The failure of failures:

towards a paradigm for asynchronous

communication

F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten

RUU-CS-90-40
December 1990

Utrecht University

SR
owWo .
; (, Department of Computer Science
<
? Y Padualaan 14, P.0. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

A
3
%

The failure of failures:

towards a paradigm for asynchronous

communication

F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten

Technical Report RUU-CS-90-40
December 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

IS8N:0924~3275

The Failure of Failures:
Towards a Paradigm for Asynchronous Communication *

F.S. de Boer?!, J.N. Kok?, C. Palamidessi?3, J.J.M.M. Rutten3

1Department of Computer Science, Technical University Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

?Department of Computer Science, Utrecht University,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

3Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

We develop a general framework to study the variety of concurrent languages based
on asynchronous communication, like data flow, concurrent logic, concurrent contraint
languages and CSP with asynchronous channels. The main characteristic of this lan-
guages is that process interacts by reading and modifying the state of some common
data structure. We abstract from the specific features of the various communication
mechanisms by means of a uniform language where actions are interpreted as partial
transformations on an abstract set of states. Suspension is modeled by an action be-
ing undefined in a state. The languages listed above can be seen as instances of our
paradigm, obtained by fixing a specific set of states and interpretation of the actions.

The computational model of our paradigm is described by a transition system. We
show that the traces generated by it already constitute a compositional semantics.
This sharply contrasts with the synchronous case, where some additional branching
information (like failure sets) is needed to describe deadlock. The specific features of a
particular language come to surface when we consider the problem of full abstraction.
These features are reflected by closure conditions on the set of states.

Finally, by means of a formal method for language comparison (embedding) we in-
vestigate the expressive power of our paradigm; we show that, under certain reasonable
restrictions, it is not possible to embed CCS.

1 Introduction

In this paper we propose a general paradigm for asynchronously communicating processes.
Such a paradigm should encompass such diverse systems as described by concurrent logic
languages [Sha89], concurrent constraint languages [Sar89}, imperative languages in which

*Part of this work was carried out in the context of ESPRIT Basic Research Action (3020) Integration.
The research of F.S. de Boer was partially supported by the Dutch REX (Research and Education in
Concurrent Systems) project and the Basic Research Action SPEC.

processes communicate by means of shared variables [HdBR90], or asynchronous channels
[JTH90], and dataflow languages [Kah74].

These systems have in common that processes communicate via some shared data struc-
ture. The asynchronous nature of the communication consists in the way access to these
shared data structure is modelled: the data structure is updated by means of write prim-
itives which have free access whereas the read primitives may suspend in case the data
structure does not contain the information required by it. The execution of the read and
write primitives are independent in the sense that they can take place at different times.
This marks an essential difference with synchronously communicating processes, like CSP
[Hoa78], where reading from and writing to a channel has to take place at the same time.

Our paradigm consists of a concurrent language £ which assumes given a set of basic
(or atomic) actions. Statements are constructed from these actions by means of sequential
composition, the plus operator for nondeterministic choice, and the parallel operator. (For
simplicity, only finite behaviour is considered; recursion can be added straightforwardly.)
Furthermore we assume given an abstract set of states. The basic actions are interpreted
by means of an interpretation function I as partially defined state transformations. A
pure read action a (like, e.g., a test) will have the property that I (@) is a partial function;
it suspends in a state in which I(a) is undefined. A suspended process is forced to wait
until actions of other processes produce a state in which it is enabled. A pure write action
a is characterized by the fact that I(a) is a totally defined function. It can always proceed
autonomously. In general, an action can embody both a read and a write component.
(See Example 1 of Section 2.)

Many languages for asynchronously communicating processes can be obtained as in-
stances of our paradigm by choosing the appropriate set of actions, the set of states and
the interpretation function for the basic actions. For example, the imperative language
described in [HdBR90], based on shared variables, can be modelled by taking as states
functions from variables to values, as actions the set of assignments, and then the usual
interpretation of an assignment as a state transformation. Languages based on the black-
board model [EHLR80], like Linda [Gel86] and Shared Prolog [BC89] can be modelled
analogously, by taking as states the configurations of a centralized data structure (the
blackboard) and as actions checks and updates of the blackboard. Another example is
the class of concurrent constraint languages [Sar89]. These are modelled by interpreting
the abstract set of states as a constraint system and the actions as ask/tell primitives.
Concurrent logic languages, like Flat Concurrent Prolog [Sha89], can be obtained by in-
terpreting the states as the bindings established on the logical variables, and the actions
as the unification steps. An asynchronous variant of CCS [Mil80, Mil83] is modelled by
considering the state as a set (or a multi-set) of actions. Performing an action then cor-
responds to adding it to the set, while performing the complementary action corresponds
to testing whether the action is already in the set. Finally, a variant of CSP [Hoa78],
based on asynchronous channels (see also [JJH90]), can be obtained by taking as states
the configurations of the channels and as actions the input-output primitives on these
channels.

The basic computation model of the paradigm L is described by means of a labelled
transition system. It specifies for every statement what steps it can take. Each step
results in a state transformation, which is registered in the label: as labels we use pairs of
states. Based on this transition system, various notions of observables for our language are
defined. One of the results of this paper is a compositional characterization of these notions

of observables, defined independently of the particular choice for the sets of actions, the
set of states, and the interpretation function. Thus a general compositional description of
all the possible mechanisms for asynchronous communication is provided, so unifying the
semantic work done in such apparently diverse fields as concurrent logic programming,
dataflow, and imperative programming based on asynchronous communication.

The most striking feature of our compositional semantics is that it is essentially based
on traces, namely sequences of pairs of states. A pair encodes the state transformation
occurred during a transition step (initial state - final state). These sequences are not
necessarily connected, i.e. the final state of a pair can be different from the initial state
of the following pair. These “gaps” represent, in a sense, the possible steps made by the
environment. Since there is no way to synchronize on actions, the behaviour of processes
just depends upon the state. Therefore, such a set of sequences encodes all the information
necessary for a compositional semantics. We do not need additional structures like failure
sets, which are needed to describe deadlock in the case of synchronously communicating
processes. We show that our model is more abstract than the classical failure set semantics,
and it is argued that the latter model is not appropriate for describing our language and,
therefore, not for describing asynchronous communication in general.

Another contribution of the paper is the identification of two classes of interpretations,
for which we prove our semantics to be fully abstract. The first class, the elements of
which are called complete, characterizes in an abstract setting the imperative paradigm.
The second class characterizes asynchronous communication of the concurrent constraint
paradigm. Such interpretations are called monotonic.

Having shown how most of the asynchronous systems can be seen as instances of our
paradigm, it is natural to raise the question what languages can be modelled by it. For
example, it would be interesting to see whether or not our paradigm is expressive enough
to simulate synchronous communication mechanisms. The investigation of this problem
requires the formalization of the concept of simulation. To this purpose we consider the
notion of embedding, first proposed by Shapiro [Sha89], and extended in [dBP90a] to
concurrent languages.

