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Abstract

In this paper, we use the universal covering space of a surface to generalize pre-
vious results on computing paths in a simple polygon. We look at optimizing paths
among obstacles in the plane under the Euclidean and link metrics and polygonal
convex distance functions. The universal cover is a unifying framework that reveals
connections between minimum paths under these three distance functions, as well as
yielding simpler linear-time algorithms for shortest path trees and minimum link paths
in simple polygons.

1 Introduction

If a wire, a pipe, or a robot must traverse a path among obstacles in the plane, then one
might ask what is the best route to take. For the wire, perhaps the shortest distance is
best; for the pipe, perhaps the fewest straight-line segments. For the robot, either might
be best depending on the relative costs of turning and moving.

In this paper, we find shortest paths and closed curves that wind around the obstacles
in a prescribed fashion—that have a certain homotopy type. We consider the Euclidean
and link metrics for general paths, and convex and link distance functions for paths re-
stricted to use c given orientations, such as rectilinear paths. Our work presents these
distance functions in a unified framework and generalizes previous results for paths in
simple polygons. It also results in simplified linear-time algorithms for Euclidean shortest
path trees and minimum link paths and new algorithms for c-oriented paths in simple
polygons.

*This research was supported by Digital Equipment Corportation and the ESPRIT Basic Research
Action No. 3075 (project ALCOM)

tOn leave from the Department of Computer Science of the University of British Columbia. Portions
of this research was performed while at the Computer Science Department of Stanford University.



In the remainder of this section, we review previous results on finding minimum Eu-
clidean and link paths, closed curves, and c-oriented paths. In section 2, we define trian-
gulated manifolds, homotopy classes, and the universal covering space—important topo-
logical tools for our algorithms. Section 3 investigates general paths under the Euclidean
metric. It gives algorithms for Euclidean shortest paths of a certain homotopy class, short-
est closed curves, and shortest path trees. Section 4 deals with the link metric, in which
the length of a path is the number of its line segments. It gives algorithms for minimum
link paths and discusses closed curves. Finally, section 5 develops similar algorithms for
paths restricted to ¢ previously chosen orientations, such as rectilinear paths.

1.1 Euclidean shortest paths

Many researchers have investigated the problem of finding minimum Euclidean paths
in simple polygons. Chazelle [6] and Lee and Preparata [28] gave algorithms that, in
triangulated polygons, compute the shortest Euclidean path between two points in linear
time. We extend their ideas to universal covers and also to maintaining the shortest path
homotopic to a path given on-line. Guibas et al. [20] showed how to compute the tree of
all shortest paths from one polygon vertex to all other vertices in linear time; they use
this as a preprocessing step to solve several shortest path and visibility query problems.
One application of our on-line path algorithm is to compute the shortest path tree using
simpler data structures.

Shortest Euclidean paths have been studied as one of the tractable cases of river
routing in VLSIL. Cole and Siegel [9], Leiserson and Maley [29], and Gao et al. [16] give
algorithms for routing wires with fixed terminals among fixed obstacles when a sketch of
the wires is given—that is, when a homotopy class is specified for each wire. When no
sketch is given or when the terminals are not fixed, the resulting problems are usually
NP-hard [30, 34, 37]. Both Leiserson and Maley and Gao et al. use an algorithm much
like our Euclidean minimum path algorithm to compute the rubber-band equivalent of
each wire as a basic preprocessing step.

Finding minimum paths among obstacles when the homotopy class is not given is a
more difficult problem, and one that we will not discuss. For the Euclidean metric, one
typically builds the visibility graph and searches it with Dijkstra’s algorithm [14]; see
Ghosh and Mount {18] and Kapoor and Maheshwari [26] for efficient algorithms.

There are special closed curves of interest to computational geometers that fit within
the framework of this research. Under the Euclidean metric, the minimum length enclosing
curve of a set of points or line segments is the convex hull of the set. The minimum length
curve enclosing a set and contained in the interior of a polygon is the relative convex
hull of the set. Relative convex hulls, also called geodesic hulls, have been studied by
Toussaint [44], who gave an O((m + n)log(m + n)) time algorithm for computing the
relative convex hull of m points in an n-gon and a linear time algorithm based on a
triangulation for computing the relative convex hull of one simple polygon with respect
to another. Our algorithms run in the same time. Guibas and Hershberger [24] gave an
O(n + mlog(n + m)) time algorithm as an application of two-point shortest path queries.



Relative convex hulls are studied in connection with the separability of simple polygons
under translation [4, 11, 42, 43].

1.2 Link shortest paths

Researchers have also looked at finding minimum paths in simple polygons under the
link metric, in which the length of a path is the number of its line segments. Suri [41]
developed a linear time algorithm for computing the minimum path between two points
in a simple polygon. Ghosh [17] recently gave a linear time algorithm as a consequence
of his work on computing the visibility polygon from a convex set. Both algorithms are
based on a triangulation and the shortest path tree algorithm of Guibas et al. [20]. We
show how to extend our Euclidean minimum path algorithm to compute the link minimum
path in time proportional to the number of triangles the path intersects. This gives yet
another linear-time algorithm in a simple polygon, but one that is more direct and also
has application to paths of given homotopy class among obstacles.

When the homotopy type is not specified, Mitchell, Rote, and Woeginger [31] have
given an algorithm that runs in O(Ea(n)log? n), where n is the number of vertices, E is
the size of the visibility graph, and a(n) is the inverse of Ackermann’s function.

Minimum link curves enclosing a set and contained in a polygon separate the set and
polygon using the smallest number of line segments. Aggarwal et al. [1] considered finding
a minimum link convex polygon separating two convex polygons with n total vertices.
They obtained an O(nlog k) algorithm that finds the minimum polygon of & line segments.
They also give a simple O(n) algorithm for finding a polygon with at most one segment
more than the minimum. Wang and Chen [45] show that the algorithm of Aggarwal et
al. can find the minimum link convex polygon that encloses a convex polygon lying in the
kernel of a star-shaped polygon. They reduce two polygons with a total of n vertices to
this case in O(nlogn) time. Ghosh [17] computes the reduction in linear time, allowing
the computation of the minimum link convex separator in O(n log k) time. For non-convex
polygons, Suri and O’Rourke [40] compute a minimum link polygon separating an m-gon
and its enclosing n-gon in O(mn) time. We use our minimum link path algorithm to find
a non-convex polygon in linear time after triangulation and use Ghosh’s refinement of
Aggarwal et al.’s algorithm if the separating polygon is convex.

1.3 Paths restricted to c orientations

In some applications, most notably VLSI, the orientations of paths are restricted. Recti-
linear paths are the most important and, thus, the most studied.

