A Note on Semi-Adjunctions

R. Hoofman

RUU-CS-90-41
December 1990

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454




188N:0924-3275



A Note on Semi-Adjunctions

R. Hoofman
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

December 17, 1990

Abstract

We consider two methods to generalise categorical notions involving func-
tors to semi-functors. It turns out that the two methods give in general the
same results. In particular, the notion of semi-adjunction is studied. Semi-

adjunctions in our sense prove to be exactly the normal semi-adjunctions of
Hayashi [2].

1 Introduction

In [2] the notion of semi-functor is introduced. A semi-functor is a functor except
that it need not preserve identities. Various categorical notions involving functors
can be generalised to semi-functors. For example, [2] defines the notion of a semi-
adjunction.

In this paper we consider two methods to generalise in a systematic way categorical
notions. The first method uses the Karoubi envelope construction to translate ordi-
nary notions to semi-notions. The Karoubi envelope construction is a canonical way
to transform semi-functors into functors. The second method uses the fact that the
category Cat, of categories and semi-functors is a 2-category. Various categorical
notions involving functors and natural transformations can be generalised to arbi-
trary 2-categories, and in particular to Cat,.

It turns out that, in general, the two methods give the same results. In particular,
the two methods give the same kind of generalisation of the notion of adjunction.
Semi-adjunctions in our sense correspond to the normal semi-adjunctions of [2].
The rest of this paper is organised as follows. In section 2 the notion of semi-functor
and the Karoubi envelope construction are reviewed. In section 3 semi-adjunctions
are defined by means of the first method. In section 4 the relation between our
semi-adjunctions and the semi-adjunctions of [2] is studied. In section 5 semi natu-
ral transformations are introduced, and in section 6 we show that they give Cat, the
structure of a 2-category. Finally, in section 7 semi-adjunctions are defined by means
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of the second method, and we show that they coincide with the semi-adjunctions of
the third section.

2 Semi-functors

Let C, D be categories. A semi-functor F' : C — D is defined just as a functor, except
that it need not preserve identities [2].

Example 1 Let Set be the category of sets and functions. The semi-functor F :
Set — Set is defined on objects by F(A) = A X A and on functions f : A — B by
F(f)(< a,d'>) =< f(a), f(a) >. Ifa,a’ € A and a # a', then F(id)(< a,a’ >) =<
a,a >#< a,a’ >.

Let Cat be the category of categories and functors, and let Cat, be the category of
categories and semi-functors. Because each functor is also a semi-functor, there is

an inclusion I : Cat — Cat,. The Karoubi envelope construction provides a functor
in the other direction.

Definition 2 The Karoubi envelope K : Cat, — Cat is the functor defined by

objects If C is a category, then K(C) is the category with as objects the idempotent
arrows f € C(A,A) (i.e. fof=Ff). Anarrowd € K(C)(f:A— A,g: B —
B) is an arrow ¢ € C(A, B) such that go ¢ o f = ¢. Composition is as in C,
and de = f

arrows If F: C — D is a semi-functor, then K(F) : K(C) — K(D) is the functor
defined on objects f by K(F)(f) = F(f), and on arrows ¢ by K(F)(¢) = F(¢).
The Karoubi envelope K(F') of a semi-functor F preserves identities because
K(F)(ids) = F(f) = idp(s)

In fact, the Karoubi envelope construction is a canonical way to transform semi-
functors into functors.

Theorem 3 [1] K : Cat, — Cat is a right-adjoint of I : Cat — Cat,.
Proof: We have to show that there is a natural isomorphism
Cat,(C, D) == Cat(C,K(D))

Given a semi-functor F' : C — D define a functor F’: C — K(D) by F'(A) = F(id,)
on objects A, and F'(f) = F(f) on arrows f. The other way round, if G : C — K(D)
is a functor, then the semi-functor G’ : C — D is defined by G'(A) = Domgay and
G'(f) = G(f).

In this way we get a natural isomorphism between the Hom-sets. |

It follows that Cat is a coreflective subcategory of Cat,.
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Example 4 The counit S = Sc : K(C) — C of the adjunction I 4 K provides a
nice ezample of a semi-functor. It is defined on objects f : A — A by S (f) = A and
on arrows ¢ by S(¢) = ¢.

3 Semi-adjunctions

We would like to generalise categorical definitions involving functors to semi-functors.

One way to do this is by transferring notions from Cat to Cat, by means of the
Karoubi envelope.

For example, how should the notion of adjunction between semi-functors be de-
fined? This might be done by saying that a pair of semi-functors F,G form a
semi-adjunction iff (F),K(G) form an adjunction. We shall give a more simple
definition, and show that it coincides with the one above.

