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Approximating Treewidth, Pathwidth, and
Minimum Elimination Tree Height

Hans L. Bodlaender* John R. Gilbert!
Hjalmtyr Hafsteinsson? Ton Kloks$

Abstract

We show how the value of various parameters of graphs connected to sparse
matrix factorization and other applications can be approximated using an al-
gorithm of Leighton et al. that finds vertex separators of graphs. The approx-
imate values of the parameters, which include minimum front size, treewidth,
pathwidth, and minimum elimination tree height, are no more than O(logn)
(minimum front size and treewidth) and O(log?n) (pathwidth and minimum
elimination tree height) times the optimal values. In addition we examine
the existence of bounded approximation algorithms for the parameters, and
show that unless P = NP, there are no absolute approximation algorithms
for them.

1 Introduction

Many problems in science and engineering require the solving of linear systems of
equations. As the problems get larger it becomes increasingly important to ex-
ploit the sparsity inherent in many such linear systems. Often each equation only
involves a few of the variables. By taking advantage of that fact we are able to
solve substantially larger linear systems. Solving the symmetric positive definite
linear system Az = b via Cholesky factorization involves computing the Cholesky
factor L, such that A = LL7, and then solving the triangular systems Ly = b
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and LTz = y. If A is sparse we usually do some preprocessing on its associated
graph, G(A). Various parameters of this graph dictate how fast and efficiently we
can solve the system. Among these parameters are treewidth, minimum front size,
minimum maximum clique, and minimum elimination tree height. Having small
front size is important in the multifrontal method [DR83, Liu90] and an ordering
minimizing the elimination tree height minimizes the parallel time required to factor
A. All the above parameters depend on the ordering on the rows and columns of
A. Unfortunately determining the orderings that give the optimal values of these
parameters is NP-complete [ACP87, GJ79, Pot88]. Therefore we have to be content
with approximations.

The notion of treewidth has several other applications (see e.g. [Arn85]). It is
closely related to the pathwidth, which has among others important applications in
the theory of VLSI layout. The pathwidth is equivalent to several other parameters
of graphs, including the minimum chromatic number of an interval graph containing
the graph as a subgraph and the node search number of a graph. The pathwidth
problem is also equivalent to the gate matrix layout problem. See [Mh89] for an
overview.

In this paper we will show how to use a recent result of Leighton et al. (see
lemma 4.1 in [KARR90], and also [LR88]) on approximating graph separators to
find approximations to the above parameters. These approximations will be no
more than O(logn) or O(log?n) times the optimal values. Some of these results
were obtained independently by Klein et al. [KARR90].

We will start with a few definitions. After that we explore the relationship be-
tween treewidth, pathwidth, minimum front size, minimum elimination tree height,
and other related concepts. Then we present the result of Leighton et al. and our ap-
proximation algorithms. Finally we discuss bounded approximations for minimum
elimination tree height, treewidth, and pathwidth.

2 Definitions

We assume that the reader is familiar with standard graph theoretic notation
(see [Har69]). The subgraph of G = (V,E) induced by W C V is denoted by
G[wW].

The class of k-trees is defined recursively as follows. The complete graph on k
vertices is a k-tree. A k-tree with n 4 1 vertices (n > k) can be constructed from
a k-tree with n vertices by adding a vertex adjacent to all vertices of one of its
k-vertex complete subgraphs, and only to these vertices. A partial k-tree is a graph
that contains all the vertices and a subset of the edges of a k-tree.

A tree-decomposition of a graph G = (V,E) is a pair ({X; | i € I},T = (I, F))
with {X; | ¢ € I'} a collection of subsets of V, and T a tree, such that

[ ] UiEIXi’ = V.



o for all (v,w) € E, there exists an ¢ € I with v,w € Xj.
e For all 7,7,k € I: if j is on the path from i to k in T, then X; N X C X.

The third condition can be replaced by the equivalent condition: for allv € V, {: €
Ilv € X;} forms a connected subtree of T. The treewidth of a tree-decomposition
({Xi | ¢ € I},T = (I,F)) is maxier | Xi| — 1. The treewidth of a graph is the
minimum treewidth over all possible tree-decompositions of that graph. It can be
shown that G has treewidth at most k, if and only if G is a partial k-tree (see e.g.
[vL90}).

