3 and
Type 4, respectively.

Figure 3

In Figure 3a the subgraph of Type 1 is shown. A pair of these subgraphs will
correspond to a variable z; in the given instance of 3-SAT. In G the nodes v; and V4
are connected via links /; and I, respectively, to other subgraphs of different types.
Clearly, if G is perfectly 4-colorable, then every node of this subgraph will have
a different color. Thus the colors of the nodes v,,v; form a pair that is one of 6
possible colorpairs.

Let C = {c1,..., ¢4} be the set of colors to be used in a perfect 4-coloring of G, then
for all 4,5 € {1,...,4},i # j , we define p;; = Pjii = {C,',Cj}, and p;; = C —p;;. If
G has a perfect 4-coloring such that nodes v; and v3 of a subgraph of Type 1 have
colors ¢; and c;, with ¢,7 € {1,...,4},7 # j, then we say that this subgraph has a
coloring p;j(= p;;). The colorings of the subgraph will (intuitively) correspond to
the boolean values of the variables used in the instance of 3-SAT.

The nodes v, and vy, which we shall call boundary nodes, are colored with the colors
Pi;- Whereas the colors of v; and v; can be interchanged without further implications
for the rest of the coloring, this is not the case for the colors of the boundary nodes.
This is one of the reasons to introduce the following “building block”.

b)

Figure 4

In Figure 4a the subgraph of Type 2 is shown. In G the nodes v, ..., v, are connected
via links I, ..., l4 to 4 different subgraphs Gy, ..., G4 of Type 1. In a perfect 4-coloring
of G the subgraph of Type 1 that is connected via link /; has a coloring, say p;;. It
is clear that in a perfect coloring of G, the nodes w; and w, must have colors such
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that {c(w1),c(w;)} = pi;. Furthermore, as v, and v, are connected to w; and wy,
node wj is the only neighbor of w, that can be colored with color c(w,). Similarly,
we must have c(wj) = c¢(w;). Now it is obvious that in this perfect coloring of G
we have {c(v1), c(v2)} = {c(v3), c(va)} = Pi;. Hence the 4 neighboring subgraphs of
Type 1 must all have the same coloring p;;.

The boundary nodes of Gy, ..., G4 are all colored with colors € Pi;- If we interchange
the colors of the boundary nodes of G; this necessarily means that we have to
interchange the colors of the boundary nodes of G;. But the colors of the boundary
nodes of G5 and G4 may remain the same.

Figure 5

In Figure 5a the subgraph of Type 3 is shown. In G the nodes v, v,,v3 are con-
nected via links [y, ..., 1 to 4 different subgraphs Gy, ..., G4 respectively, that are of
Type 1. In G the subgraphs G; and G; will also be connected to the same subgraph
of Type 2, and the subgraphs G5 and G4 to another subgraph of Type 2. Hence
if we have a perfect 4-coloring of G, then G; and G, must have the same coloring
pij, and G3 and G4 must have the same coloring, say py. By a similar reasoning
as above we can show that the connection to the subgraph of Type 3 ensures that
pij # pu and p;; # Pi. On the other hand, if the colorings p;; and pi; are such
that p;; # pu and p;; # Pij, then it is always possible to give the boundary nodes
the proper colors. (We have this “freedom of choice” in G because Gy, ..., G4 are
connected to subgraphs of Type 2.)

(%)

a) b)
Figure 6
In Figure 6a the subgraph of Type 4 is shown. In G the nodes vy, v, vs are con-
nected via links [y, ..., lg to 6 different subgraphs Gj, ..., G¢ respectively, that are of

Type 1. Again the subgraphs form pairs (G, Gz2), (Gs, G4) and (Gs, Gs), which are
connected to different subgraphs of Type 2. Thus the two elements of the pairs must

18



have the same coloring. Let the pairs (Gy,G;),(G3,G4) and (Gs,Gs), have color-
ings pij, pri and pmy, respectively. It is easy to verify that the following must hold:
¢(w) = Pij N Prt O Pmn, and the three colorings are distinct (pi; # Prt # Prmn # Pij)-
Therefore the connection of the pairs to the subgraph of Type 4 ensures that none
of the colorings and the complement of the colorings are equal.