First, let F : C — D be a semi-functor. There is a natural transformation F(id) :
F — F with components F(id,) : FA — FA. We write D(FA, B), for the set of
arrows f € D(F A, B) which satisfy

foF(ids) = f

Note that D(F A, B), = K(D)(F(ida),idg). If F happens to be a functor, then
D(FA, B), = D(FA, B). Analogously, the set D(B, FA), is defined.

Definition 5 A semi-adjunction is a tuple < F : C - D,G : D — C,u >, where
F,G are semi-functors and p is a natural isomorphism

HAB - D(F(A),B), 3 C(A, G(B)),

Notation: we write F 4, G iff F, G are part of one semi-adjunction as defined.
If F,G are functors, then F 4, G & F 4 G.

Example 6 Let R=Rc :C— K(C) and S = Sc : K(C) — C be unit and counit
of the adjunction I 4 K. Then S 4, R and R, S, because

C(5(f), B)s = K(C)(f, R(B))

and

K(C)(R(A),9) = C(4,5(9)),

There is a semi-adjunction between two semi-functors iff their Karoubi envelope
form an adjunction.

Theorem 7 F 4, G iff K(F) 4 K(G).
Proof:



e (<): Suppose K(F) 4 K(G), then

K(D)K(F)(f),9) = K(C)(f,K(G)(9))

Hence in particular
K(D)(F(ida),idp) & K(C)(id4, G(idp))
Because K(D)(F(id4),idp) = D(F(A), B), and K(C)(ida, G(idg)) = C(A, G(B)),

it follows that
D(F(A), B), = C(A,G(B)),

It is easy to see that this isomorphism is natural in A, B.

o (=): Suppose F -, G, then there is a natural isomorphism
pas : D(F(A), B), = C(A,G(B)),
We have to define a natural isomorphism

v.g : K(CYKE(F)(f), 9) = K(C)(f,K(G)(9))

for idempotents f : A — A,g : B — B. We show that we can take Vfg = [4A,B-
First v 4(¢) is defined for ¢ : F(f) — g

$oF(id) =go¢oF(f)o F(id)
= go ¢o F(f)
=¢

Second vy 4(¢) is well-defined:

G(g) ovyg(d)of =G(g)opap(d)of
= paB(godoF(f))
= pa,B(9)
= Vf,g(¢)

It is easy to check that vy, is a natural isomorphism.

4 Hayashi semi-adjunctions

In [2] Hayashi gave a definition of semi-adjunction.



Definition 8 A Hayashi semi-adjunction is a tuple < F : C —» D,G : D —
C,a, B >, where F,G are semi-functors and a, § are collections of arrows {aa,B, BA,B}A&C,BGD
such that the four squares in the following diagram commute.

QA.B

B D(FA, B) C(4,GB) A
AB

f fo_oFyg Gfo_og g

B D(FA', B') ———n®" c(4',GB) Al
BarBr

Notation: we write F 4y, G iff F,G are part of a Hayashi semi-adjunction.
We shall give another characterisation of Hayashi semi-adjunctions, which resembles
more closely our definition of semi-adjunction.

Theorem 9 The tuple < F,G,a, > is a Hayashi semi-adjunction iff a and B are
families of functions

D(FA, B) S4B

C(4,GB)

A,B

natural in A, B, which reduce to an isomorphism

D(FA, B), = C(A,GB),

Proof:

 (=): Suppose < F,G,a, f > is a Hayashi semi-adjunction. It follows that «, 8
are natural. We show that they reduce to an isomorphism on the restricted
Hom-sets. Take h € D(F(A), B),, then

Ba(h) = Pa(ho F(id))
= B(G(id) o a(R))
=h

Analogously, aB(h) = h for h € C(A, G(B)),.

¢ («<): Suppose a, 3 are natural, then two of the four squares in the diagram
above commute. To see that the other two squares commute, we calculate

B(G(g)oalk) o f) = Ba(goho F(f))
=gohoF(f).
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Analogously, the other square commutes.

Now the relation between semi-adjunctions and Hayashi semi-adjunctions can be
stated.

Theorem 10 F -y, G iff F 4, G.
Proof:
e (=): Trivial.

¢ («=): Suppose < F,G,p > is a semi-adjunction. Define a(h) = u(h o F(id))
and B(h) = u~1(G(:d) o h), then «, 3 are natural. For example,

algoho F(f)) =u(gohoF(f)o F(id)
= g o ho F(id) o F(f))
= Glg) o p(h o F(id)) o f
=G(g)oa(h)o f
|
However, it looks like we give slightly too much information in a Hayashi semi-
adjunction: we also define a(h) for h ¢ D(F(A),B),. Given a Hayashi semi-
adjunction < F, G, a, B > we may restrict a, 3 to get a semi-adjunction < F,G, u >.
Extending p as in the proof of theorem 10 gives us o/, 3’ again. However, because

in general a(h o F(id)) = a(h) does not hold, it is not true that @ = o/. In the same
way we do not have # = ' in general.