An embedding has two components: a compiler and a decoder [Sha89]. Without any
restrictions on these components, any language can be embedded. In [dBP90a), a notion
of embedding is provided which requires the compiler to be compositional and the decoder
to preserve termination modes. We show that even under these conditions any language
can be embedded into £. We propose a third restriction to make the notion of embedding
non trivial.

Additionally, an analysis is given under what further conditions CCS cannot be em-
bedded. Onme of them is the requirement that basic actions are extending. Since both
concurrent logic and constraint languages satisfy this requirement, this result suggests
that those languages are not able to mimic CCS behaviour. We think that further de-
velopment of this kind of argument will provide deeper insight into the differences and
similarities between synchronous and asynchronous communication.

1.1 Comparison with related work

In spite of the general interest for asynchronous communication as the natural mecha-
nism for concurrency in many different programming paradigms, not much work has been
done in the past, neither for defining an uniform framework, nor for providing the ap-

propriate semantics tools for reasoning about such a mechanism in an abstract way. In
most cases, asynchronous languages have been studied as special instances of the syn-
chronous paradigm. For example, in [GCLS88, GMS89] the semantics of FCP is defined
by using the failure set semantics of TCSP [BHR84], and [SR90] uses for a concurrent
constraint language the bisimulation equivalence on trees of CCS [Mil80]. Only recently
[dBP90b, dBP90c] it has been shown that concurrent logic and constraint languages do
not need to code the branching structure in the semantic domain: linear sequences of
assume/tell-constraints are sufficiently expressive for defining a compositional model (not
only for the success, but also for the deadlock case). This model can be seen as an in-
stance of ours, in fact, the tell-constraints correspond to the steps made by the process
and coded by the pairs, while the assume-constraints represent the assumptions about the
steps made by the environment, that, as explained above, are represented by the “gaps”
between pairs.

In the field of data flow, compositional models based on linear sequences have been
developed (for example in [Jon85]) and have been shown to be fully abstract (see [Kok87]
for the first result not depending on fairness notions). For an overview consult [Kok89]. A
related paradigm (abstract processes communicating via asynchronous channels) has been
recently studied in [JHJ90]. Also in this paper the authors propose a linear semantics of
input-output events, as opposed to the failure set semantics. Again, this model can be
obtained as an instance of ours by interpreting the events as state transformations.

Finally, in [HdBR90], a semantics based on sequences of pair of states, similar to the one
we study in this paper, has been developed for an imperative language and shown correct
and fully abstract with respect to successful computations.

The main contribution of this paper is the generalization of the results obtained in
[dBP90b, dBP90c, JHJI90, HdBRI0] to a paradigm for asynchronous communication, and
thus providing a uniform framework for reasoning about this kind of concurrency.

1.2 Plan of the paper

In the next section we start by presenting our paradigm. We give the syntax and the
computational model (characterizing the observational behaviour) of the language, and
show that many formalisms for asynchronous processes can be obtained as instances of it.
Next a compositional model is introduced that is correct with respect to the observational
model. In Section 3 we compare this compositional semantics with the standard notion of
failure set semantics. We show that our model is more abstract and we characterize the
redundancy present in the latter (when applied to asynchronous languages). The issue
of full abstraction is addressed in Section 4. We give conditions on the interpretations,
corresponding to various classes of languages, under which a number of full abstraction
results (possibly after some closure operation) can be obtained. Finally, in Section 5 we
compare the expressive power of asynchronous and synchronous communication, by dis-
cussing some conditions under which CCS can or cannot be embedded into our paradigm.
To this end, a formalization of the notion of embedding is provided. Section 6 briefly
sketches some future research.

2 The language and its semantics

Let (a €)A be a set of atomic actions. We define the set (s €)L of statements as follows:
su=a|st|s+t]|s|t

Moreover, £ contains a special F, the terminated statement. The symbols ‘;’, ‘+’ and ||’
represent the sequential, the choice and the parallel operator respectively. Note that we
do not include any constructs for recursion. In this paper, only finite behaviour is studied
for the sake of simplicity. All the results that follow can be extended as to cover also
infinite behavior!.

The actions of our language are interpreted as transformations on a set (0 €)X of abstract
states. We assume given an interpretation function I of type

I: A- X = partial z

that maps atomic actions to partially defined state transformations. The computational
model of £ is described by a labelled transition system (L, Label,—). The set (A €)Label
of labels is defined by Label = £ x . A label represents the state tranformation caused by
the action performed during the transition step. The transition relation —C £ x Label x £
is defined as the smallest relation satisfying the following axiom and rules:

o If I(a)(0o) is defined then

o @1EE) o

o If s X ¢ then
st gt s+t g t4s g st o' ||t t)s2 ¢

If ' = E then read t for 5'; ¢, s’ || t and ¢ || s’ in the clauses above.

Note that the transition relation depends on I.

There are various reasonable notions of observables for £ that we can derive from the
transition system above described. Given an initial state g, the first observation criterium
we consider, Obs,, assigns to a statement a set of sequences of states. Each such sequence
represents a possible computation of the statement, listing all intermediate states through
which the computation goes. (Such a sequence may end in §, indicating deadlock, if no
transitions are possible anymore and the end of the statement has not yet been reached.)
As an example, we have that if

8 (@_'_,"1) 8 (ﬂ_ﬁe) (a”ﬂ”_l) Sn—1 (6"-—136") s, =F
then 09 - 0y--.0, € Obs,[s)(0). Note that in the definition of Obs;, only connected
transition sequences are considered: the labels of subsequent transitions have the property
that the last element of the first label equals the first element of the second.

'In particular, the co-domains of our semantic models should then be turned into complete spaces of
some kind in order to obtain infinite behaviour as limit of a sequence of finite approximations. A suitable
framework would be the family of complete metric spaces (see [dBZ82)).

The second observation criterion we consider, Obs,, is slightly more abstract than Obs;:
it also yields sequences of intermediate states, but omits subsequent repetitions of identical
states. Thus it abstracts from so-called finite stuttering.

The third observation criterion is the most abstract one: it only registers final states for
successfully terminating computations, and a pair of the final state together with é for
deadlocking computations.

Definition 2.1 Let 53 = £* U E* - {6} and £5 = S U {6}. We define

Obsy : £ — X — P(X})
Obsy : L — X — P(Z})
Obs3 : L — X — P(Zs)
as follows. We put, for i = 1,2,
Obs;[E}(o) = {o}
where ¢ denotes the empty sequence, and for s £ E,

Obsy[s}(0) = | J{o - Obs1[s7](d") : s (ee) s'Yu{o-6: Vo'Vs', =(s (@) s}

Obsz[s)(0) = U{o - Obsy[s](c") : s @) s na #o'}u
U{Obsz[s](0) : s (0e) s'Yu{o-6: VYo'Vs/, ~(s (@) s)}

Finally, we put Obs3 = v o Obsy, with 7 : P(X3) — P(Zs) defined by
YX)={o:w-0€X, for some wyU{é:w-6€ X, for some w}

Note that the definitions of Obs;, and Obs, are recursive. Since we do not treat infinite
behaviour, they can be justified by a simple induction on the structure of statements. The
relation between Obs; and Obs; is immediate: If we define, for a word w € £}, del(w) to

be the word obtained from w by deleting all subsequent occurrences of identical states,
and §: P(X}) —» P(Z}) by

B(X) = {del(w): w € X}

then we have: Obs; = B0 Obs,.