For computing rectilinear shortest paths among rectilinear barriers under the Manhat-
tan, or L, metric, researchers have developed algorithms that work in simple polygons
(e-g. [38]) and in the presence of obstacles [8, 13, 27]. The fastest algorithms for the (glob-
ally) shortest path among rectilinear obstacles have subquadratic worst-case complexity:
O(nlogn) if the obstacles are disjoint [13] and O(nlog? ) if they are not [8].

Mark de Berg [10] has given an algorithm that finds a path that is both a minimum



link and an L; shortest path in a simple polygon. He and others [12] give a quadratic
algorithm for a combined link and L; metric for paths among obstacles.

Giiting [25] defined c-oriented polygons as a generalization of rectangles; he and oth-
ers, such as Rawlins and Wood [36], have looked at geometry problems with restricted
orientations. We, however, seem to be the first to present algorithms for c-oriented paths
in a simple polygon.

2 Preliminaries

We begin by defining some important topological objects.

2.1 Manifolds, complexes, and metrics

Our results apply to boundary-triangulated 2-manifolds (BTMs), which we define below.
BTM:s are slightly more general than polygonal regions in the Euclidean plane. We consider
them primarily because every BTM has a simply-connected covering BTM such that paths
have a unique lift into the covering space. More on this later, however.

First, recall that a two-dimensional manifold with boundary (a 2-manifold) is a topo-
logical space in which each point has an open neighborhood homeomorphic to a two-
dimensional ball or half-ball. The former are interior points and the latter are boundary
points. We restrict our attention to orientable manifolds—no M&bius bands.

A two-dimensional simplicial complex is a triangulated 2-manifold. Spelled out, a two-
dimensional simplicial complex is a collection of triangles, edges, and vertices such that
any two triangles either do not intersect, intersect at a vertex, or intersect at two vertices
and their common edge; no other intersections are permitted. At most two triangles are
incident to an edge; edges incident to a single triangle are boundary edges. Furthermore,
all the triangles and edges incident to a vertex can be ordered so that adjacent edges
and triangles are coincident. All vertices are either boundary vertices with two incident
boundary edges, or interior vertices with none.

Finally, a boundary-triangulated 2-manifold or BTM is a simplicial complex in which
all vertices are boundary vertices. Figure 1 depicts two simplicial complexes; the second
is a BTM.

Simplicial complexes can be represented by Guibas and Stolfi’s quad-edge structure [23],
by Baumgart’s winged-edge structure [3], or by their dual graph. We require that each
triangle be able to access its edges and each edge its incident triangles in constant time.
If a polygonal region is given, we can triangulate it in O(nlogn) time by a sweepline algo-
rithm [35] or, if there are a constant number of boundary components, in linear time [7].

We assume that a path « is given in some form that can be traced through the data
structure that represents a BTM M in time proportional to a’s complexity, C,, plus the
number of times a crosses a triangulation edge, A,. If a is piecewise linear, then C, is
the number of a’s line segments and, using any of the previous data structures, we can
compute a constant number of segment/segment intersection points and determine the



Figure 1: Two simplicial complexes; one is a boundary-triangulated 2-manifold (BTM)

next triangulation edge that would be hit if the path leaves the current triangle. Thus we
traverse a in O(Cq + A4) time.

We consider two metrics for unrestricted paths in a BTM: the Euclidean and link
metrics. The Euclidean metric is the usual L, metric; the length of a curve or subdivision
is the sum of the lengths of its pieces in all the triangles it intersects. In the link metric,
the length of a curve or subdivision is the number of its line segments. Under both metrics,
the minimum length paths are composed of line segments.

In applying the link metric, we would like to consider two adjacent triangles of a BTM
to be coplanar, even if they are not. Thus, contiguous “line segments” that would be
collinear if the triangles they passed through were laid out flat in the plane are counted
as a single segment. This unfolding process is what is used to find shortest paths on the
surface of a polyhedron [32, 39].

For some applications, such as VLSI, the paths constructed must use a constant number
of fixed directions or orientations. Rectilinear paths with the four orientations of north,
south, east and west are the most common. When paths are restricted, the link metric
remains the number of line segment of a path. The Euclidean metric, however, should
be replaced by a distance function that gives the length of the shortest restricted path
between two points. We discuss this more fully in section 5.

A useful example of a BTM is a triangulated polygonal region R in the Euclidean
plane: a set bounded by n line segments with disjoint interiors. If one considers the
line segments as obstacles and looks at paths avoiding the obstacles, then one can form
equivalence classes of paths by relating paths that can be deformed to each other within R.

2.2 Homotopy classes

The topological concept of homotopy formally captures the notion of deforming paths
and curves. Let o and 8 be functions from a topological space X to a topological space
Y that are continuous; that is, the preimage a~1(A) of an open set A C Y is open.
Functions o and 8 are homotopic if there is a continuous function I': X x [0,1] — Y such
that I'(z,0) = a(z) and I'(z,1) = B(z). One can see that homotopy is an equivalence
relation [2, 33]. In this paper, the range set Y is always a boundary-triangulated 2-manifold



M under the subspace topology. We specify the set X in two different ways.

First, we consider paths joining two given points, p and ¢: a path in M is the range
of a continuous function a:[0,1] — M. We set X = [0,1] and require that the endpoints
of a path a be fixed at a(0) = p and a(1) = ¢q. Two paths are path homotopic if one
can be deformed to the other in M while keeping the endpoints fixed. Formally, paths «
and B are path homotopic if there is a continuous map I':[0,1] x [0,1] — M such that
I(z,0) = o(z) and I(z,1) = §(z), and T(0,y) = a(0) = #(0) and I'(1,y) = (1) = B(1).

Second, a closed curve is the image of a circle under a continuous map into M. Thus,
we set X = S!: the unit circle under the standard topology. Two curves with maps o and
8 are homotopic if there is a continuous map I': S* x [0,1] — M such that I'(z,0) = a(z)
and I(z,1) = B(z).

One can go on to define define homotopy in M for two subdivisions a and f—indeed, we
do so in a paper with Leonidas Guibas and Joseph Mitchell [22] and show that computing
minimum link subdivisions is NP-hard. But that does not fit into our framework of
universal covering spaces, which we will define in the next section.

A homotopy relation partitions paths or closed curves into equivalence classes. Thus,
we can describe a homotopy class by giving a representative path, or closed curve, a.
Given a, we seek to compute a minimum length representative of a’s class under the
Euclidean and link metrics.

Let’s look at one concrete example of a path homotopy. In a BTM, a path gives a
sequence of triangles and triangulation edges; we can form a canonical path that visits the
midpoints of the triangles and edges in the same sequence. It is easy to see that a path is
homotopic to its corresponding canonical path—at times we will find it convenient to use
the canonical path as the representative of a homotopy class.