Definition 11 [2/ A Hayashi semi-adjunction < F,G, o, > is normal iff
o G(id) o a(h) = a(h)
o B(h)o F(id) = B(h)

Hence, a Hayashi semi-adjunction is normal iff the values of a, 3 are fully determined
by their values on the restricted Hom-sets.

Theorem 12 If< F,G,«a, > is a Hayashi semi-adjunction with F or G a functor,
then it is normal.

Proof: Suppose F is a functor, then G(id) o a(k) = a(h o F(id)) = a(h) and
B(k) o F(id) = B(h). Analogously if G is a functor. |



Theorem 13 The class of semi-adjunctions is isomorphic to the class of normal
Hayashi semi-adjunctions.

Proof: Trivial. |

5 Semi natural transformations

We would like to transform the class of semi-functors between two categories D, E
into a category D = E. As a first attempt, we define D = E as the category with as
objects semi-functors F' : D — E and as arrows natural transformations a : F — G.
The composition 8-« : F — G of natural transformations «, 8 : F — G is defined by
(B-a)p = Bpoap for D € D, and the identity natural transformation 1p: F — F
has components (1r)p = idp(p) for D € D.

Theorem 14 Cat, with (=) = (—) is @ weak Cartesian closed category'.

Proof: Finite products in Cat, are the same as in Cat. The evaluation semi-functor
E : (D = E) x D — E is defined on objects < H,D > by E(< H,D >) = H(D),
and on arrows < o, f >:< H,D >—»< H',D' > by E(< a,f >) = ap o H(f). If
F : Cx D — E is a semi-functor, then F* : C — (D = E) is the semi-functor defined
as follows: on objects F*(C) = F(C,~): D — E and on arrows F*(f : C — C') is
the natural transformation with components F*(f)p = F(f,idp). n

The category Cat, with (—) => (—) is only weak Cartesian closed, because for semi-
functors F' : C — (D = E) the identity (E(F x Id))* = F does not hold. More
specific, if f : C — C' is an arrow in C, then (E(F x Id))*(f) is the natural trans-
formation with components (E(F x Id))*(f)p = F(f)p o F(C)(idp). In general,
this is not equal to the natural transformation F(f), which has components F'(f)p.
The equality does hold, however, if F(f) is a semi natural transformation.

Definition 15 A semi natural transformation is a natural transformation a : F —
G : D — E which satisfies

ap o F(de) = ap
for every D € D.

Note that in general a semi-functor is “less” than a functor, whereas a semi natural
transformation is “more” than a natural transformation.

Theorem 16 Ifa: F — G : D — E is a natural transformation, and F or G is a
functor, then « is a semi natural transformation.

1A weak Cartesian closed category is defined as a Cartesian closed category, except that the
exponential type constructor = need only be a semi-functor.
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Proof: If G is a functor, then

ap © F(de) = G(idp) o ap
= idg(D) oaQp
= aD

Let D =, E be the subcategory of D = E with the same objects, but with semi
natural transformations as arrows. The composition in D =, E is the same as in
D = E, but the identity 1z : F — F has components (1r)p = F(idp).

Theorem 17 Cat, with (—) =, (—) is a Cartesian closed category.

Proof: The evaluation semi-functor E and (—)* are defined as in the proof of the-
orem 14. u

6 Cat, as 2-category

In this section we show that Cat, is a 2-category, and that K is a 2-functor. Intu-

itively, a 2-category C is a category C in which each Hom-set C(A, B) is a category
again.

Definition 18 /3] A 2-category C has objects or 0-cells A, arrows or 1-cells f :
A — B, and 2-cellsa: f —» g: A — B such that

o The objects and arrows form a category Co with identities idy : A — A and
composition gf.

e For fized A, B the arrows A — B and the 2-cells between them form a category
C(A, B) with identities 15 : f — f : A — B and composition 8 - a.

o The 2-cells form a category: ifa: f - g: A— BandB:u—v:B — C are
2-cells, then there is a 2-cell B+ a: uf — vg: A — C. The identity of these
composition is the 2-cell 1,4, : idy — idy : A — A.

o In the situation "

B c

A

bi
K
we have (§*B)-(y*a) = (6-7)*(B-a). Furthermore, if f: A— B,g: B — C
are 1-cells, then 1, % 15 = 1,;.



The paradigmatic example of a 2-category is Cat, which has categories as objects,
functors as arrows, and natural transformations as 2-cells. Note that if a : F —
G:C—>Dand f:U — V:D — E are natural transformations, then the natural

transformation 3 * a: UF — VG : C — E has components (8 * a)¢ = Bgc o U(ac)
for C € C.

Theorem 19 Cat, with categories as objects, semi-functors as arrows, and semi
natural transformations as 2-cells is a 2-category.