The problem of finding the treewidth of a given graph G is NP-complete [ACP87].
However, many NP-complete graph problems can be solved in polynomial and
even linear time if restricted to graphs with constant treewidth (see e.g. [ALS8S,
Bod90a].) For constant k, determining whether the treewidth of G is at most k, and
finding a corresponding tree-decomposition can be done in polynomial time (see e.g.
[Bod90b]). The first step of such an algorithm is to find a tree-decomposition of G
which has not optimal, but still constant bounded treewidth [RS86b, Lag90].

A path-decomposition of a graph G = (V, E) is a tree-decomposition ({X; | i €
I},T = (I,F)), such that T is a path. The pathwidth of a path-decomposition
({Xi | ¢ € I},T = (I, F)) is maxies |Xi| — 1. The pathwidth of a graph is the
minimum pathwidth over all possible path-decompositions of that graph. The notion
of pathwidth has several important applications, e.g., in VLSI-layout theory (see
[Moh89]).

The elimination game on a graph G repeats the following step until there are
no more vertices. Pick a vertex v, delete it from the graph, and add edges between
the neighbours of v that are not already adjacent. These added edges are called fill
edges. The filled graph G}, is obtained by adding to G all the fill edges that occur
when the elimination game is played using the order 7 on the vertices of G.

Let Cr(v) be the set of uneliminated neighbours of vertex v when playing the
elimination game with order 7 on the graph G. The treewidth of G can alternately
be defined as the minimum over all orderings = of max,ev | Cx(v) |. (See e.g.
[Arn85].)

The elimination tree T is defined as follows. Vertex j is the parent of vertex i in
T (with j > ¢) iff j is the lowest numbered among the higher numbered neighbours
of ¢ in the filled graph G*.

The elimination tree T of a graph G(A) describes the dependencies between the
columns of the matrix A during column-oriented Cholesky factorization. If vertex
¢ is the child of vertex j in T, then column ¢ has to be computed before column
J in A’s Cholesky factorization. Consequently, we can compute all the columns on
the same level in the tree simultaneously. Thus, the height of the elimination tree
is a reasonable measure of the parallel time required to factor A. A completely
dense matrix has a tree that is just one long chain, since each column depends on
all the previous ones. In the case of sparse matrices the shape of the elimination



tree can vary. By reordering the rows and columns of A (equivalent to renumbering
the vertices of G(A)) we can, to some degree, restructure the elimination tree. Thus
the first step in parallel solution of sparse linear systems is to reorder the rows and
columns of A in order to reduce the height of the elimination tree.

An o vertez separator (o edge separator) of a graph G = (V,E) is a set of
vertices S C V (set of edges S C E) such that every connected component of the
graph G[V — S] (the graph (V, E — S)) obtained by removing S from G has at most
a - |V| vertices.

For W C V, an a vertez separator of W (a edge separator of W) in G = (V, E)
is a set of vertices S C V (set of edges S C F) such that every connected component
of the graph G[V — S] (the graph (V| E — S)) has at most a - |W| vertices of W.

3 Relationships

Below we will show the relationships among the various parameters using a series of
lemmas. Many of these results are not new, but we present them all here in order
to demonstrate how closely linked these parameters are. In addition this will make
it easier to see how the result of Leighton et al. can be used to find approximations
to the different parameters.

Lemma 3.1 A graph G has treewidth k iff the minimum, over all filled graphs G*
of G, of the largest clique in G* is k + 1.

Proof: In playing the elimination game the set Cr(v) U {v} of v and its
uneliminated neighbours becomes a clique in G*. Thus if G has treewidth & (i.e.
min, max,ev | Cx(v)|= k) then the minimum over all filled graphs G* of G, of the
largest clique in G* is at least k + 1. If we have a minimum maximum clique of
size ¢ then when its first vertex v is eliminated in the elimination game the rest of
the vertices will become Cr(v), and its size is ¢ — 1. Thus the size of the minimum
maximum clique is no more than k + 1 if the treewidth is k. O

The multifrontal method [DR83, Liu90] organizes the factorization of a sparse
matrix into a sequence of partial factorizations of small dense matrices, the goal
being to make better use of hierarchical storage, vector floating-point hardware, or
sometimes parallelism. Figure 1 shows one elimination step of the method: Here
v is only the nonzeros below the diagonal in the column being eliminated, and the
frontal matriz F contains only the rows and columns corresponding to nonzeros in
the column being eliminated. The update matriz B—vv7/d is dense, and is saved
for use in later elimination steps. Many such matrices may be saved at the same
time, but only enough main memory for one frontal matrix is needed. The front size
of A is the dimension of the largest update matrix, or one less than the dimension
of the largest frontal matrix.
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Figure 1: A step in the multifrontal method

The front size of A can also be characterized as the largest number of nonzeros
below the diagonal in any column of its Cholesky factor, or the maximum number
of neighbors of any vertex when it is eliminated in the elimination game.