One can concatenate two paths if one ends where the other begins. The next theorem
is a well-known tool for studying paths.

Theorem 2.1 ([2, 38]) The operation of path concatenation has group properties: asso-
ciativity, identities, and inverses.

This has an easy corollary for simply-connected 2-manifolds, in which every loop is
homotopic to a point.

Corollary 2.2 In a simply connected manifold, any two paths with the same starting and
ending point are homotopic.

This corollary becomes useful because we can always find a simply-connected covering
space, which we now define.

2.3 Covering spaces

Informally, a topological space U is a covering space of a space X if, at each point u € U,
there is a corresponding point z € X such that things around u and z look the same in
their respective spaces, but there may be many points of U mapping to the same point z.



Formally, let p: U — X be a continuous and onto map between connected topological
spaces U and X. If every point z € X has an open neighborhood N where the inverse
image p~}(N) is a union |J; U; of disjoint open sets of U and the restriction plu; is a
homeomorphism from U; onto N, then p is a covering map and U is a covering space of X.

A space is always a covering space of itself under the identity map. For a more useful
example, consider the covering space of a BTM M formed by the following procedure (see
figure 2): Choose a base triangle of M, copy it, and make its edges active. Now, any
triangle ¢ with an active edge e is a copy of some triangle t' € M and of an edge €' of
#'. There is another triangle 4’ € M incident to e'—copy it, forming u, and attach u to ¢
along edge e. Make edge e inactive and the other two edges of u active. One can see that
the function that sends the copy of a point to its original is a covering map. The covering
space thus formed is the universal covering space of M.

Figure 2: A portion of the universal cover

The dual graph of the universal covering space, the graph with a node for each triangle
and an arc joining nodes that correspond to triangles that are incident to the same edge,
is an infinite tree rooted at a copy of the base triangle. One can show that the dual graph,
considered as an unrooted tree, is not affected by the base triangle chosen, so the universal

cover does not depend on the base triangle. Furthermore, the universal cover is simply
connected—it has no holes:

Lemma 2.1 The universal covering space U of a BTM is simply connected.

Proof: Consider any path o starting and ending at a point p in the universal covering
space U of the BTM M. The path « intersects some connected subset of the triangles
of the covering space. '

If o intersects only one triangle, then a collapses to the point p by the homotopy
f(t) = (1 - t)a + tp. Otherwise, we can consider the triangle containing p as the base
triangle for the covering space. The dual graph of the space is a tree, so the dual of
the connected subset of triangles that o intersects must also be a tree. In any leaf,
loops of a start and end at the same edge; we can deform these loops to the edge by
an easy homotopy and trim the leaves. By induction, a can be contracted to p.

Thus, the universal covering space is simply connected. m



Figure 3: The lift of a

Any path that begins in the base triangle has a unique lifting to the covering space,
as indicated in figure 3. Formally, let p:U — M be a covering map. If a function f,
from a space W to the BTM M is one-to-one and continuous, then a lifting of f is a map
f:W — U such that the composition pf = f. When we lift a path a, we use U, C U
to denote the BTM composed of the triangles of the universal cover U that intersect the
path é.

One last lemma pulls all of the constructs in this section together:

Lemma 2.2 If o is a path in a BTM, M, then we can construct U,, the portion of the
universal covering space of M that contains the lift of @, in O(Cq + A, ) time.

Proof: The construction algorithm is simple: Begin with U, equal to a copy of the
triangle of M that contains the starting point of the path a. Then trace a through
M and, simultaneously, the lift of a through the covering space—when o crosses a
triangulation edge into a triangle of M, add a copy of the triangle to U, if the lift
has never crossed the corresponding edge before. (Otherwise, the triangle is already
present.) We can trace the path a through the triangles of M in the stated time
bound. =

3 The Euclidean metric

We investigate Euclidean shortest paths and closed curves in three subsections. In sec-
tion 3.1, we remark how the algorithm of Chazelle [6] and Lee and Preparata [28] can
be used to find shortest paths between two points of a given homotopy type. Section 3.2
modifies the algorithm to compute shortest closed curves, which include the relative con-
vex hull. Then, in section 3.3, we maintain the shortest path on-line and, as a by-product,
find shortest path trees in linear time without using finger search trees. This simplifies an
important algorithm of Guibas et al. [20].

3.1 Funnels and the shortest path between two points

First we review funnels, a data structure used by many researchers to find shortest paths (6,
16, 20, 24, 28, 29].



Let p be a point and %7 be a line
segment in a simply connected BTM.
The shortest paths from p to v and
from p to u may travel together for a
while. At some point a they diverge
and are concave until they reach u
and v, as illustrated in figure 4. The
region bounded by %7 and the con-
cave chains to a is called the funnel;
a is the apex of the funnel.

We store the vertices of a funnel in
a double-ended queue, a deque. Fig-
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Figure 4: A funnel

ure 5 shows that the extensions of funnel edges define wedges. When a point w is added
to one end of the funnel, we pop points from the deque until we reach b, the apex of the
wedge that contains w, then we push w. If the apex of the funnel is popped during the
process, then b becomes the new funnel apex. Notice that the edge bw is on the shortest

path to w.

The shortest path algorithms of Chazelle [6]
and Lee and Preparata [28] both look for a path
in a sleeve polygon—a triangulated simple poly-
gon whose dual tree is simple path. We shall look
for a sleeve BTM.

Lemma 3.1 Let o be a path from p to q. One
can compute, in O(Cy + A,) time and space, a
sleeve BTM that contains the Euclidean shortest
path homotopic to a.

Proof: Choose the triangle that contains
p as the base triangle and construct U,, the
portion of the universal cover that contains
the lift of a, according to lemma 2.2.

Figure 5: Splitting a funnel about w

In the dual tree of U,, there is a unique path to the triangle containing the lift of
q; let o/ be the canonical path in U, that corresponds to this dual path. Since U, is
simply connected, paths a and &' are homotopic (corollary 2.2).

The BTM U, C U, is a sleeve. A boundary edge e of U, may separate the
universal cover but can not separate p from ¢. Any path homotopic to o’ that crosses
e does so twice and can be shortened by following e. Thus, the shortest path from p
to ¢ homotopic to ¢ (and to a) is contained in Uy/. m

Trace the canonical path o' through U,s and maintain the funnel of the triangulation
edges crossed. The set of all edges added to the funnel comprises the shortest path tree
rooted at p, that is, the union of all shortest paths from p to vertices of U,s. From this
tree it is easy to recover the shortest path from p to gq. Thus, we have obtained



Theorem 8.1 The Euclidean shortest path that is homotopic to a given path o can be
computed in O(Cq + A,) time and |U,| space.