Proof: The composition * of semi natural transformations is defined as in Cat. We
check that 1y * 1p = 1lyp:

(lu *1r)c = (lw)re) o U((1F)c)
= U(idp(c)) (o) UF(ldc)
= UF(ido)
= (lyr)e

It is left to the reader to check the remaining details. [ |

A 2-functor F : C — D between 2-categories C,D sends i-cells in C to z-cells in

D for 2 = 0,1,2, preserving domains and codomains and all types of composition
and identities.

Theorem 20 K : Cat, — Cat can be extended to a 2-functor.

Proof: We define K on semi natural transformations. Suppose a: F - G:C — D
is a semi natural transformation, then K(a) : K(F) — K(G) : K(C) — K(D) is
the natural transformation with components K(a); = a4 0 F(f) for f: A —» A an
idempotent. K is well-defined because

G(f)oK(a)so F(f) =G(f)oaaoF(f)o F(f)
= ay o F(f)
= K(a)y

and it is easy to see that K(a) is natural.
K preserves 1p:

K(lr)s =(1r)ac F(f)
F(id4) o F(f)
F(f)

(1r)s

K preserves --composition: Suppose a : FF — G and §: G — H, then

K(B-a)y =(B-a)aoF(f)
= fBaoaso F(f)o F(f)
= a0 G(f) o aso F(f)
= K(B)s o K(a)s



K preserves *-composition: Suppose a : F - G:C—-Dand 8:U -V :D — E,
then

K(B*xa)y =(B8*a)aocUF(f)
= Bga) o U(aa) o UF(f)
= Ba(a) © U(aa o F(f))
= Baa) o U(G(f) 0 @)
= Bo(a) 0 U(G(f)) o U(ea)
= ’C(ﬂ)IC(G)(f) o K(U)(K(a)y)
= (K(B) * K(a))s

7 2-Adjunctions in Cat,

In section 2 we have seen that we can generalise categorical notions to semi-notions
by means of the Karoubi envelope construction. Intuitively, we say that N is a
semi-notion iff IC(IV) is the corresponding ordinary notion.

The fact that Cat, is a 2-category gives us yet another way to define semi-notions.
Various categorical definitions involving functors and natural transformations can be
generalised to arbitrary 2-categories. In particular, we might consider the 2-category
Cat,. As an example, we shall consider adjunctions in 2-categories.

Definition 21 [8/ A 2-adjunction n,e: f 4g: A — B in a 2-category C consists
of arrows f : A — B and g : B — A together with 2-cells n : idy — gf and
€: fg — idp such that

1. (1gx€)-(nx1ly) =1,
2. (E*lf)'(lf*’q)=1f

Note that a 2-adjunction in Cat is the same as an ordinary adjunction between
functors. We can also consider 2-adjunctions in Cat,.

Definition 22 A 2-adjunction n,e : F 4 G : C — D in Cat, consists of semi-
functors F : C — D and G : D — C together with natural transformations n : Idc —
GF and e : FG — Idp such that

1. Ge-n1G = Gid
2. eF-Fnp=Fid

We show that, in general, 2-notions in Cat, coincide with semi-notions defined by
means of the Karoubi envelope construction.
First we need a lemma.
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Lemma 23 K reflects equalities, i.e.
1. K(C) = K(D) impliesC=D
2. K(F) = K(G) implies F =G
3. K(a) = K(B) impliesa=

Proof: Point 1,2 are trivial. Suppose K(a) = K(B), then K(a); = K(B)y for all
idempotent f. In particular X(a)iq, = K(B)id, for all A, hence ay o F(ids) =
Bao F(id,) for all A. Because a, § are semi natural transformations, it follows that
s = f4 for all A, and hence that a = 3. ]

In general, a notion N consists of some abstract data, and some requirements on this
data. In the following we shall only consider notions in which these requirements
are equations. We shall write N(d) iff an instance d of the abstract data associated
with N satisfies the requirements of N. If N is a 2-categorical notion, then N[C]
denotes N in the 2-category C.

Theorem 24 Suppose N is a notion in Cat. Let M be a 2-categorical generalisation
of N (i.e. M[Cat] = N). Let the notion S in Cat, be defined by: S(d) iff N(K(d)).
Then

M[Cat,] = S

Proof:

e M]|Cat,}|(d) implies S(d).
Because 2-functors preserve equalities, it follows from M[Cat,](d) that M[Cat](K(d)),
and hence N(KX(d)). By definition of S this implies S(d).

e S(d) implies M|[Cat,](d).
By definition it follows from S(d) that N(KX(d)), and hence M[Cat|(X(d)).
Because K reflects equalities (lemma 23), this implies M[Cat,](d).

Corollary 25 Semi-adjunctions are the same as 2-adjunctions in Cat,.
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