Lemma 3.2 The minimum front size of a graph G(A) with treewidth k over all
orderings is k.

Proof: If G(A) has treewidth k, then there is some ordering 7, such that
the largest set Cx(v) of higher numbered neighbours of any vertex v has size k. If
we order the columns and rows of A according to 7 then at each step the nonzero
elements of the vector v in Figure 1 correspond to the uneliminated neighbours of
v in the elimination game. The frontal matrix has as many columns and rows as
there are non-zeros in v. Thus the largest frontal matrix has the same size as the
largest Cr(v), and the front size of G(A) is the same as the treewidth. O

The following lemma, which can be traced back to C. Jordan (see [Kon36]) will
be useful when proving things about the elimination tree.

Lemma 3.3 Given a tree T we can, in time O(n), find a vertez v such that T\ {v}

has no component of size greater than 2.

In other words, the algorithm finds an 1 vertex separator of T' of size 1. This

result can easily be generalized as follows:

Lemma 3.4 Given a tree T and a subset of the vertices W, there is a vertez v in
T such that every component of T \ {v} contains at most 1 |W| vertices of W.

Proof: Let § = } |W|. Consider the following algorithm. Start at any vertex
c. If every component of T \ {c} contains at most § vertices of W we are done.
Otherwise, let ¢’ be the neighbour of ¢, in the component of T'\ {c} that contains
more than § vertices of W. Replace c by ¢’ and repeat the process. Notice that the

component of T'\ {c'} containing c has less than § vertices of W. So the algorithm
terminates. O

The following theorem, (see also e.g. [RS86a]), given here with a short proof,
plays an important role in our approximation algorithm.

Theorem 3.5 Let G = (V,E) be a graph with treewidth < k. Let W C V. Then

there exists a % verter separator of W in G of size at most k + 1.
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Proof: Consider an elimination tree T, such that G has treewidth k. Pick
a vertex v as indicated in the previous lemma. Let S be the set of ancestors of v
adjacent to a vertex in subtree of T, rooted at v (i.e. S = Cr(v)). This set is a
separator of size less than or equal to k. This follows from the fact that S U {v}
forms a clique in G}, and since the largest clique in G% has size k + 1, S cannot
contain more than k vertices. So we can take S U {v} as the required separator. O

The next pair of lemmas illustrates the relationship between elimination trees
and vertex separators of graphs.

Lemma 3.6 If G and its subgraphs have a vertex separators of size s, then there is
an elimination tree of height O(slog n).

Proof: If we apply the nested dissection ordering (see [Geo73)), i.e., order the
vertices of the first separator last, then the vertices of the next level of separators,
and so on, then the height of the resulting elimination tree is at most slog, Ja T
Since « is a constant, the height is O(slogn). O

Lemma 3.7 If G has an elimination tree of height h then it and its subgraphs have
-;- vertex separators of size h.

Proof: If wehave an elimination tree T of height A, then we can use Lemma 3.3
to find a vertex v such that no component of T\ {v} contains more than 2 vertices.
The set of ancestors of v adjacent to a vertex of the subtree rooted at v is a separator.
Its size obviously cannot be more than the height of the elimination tree. This
argument can be applied recursively to the remaining components, since the heights
of their elimination trees cannot be more than 4. O

Next we compare the minimum elimination tree height to the minimum size of
the maximum clique in G*.

Lemma 3.8 If the minimum mazimum clique of G* has size k then the minimum
height elimination tree of G is lower than klogn.

Proof:  Assume that the minimum maximum clique of G* has size k and it
occurs when we use ordering 7 on the vertices. Consider the elimination tree T,
which is the elimination tree of G using ordering 7. We can pick a vertex v in T,
such that no component of T'\ {v} contains more than 2 vertices, using Lemma 3.3.
let S be the set of ancestors of v adjacent to a vertex in subtree of T, rooted at v.
Then S U {v} is a separator of size less than or equal to k, since this set forms a
clique in G* and the largest clique in G* has size k. We continue recursively finding
separators of size at most k in the components, none of which is larger than 2. We
can then use nested dissection to order the vertices, ordering the vertices of the first
separator last, and so on. This will give us an elimination tree of height at most
klogn. (The same construction was used in [Gil88].) O
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Now we give a relationship between pathwidth and the other parameters. As
path-decompositions are a special case of tree-decompositions, the treewidth of a
graph is never larger than the pathwidth. We also have the following, interesting
relationship.