3.2 Shortest closed curves

The algorithm of the previous section can be extended, without much difficulty, to compute
Euclidean minimum closed curves of a given homotopy type. The running time, once the
space has been triangulated, is linear in the number of triangles explored. This matches
the time bounds of algorithms that compute relative convex hulls [11, 42, 44], the most
practical instance of the minimum closed curve problem.

We begin by building an annulus that contains the shortest curve.

Lemma 8.2 In O(Cq + A,) time, we can build a BTM homotopic to an annulus that
contains the shortest path homotopic to a closed curve a.

Proof: Choose any point p on a and find
the sleeve of the path from p to p along a.
An initial sequence of triangles and trian-
gulation edges of this sleeve will appear in
reverse order at the end of the sleeve (un-
less the sleeve consists of only the triangle
containing the point p). We remove all but
the last of these common triangles, which
we glue together. Because the manifold was
assumed to be orientable, the result is an
annulus. Cutting along one of the non-boundary edges of the annulus makes it simply
connected; any curve homotopic to @ must intersect all these edges. A curve that
crosses a boundary edge e does so twice and can be shortened by following e. Thus,
the shortest curve is contained in the annulus. =

Figure 6: The annulus

We can find the shortest path around the annulus by following the canonical path
around until we meet the shortest path. We prove:

Theorem 3.2 One can compute the shortest curve around an annulus in time propor-
tional to the number of its triangles.

Proof: Choose a point p in a triangle t and follow the canonical path around the
annulus, maintaining the shortest path from p. When the canonical path returns to t,
then switch to following the shortest path—still maintaining the shortest path from p.

When the current path shares an edge st with the shortest path from p, then stop.

The shortest paths from ¢ to ¢ and from s to s are co-incident, so they must be the
shortest closed curve. m

10



Length(!) Index(l,1)
return last — first + 1 check 0 < i < Length(l)
return [[i + first]

Add({,l,z)
decrement first Undo()
push (Add,f,[first]) to stack if stack top is (Add,f,z)
set [first] — z set I[first] — z
increment first
Sphit(f,1,1)

else stack top is (Split,f,?)

check 0 < i < Length(!) set last — 1

push (Split,{, last) to stack
set last «— 1

Table 1: Code fragments for the front-of-list operations

3.3 On-line shortest paths and shortest path trees

In this section, we show how to trace the lift of the path « from p to ¢ and maintain the
funnel used in shortest path computations. This procedure optimizes a path that is given
on-line and is useful for interactive applications.

We can apply this procedure to compute shortest path trees in a simply connected
BTM,; the shortest path tree from a point p is the union of all shortest paths from p to
vertices of the BTM. Guibas et al. [20] compute the shortest path tree of any triangulated
simple polygon by splitting funnels—they use finger search trees to find the splitting
vertices efficiently. We find the shortest path tree by tracing the boundary and maintaining
the funnel; the edges added to the funnel compose the tree. Our algorithm runs in the
same time and uses arrays in place of finger search trees.

First we describe a data structure that supports five operations on ordered lists:

Length(!) Return the number of items in the list.

Index(l,i) Return the sth item in the list.

Add(f,l,z) Add the item z to the f=front (or b=back) of the list /.

Split(f,/,i) Return the sublist of / in f=front (or b=back) of and including
item ¢ and discard the other half of the list.

Undo() Undo the most recent Add() or Split() operation.

We store the list in the entries of an array with indices from first through last. When
we perform an Add() or Split(), we record the changed array entries or indices in a history
stack so that the Undo() operation can return the array to the previous state. The code
fragments in table 1 indicate that the operations can be implemented to run in constant
time. If we begin with an empty list, denoted by indices first = n and last = n — 1, and
perform at most n Add() operations, then an array of size 2n is sufficient.

Using this data structure, we can trace the lift of the path a from p to ¢ and maintain
a list that represents the funnel defined by the shortest paths from p to the current BTM

11



Initialize
list — {p}
stack empty
begin the trace of a at p
repeat
if the trace visits a new triangle A
add A to U,
perform increasing increment search
for the split index i,
ﬁ «
trace a to next edge uw, with u left of v
if crossing out of baseA:
Add(f, list,u)
Add(b, list,v)
else if crossing away from baseA\:
if u is in the funnel, v is new
Split(b, list,i,)
Add(f, list,v)
else if u is in the funnel, v is new
Split(f, list,i,)
Add(b, list,u)
fi else if crossing toward baseA:
Undo(list)
Undo(list)
fi
trace a into next triangle
until done tracing

Table 2: Outline of the funnel maintenance algorithm

edge. Table 2 gives an outline of the algorithm; we describe it below.

We begin in the base triangle with a funnel list containing only the point p. (Whenever
the lift of a is in the base triangle, the funnel is the point p.) When o crosses an edge out

of the base triangle, we add the edge’s endpoints to the funnel.

Suppose the path a crosses an edge % into a new triangle Auvw of U,. If a leaves
through one of the other edges of Auvw, then the current funnel list is split into the
funnel defined by Tw or by 7w as illustrated in figure 5. We compute the index i where
the list splits when the point w is added and store ¢ with the triangle Auvw. We use
an increasing increment search from the front of the list to find the index ¢ in 2log:
probes: check the extension of the 1st, 2nd, 4th, 8th, etc, edge of the funnel until we pass
the point w, then perform binary search to find the wedge containing w. By searching
from the front and back simultaneously, we find the splitting index in O(logd) steps,

12



where d = min{i, Length(l) — i}. Finger search trees were used in [20] to implement the
simultaneous increasing-increment search, but arrays avoid the extra pointer complexity.

Consider the dual graph of U,—the triangles of the universal cover that intersect the
lift of a—as a tree rooted at and directed toward the base triangle. When the path
a encounters a triangulation edge, a is heading either away from or toward the base
triangle. If o is heading away, then we perform a Split() indicated by the index stored in
the current triangle and Add() the new triangle vertex to obtain the next funnel. If « is
heading toward the base, then we undo the last split/add pair. Lemma 3.3 establishes an
important invariant of the algorithm and implies that, in the first case, the correct split
index is stored and that, in the second case, the correct split/add pair is undone.

Lemma 3.3 Suppose the algorithm has traced a path a from p up to q. The pairs of
funnel operations on the history stack come from the triangulation edges crossed in order
by the shortest path from p to ¢ homotopic to a.

Proof: We prove this lemma by induction on the number of triangulation edges that
a crosses. The invariant holds trivially if o is entirely contained in the base triangle.