Again if, on the other hand, the colorings p;;, i, Pmn are distinct such that c(w) =
Pi; NPriNPmn, then it is always possible to give the boundary nodes the proper colors.

Let G = (V, E) be defined as the graph pictured in Figure 7.

el

X,

The colorings of the two Type 1 blocks will
correspond to the value of the variable x;.

to other cl_auses

Y

or-structure

Figure 7
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In this graph there are components that correspond to the variables z; and the
clauses c; of the given instance of 3-SAT. These components are denoted by X; and
C; respectively. Each variable z; will be identified with two subgraphs of Type 1
(see Figure 9). The coloring of these subgraphs will correspond to the value of the
variable. Also each clause ¢; will be identified with two subgraphs of Type 1 (See
Figure 8.). Again the coloring of these subgraphs will correspond to the value of the
clause. The two subgraphs of Type 1 that correspond to a clause ¢, are connected
to a structure that has 3 inputs (See Figure 10.). This structure will play the role
of an or-gate, and is therefore called an or-structure. If clause ¢c; equals (z;, z,, z,),
then the 3 inputs of this structure are connected via subgraphs of Type 1 and 2
with X;, X, X, respectively, i.e., a component that corresponds to a variable z; is
connected via subgraphs of Type 1 and 2 to an input of every or-structure that is
connected to a component corresponding to a clause containing z;.

Claim: G is perfectly 4-colorable if and only if there is a satisfying truth assign-
ment for C the set of clauses of the given instance of 3-SAT.

Proof. < Assume there is a satisfying truth assignment for C. Assign appro-
priate truth-values to the variables z; € X such that C is satisfied. In the graph G
a coloring p;, of a subgraph of Type 1 will correspond to true and a coloring p,3 to
false. A coloring p4 is used as an intermediate.

Figure 8
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As all the clauses ¢ € C are true, we color all the subgraphs C; with coloring p;,.
Consider Figure 8. Subgraph H, is of Type 4 thus we can color the subgraphs Ay, &,
and h3 with colorings pi3, p14 and pi3, respectively. Now it is clear that subgraphs
g1, .-+, gn can all be colored with coloring py4.

This leaves us the choice of coloring subgraphs X; and X; with colorings p;» and
P13, or p13 and pyy, respectively. (See Figure 9.) Obviously we color X; (X;) with
coloring p12 (p13) if the value true is assigned to the variable z;, and we color X;
(X:) with coloring p13 (p12) if the value false is assigned to the variable z;.

X;

pl4

Figure 9
Consider the following subgraph of G:

Figure 10

The subgraphs I, I and I3 will have colorings € {p12,p13}. It is easy to verify that
if both I; and I, have coloring p;3, then subgraph O; must have coloring p;5 (or
P13, but we are free to choose p;3 in this case). But if at least one of the subgraphs
I,,I; has coloring p,2, then O; can be colored with p;;. The truth assignment is
such that for each j € {1,...,m} the clause c; is true. Therefore, at least one of the
subgraphs I, I3, I3 must have coloring p;;. If O; cannot be colored with p,, then
I3 must have coloring p;;. Thus O can always be colored with coloring p,;. Hence
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G is perfectly 4-colorable.

= Assume G is perfectly 4-colorable. Let a perfect 4-coloring of G with colors
{e1,...,cq} be given. Consider a partition of G as depicted in Figure 7. Subgraph
H, is of Type 4. The 3 neighboring pairs of subgraphs of Type 1, ky,k, and ks
must all have different colorings, say p;;, pu, and ppy,, respectively. It follows that
Pij N Pkt N pmn # &, hence w.lo.g. pij = p12, P = p14, and pp, = p;3. We may
also assume that the subgraphs Cy, ..., C\, have coloring p;; and that the subgraphs
g1, ---,gn have colorings p4.