Lemma 3.9 If G has an elimination tree with height k, then the pathwidth of G is
at most k.

Proof: Number the leaves of the elimination tree vy, ..., v,, from left to right.
Let X, (1 £ j £ r) consist of v; and all ancestors of v; in the elimination tree. Now
({Xi|l1Li<r}, T=({1,2,---,7},{(3,+1) | 1 £ i< r}) is a path-decomposition
of the filled graph G* and hence of G with pathwidth k. O

As a direct consequence we have that the treewidth of G is no larger than the

height of an elimination tree and the minimum maximum clique of G* is no larger
than the height plus one.

Let us now summarize these relationships. Minimum front size is equal to the
treewidth and minimum largest clique of G* is one more than the treewidth of G.
The minimum elimination tree height is no less than those three parameters, and
at most logn times them. The pathwidth of a graph is “between” the treewidth

of a graph, and its minimum elimination tree height. We can summarize these
relationships as follows:

o treewidth = min front size = min max clique —1

o treewidth < pathwidth < min height < treewidth - logn.

4 Approximations of vertex separators

In [LR88] Leighton and Rao present approximation algorithms for various separator
problems, including the problem of finding minimum size balanced edge separators.
Recently, Leighton et al. [Le90] obtained similar results for vertex separators, as
reported in [KARR90]. We will use the following result.

Theorem 4.1 (Le90) There ezxists a polynomial algorithm that, given a graph G =
(V,E) and a set W C V, finds a % vertex separator S C V of W in G of size
O(w - logn), where w is the minimum size of a } vertez separator of W in G.

When we now apply theorem 3.5, we get the following result, which is the fun-
damental step in our approximation algorithm.

Theorem 4.2 There erist a constant 3 > 1 and a polynomial time algorithm that,
given a graph G = (V,E) and a set W C V, finds a 2 vertez separator of W in G
of size B -logn - k, where n = |V|, and k is the treewidth of G.



Proof: Theorem 3.5 tells us that there exists a 3 vertex separator of W in
G of size k + 1. The result hence follows by using the algorithm of theorem 4.1
and taking j to be constant hidden in the O of theorem 4.1 times a small factor to
account for the factor &1. O

In the remainder of the paper, 3 is assumed to be the constant implied in this
theorem.

5 Approximation algorithms

In this section we give a polynomial time approximation algorithm for the treewidth
problem that is at most a factor of O(log n) off optimal. Clearly, from the analysis
in Section 3 this directly implies polynomial time approximations for minimum
maximum cliques and minimum front size that are a factor of O(logn) off optimal,
and for minimum elimination trees that is a factor of O(log?n) off optimal. Readers
familiar with the approximation algorithms for constant treewidth of Lagergren
(Lag90] and of Robertson and Seymour [RS86b] may note some similarities. Our
algorithm also has some similarities to Lipton, Rose, and Tarjan’s version of nested
dissection [LRT79).

Our approximation algorithm consists of calling makedec(V, #), where makedec
is the following recursive procedure:

proc makedec(Z, W);

(comment: Z and W are disjoint sets of vertices.)

if |Z UW| < 8Bklogn then
return a tree-decomposition with one single node, containing Z U W.

else perform the following steps:
Find a 2/3 vertex separator S of W in G[Z U W] with the algorithm
of theorem 4.2.
Find a 2/3 vertex separator S’ of ZU W in G[Z U W], with the
algorithm of theorem 4.2.
Compute the connected components of G[Z U W — (S U §")],

suppose these have vertices Z; U W; with Z; C Z and W;CW
foralll <:i<t.

For::=1tot do
call makedec(Z;, W; U SU §").
end for
Now return the following tree-decomposition:
take a root-node rz,w, containing WU SU S’ (i.e. Xezw =WUSUSZ).
Then add all tree-decompositions returned by the calls of

makedec(Z;, W; U § U S') with an edge from the root of each to TZW.
end if

end proc



Claim 5.1 Makedec(Z, W) returns a tree-decomposition of G[Z U W] such that the
root-node of the tree-decomposition contains all vertices in W. If [W| < 68klogn,
where k is the treewidth of G and n = |V|, then the treewidth of this tree-
decomposition is at most 83k logn.