Suppose the invariant holds for all paths crossing j triangulation edges. Let a be a
path composed of a path o crossing j triangulation edges and a path o crossing one
edge. By the induction hypothesis, the operations used to construct the funnel of the
path ¢ are those of the shortest path homotopic to o/ in order. The operations that
advance from one triangle to the next, however, preserve this invariant. s

Except for finding the splitting index—which one does once for each triangle of the
universal cover U,—one does a constant amount of work when visiting a triangle. The
recurrence relation analysis of [20] shows that the time to find the splitting indices is also
linear in A,. Thus, we have established the following theorem.

Theorem 3.3 One can trace a path a through the universal cover of a BTM and maintain
the funnel in O(Cq + A,) time and space.

If P is a triangulated simple polygon and o« is the path from a vertex p around the
boundary of P and back to p, then the algorithm computes the edges of the shortest paths
from p to vertices of the polygon—that is, the shortest path tree of P.

4 The link metric

In the link metric, the length of a path or closed curve is the number of its line segments.
Section 4.1 gives an algorithm to compute a minimum link path of a homotopy class in
time proportional to the number of triangles that it intersects and Section 4.2 briefly
discusses minimum link closed curves.

4.1 Computing the minimum link path

In this section we show how to compute the minimum link path, amn;,, homotopic to a
given path a in time proportional to Co+ Ay +A the complexity of the path a plus the

®min?
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number of triangles intersected by both paths. Our approach is inspired by Ghosh’s [17]
observations about the relationship between minimum Euclidean and link paths in simple
polygons. We compute the Euclidean shortest path and then use a greedy approach to
minimize the number of line segments. Our algorithm is output-sensitive and is simpler
than that of Ghosh in the simple polygon case; it avoids his middle step of computing a
visibility polygon.

First, some definitions: Since we have enough time to compute the Euclidean shortest
path in the homotopy class of @, we may assume that « is the shortest path from p to
g. As before, U is the universal covering space and U, consists of the triangles of U that
intersect a.

Traversing o from p to ¢, we can label each vertex as a left or right turn. We call
an edge Tu of « an inflection edge if the labels of ¢t and u differ; edges incident to p and
to ¢ can also be called inflection edges. (Ghosh calls such edges eaves.) The extension of
a line segment u in U, denoted ezt(fu), is the line segment, ray, or infinite line formed
by extending fw until it hits boundary points of U. In a simple polygon, Ghosh observed
that there is always a minimum link path including one line segment from the extension
of each inflection edge. This is also true in a simply connected BTM:

Lemma 4.1 If Tu is an inflection edge of a Euclidean shortest path o, then a minimum
link path homotopic to o can be assumed to use a subsegment of ext(tu).

Proof: Let s and v be the end-
points of the extension ezt(fu) so
that these points appear in order
s, t, u, v. Each of the segments
st, tu, and uT separates p from
q in the universal covering space
U, so any path from p to ¢ must
cross all three segments, as shown
in figure 7. If a path o’ from p to
q intersects st at a and @v at b,
we can shortcut o’ with the seg-
ment ab C ezt(Tu). Since some
line segment of o intersected tu,
this shortcut does not increase the number of segments on the path. =

Figure 7: Extension ezt(fu) separates U

Thus we can assume that any inflection edges are included in the minimum link path.

We have reduced our problem to one of finding the minimal link path from @7, a
segment extending one inflection edge, to u’v’, a segment extending another, where the
shortest path from u to u' is concave; see figure 8.

If the extension segments 7T and u'v’ intersect in U,, then no additional segments are
needed. Otherwise, consider the Euclidean shortest path v from v to v’ in U,; the path
from u to u’ and y form what has been called the hourglass of wo and wv’. The path v
helps find a segment of the minimum link path.

14



u

Figure 8: The reduced problem

Lemma 4.2 In the polygon pictured in figure 8, the minimum link path joining uv and
W'V’ either has one segment or can be chosen to include an inflection edge of v, the shortest
path from v to v'.

Proof: If 4 is concave, then the concave chains can be separated by a line; one
segment can join @7 to u'v'.

Otherwise, 4 has an inflection edge. Let bc be the inflection edge closest to v as
shown in figure 9. (We consider v to be labeled opposite u so that b may be v.) Because
the paths from u to ¢ and v to ¢ are both concave, the extension of bc intersects v at
some point a. Let cd be the extension of bc through ¢ in U,. Any path from @7 to w/v’
must intersect both be and cd, so shortcutting the path with a subsegment of ad does
not increase the number of its line segments. »

Finally, we discover the inflection edge be, if it exists, in time proportional to the
number of triangles that @c intersects by the procedure outlined in table 3 and described
in the rest of this section.

Notice that ad is tangent to the concave chain. We find ad by moving the point a up
the edge v and maintaining the point ¢ tangent to the chain. We stop the motion when
one of three cases occurs:

1. The tangent @¢ becomes the extension of u/v’: no extra segments are needed.

2. The moving point a reaches v: the segment 7¢ is the inflection edge.
3. The tangent @ encounters a point b between a and c: the segment bc is the inflection

edge.

The third case is the most difficult to detect; we use the following technical lemma:
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Variables:
Points a, ¢, ¢’
a sweeps up uv
dc tangent to concave chain at ¢
¢ is point on concave chain following ¢
Edge ¢
first triangulation edge (t-edge) hit by av
Data structure:
(H,bs): Convex hull and point with tangent of slope ¢ u
Description:
Uses Graham scan [19] to maintain convex hull of
endpoints of triangulation edges (t-edges)
Operations:
Add(p,f or b): Add points to front or back of H
ChangeSlope(6): Change slope and recalculate by
Initialize
a — u, ¢ — nezt(a), and ¢’ — nezt(c)
e « first t-edge hit by @b
for each t-edge crossing @c in order from a to ¢
if an endpoint p lies in Zvac then Add(p,b)

repeat
ChangeSlope(slope of ac)
move a along v, rotating around c until
case 1: ¢ = u’ and a reaches u'v’
use gu’ in minimum link path
exit program
case 2: a reaches v.
use ¢ in minimum link path
exit loop
case 3: Line segment @c hits b,
use @c¢ in minimum link path
exit loop
case 4: slope of gc points into H at by
ChangeSlope(slope of 4é)
case 5: a hits e
if an enpoint p lies in Zvac then Add(p,f)
e «— first t-edge hit by av
case 6: a, ¢, and ¢/ become collinear
For each t-edge that hits ¢¢’ in order from ¢ to ¢’
if an endpoint p lies in Zva¢’ then Add(p,b)
change pivot ¢ « ¢/, ¢/ — nezt(c’)
loop
repeat program, since path has not reached u’v’

Table 3: Computing the minimum link path between inflection edges %% and u'v’
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Figure 9: The shortest path 4 has an inflection edge bc

Lemma 4.3 The point b first encountered by the sweeping tangent is the endpoint of a
triangulation edge that crosses the segment Wa or the chain from u to c.