Since g; is connected to a subgraph of Type 4, the subgraphs X; and X; can only have
colorings pi2, p13, P1z or Pi3. Hence these are the possible colorings of the subgraphs
I, I; and I as depicted in Figure 10. It is straightforward to verify that if both
I, and I have coloring p;3 or py3, then subgraph O; can only have coloring py3 or
Pis. Thus if both I, I, and I5 have coloring p;3 or pi3, O would have coloring p;3
or pi3. But O must have the same coloring as subgraph C; which is p;,. Hence this
can never yield a valid perfect 4-coloring. From this we conclude that at least one
of the subgraphs Iy, I;, Is must have coloring p;; or pi3.

Assign true to the variable z; if X; has coloring p;; or Pj3, and assign false to the
variable z; if X; has coloring p;3 or pi3. It can easily be verified that this defines a
satisfying truth assignment for the given instance of 3-SAT. o

Theorem 5.2 For every fized k € N,k > 4, PERFECT k-COLORABILITY is
N P-complete.

Proof. Let £k € N,k > 5. Clearly PERFECT k-COLORABILITY is in NP. To
prove the problem NP-complete we use a transformation from 3-SAT. Again we
transform an instance of 3-SAT to a suitable graph G. To construct G we use the
same type of “building blocks” as in the previous theorem. The subgraph of Type 1
shown in Figure 11 consists of Ki — {w;,w;}. This subgraph is connected to other
types of subgraphs via a link I; adjacent to w; and a link l, adjacent to w,.

Let C = {e1,...,cx} be the set of colors to be used in a perfect coloring of G. If
U = {c| thereis an i € {1,...,(k — 2)} such that ¢(v;) = ¢ € C} is the set of colors
of v1,...,U(k-2) in the subgraph of Type 1 (see Figure 11a), then we say that this
subgraph has coloring py.

Figure 11
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The subgraph of Type 2 is shown in Figure 12a. This subgraph has the same
function as the subgraph of Type 2 in the previous theorem, i.e., subgraphs of Type
1 connected to this subgraph must all have the same coloring py for some U C C
with |U| = (k — 2).

b)

Figure 12
The subgraph of Type 3 is shown in Figure 13a.

Figure 13
The subgraph of Type 4 is shown in Figure 14a.

7 t
X
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Figure 14
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We transform the given instance of 3-SAT into the graph G as in the previous

theorem. But instead of using the subgraphs of Type 1, ..., 4 of the previous theorem
we now use the subgraphs of Type 1, ...,4 respectively, as described above.
In this way the nodes v,, -+y Y(k-3) of the subgraphs of Type 3 and 4 are left with
“free” links ly,...,1; respectively. These “free” links are used to connect all the
subgraphs Gi,...,G, of Type 3 and 4 in structures as shown in Figure 15. Every
node v; (i € {3,...,(k — 3)}) of subgraph G’ is connected via a subgraph of type 1
to node V(imod(k-3)+1) Of a first subgraph G; of type 3 or 4. Every next subgraph of
type 3 or 4 is connected to the previous subgraph of type 3 or 4 in a similar way,
i.e., v; of the previous subgraph is connected to U(imod(k-3)+1) of this next subgraph.
The last subgraph G, is then connected to G’ following the same procedure. With
this extra construction it is enforced that in a perfect k-coloring of G there is a set
of (k — 3) colors that can only be used for the nodes v, «+y U(k-3) In the subgraphs
of Type 3 and 4. This has as side effect that the functionality of these subgraphs is
the same as of the subgraphs of Type 3 and 4 in the previous theorem.

Figure 15

From here on we can adopt the previous proof. It follows that PERFECT k-
COLORABILITY is NP-complete for every fixed k € N, k > 4. a

From Theorem 5.2 we can conclude from Lemma 3.2 that also the following
problem is N P-complete.

Problem: DISTANCE-2 COLORING WITH k COLORS, restricted to
(k — 1)-regular graphs. (Fized k € N,k > 4.)

Instance: A (k — 1)-regular graph G = (V, E).

Question: Is the graph distance-2 colorable with k colors ?

Furthermore, with Theorem 3.7 we can also conclude that the following problem is
N P-complete.
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