Now we illustrate the generality of the language £ and its semantics presented above. It
does not constitute one language with a fixed semantics but rather an entire family, each
member of which depends on the particular choice of A, ¥ and I. We present a list of five

examples. (In Section 5, an even more general strategy of embedding other languages into
L will be discussed.)

Example 1: An imperative language

Let A be the set of assignments z := e, where z € Var is a variable and e € Fzp is an
expression. Assume that the evaluation E(e)(o) of expression e in state o is simple in
that it does not have side effects and is instantaneous. Let the set of states be defined by

Y = Var — Val

where Val is some abstract set of values. Then define I by

o if z
I(z :=e)(o)(y) = { E‘((t))(a) " Z 7: .
With this choice for 4, ¥ and I, the models Obs; and O (to be introduced below) for
L are essentially the same as the operational and denotational semantics presented for a
concurrent language with assignment in [HdBR90)

One could include in this language a suspension mechanism by associating with each
assignment a boolean expression, which must be true to enable the execution of the as-
signment (otherwise it suspends). A basic action is then an object of the form b.z := e.
Its interpretation is:

oy) HE(b)o)andy#z
I(b.z := e)(o)(y) = { E(e)(o) if E(b)(oc)and y =z
undefined otherwise

Example 2: Concurrent constraint languages

Constraint programming is based on the notion of computing with systems of partial
information. The main feature is that the state is seen as a constraint on the range of values
that variables can assume, rather than a function from variables to values (valuation)
as in the imperative case. In other words, the state is seen as a (possibly infinite) set
of valuations. Constraints are just finite representations of these sets. For instance, a
constraint can be a first order formula, like {z = f(y)}, representing the set {{y =
a,z = f(a)},{y = b,z = f(b)},...}. As discussed in [Sar89, SR90], this notion of
state leads naturally to a paradigm for concurrent programming. All processes share a
common store, i.e. a set of variables and the constraints established on them until that
moment. Communication is achieved by adding (telling) some constraint to the store, and
by checking (asking) if the store entails (implies) a given constraint. Synchronization is
based on a blocking ask: a process waits (suspends) until the store is “strong” enough to
entail a certain constraint.

A typical example of a constraint system is a decidable first-order theory, a constraint in
this case being simply a first-order formula. Given a first-order language L and a theory
T in L define A to be the set of ask and tell primitives, i.e., 4 = {ask(9),tell(¥) : 9 € L}.
Let the set of states be defined by

Y= {19 :de L}
The interpretation function I is given by
¥ fTud k9
N —
I{ask(9))(¥') = { undefined otherwise

and

I(tell(9))(¢") = D A&

Example 3: Asynchronous CCS

Let (a €)Act be a set of atomic actions and Aect = {@ : a € Act} a set of actions
corresponding with the ones in Act. Let

A= ActU dct, X =7P(A)

Define I by I(a)(o) = o U {a} and

_ _J o ifaeo
(a)(0) = { undefined ifa ¢ o

With this interpretation, an asynchronous variant of CCS is modelled in the following
sense. Actions a € Act are viewed as send actions; they can always proceed. The actions
@ € Act are the corresponding receive actions: an action @ can only take place when at
least one @ action has been performed.

Another interpretation would be to take as states multisets of actions rather than plain

sets. Thus one could register the number of a actions that have been performed, and
decrease this number each time an @ is executed.

Example 4: Concurrent Prolog
For our fourth example we refer to [dBK90], where a mapping is defined from the language
Concurrent Prolog [Sha83] to a language similar to ours.

Example 5: Asynchronous CSP

We consider an asynchronous version of CSP as described in [JJH90, JHI90]. Let (z €) Var
be a set of variables, (h €)IEzp a set of integer expressions, (b €)BEzp a set of Boolean
expressions, and (a €)CName a set of channel names. Let the set of atomic actions @ be
defined by

A= BErpU{a?z: a € CName, z € Var}U{alh: a € CName, h € IEzp}
Let Val be a set of values. We take as set of states
¥ = (Var — Val) x (CName — Val*)

The interpretation function is defined as follows:

N if E(b)(a) = true
I1(b)(o) = { undefined otherwise

Hotee) = { C{gaG)/ @) i ote) o en

I(alh)(0) = o(o(a) - E(h)(0)/e)

Note thata guarded command of the form 91— 50...0¢, > S, (g1,...9. € A) will be
translated as g1; S1 + ...+ gu; Sp.

A similar construction can be made for static dataflow along the lines of [JK89], in which
a state based model for dataflow nets is given. (Already referring to the discussion in the
next section, we observe that in the world of dataflow, it is already known for a long time
that trace models are compositional (and even fully abstract).)

End of examples.

Next we introduce a semantics O that describes the behaviour of £ in a compositional
manner. It is introduced using the transition system, and is later shown to be composi-

tional. (This way of introducing O has the advantage that its correctness can be easily
proved (see Theorem 2.5).)

Definition 2.2 Let (X, Y €)P be the set of all non-emply subsets of finite sequences of
pairs of states, possibly ending in deadlock, Jormally P = P, (Q), where Q = (X x v
(E X Z)* - (Z x {6}). We define O : L — P as follows. We put O[E] = {¢} and, for
s# E,

Ols] = (H{(e,0)- O[5 s %) &'} U{(0,8): Volvs', ~(s @) &)

The function O yields sets of sequences of pairs of states, rather than just states. The
intuition behind such a pair (o,0") is that if the current state is o, then the computation
at hand can transform this state into o’. For instance, if

(ﬂ-—ﬁ)i) $1 (ﬂié) e (a"-l—,d)‘.—l) 8n-1 (al,:)“) Sy = .E
then (o1,07) -+ (04,0%) € O[s]. An important difference between the functions Obs; and
O is that in the definition of the latter, the transition sequences need not be connected:
for instance, in the above example o} may be different from o3.
The main interest of O lies in the fact that it is compositional. This we show next. To

this end, semantic interpretations of the operators i »+, ||, denoted by the same symbols,
are introduced.

Definition 2.3 Three operators ; ,+,||: P x P — P are introduced as follows.

