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Abstract

Since its introduction in the 1970s, the certainty factor model has enjoyed widespread
use in rule-based expert systems. Many present-day, commercially available expert
system shells offer the model for modelling and reasoning with uncertain information.
Among researchers in the field of plausible reasoning it is widely known that the model
is mathematically incorrect: many have investigated the probabilistic foundation of
the model. The detailed results of these theoretical analyses of the model, however,
are relatively unknown to engineers interested in applying or developing an expert sys-
tem. In this paper, we take a pragmatical look at the theoretical results and use them
to formulate some guidelines for the representation of expert knowledge in production
rules which, if adhered to, allow the certainty factor model to behave satisfactorily
from a probabilistic point of view.

1 Introduction

When building expert systems it becomes evident that in many real-life domains expert
knowledge is not precisely defined, but instead is of an imprecise nature. Yet, human ex-
perts typically are able to form judgements and take decisions from uncertain, incomplete
and sometimes even contradictory information. In order to be useful in an environment
in which only such deficient information is available, an expert system has to capture and
exploit not only the highly-specialized expert knowledge, but the uncertainties that go
with the represented pieces of information as well. Researchers in artificial intelligence
therefore have sought methods for representing uncertainty and have developed reasoning
procedures for manipulating uncertain information.

The early diagnostic expert systems of the 1970s mostly used production rules as a
formalism for representing expert knowledge in a modular form and employed a heuristic
reasoning method for applying the rules, yielding an ‘intelligent’ problem-solving behaviour
by concentrating only on those hypotheses that were actually suggested by the evidence.
In these systems, the production rules typically were used in selectively gathering evidence
and heuristically pruning the search space of possible diagnoses. We have mentioned that,
to be useful for real-life applications, these originally deterministic rule-based systems had
to be extended with some notion of uncertainty. As probability theory is one of the old-
est mathematical theories concerning uncertainty, it is no wonder that this formal theory
was chosen as the first point of departure in the pioneering work on automated reasoning
with uncertainty. However, it soon became evident that probability theory could not be
applied in a rule-based setting in a straightforward manner: in a rule-based system, an
expert typically is asked to associate probabilities only with the rules he has provided,



that is, only a partial specification of a probability distribution is given. For computing
probabilities from such a partial specification for all (intermediate) results derived from
applying the production rules, however, probability theory does not provide explicit com-
putation rules. To overcome this problem, in the 1970s several modifications of probability
theory for efficient application in a rule-based environment were developed, the most well-
known of which is the certainty factor model that was originally designed for dealing with
uncertainty in the MYCIN system, [Shortliffe84]. This model is not well-founded from a
mathematical point of view: it offers computation rules which do not always accord with
the axioms of probability theory but which render the model to some extent insensitive
to partial specification and inconsistency of a probability distribution. Even though it is
widely known that the certainty factor model is mathematically flawed, it has since its in-
troduction enjoyed wide-spread use in rule-based systems built after MYCIN. The relative
success can be accounted for by its computational simplicity; furthermore, the certainty
factors used in the model are intuitively appealing and easy to handle, [Shultz90].

Now, the last few years research on plausible reasoning has progressed considerably:
several (mathematically correct) probabilistic models have been proposed based on so-
called belief networks, see for example [Pearl88)]. Informally speaking, a belief network
is a graphical representation of a problem domain consisting of the statistical variables
discerned in the domain and their probabilistic interrelationships; these relationships are
quantified by means of ‘local’ probabilities. So, these models employ a knowledge rep-
resentation scheme other than the production rule formalism; furthermore, they require
a fully and consistently specified probability distribution. From a knowledge acquisition
point of view, these belief network models are much more demanding that the ‘rule-based’
certainty factor model; in addition, they are not supported as yet by engineering method-
ologies. The certainty factor model therefore is still employed frequently in present-day
rule-based expert systems. Its frequent use motivated a pragmatical look at the certainty
factor model and its foundation in probability theory. This enabled us to formulate some
guidelines for the representation of expert knowledge in production rules allowing the
model to behave satisfactorily. After briefly reviewing the certainty factor model in Sec-
tion 2 and its probabilistic foundation in Section 3, we will state these guidelines in Section
4.