Proof: We prove this by induction on the recursive structure of the makedec
procedure. Clearly the claim is true in case |Z U W| < 88klogn. Suppose this is
not the case. First consider an edge (v,w) € E with v,w € ZUW. If v and w
both are in the set W, then v,w € X, . Otherwise, v and w both belong to a set
Z;UW;USUS’'. By induction, there is a set X in the tree-decomposition returned
by makedec(Z;, W; U SU S’) with v, w € X;.

We now show that {i € I | v € X;} forms a connected subtree in the
decomposition-tree for all v € ZUW. If v ¢ Xrzw, then this holds by induc-
tion, as v then belongs to exactly one set Z;. Otherwise, for each of the subtrees
under rz,w, either v does not appear in any of the nodes in this subtree, or the nodes
containing v form, by induction, a connected subtree of this subtree, and include
the root of this subtree, i.e., the child of 7w that is in this subtree. The result now
follows. Therefore the procedure indeed outputs a tree-decomposition of G[Z U W].

We now have to show that the treewidth of the tree-decomposition is at most
8Bklog n. By induction, it is sufficient to show that |Xr2w| < 88klogn, and that
[W: U S US| < 6Bklogn. Clearly the first holds (use the assumption on the size
of W, and use theorem 4.2 to bound the size of S and S’.) The second holds, as
SUS’'is an 2 separator of W in G[Z U V], and hence each W, is of size at most
2/3|W| < 4Bklogn, whence |W; U SU §'| < 68klogn. O

Thus, we have obtained the following result:

Theorem 5.2 There esists a polynomial time algorithm that, given a graph G =
(V,E) with |V| = n, finds a tree-decomposition of G with treewidth at most
O(klogn), where k is the treewidth of G.

This result implies approximation algorithms for the other parameters discussed
in this paper. Clearly, by lemmas 3.1 and 3.2 we have also a polynomial time

algorithm that, given a graph G, solves the minimum maximum clique problem and
the minimum front size problem within O(logn) times optimal. We also have:

Theorem 5.3 There ezists a polynomial time algorithm that, given a graph G =

(V, E) with [V| = n, finds an elimination tree of G with height at most O(hlog?n)

)
where h is the minimum height of an elimination tree of G.

Proof: Find the tree-decomposition of G with the algorithm of theorem 5.2.
Then use lemma 3.7. We obtain an elimination tree of G with height at most
logn - O(log n) - k, where k is the treewidth of G. Observe that k is smaller than or
equal to the pathwidth of G, and hence, by lemma 3.8, k is at most . O

Similarly we can obtain:



Theorem 5.4 There ezists a polynomial time algorithm that, given a graph G =
(V,E) with |V| = n, finds a path-decomposition of G with pathwidth at most
O(klog® n), where k is the pathwidth of G.

6 Absolute approximations

In this section we consider absolute approximations, i.e. polynomial time algorithms
that give solutions within an additive constant of the optimal solution. We show that
when P # NP, then no such algorithms exist for the minimum height elimination
tree problem, for treewidth (and hence for minimum front size and minmax clique),
or for pathwidth.

Given an approximation algorithm A for a minimization problem we can distin-
guish between three kinds of performance guarantees on it. In absolute approzima-
tions the approximate solution .A(J) is within a constant off the optimal solution
OPT(I), i.e. A(I)— OPT(I) < K. Second, the approximate solution can be a
constant factor off the optimal one, i.e., A(I) < C OPT(I), with C > 1. Finally
the difference between the optimal and approximate solutions can depend on the
size of the problem, i.e. A(I) < f(n) OPT (I). The algorithms we have presented
above all have performance guarantees of the last kind with f(n) = O(logn) or
f(n) = O(log?n). The hardest of these bounds to achieve is the absolute bound
and very few N P-complete problems have absolute approximation algorithms. We
will now prove that the minimum height elimination tree problem has no absolute
approximation algorithms unless P = NP.

Theorem 6.1 If P # NP then no polynomial time approzimation algorithm A for
the minimum height elimination tree problem can guarantee A(I) — OPT(I) < K
for a fized constant K.