Proof: Because a triangulation has
no reflex vertices, the tangent segment
ac must cross a triangulation edge in-
cident to b before it touches b. Since
the segments %a and @c and the con-
cave chain from u to ¢ form a closed
region, shown in figure 10, the lemma
holds. =

Lemma 4.3 implies that we need look
only at the convex hull of the endpoints
of triangulation edges that we encounter
during the sweep. These endpoints ap-
pear on the hull above @é in the same or-

Figure 10: The sweep stops at b
der as their edges appear along @¢. Points

are added only at the ends of the segment @¢, so we can maintain the convex hull by a
Graham scan [19] in a deque. Furthermore, the slope of @¢ changes monotonically, so we
can also maintain bg, the point of the hull having a tangent with this slope. When @z hits
bg, then byc is an inflection edge that lemma 4.2 says can be used in a minimum link path.

The above arguments establish the correctness of the algorithm outlined in table 3. To
establish the running time, notice that the amount of work required to find a segment of
the minimum link path is proportional to the number of triangulation edges that intersect
the region depicted in figure 10. Since this region is free of points, these edges must
intersect either @@ or @c. Since these segments are part of the minimum link path, we
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can charge this work to the number of triangles crossed by the computed path and obtain
theorem 4.1.

Theorem 4.1 A minimum link path o', homotopic to a, can be computed in O(Co+ Ay +
A,r) time and space.

In a simply connected BTM, a minimum

link path can cross any triangulation edge at  M— ;“ ‘f“

. . I\ 2. X1
most three times: any path that crosses a tri- N T

LN

angulation edge e four or more times can be 7 0 N
shortcut by a portion of e, decreasing its length U7 1ttd N ]
without changing its homotopy class since all Y !' “l :' 1 D\
paths with the same starting and ending point | Y A s S A
have the same homotopy class. Thus, the total |} = z {

time to compute minimum link paths in simple
polygons is linear. Among many obstacles, a
minimum link k-gon can intersect ©(kn) trian-
gulation edges, as shown in figure 11.

Figure 11: The minimum link k-gon
intersects ©(kn) edges

4.2 Minimum link closed curves

As in section 3.2, if we know a vertex or edge of the minimum link closed curve, we can
use the path algorithm to compute it. When the minimum link curve is convex, however,
it seems difficult to find such a vertex or edge.

Because of the algorithm of section 3.2, we can assume that our closed curve « is the
minimum Euclidean curve of its homotopy class. If a has an inflection edge, then we can
use the path algorithm of table 3 to find the paths between inflection edges. Lemma 4.1
implies that the resulting closed curve is a minimum link curve.

If @ has no inflection edges, then the minimum link curve is convex. One can use the
technique of Aggarwal et al. [1] as extended by Ghosh [17] to find the minimum link curve.

Briefly, one can find a curve by starting at some point p and finding the minimum link
path back around to p by the algorithm of the previous section. The resulting path has at
most one segment more than the minimum. Then one rotates the curve, keeping track of
its points of contact with the inner and outer chains, to see if one can shorten the curve.
The algorithm finds a minimum link closed curve with k line segments in O(nlog k) time.
It would be interesting to discover a matching lower bound.

5 Paths with restricted orientations

For some applications, such as VLSI, the paths are restricted to c fixed directions or
orientations; we call such paths c-oriented. Rectilinear paths with the four orientations
of north, south, east and west are the most common. In this section, we show that the

universal cover is also a good tool for finding minimal c-oriented paths of a given homotopy
class.
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First, in section 5.1, we define convex polygonal distance functions appropriate to a
given set of orientations. Then we show in section 5.2 that the length, under a convex
distance function, of the path computed in section 3.1 equals the length of the shortest c-
oriented path. Section 5.3 shows how to modify the minimum link algorithm of section 4.1
to compute minimum link c-oriented paths. Finally, section 5.4 shows that for paths
restricted to three directions and for rectilinear paths, each homotopy class has a shortest
path that is also a minimum link path. Mark de Berg [10] has independently noted this
fact for rectilinear paths in simple polygons.

In all of the following sections, when we wish to construct paths restricted to ¢ orien-
tations explicitly, then we also restrict the boundary of the obstacles to the same set of ¢
orientations. With such a restriction, there is always a path with at most O(n) segments
that follows obstacle boundaries. Without such a restriction, one can construct examples
where any c-oriented path joining a given pair of points has infinitely many line segments.

5.1 Metrics versus distance functions

When paths are restricted, the link metric remains the number of line segment of a path.
The Euclidean metric, however, should be replaced by a distance function that gives the
length of the shortest restricted path between two points. One example is the Manhattan
or L; metric for rectilinear paths, in which the length of a vector v is the sum of the
lengths of the projections of v on the horizontal and vertical axes.

More generally, we can use Minkowski’s convex distance functions [5]. Let A be a
convex set whose interior contains the origin. The length of a vector v with respect to 4
is the amount that A must be scaled to include v; that is, ||v||, = liminf{\ > 0:v € AA}.
The distance from point 7 to s is ||s — r||,. We do not call this a metric because it need
not be symmetric: |{v||, may not equal | - v||,. It does, however, satisfy the triangle
inequality [5]: if u + v = w then |[u]|, + |||, > l|lwl,-

The points of the boundary of A are precisely the unit vectors of the distance function
| - 1|4 [5]- Thus, choosing A to be the unit circle gives the Euclidean metric; the diamond
defined by convex hull of the unit vectors in the axial directions gives the L, metric. For a
c-oriented path, a path restricted to follow the orientations of ¢ unit length basis vectors,
we choose A to be the convex hull of the basis vectors. Since the convex hull is a c-gon that
contains the origin in its interior, any vector v can be expressed as a linear combination
of basis vectors with positive coefficients. The next lemma proves that the length ||v||, is
the minimum sum of coefficients over all positive linear combinations of basis vectors that

equal v and that this length is realized by using the one or two basis vectors adjacent to
v in circular order.

Lemma 5.1 Let U be a circularly-ordered set of basis vectors defining a convez distance

function. Let v be a vector in the cone defined by adjacent basis vectors u and u'. If
v = au + bv/, then ||v||, = a +b.

Proof: If v has the direction of a basis vector u, that is v = au for some positive a,
then ||v||, = a by the triangle inequality.
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Otherwise v lies in the cone defined by u and u'. Suppose that v is expressed by
a positive linear combination involving a third basis vector u”, that is v = au” + w,
with the coefficient @ > 0 and vector w equal the remaining terms of the positive linear
combination. The path following vectors au” and then w to v starts outside the cone
and then enters by crossing, say, u. Therefore, su = au” +tw and v = su+(1-t)w. By
the triangle inequality, however, ||su||, +[|(1 — t)w]|l, < ||lav”||, +t||wlly + (1 =1)||w||,-
In words, the length of the combination cannot increase by eliminating other basis
vectors.