2 The Certainty Factor Model Revisited

Although we assume that the reader is acquainted with production rules and top-down
inference, we start with a brief description of these notions in order to introduce some
terminology. For a more elaborate introduction, the reader is referred to for example
[Jackson90] or [Lucas91]. In a rule-based, top-down reasoning expert system applying the
certainty factor model, three major components are discerned:

e production rules and associated certainty factors. Basically, an expert in the domain
in which the expert system is to be used models his knowledge of the field in a set
of production rules of the form e — h. The left-hand side e of such a production
rule is a Boolean combination of conditions; e as well as its constituting parts will
be called (pieces of ) evidence. In general, the right-hand side h of a production
rule is a conjunction of conclusions; however, for ease of exposition we will restrict
ourselves to single-conclusion production rules. From now on, a conclusion will be
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called a hypothesis. A production rule has the following meaning: if evidence e has
been observed, then the hypothesis & is true.

An expert associates with the hypothesis h of each production rule e — h a (real)
number CF(h,e,e — h), quantifying the degree to which the actual observation
of evidence e confirms the hypothesis h. The values CF(z,y,z2) of the (partial)
function CF are called certainty factors; CF(z,y, z) should be read as ‘the certainty
factor of z, given y and the derivation z of z from y’. (Note that in [Shortliffe84]
the developers of the model, E.H. Shortliffe and B.G. Buchanan, use for certainty
factors the two-argument notation CF(h,e). For syntactical as well as semantical
reasons, we considered it necessary to introduce the notion of a derivation in the
notational convention; for our motivation for doing so, the reader is referred to
[Gaag89]). Certainty factors range from —1 to +1. A certainty factor greater than
zero is associated with a hypothesis h given some evidence e if the hypothesis h
is confirmed to some degree by the observation of e; a negative certainty factor is
suggested if the observation of e disconfirms the hypothesis h. A certainty factor
equal to zero is suggested by the expert if the observation of evidence e does not
influence the confidence in h.

o user-supplied data and associated certainty factors. During a consultation of the
expert system, the user is asked to supply actual case data. The user attaches a
certainty factor CF(e,u,u — €) to every piece of evidence he supplies the system
with (u is taken to represent the user’s de facto knowledge).

o a (top-down) inference engine and a (bottom-up) scheme for propagating uncertainty.
Top-down inference is a well-known goal-directed reasoning technique in which the
production rules are applied exhaustively to prove one or more goal hypotheses.
Due to the application of production rules, several intermediate hypotheses will be
confirmed or disconfirmed to some degree during the inference process. The certainty
factor to be associated with such an intermediate hypothesis h is calculated from the
certainty factors associated with the production rules used in deriving h. For the
purpose of thus propagating uncertainty, several functions for combining certainty
factors are defined.

From now on we will focus on the scheme for propagating uncertainty. For those readers
who are already familiar with the certainty factor model it is noted that in the sequel
we abstract from several pragmatical issues added to the model such as for example the
discontinuity of the evaluation of the left-hand side of a production rule (that is, the 0.2
threshold).

As has been mentioned before, an expert associates a function value CF(h,e,e — h)
with the conclusion h of a production rule e — h. Recall that this value expresses the
degree to which the actual occurrence of evidence e influences the confidence in the hy-
pothesis . When using the production rules, however, the evidence e used may be an
intermediate hypothesis that has been confirmed to some degree C F(e, u, D**) not neces-
sarily equalling +1; D** is some derivation of e from the user’s knowledge u with respect
to a given set of production rules. That is, it may be the case that the truth of the evidence
e is not known with certainty. After application of the rule e — h described above, the
actual certainty factor for h is computed by means of

CF(h,u,D**o (e = h)) = CF(h,e,e — h)-maz{0,CF(e,u, D**)}
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where D% o (e — h) denotes the sequential composition of the derivations D** of e from
u and e — h of h from e. This computation rule is called the combination function for
uncertain evidence.

Now recall that the evidence e in a production rule e — h in general is a Boolean
combination of atomic pieces of evidence. Before the combination function for uncertain
evidence can be applied, a certainty factor for the entire combination of evidence e has to
be known. This certainty factor is computed from the separate certainty factors for each
of the atomic pieces of evidence e comprises, using

CF(ey A e2,u, D** & D**?) = min{C F(e1,u, D**),C F(e3,u, D"?)}
where D%e1 & D%e2 denotes the conjunction of the two derivations D**t and D**2, and
CF(e1V e3,u, D** | D***) = maz{CF(e1,u, D***), CF(eq,u, D*)}

where D% | D%z denotes the disjunction of the two derivations D*t and D**2. These
functions are called the combination functions for composite hypotheses.