* Xi; Xp = {wiw;: wy € X3 A wp € Xp},

w ifwl=w-(a,6)

h & = .
where wy; we w, - wp otherwise

* X1+ Xz = rem(X; U Xp),
where rem(X) = X \ {(0,6): o', Xoo) # 0},
and X on ={w: we (T x Ts)*A(0,0')-we X}.

o Xi|| Xz = {wilwy: vy € Xy Awp € X3},
where ||, || : @ X @ — P are defined by induction on the length of words wy, wy € Q
as follows:

~wfle=w [vUw | v

(01,02) - (wlflwe) if wy = (01,02) - W]

. N CY) if = v = (0,6)
wy ifu =c¢
(] otherwise

The sequential compositon ; of X; and X, appends to the sequences of X; not ending
in deadlock the sequences of X;. The definition of the choice operator + makes use of a
function rem that removes those initial occurrences of deadlock (o,6) for which there is
an alternative non-deadlocking pair present, that is, a pair (o, 0"). The motivation is that
if a process is in state o and has the choice between a deadlocking step and a successful
step, it will never choose the former. Note that this analysis of § removal takes place only
at the level of initial steps. The parallel composition is defined as interleaving: the merge
operator ||, applied to two sets of sequences X; and X3, takes all the possible interleavings

9

wlﬂuu of words wy € X; and wy € X,. The set wlﬂwg is the union of two so-called left
merges: w; || w; and wp || wy. In wy |L w2, every word starts with a step from the left
component w;. This can be a delta step (o,6) only in the case that also w, starts with
the same (o, §). If w; offers an alternative (o, 0’) as its first step, then the initial deadlock
of wy is neglected: this is expressed by

(0,6)- wfj(0,0") - w0y = (0,6) - wy ”_("’f") - wp U (sigma,o’) - wy || (0,6) - wy
= QU (0’, a’) * (w2“(0" 6) : wl)

Theorem 2.4 (Compositionality of O) Forall s,t€ L, * € {413,

Ols + t] = O[s] * O[]

Proof
1. The case that * is ; is trivial.
2. Ofs+t] = W(o,0")-Os]: s @2 &}
U W(o,0)-0ft]: t €2)
U {(g,6): Yo'Vu, (s +¢ () u)}
= Ul(e,0)-Ofs]: s &2 &1}
U U(e,0)-0[t]: t @2)
U ({(,6): Yo'Vs!, =(s 2%)} {(0,8): Vorve, ~(r ©Z))}
= (U{(e,0") - O[s]: s (@) 8’} U {(0,6): Vo'Vs', (s (@) s
+ (Ul(e,0)-0[1: t 92 ¢} U {(0,8): Yorve, =(t @) 1)}
= O[s] + O[]
3. We prove now that O[s || t] = O[s] || O[t]. Let’s first introduce some notation: we

write s = s’ for

'
dsy,...8, € L,04,0%,...04-1,0,_, €%,

s= g (61_:?1) 5 (02_1;'2) oe-- (Un—l_,fn—l) sa=8 A w=(01,00) (0n_1,0,_;).
By the definition of O and || it is sufficient to consider only words of the form
w € (EX E)* and w-(0,8) € (T x T)*- (X x {6}). We have the following equivalent

statements.
Case 1: w € (X x X)*

weO[s||t] & s|[t2E
Ju,w:sBE A tBE A we wfjuw

3w, we:w € Ofs] A wp € Oft] A wEwlﬂwz
w € Ofs] || Of¢].

¢ ¢

10

Case 2: w-(0,6) € (X x Z)*- (T x {6})
w-(0,6)eO0fs||t] & 3FseL,Vo'eX,uecl:
st A 3%V) A s£E

& Ju,we,3Is,t',Voe L, uel:
sBs A tBY A wewfu A
(if 8' # E then (s’ (g)u)) A

(if ' # E then ~(' % u)) A
(#E v t #E)

& (treating only the most interesting case :
s'#E N V#£E)
dwn, wy : wy - (0,6) € Ofs] A
w - (0,6) € O[] A
w € w||w

& 3dw,w:w - (0,8)€ Ofs] A
wy - (0,6) € Oft] A)
w-(0,6) € wy - (0,8)}jw; - (o, 6)

& w-(0,6)€ O[s]| O[t]-
a

Finally, it is shown that O is correct with respect to the observation functions Obs;, for
¢t = 1,2,3. That is, if two statements are distinguished by any of these functions, then O
should distinguish them as well. We start by showing that O is correct with respect to
Obs,, from which the other two cases will follow. The relation between Obs; and O can

be made precise using the following abstraction operator. Let @ : P — £ — P(X}) be
defined by

[{a} if X ={e}
a(X)(o) = { U{e - Ot(X(a,a'))(U') ! Xeo)#F0tU{0-6: (0,6)€ X} otherwise

The operator o picks from a set X, given an initial state o, all connected sequences; for
each such sequence, a delivers the sequence of the second elements of the pairs occurring
in that sequence.

Theorem 2.5 (Correctness of 0O) ao O = Obs,

Proof

a(O[s])(0)

(o00')

U{o-a(O[s])(0"): s == s'}u{6: Va'Vs, -(s (@) s')}

(00))

Obsy[s](o)

11

(induction) J{o - Obsi[s'](o") : s == s'}u {6: Vo'Vs!, (s @) o

a(U{(01,02) - Os]: s ‘% s} U {(01,6) : Voo¥s!, (s 1% $)})(o)

)}

As a corollary, the correctness of Obs, and Obs; is immediate:

Obs; = f0 Obs; = foao O Obsz=+00bs;y=v0a00

3 Comparison with failure semantics

The reader familiar with the various semantic models for synchronous concurrency (as
exemplified by languages like, e.g., CCS [Mil80] and TCSP [BHR84]) might be surprised
and might even be made somewhat suspicious by the simplicity of the model O. It
is well known that the most abstract semantics for CCS, called fully abstract, that is
still compositional and correct (with respect to the standard trace semantics) is failure
semantics, and that the trace semantics for CCS is not compositional. (See [BHR84] and
[BKO88].) How come that for the present language failure semantics is not needed and
already a trace-like model (O) is compositional?

Failure semantics assigns to statements sets of streams of actions possibly ending in a
so-called failure set of actions. The intended meaning of a stream of actions ending in a
failure set is the following: after having performed the actions in the stream, the statement
can refuse the actions present in the failure set. That is, if the environment offers one or
more (possibly all) of these actions, then the parallel composition of the environment and
this statement will deadlock. Note that the environment can offer (by means of the plus
operator for nondeterministic choice) more than one action at the same time.

For our language £, one could try to mimic this approach and define a failure semantics as
well. The first thing to be observed is that it would not make sense to have sets of actions
for the failure sets, because an action may or may not deadlock depending on the current
state (I(a) is in general a partial function). Therefore it would be better to take sets of
states, namely those that would yield a deadlock when generated by the environment. Now
the main difference between the synchronous and the asynchronous case is essentially that,
in the asynchronous case, there is a fundamental difference between the role of the actions,
on the one hand, and the states, on the other. Consider a statement s in an environment.
At any moment in the computation the way in which this environment can influence the
possible behaviour of s is not so much determined by the fact that the environment can
choose among a set of actions. What is relevant is the fact that corresponding to each
such choice there will be a new state, which does influence the activity of s: in this new
state, s may or may not be able to perform some action that is enabled. In other words,
although the environment can perform different actions, it cannot simultaneously offer
different states. At every moment in the computation there is only one relevant state (the
“current” state).