After eliminating all vectors but u and ', the vector v can be expressed uniquely.
This proves the lemma. »

5.2 Shortest paths under a convex distance function

We use lemma 5.1 to find the length of the shortest path of a given homotopy type under
a convex distance function. As before, we first compute the Euclidean shortest path «
from p to ¢ and use it as the representative of the homotopy class. This takes O(Cy + A, )
time.

The proofs leading to theorem 3.1 use only the triangle inequality to show that the
path computed in section 3.1 is minimum under the Euclidean metric. But this implies

Theorem 5.1 The Euclidean shortest path computed in section 3.1 is a shortest path
under any convez distance function.

To compute a c-oriented path of minimum length, it is enough to cut the Euclidean
shortest path at all points with tangent vectors that are among the ¢ basis vectors and
compute c-oriented paths for the resulting pieces:

Lemma 5.2 Lett be a point of the Euclidean shortest path a having a basis vector v as a

tangent vector. Any minimum length path under the convez distance function goes through
t.

Proof: Slice the universal cover into three pieces by a line through ¢ and parallel to
v. Any path from p to ¢ crosses the segment both before and after ¢t. By applying
lemma 5.1 to the cone containing v alone, the shortest path from the first to last
crossing under the convex distance function is inside the segment. u

We can perform this cutting by simply traversing the Euclidean path—think of driving
a car along the path, as in Guibas, Ramshaw, and Stolfi’s kinetic framework for computa-
tional geometry [21], and cutting it whenever your direction is one of the ¢ basis vectors.
(If ¢ is not constant, the time complexity is O(C,logc) because we must search for the
slopes of edges.)

The slopes on each resulting path lie in a cone defined by two adjacent basis vectors.
Thus, by lemma 5.1, each path should be replaced by a path using only those two orien-
tations. If we are unconcerned about the number of line segments, then we can approach
the Euclidean shortest path arbitrarily closely with those two orientations. More likely,
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however, one would want to use the methods of the next section to find a shortest path
with few links; more on this in section 5.4.

5.3 Minimum link c-oriented paths

We use a greedy method quite similar to that of section 4.1 to construct c-oriented paths.
The time required will be proportional to the number of triangles explored, which, in
this case, may be more than the number of triangles intersected by the path. However,
the worst-case bounds are similar to those of section 4.1: If ¢ is a constant, O(nk) time
is sufficient to construct a k link path of a given homotopy class and O(n + k) time is
sufficient in a simple polygon. If ¢ is not a constant, but the directions are initially sorted,
the time bounds increase to O(nklogc) and O(nloge + k).

The next lemma begins to illustrate why more triangles must be explored. It shows
that there are two directions in which a minimum link c-oriented path can start, namely
those of the adjacent basis vectors whose cone contains the first edge of the Euclidean
shortest path. We will have to try both directions and see which leads to the shorter path.

Lemma 5.3 A minimum link path from p to q and homotopic to the Euclidean shortest
path a can always begin with an edge whose orientation is the first edge clockwise (cw) or
counterclockwise (ccw) of the first edge of a.

Proof: Cut the universal cover from p in the directions of the edges adjacent to the
first edge of o in cw and ccw order. Of the resulting two pieces (three if p was on
the boundary of the universal cover), the one that contains ¢ contains the Euclidean
shortest path to q. Because the cuts are along adjacent basis vectors, the only way a
c-oriented path from p can enter this piece is to cross one of the cuts. By using a part
of the cut, one can shorten a path without adding extra links. Thus, we can assume
that a minimum link path begins with an edge in one of the two cut orientations. m

We can try both directions at once in an inductive fashion. Suppose we know that
a minimum link path from p to ¢ can be made to pass through the point r in one of
two adjacent orientations. Then we can construct a point 7/, one link farther along the
minimum link path from p to ¢, with the same property: any minimum link path from p
to ¢ can be made to pass through ' in one of two adjacent orientations.
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This situation is illustrated in figure 12.
Any minimum link path can be made to pass
through r with adjacent orientation vectors u
and v. Draw line segments (or rays) in the
universal covering space from r in these two -
directions and let r, and r, be the other end-
points. Cutting along segments 77, and 77, B
separates p from ¢, so the Euclidean shortest
path a crosses one (and exactly one) of them
at a point s. Without loss of generality, we
assume that o turns right at a point ¢ after
s and continues to do so until it reaches an
inflection edge e.

Next we look at three canonical ways to
extend the minimum link path from the point

o,

PP,

Figure 12: Minimum link paths go
through r

r. We prove lemma 5.4, which says that one of these three extensions can always be used
by a minimum link path from p to ¢. The construction of another point r that is one link

farther along any minimum link path will come as a corollary of lemma. 5.4.

Lemma 5.4 Suppose a minimum link path a from p to q passes through r in one of two
adjacent directions, that is, in either u or v. Then there is @ minimum link path that

leaves T in one of three canonical ways illustrated in figure 13 and described below.

Proof: We describe the three extensions and show that, based on the direction that
o turns after leaving 7, one of the extensions can be used by a minimum link path.

1. One can sweep in direction u with a point a from r (or from s if s is on 775) and
maintain a segment from a to a in direction v as shown in figure 13(1). This sweep
stops when a reaches r, or the segment from a to a encounters a point b to the
right of a. At best, b may equal ¢. Cutting the universal cover from b in direction v
separates r from g, so any path to ¢ must cross this cut. Since u and v are adjacent
orientations, any path that follows direction « from r needs at least two turns to

cross the cut—the minimum link path a might as well make them at a and at the
cut.

2. One can sweep with the point a’ from s to the left of @ and maintain a tangent to «
as in section 4.1. (This may mean first sweeping in direction —u to r before sweeping
in direction v.) Consider the set of tangents defined by the moving point a’ and a
vertex where a turns right between s and e. If this set contains any tangents parallel
to a basis vector, then let w be the last basis vector, b be the point of tangency, and
a be the point on 77, as illustrated in figure 13(2). Again, cutting the universal
cover along ert(ab) separates r from ¢q. Any path that follows v and then a direction
from u clockwise to w takes at least two turns to cross the extension—the minimum
link path o might as well use the extension.
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Figure 13: Three canonical ways to extend the minimum link path

3. Let w' be the direction clockwise of and adjacent to the last basis vector tangent w,
if it exists, or w’ = u if it does not. Then, as in the first case, sweep in direction v
with a point a from r and maintain a segment from a to « in direction w’ as shown
in figure 13(3). This sweep stops when a reaches r, or the segment from a to «
encounters a point b to the left of o. Because there is no tangent in direction ',
cutting the universal cover from b in direction w’ separates  from g. Any path that
follows v from 7 and then turns at or clockwise of direction w’ needs at least two

turns to cross the cut—the minimum link path a might as well make them at @ and
at the cut.