When different successful production rules e; — h, ¢ > 1, (that is, rules with different
left-hand sides e;), conclude on the same hypothesis h, a certainty factor C F'(h, u, D** o
(e; = h)) is derived from the application of each of these rules. The net certainty factor
for h is computed using

( CF(h,u, D) + CF(h,u, D¥*)(1 - CF(h,u, D{"")),
if CF(h,u,D*") > 0,i=1,2

CF(h,u,D}")4+CF(h,u,D}")
CF(h,u, Dy"|| Dy*) = { 1-min{ICF(hu.Dy M) ICF(hu.D5™)I}’
if =1 < CF(h,u,D*?).CF(h,u,D¥") <0

CF(h,u, D{") + CF(h,u, Dy*)(1 + CF(h,u, DI™)),
| if CF(h,u, D" <0,i=1,2

where D" || D¥* denotes the parallel composition of the separate derivations D*" and

D;"h. This computation rule is called the combination function for co-concluding produc-
tion rules.

3 The Probabilistic Foundation of the Model

In [Shortliffe84], E.H. Shortliffe and B.G. Buchanan have suggested a mathematical foun-
dation for their model in probability theory. The certainty factor function we have in-
troduced in the preceding section is not the basic notion of uncertainty employed in the
certainty factor model: this function is defined in terms of two basic measures of uncer-
tainty, the measures of belief and disbelief, which in turn are defined in terms of probability
theory. The measure of belief M B is the three-argument function defined by

if P'I‘(h) =1
Pr(hle A D*")—Pr(h)

1
MB(h,e, D*") =
(h,e, ) { ey } otherwise

maz{0,




expressing the degree to which the observation of evidence e increases the belief in the
hypothesis h. It is noted that we assume an appropriate probabilistic interpretation of
derivations; for details of the interpretation chosen, the reader is referred to [Gaag90]. The
measure of disbelief M D is the function defined by

AD(h oD 1 if Pr(h) =0
(h,e, )= maz{0, P'(h)-’;'r((';l‘)”‘oe'h)} otherwise

expressing the degree to which the observation of evidence e increases the disbelief in the

hypothesis h. The certainty factor function CF then is defined in terms of these measures
of belief and disbelief

MB(h,e, D=*) — MD(h, e, D*")

ehy _
CF(h,e, D°") = T 3T B(h, e, D°F), MD(h, e, D)3}

as mentioned.

This probabilistic foundation of the certainty factor model motivated many researchers
to analyse the relation between the model and probability theory, see for example [Adams84],
[Wise86] and [Gaag90); in some cases such an analysis led to the formulation of counter-
proposals for some parts of the model, as in [Heckerman86). These analyses taken together
show that the model is mathematically flawed and, what’s more, that it is not possible to
devise a mathematically sound probabilistic model based on the principles underlying the
certainty factor model and similar models developed for rule-based expert systems in the
1970s.

We have mentioned before that the certainty factor model has been incorporated as a
special feature in many present-day, commercially available rule-based expert system shells
and therefore is likely to be applied to any type of domain. This observation motivated
a closer look at the analyses of the probabilistic foundation of the model, this time with
the aim of identifying conditions under which the model will behave satisfactorily from a
probabilistic point of view. In this section, we will report the results of our analysis of the
model; for full details the reader is once more referred to [Gaag90]. In Section 4 we will
translate these results into guidelines for knowledge representation in production rules.

We begin by looking at the combination function for co-concluding production rules.
Given two derivations D'l"" and D;"h with respect to a given set of production rules of a
hypothesis h, we can discern three possibilities for their relationship with the belief in h:

e both D;"h and D;"h do not increase the disbelief in h, that is, CF(h, u, D'l"") > 0 as
well as CF(h,u, D3™) > 0,

o both D*" and Dj™ do not increase the belief in h, that is, CF(h,u, DMy < 0 as
well as CF(h,u,D'z"h) <0,

e one of D*P and D" increases the disbelief in h while the other one increases
the belief in h, that is, either C’F(h,u,D'l"h) > 0 and CF(h, u,D;"h) < 0, or
CF(h,u, D*") < 0 and CF(h,u, Dy™) > 0.

Now suppose that the two certainty factors CF(h,u,Di"h) and CF(h,u,D;"h) yielded
by the derivations D'l"h and D;"h, respectively, are combined into a net certainty factor
CF(h,u, D" || D**) by means of the combination function for co-concluding production
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rules. In the first case mentioned above, that is, in case both D" and D3 do not increase
the disbelief in h, the result yielded is consistent with the probabilistic foundation of the
model if the two derivations are mutually independent and conditionally independent given
the negation of the hypothesis. In case both D'l"h and D'z"h do not increase the belief in
h, the result yielded by the combination function is correct if the two derivations are
mutually independent and conditionally independent given the hypothesis. In the case of
‘conflicting’ derivations, however, the combination function for co-concluding production
rules cannot be shown to respect the probabilistic foundation of the model.