The above should, at least at an intuitive level, make clear that it is sufficient to use
failure sets that contain only one element. This, however, means abandoning the idea
of failure sets altogether. The result is our semantic model O based on streams of pairs
of states that can possibly end in a pair (0,6). The correspondence with the failure set
semantics (containing only one element) is given by interpreting such a pair (0,6) at the
end of a stream as a failure set with one element, o. If the environment offers the state o,
then the statement will deadlock.

12

Figure 1: In case of asynchronous communication, s and ¢ cannot be distinguished by any
context.

Let us inspect a brief example to make this point more clear. Suppose that
A ={a,b,1,6}, T={1,2}
andthat I: A - X% — partial 2 is defined by

Ha)(i) = { llmdeﬁned ii : : ; 1)) = { 121ndeﬁned ii z Z ?
I(r)(i) = i, for i = 1,2, I(6)(i) = undefined, for i = 1,2

Next consider two statements
s=1;6 + 1;b, t=7;a 4+ 70+ 76

(see Figure 1).

Without giving any formal definitions, the failure semantics for s and ¢ would be as
follows (using (*, *) to indicate either (1,1) or (2,2)):

Jailure(s) = {0, (*,)(1,1)0, (x,*)(2,2)0, (%, %){1}, (*,%){2}, (*, *)0}
Jailure(t) = {0, (x,#)(L,1)0, (,#)2 20, (t,#}{1}, (+,#){2}, (+,#){1,2}, (5,00}

(Note that elements like (*,*)d are present in failure(s) and failure(t) because these are
closed, as in the standard failure semantics, under taking arbitrary subsets of failure sets:
if wX is an element and Y C X, then also wY is an element.)

Clearly, the two statements are distinguished because of of the component 7; § in ¢, which
does not occur in s: This explains the presence of (*,%){1,2} in failure(t). However, a
moment’s thought is sufficient to see that both s and ¢ will have the same deadlock
behaviour in all possible environments. For, any of the deadlock possibilities represented
in ¢ by (*,%){1,2} occurs also in the meaning of s, namely in the shape of (*,x)(1,1)
and (*,*)(2,2). Therefore s and ¢ need not be distinguished. As we can see, O does not
distinguish between the two statements:

O[s] = O[] = {(»,*)(1,1), (%, %)(2,2), (*,%)(1,6), (*,%)(2,6)}

A remedy suggested by the above example would be to allow, in addition to the usual
closure under arbitrary subsets, also the closure under taking arbitrary unions of failure

13

sets. It can be easily shown formally that such a closure condition would yield a correct
compositional model. In fact, the resulting model would be isomorphic to our semantics
O: allowing arbitrary unions of failure sets is equivalent to having one-element failure sets.
Thus we find back the observation made above at an intuitive level.

We can conclude that for our asynchronous language £ the failure model is not abstract
enough (let alone be fully abstract), since it distinguishes more statements that necessary.
Instead, a stream-like model O, which is also compositional but more abstract, is more
suited. The question of a fully abstract model for £ that is correct with respect to Obs
will be treated in the next section.

4 Full abstraction

In this section we discuss the problem of the full abstraction of the compositional semantics
O (with respect to the different notions of observability) for two classes of interpretations.

4.1 Complete interpretations

The first class is intended to characterize the asynchronous communication of the imper-

ative paradigm. Such interpretations are called complete and satisfy the following two
properties:

o For every 0,0’ € ¥ there exists an atomic action ¢ € A (also denoted by a(c,c"))
such that

“w_) o fo*=0
K(a)(o™) = { undefined if o* £ o

If the current state is o then the action a(o, 0’) changes it to o’; otherwise the actions
blocks.

e For every s,t € £ and every 0,0’ € ¥ there exists a state u € ¥ (also denoted by
p(o,0")) such that (o, u) and (i, ') do not occur in O[s]u O[t].

Example We consider a variant of Example 1 of Section 2 with multiple assignment. Let A
be the set of atomic actions that can istantaneously test and perform multiple assignment.
It is easy to see that the first property is satisfied. For the second one, consider statements
s and ¢. Let y € Var be a variable that does not occur in either s or ¢. (Thus s and ¢ do

not change the value of y.) Let 0,0’ € X. Choose v € Val different from o(y) and o'(y)
(Both Var and Val are assumed to be infinite.) Then define

r(0,0)(z) = { olz) Hezy

v ifz=y

Now (&, 7) and (7,0’) do not occur in O[s]u O[t].
End of example.

14

4.2 Monotonic interpretations

The second class we consider here is intended to characterize the asynchronous commu-
nication of the concurrent constraint paradigm. (For a short explanation see Example 2
of Section 2.) The elements of a constraint system are naturally ordered with respect to
(reverse) logical implication. The effect of both the ask and tell primitives is monotonic
with respect to the store, in fact tell only adds constraints to the store, while ask does not
modify it. Since it is modeled by implication, also the successfull execution of ask depends
monotonically on the store, i.e., if a certain ask is defined on o, it will be defined in all the
constraints bigger than o. Both ask and tell are extending, i.e. their action on the store
can only increase the store. An other characteristic is that both ask and tell are strongly
idempotent: if their execution results in a certain store o, to execute them again in the
same store o, or in a bigger store, will have no effect. This properties can be proved easily
by the formalization of ask and tell (see Section 2). Notice that a consequence of them is
that the store will monotonically increase during the execution.

We now formalize these features in our framework. Given a set of states Y, where a state
represents a store (constraint), and a partial order C on T, where o C ¢’ should be read as
“o’ encodes more information than (or the same as) 0”, the behaviour of the ask and tell
primitives is characterized by the following requirements on the interpretation function I:

¢ 0 C o’ = I(a)(o) C I(a)(¢’) (monotonicity)
» I(a)(o) C o' = I(a)(0’) = o’ (strong idempotency)
e 0 C I(a)(o) (extension)

for every action a, states o and o’. (Note that these notions are independent.)
Furthermore, for the construction of the full abstract semantics, we require the following
assumption on the expressiveness of the atomic actions:

(Assumption) For every ¢ C o’ € T there exists an atomic action a such
that

1. I(a)(o) = o', and
2. for every 0" C o (0" # o), I(a)(0") is undefined.

This assumption will be used to construct a distinguishing context in the full abstraction
proof. Actually, what we exactly need, is the language to allow the construction of a
compound statement having the same semantics D (see Section 4.4) as the action a above.
In concurrent constraint languages, the above assumption corresponds to requiring the
atomic actions to contain both the tell (1) and the ask (2) component (like, for instance,
the guards of the language in [dBP90a]). Some concurrent constraint languages (see, for
instance, the languages in [SR90, dBP90c]) do not allow this. However, it is possible there
to construct a statement of two consecutive actions performing the check for entailment
(ask) and the state transforamation (tell), and we can prove that it has the same semantics
D as if it were atomic.

An interpretation satisfying the above requirements is called monotonic.

In the rest of this section we present two full abstraction results. The first one concerns
the full abstraction of O with respect to Obs, Next we consider the second observation

15

function Obs,. For this, O is not fully abstract. We develop a more abstract compositional
semantics D by applying certain closure operators to O, and we show that D is fully
abstract with respect to Obs, both for complete and monotonic interpretations.