The algorithm presented in table 3 can be used almost directly to find the last basis
vector that is tangent to the Euclidean shortest path. To modify the algorithm to perform
the sweep with a line of fixed slope, as desired in methods (1) and (3), is tedious but
straightforward.

We can observe that, if method (2) applies, then we need not use method (1). The
following corollary uses this fact to find another point that a minimum link path can be
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made to go through.

Corollary 5.2 Suppose a minimum link path a from p to q passes through r in one of
the adjacent directions u or v. Then the minimum link path can be made to pass through
a point r', one turn farther along the path, in one of two adjacent directions.

Proof: When a basis vector is tangent to the path a in lemma 5.4, method (2), then
the point of tangency is at or beyond ¢ and the slope of the tangent is clockwise from
v. Thus, any path from p to ¢ will cross before the extension ert(ab) after the segment
from t in direction v, which is the best that the first method can do. Therefore, a
greedy approach will take the second rather than the first option whenever possible.

Thus, if there is no basis vector tangent, the point 7’ is the intersection of the paths
formed by the first and third methods of lemma 5.4. Otherwise, 7’ is the intersection
of the paths of the second and third methods. »

From these pieces, it is not difficult to form the overall algorithm. Lemma 5.3 says that
initially we start at the point p and have two choices for the initial direction. Whenever we
are in such a situation, we look for a basis vector tangent and apply methods (2) and (3)
or methods (1) and(3) of lemma 5.4. By corollary 5.2 we reach another point in which we
have two choices.

If we reach the destination g in k — 1 repetitions, then the minimal link c-oriented path
has k line segments. The number of triangles explored is at most linear at each step, so
O(nk) time is sufficient, if ¢ is a constant. If ¢ is not constant, then we must account for
the work to find the last basis vector tangent—the time bound increases to O(nklogc),
assuming the c¢ orientations are given in a form that permits binary search.

Two remarks close this subsection.

First, the analysis of the running time can be sharpened in a simple polygon if there
are two opposite basis vectors. If we use the algorithm of Fournier and Montuno [15] to
change the triangulation to a trapezoidation with sides parallel to these basis vectors, then
c-oriented paths can follow the edges of the trapezoids. Now, application of lemma 5.4
computes two minimum link paths from r to r’. If we travel from p to ¢ and arbitrarily
choose which path to take at each intermediate point r, we follow a path that has at
most 2k links—it is at most double the optimal path. In fact, the subpath between any
two intermediate points is at most double the optimal subpath. Any trapezoid edge that
intersected more than six edges of the path could be used to shorten the subpath—thus
no trapezoid is explored more than a constant number of times. The running time of the
algorithm in this case is O(n + k) = O(n) when ¢ is constant and O(nlogc) when c is not.

Second, when c is a constant, it is theoretically possible to compute the path in time
proportional to the time needed to compute the Euclidean shortest path. (“Theoretically
possible” meaning that one would never want to perform the computation this way.)
Compute ¢ different trapezoidations with their sides parallel to the ¢ basis vectors and
find the Euclidean shortest path in all ¢ trapezoidations. When applying lemma 5.4 to
compute the c-oriented path, use the trapezoidation in direction u in performing the
computation of method (1) and use that in direction v in the computation of methods
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(2) and (3). Every trapezoid inspected during the computation intersects the Euclidean
shortest path in that trapezoidation, so the total time is proportional to computing the
Euclidean paths.

5.4 Simultaneous minimization of length and links

We have seen how to compute the length of the shortest c-oriented path under a convex
distance function and how to compute minimum link c-oriented paths. In this section we
remark that a simplified version of the minimum link path algorithm can compute the
path with fewest links of all shortest c-oriented paths. For rectilinear paths and paths
restricted to three directions, we prove that this path is also a minimum link path—that
length and links are minimized simultaneously.

Section 5.2 showed that the shortest c-oriented path under a convex distance function
can be obtained by breaking the Euclidean shortest path at all vertices with basis vector
tangents and approximating each piece by a path that follows two adjacent orientations.
We can use a simple version of the algorithm of the previous section to compute such
paths—only methods (1) and (3) of lemma 5.4 ever apply. By combining the resulting
paths appropriately, merging collinear segments into single links, one can compute the
shortest c-oriented path with the fewest links.

To determine when this path is also a minimum link path, we make the following
definition. A member u of a set of basis vectors U satisfies the halfplane condition if
there is a halfplane that contains all of U except u. Now, consider driving along the
Euclidean shortest path, moving and turning in accordance to Guibas, Ramshaw, and
Stolfi’s kinetic framework for computational geometry [21], and noting which in which
basis vector orientations you face during a turn about a vertex. If the last basis vector at
a vertex has the halfplane condition, then both the minimum length and minimum link
paths can pass through that vertex in the direction of the basis vector.

Lemma 5.5 If the last basis vector, v, of a point t on the Fuclidean shortest path «
satisfies the halfplane condition, then a minimum link c-oriented path homotopic to o has
an edge passing through t in direction v.

---------
............

basis vectors

Figure 14: The halfplane condition

Proof: Cut the universal cover through t along a line that defines a halfplane con-
taining all the basis vectors except v, as illustrated in figure 14. If any c-oriented path
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crosses this cut at ¢, then it must do so in direction v by the halfplane condition and
the fact that v is the last basis vector.

If the crossing is not at ¢, then we can move it to ¢t without increasing the number
of links as follows. Because of the halfplane condition, a c-oriented path must cross
the cut using an edge e that is parallel to v. Separate the universal cover into three
pieces by a line segment through ¢ and parallel to v. We can shorten the path by a
portion of this line segment; the number of links does not increase because edge e is
cut off the path. m

For rectilinear paths and any convex distance function defined by three vectors, all
vectors satisfy the halfplane condition and lemma 5.5 implies that a minimum link path
goes through all the points with tangents that are basis vectors. To compute the minimum
link c-oriented path, we could cut the Euclidean shortest path at all these points and
compute the path greedily. This, however, is precisely the computation of the shortest
path with fewest links—the path computed is minimum with respect to the convex distance
function and the link metric simultaneously.

6 Conclusions

We have shown that the universal covering space of a triangulated region gives a useful
framework for optimizing paths in the region under the Euclidean and link metrics. We
have given simple direct algorithms for Euclidean shortest path trees and minimum link
paths that use arraysin place of finger search trees. We have also given the first algorithms
for computing minimum length and link c-oriented paths.
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