Several authors have analysed the combination function for combining the certainty
factors yielded by co-concluding production rules. The other combination functions have
received far less attention in the literature. We feel, however, that these combination func-
tions may also have a considerable impact on the computed certainty factors. Practical
experience in using the certainty factor model has learned for example that the combi-
nation functions for composite hypotheses are applied at least as often as the function
for co-concluding production rules. An analysis of the functions for composite hypotheses
unfortunately has not enabled us to formulate ‘natural’ conditions under which these func-
tions can be shown to be correct with respect to the probabilistic foundation of the model.
Our analysis, however, suggested that for two hypotheses e, and e and their respective
derivations D% and D*e2 relative to a given set of production rules, the certainty fac-
tor CF(e1 A e, u, D%t & D**?) yielded by the combination function for a conjunction
of hyptheses is a satisfactory approximation of the actual certainty factor of e; A eq if €
and ey are strongly correlated; a similar result holds for the combination function for a
disjunction of hypotheses.

To conclude this section on the probabilistic foundation of the certainty factor model,
we consider a production rule e — h and a derivation D*“*¢ of the evidence e with respect
to a given set of production rules, and investigate the combination function for uncertain
evidence. Our analysis of this function has shown that the certainty factor C F(h,u,D**o
(e — h)) yielded by this combination function respects the probabilistic definition of the
certainty factor function if, among other less relevant conditions, we have h Ae = h.

4 Guidelines for Using the Model

In the previous section we have reported some results of an in-depth study of the certainty
factor model and its probabilistic foundation. Here, we exploit these results and derive
from them some guidelines for knowledge representation that will allow the certainty factor
model to perform satisfactorily.

Once more we begin by looking at the combination function for co-concluding pro-
duction rules. E.H. Shortliffe and B.G. Buchanan themselves have experimented with
the model in the context of the MYCIN system using sampling data simulating several
hundreds of patients, to compare the computed certainty factors with the correct prob-
abilistic values, see [Shortliffe84]. In this experiment, they focussed on the function for
co-concluding production rules. They observed that in most of the cases, the computed
certainty factor did not differ radically from the theoretical probabilistic value. However,
they have observed that the more the combination function is applied for a given hypoth-
esis, the more the computed value tends to deviate from the theoretical one. Furthermore,
their experiment showed that the most erroneous values arose from cases in which the dif-



ferent derivations of the hypothesis under consideration were strongly interrelated. We add
to these observations that since the vast majority of the production rules of the MYCIN
system contained positive certainty factors, the experiment of Shortliffe and Buchanan
cannot have reflected the impact of conflicting derivations. Note that these observations
are consistent with the ones we have found by a theoretical analysis of the model. We
conclude that in representing domain-dependent problem-solving knowledge in production
rules, it is advisory

e to specify the condition parts of production rules drawing opposite conclusions as
‘mutually exclusive’ as possible in order to minimize the occurrence of conflicting
derivations for a single hypothesis, and

e in case several pieces of evidence pertain to a single hypothesis, to group these pieces
of evidence in such a way that the Boolean combinations of evidence mentioned in
separate production rules are as ‘independent’ as possible (in the sense described
in the previous section) and the atomic pieces of such a Boolean combination of
evidence within a production rule are as strongly correlated as possible.

Note that our observations concerning the combination functions for composite hypotheses
are consistent with the latter guideline.

Our last observation concerns the combination function for propagating uncertain ev-
idence. Informally speaking, the condition mentioned in the previous section shows that
this function is correct in case the expert system is only able to narrow its focus and does
not have the ability to turn to hypotheses slightly outside the scope of the derivation up
till that moment. It is advisory therefore to specify production rules in such a way that a
chain of rules that may arise when actually reasoning with the system, has this property
of narrowing the focus of attention.

5 Summary and Conclusion

In this paper, we have considered the certainty factor model and its foundation in probabil-
ity theory. Our aim has not been to present a detailed analysis showing the incorrectness
of the model but merely to take a pragmatical look at it. Guided by an in-depth study of
the probabilistic foundation of the model, we have formulated in Section 3 some conditions
under which the model can be shown to be satisfactory from a probabilistic viewpoint.
In Section 4 we have translated these conditions into guidelines for knowledge represen-
tation. If adhered to in practical applications, these guidelines will allow for the model
to behave satisfactorily. We feel that as long as other, mathematically correct models for
example based on belief networks, are too demanding either computationally or from an
assessment point of view, the certainty factor model, if handled with proper care, is still
a good alternative for dealing with uncertainty.
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