4.3 Full abstraction of O with respect to Obs; for complete interpreta-
tions

In this section we prove the full abstraction of O for complete interpretations.

Theorem 4.1 For complete interpretations I, O is fully abstract with respect to Obs,.
That is, for all s,t € C,

O[s] = O[t] & VC(-), Obs,[C(s)] = Obs;:[C(2)]
(Here C(-) is a unary context, which yields for each statement u a statement C(u).)

Proof The arrow from left to right is immediate from the correctness of O with respect
to Obs;: consider s,t € £ with Ofs] = Oft], and let C(-) be an arbitrary context. Then

Obs1[C(s)) ao O(C(s))

ao O(C(t)) (by the compositionality of O and O[s] = O[t])
Obs,[C(1)]

We prove the arrow from right to left by contradiction. So consider two statements s, te
L such that Ofs] # Oft]. We show the existence of a context C(-) with Obs1[C(s)] #
Obs1[C(t)]. Assume that there exists w € Ofs]\ O[¢], say

w = (01,01),...,(0n,0%)

for some n > 1. (The case that the last pair is of the form (o, §) can be treated similarly.)
Let the state u;, for i = 1,...,n — 1, be defined by

pi = p(ot,oi41)

(The first requirement of complete interpretations ensures the existence of such states.)
Next a context C(-) = - || u is defined by putting for the statement u

u = a(01, t1); a(p1,02); -+ a(0h_y1, n1); 6(lin_1,04)

(These actions exist by the second requirement on complete interpretations.) We show
that Obs1[C(s)] # Obs;[C(t)]. Since w € O[s] we have by the definition of O that

s o) | (enat) o

Thus

01,0,)(o! o —1.0n)(on,0!
sl u (1,9)(1 1) (11.,22) ... (Bn-1on)(on00) E
Hence

‘7{#10205 . '#n-—ldndz. € Obs,[s ["]]("1)

16

Suppose that also
01410205 + + * ln_10,0% € Obsy [t || ul(a1)

This would imply, by the definition of Obs;, that

t] u (Guo)eim)mes) | (n-1,0)(7n05) o

Since for all §, (o}, u;) and (pi,0; + 1) do not occur in O[t], this implies

L) | (ona)
Hence w € O[t]. Contradiction. o

4.4 A fully abstract semantics for state transitions

It is not difficult to see that O is not fully abstract with respect to Obs,, in fact O encodes
the states encountered step by step in the computation, (so, also the repetitions of the
same state), while in Obs; only the transitions between two different states are visible.
To obtain a fully abstract semantics we have therefore to abstract from “silent steps”,
namely those steps that do not cause any change in the state. We do so by saturating the
semantics O, closing it under the following conditions:

Definition 4.2 (Closure conditions) Let X be a set of sequences of pairs of states.

Cl wi-weX = w-(0,0) ;mEX (w#e)

C2 weX = (0,0)-weX ((0,0) ¢ X)

C8 w-(0,0)-(0,0) meX = w (0,0)-weX

Cs w-(0,0')-(d",0') m€X = w-(0,0)-wmeX
Furthermore, let Close(X) denote the smallest set containing X and closed under the
conditions C1, C2, C8 and C4.

The conditions C1 and C2 allow for the addition of silent steps, whereas C3 and C4
allow for the removal of silent steps. Note that we do not allow to add silent steps at the
beginning of the sequence (0”, §) because the processes § and T; § can be distinguished by
a plus context (§ denotes the action which is nowhere defined and 7 denotes the identity).
Furthermore we do not allow the addition of (0,0) at the beginning of a sequence w in
case (0,8) € X because this would yield incorrect results with respect to a plus context:
the deadlock possibility (o, §) would be removed because of the presence of (0,0) - w.

Definition 4.3 We define the semantics D as follows: D[s] = Close(O[s])
First we note that D is correct:
Theorem 4.4 (Correctness of D) a oD = Obs,.
Proof
«(Dls])(e) = o Close(O[s]))() = (Ofs])(c) = Obss[s]

The crucial point is that the closure conditions do not give rise to additional connected
sequences, which justifies the second equality. 0

The following theorem states the compositionality of D.

17

Theorem 4.5 (Compositionality of D) We have

D[s1; 5] Close(D[s1]; D[s2])
D'[Sl + 82]] = D[81] -|- D[.?g]
Dls1ll&2] = Close(Dls] || D[s:])

Proof We treat the cases of the plus and the parallel operator, the case of the sequential
operator being straightforward: First we treat the case of the plus operator:

Dls1+ s2] = Close(O[s; + s2])

Close(rem(O[s;] U O[s,]))

rem(Close(O[1]) U Close(O[s2]))

D[s1] + D[s,]

The first equation follows from the definition of D, the second equation is justified by the

compositionality of O and the definition of the interpretation of the plus operator. The
third equation follows from the observation

3o’, w[(0,0") - w € X] & 30’, w[(a,0") - w € Close(X))]

for arbitrary o and set of sequences X.
Next we treat the parallel operator:

Dfs, || s2] Close(O[s, || s2])

Close(Ofs1] || Ofs])
Close(Close(O[51]) || Close(O[s2]))
Close(Dls1] || Ds2])

The first equation holds by definition of D. For the second equation the compositionality
of O is used. For the third equation it is sufficient to prove that for arbitrary sequences
w, w’ Close(w) || Close(w’) C Close(w || w'), which is shown by an induction on the
number of applications of the closure conditions. Finally, the last equation follows by
definition of D. a

The proof of the full abstraction of D with respect to Obs,, for complete interpretations,
essentially follows the same line of reasoning as presented above (for the full abstraction
of O with respect to Obs,).

For monotonic interpretations, we first notice that we can, without loss of generality,
restrict the the domain of @ and D to increasing sequences. In fact, since during a
computation the state increases monotonically, only increasing seqences can be combined
so to give connected results.

Next, we show that D satisfy the following additional closure property:

Proposition 4.8 For monotonic interpretations we have
C4 w-(01,02)- v €D[s] = w -(0,0) w, € D[s]

Jor every s, with o, C 0.
Proof By the requirement of (strong) idempotency of atomic actions. a

We are now ready to prove the full abstraction of D for monotonic interpretations.

18

Theorem 4.7 For monotonic interpretations I, D is fully abstract with respect to Obs,.
That is, for all s,t € L,

D[s] = D[t] & VC(.), Obs3[C(s)] = Obs3[C(2)]-
(Here C(.) is a unary contezt, which yields for each statement u the statement C(u).)

Proof The arrow from left to right is immediate from the correctness of D with respect
to Obs; and the compositionality of D.

The other direction we prove by contradiction: Let w € D[s]\D[t]. Let w’ fill the gaps of
w (so w || w'is a connected sequence), say w’ = (09,01),...,(0n_1,0,). Let,for1 < i < n,
a; be such that I(a;)(0;-1) = 0; and for 0 C 0y (0 # 0i_1) I(a;)(0) is undefined. Note
that such actions exists according to the assumption on the expressiveness of I. Let
U = @15 ...; ay. Note that w' € D[u], and thus by the correctness and compositionality
of D we have a(w || w')(0) € Obsa[[s || u](c), where o denotes the first state of w.

Assume that also a(w || w')(0) € Obss[t || u](0). We derive a contradiction. So there
exist wp € D[t] and wy € D[u] such that a(w || w')(0) = a(up || w1)(0).

First we show that wy € Close(w’): By definition of D there exists w” € Ofu] such that
wy € Close(w”). Thus it suffices to show that w” € Close(w'). From the definition of u
and a(w || w')(o) = a(wp || w1) it is not difficult to derive that w, and thus w” does not
end in deadlock. A straighforward induction on the length of w’ then establishes that for
w"” € Ofu], not ending in deadlock, we have w” € Close(u).

Finally, from a(w || w')(¢) = a(wo || w1)(o) and by induction on the number of ap-
plications of the closure conditions C1,...,C4 in the derivation of w; from w’ , it Is
straightforward to prove that w € Close(up). By the definition of D it then follows that
w € D[t], so contradicting our initial assumption. o

5 On the embedding of languages in £

The language £ is a general paradigm for asynchronous communication, and hence it is
an interesting question to see whether other languages can be embedded into it. Probably
the most interesting results are the negative ones: proving that some languages cannot be
embedded into L.

In this section, a general notion of embedding is discussed. An embedding has two com-
ponents: a compiler and a decoder [Sha89]. Without any restrictions on these components,
any programming language can be embedded into any other language: one can define a
decoder which is strong enough to do the simulation itself. This is not what we want: the
simulation should be performed at the level of the target language. In [dBP90a], a notion
of embedding is provided which requires the compiler to be compositional and the decoder
to preserve termination modes. We show that even under these conditions any language
can be embedded into £. Additionally, an analysis is given under what further conditions
CCS cannot be embedded. One of them is requirement that basic actions are eztending.

We start by giving a general definition of what it means to embed a language L into
the language £. We assume that there is an observation criterion for the language L, say
a mapping Obsy, from L to some domain D;. We then say that we can embed L into £
if we can find a mappings C (“the compiler”), a mapping d (“the decoder”) from the set
of observables D; of L to the set of observables Dy, of L, and if we can make appropriate

19

Obsy,
L — Dy

| |

L — D;

Figure 2: Embedding

choices for the set of states £ and the interpretation function I such that the diagram of
Figure 2 commutes. (In Figure 2 D; stands for the domain reached by Obs;, for example
D3 = ¥ — P(35).) Note that for different i and different observation criteria on the L
level we can have different C and d. It might even be the case that for some criteria we
can find an embedding and for other ones not.

In the rest of this section we restrict ourselves to the case of Obss.

A trivial embedding would be the following: map every statement of L to a different
atomic action, and use in the interpretation I the function Obsy. This is clearly to general.
Every language could be embedded into L.

The first restriction we make is that the translation C from L to £ should be compostional
and context free in the following sense:

Restriction 1 (Compositionality): Each atomic action a € Ay of L should
be mapped to a statement s € £ and an operator of L should be associated
with a context of £, that is, if an operator has n operands, then it will be
mapped to a context with n holes, and each of the holes is associated with one
of the operands.

This first restriction, however, does not prevent us from encoding the syntax of L in the
states of £, as is shown in the following construction:
Take

A={op : opeL}U{a : a€ Ay}
C(a)=a C(s10p s2) = C(s1); op; C(s2)
% = prefizes of statements of L
I(a)(0) = ca I(op)(c) = oop

d(0) = Obsy(a)

If the program is terminated, then we have coded the syntax of the L program in the
final state and we can apply (as our decoder d) the Obsy, operator on this state.

If we look at this embedding, we observe that all the work is done in the decoder d. This,
of course, does not fit with our intention: we want the simulation of the computations

20

Obsy,
L —P(BrxCrx TM)

c \ I d
0b83

L —=P(EXXExTM)

Figure 3: Embedding with termination modes

at the object level (L) to be accomplished by the target language (£), while the decoder
should serve just to fill the possible gaps at the level of the observables, due, for instance,
to different formalisms.

Another point is that, in the simulation of concurrent languages, it seems natural to
require the target system not to introduce additional deadlock possibilities that were not
present in the original system.

In order to cope with these requirements we add the following restriction: a terminating
computation on the L level should correspond to a terminating computation on the £ level
and the same applies to deadlocking and diverging computations.

Note that the construction above does not satisfy this requirement, since all the com-
putation at the L level terminate. To formulate this restriction, we first observe that
¥ — P(Z}) is isomorphic to P(X X I3). In this way, we can view the domain as a set of
computations. The set of termination modes is defined by TM = {6, ./} (where |/ stands
for normal termination). As a domain for the observables we take

P(ExX*x TM)
Also on the L level we should be able to take an isomorphic domain of the form
P(BL x Cp x TM)

for which By, should be the initial observations (before the computation) and Cy should
be what can be observed from the computation, given that the state of the system before
execution satisfies By. Then the second restriction can be formulated as follows:

Restriction 2 (Preservation of the termination modes): The decoder
d should be a mapping from computations on the £ level (i.e., elements of
ExX*x TM) to the computations on the Llevel (i.e., elements of Byx Cx TM)
that preserves termination modes.

If we add this restriction, then the construction above does not work anymore because
on the £ level every computation terminates.

Despite the restrictions, however, we are still able code a compostional model for L in
the states and circumvent the idea that computations on the L level should be simulated
on the £ level. We give only an outline of this construction. We can build up in our states
a compostional model for L. This can be done without violating the compostionality of C.

21

Obsy,
L ——P(¥x X x TM)

Obss
L

Figure 4: Embedding with restrictions on states

We also have to respect the termination mode. For this we make sufficiently many copies
of each computation. At a certain moment we have built up in the state the complete
model for the whole statement and then we decide what to do: to terminate or to deadlock
(depending in which copy of the computation we are). In this way we get a lot of similar
computations on the £ level, which only differ in their last step (in which they decide
which “path” they take and to terminate or to deadlock).

Therefore, it seems reasonable to put a restriction on the kind of states we allow.

Restriction 3. Take as states only those things we can observe, i.e.
Y =CL= By
Moreover, we require d to be the identity.

Next we give an outline of the proof of a non-embeddability result. Consider a finite
version of CCS, in which we have the following statements: (let a € 4, c € C, ANC = ®)

su=alc|e|ls;s|sats]s|s

The important difference with the ACCS introduced before is that we have here syn-
chronous communication. Actions a can move on their own, while both ¢ and ¢ have to
find a communication partner ¢ or ¢ before they can proceed.

We take the following set of states:

T=(AUT)*u(AuT)*-(CuUC)
where
T=C-CucC-C

We do not use 7 to denote the successful communication between two processes. Instead,
pairs of actions representing the two participating communications are used. Moreover, in
the case of deadlock, we do not deliver simply a & but register the communication action for
which no matching partner can be found. We assume that we have the standard mapping
Obsccs from the language to P(X x £ x TM).

If we put two more restrictions:

22

e The interpretation function I should be extending: For all o and a we have o <

I(a)()

o All computations on the £ level should start from the empty word (the initial state
is the empty word)

then we can prove the following theorem:

Theorem 5.1 The CCS like language described above cannot be embedded in the language
C.

The key lemma’s of the proof are:

Lemma 5.2 Let s,t € L. If we can make a sequence of connected transition steps from t
in starting in state o then we can make the same sequence of steps from t; s, t || s, s || t,
t 4+ s and s + t starting in state o.

A transition sequence is called complete if it ends in the empty statement E.

Lemma 5.8 Let s € L. Lety be a complete connected transition sequence from C(s)
(C(-) is a context). If in v one transition is caused by the component s, then there is

a subsequence of v of which the labels correspond to the labels of a complete transition
sequence from s.

The proof sketch proceeds as follows. First we show that if we want to check if the
compiled version of statement s deadlocks, then we have to make with our £ transition
system at least two steps. Hence if we want to give a context for + on the £ level, this
context needs to check if two steps are possible of its components. We are then, by the
lemma above, forced to execute the whole statement, and this leads to a contradiction.

Intuitively, if we want to implement synchronous communication in £, we need at least
a two step procedure: a send and an acknowledgement. In order to make the right choices
for the translated + we need a plus2 context: we can choose one of the sides if we can do
two steps of a side. This context cannot be made in C.

6 Future work

As we shown in Section 3, the equivalence induced by the compositional semantics for
asynchronous processes is coarser than the equivalence associated to failure set semantics,
and, a fortiori, the equivalences associated to the various notions of bisimulation. It would
be interesting to investigate if it is possible to give an axiomatic characterization of this
equivalence, and in this case, which axioms must be added to the standard ones of the
process algebra so to obtain it.

Another interesting topic is the extension of our approach so to cope with distributed
systems (for which, the notion of global state is not adequate), and, possibly, to model
true concurrency and related notions of observables.

Finally, the issue of embedding seems to be quite promising. The content of Section 5
of this paper is not yet conclusive and we hope to return to this subject in a future paper.

23

References

[BC89)

[BHRS4]

[BKOSS]

[dBK90]

(dBP90a]

[dBP9Ob)

[dBP90c]

[dBZ82]

[EHLRS0]

[GCLSS8)

[Gel86)

[GMS89)]

A. Brogi and P. Ciancarini. The concurrent language Shared Prolog. Technical
Report TR-8/89, Dipartimento di Informatica, Universit3 di Pisa, 1989. To be
published in ACM TOPLAS.

S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating
sequential processes. J. Assoc. Comput. Mach., 31:560-599, 1984.

J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the
algebra of communicating systems. SIAM J. Comp., 17(6):1134-1177, 1988.

J.W. de Bakker and J.N. Kok. Comparative metric semantics for Concurrent
Prolog. Theoretical Computer Science, 75:15-43, 1990.

F.S. de Boer and C. Palamidessi. Concurrent logic languages: Asynchronism
and language comparison. In Proc. of the North American Conference on Logic
Programming, Series in Logic Programming, pages 175-194. The MIT Press,
1990. Full version available as technical report TR 6/90, Dipartimento di
Informatica, Universita di Pisa.

F.S. de Boer and C. Palamidessi. On the asynchronous nature of communica-
tion in concurrent logic languages: A fully abstract model based on sequences.
In J.C.M. Baeten and J.W. Klop, editors, Proc. of Concur 90, volume 458
of Lecture Notes in Computer Science, pages 99-114, The Netherlands, 1990.
Springer-Verlag. Full version available as report at the Technische Universiteit
Eindhoven.

F.S. de Boer and C. Palamidessi. A fully abstract model for concurrent con-
straint languages. Proc. of TAPSOFT 91, 1991. Also available as technical
report, Centre for Mathematics and Computer Science (CWI), Amsterdam.

J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54:70-120, 1982.

D. Erman, F. HayesRoth, V. Lesser, and D. Reddy. The Hearsay2 speech
understanding system: Integrating knowledge to resolve uncertainty. ACM
Computing Surveys, 12:213-253, 1980.

R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. Fully abstract denota-
tional semantics for Concurrent Prolog. In Proc. of the Third IEEE Symposium
on Logic In Computer Science, pages 320-335. IEEE Computer Society Press,
New York, 1988.

D. Gelenter. Generative communication in Linda. ACM TOPLAS, 7(1):80~112,
1986.

H. Gaifman, M. J. Maher, and E. Shapiro. Reactive Behaviour semantics for
Concurrent Constraint Logic Programs. In E. Lusk and R. Overbeck, editors,
North American Conference on Logic Programming, 1989.

24

[HdBR90] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten. Fully abstract denotational

[HoaT78]
[JHJ90]

[JIH90]

[JK89]

[Jon85]

[Kah74)

[Kok87]

[Kok89]

[Mil80]
[Mil83]
[Sar89]
[Sha83]
[Sha89)]

[SR90]

models for nonuniform concurrent languages. Technical Report CS-R9027, Cen-
tre for Mathematics and Computer Science, Amsterdam, 1990.

C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677, 1978.

M.B. Josephs, C.A.R. Hoare, and He Jifeng. A theory of asynchronous pro-
cesses. Technical report, Oxford University Computing Laboratories, 1990.

He Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and asyn-

chrony. In Proc. of IFIP Working Conference on Programming Concepts and
Methods, pages 459478, 1990.

B. Jonsson and J.N. Kok. Comparing two fully abstract datafiow models. In
Proc. Parallel Architectures and Languages Europe (PARLE), volume 379 in
Lecture Notes in Computer Science, pages 217-235, 1989.

B. Jonsson. A model and a proof system for asynchronous processes. In Proc.

of the fth ACM Symp. on Principles of Distributed Computing, pages 49-58,
1985.

G. Kahn. The semantics of a simple language for parallel programming. In
Information Processing 74: Proc. of IFIP Congress, pages 471-475, New York,
1974. North-Holland.

J.N. Kok. A fully abstract semantics for data flow nets. In J.W. de Bakker,
A.J. Nijman, and P.C. Treleaven, editors, Proc. Parallel Architectures and Lan-
guages Europe (PARLE), volume 259 of Lecture Notes in Computer Science,
pages 351-368. Springer Verlag, 1987.

J.N. Kok. Traces, histories and streams in the semantics of nondeterministic
dataflow. In Proceedings Massive Parallellism: Hardware, Programming and
Applications, 1989. Also available as report 91, Abo Akademi, Finland, 1989.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, New York, 1980.

Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,
january 1989. To be published by the MIT Press.

E.Y. Shapiro. A subset of concurrent prolog and its interpreter. Technical
Report TR-003, ICOT, 1983.

E.Y. Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):412-510, 1989.

V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc.

of the seventeenth ACM Symposium on Principles of Programming Languages,
pages 232-245. ACM, New York, 1990.

25