Proof:  Assume we have a polynomial time absolute approximation algorithm
A, so that A always gives an elimination tree with height at most K more than
the optimal. We will show that then we can solve the mutual independent set
problem (MUS) in polynomial time. The MUS problem is the following: Given «
bipartite graph B = (P,Q, E), are there sets Vi (V; € P) and V, (V2 € Q), with
| Vi|=|V; |= k, such that Vi and V; are mutually independent? That is: no edge
joins a vertex in V) to a vertex in ;. The MUS problem has been shown to be
N P-complete [Pot88].

Let B = (P, Q, E) be a bipartite graph. Its corresponding bicliqgue C = (P,Q, EU
P? U @?) is the graph that contains enough extra edges to make each of P and Q
into cliques. A bipartite graph is a chain graph if the adjacency sets of vertices in
P form a chain, i.e., the vertices of P can be ordered such that

Adj(v:) 2 Adj(v) 2 - -+ D Adi(vy).

10



Figure 2: The graph B when K = 1

Yannakakis [Yan81] has shown that if we add edges to the bipartite graph B to
make it a chain graph B’ then adding the same edges to B’s corresponding biclique
C makes it a chordal graph C’. The graph C' is called a chordal completion of the
bicligue C. Pothen [Pot88] has proved that B has mutually independent sets of size
k iff there exists a chordal completion C’ with elimination tree of height n — k — 1.

Suppose we had a polynomial time algorithm .A for the minimum elimination
tree problem, such that A(I) — OPT(I) < K. We solve MUS by making a new
bipartite graph B = (PLU---UPg41,Q1U---UQg41, E‘) that contains K + 1 copies
of B and additional edges between the copies. If there is an edge between vertices
vand win B (v € P, w € Q), then B has an edge between v; and w; (v; € P,
and w; € Q;), for4,j =1,...,K + 1. The new graph B has (X + 1)n vertices and
(K + 1)?>m edges. In Figure 2 we show B when K = 1. )

Using the lemma from [Pot88] mentioned above we see that B has mutually
independent sets of size (K + 1)k iff there exists a chordal completion ¢ with an
elimination tree of height (K +1)(n— k) —1. Assuming that we have an approxima-
tion algorithm A that gives us an elimination tree with height no more than K off
the minimum we apply it to C. If the resulting elimination tree has height between
(K+1)(n—k)—1and (K+1)(n—k)+ K —1 then we can extract the K + 1 elim-
ination trees corresponding to the copies of the bipartite graph B that B was made
up of. That gives us an elimination tree for C’ of height (n — k) — 1 (or lower). If
the elimination tree computed by algorithm A is higher than (K + 1)(n—k)+ K —1
then the elimination tree corresponding to the original bipartite graph B (actually

11



its chordal completion C’) cannot have height (n — k) — 1. Otherwise we could join
those together and obtain an elimination tree for € with height (K+1)(n—k)—-K-1,
which is at least 2K lower than the solution given by A. Thus we could use the
polynomial time algorithm A to solve an N P-complete problem. O

A similar result can be proven for the treewidth problem. We need the following
lemma.

Lemma 6.2 Let ({X; | i € I},T = (I, F)) be a tree-decomposition of G = (V, E).
Let W C V be a clique in G. Then there exists an i € I with W C X;.

See [BM90] for a short proof of this lemma.

Theorem 6.3 If P # NP then no polynomial time approzimation algorithm A for
the treewidth problem (and hence for minimum front size, and minimum mazimum
cligue) can guarantee A(G) — OPT(G) < K for a fizred constant K.

Proof:  Assume we have a polynomial time algorithm A, that given a graph
G = (V, E), finds a tree-decomposition of G with treewidth at most K larger than
the treewidth of G. Let a graph G = (V, E) be given. Let G’ = (V', E') be the graph
obtained by replacing every vertex of G by a clique of K +1 vertices, and adding edges
between every pair of adjacent vertices in G, i.e. V' = {vi|veV,1<i< K +1},
E' = {(vi,w;) | (v =wAi # j)V(v,w) € E}. We examine the relationship between
the treewidth of G and the treewidth of G'.

Suppose we have a tree-decomposition of G, ({X; | i € I LT = (I, F)) with
treewidth L. One easily checks that ({Y; | i € I},T = (I, F)) with ¥; = {v; |ve
Xi,1 £ j < K +1} is a tree-decomposition of G’ with treewidth (L+1)(K+1)-1.
It follows that treewidth(G') < (treewidth(G) +1)- (K + 1) -1

Next suppose we have a tree-decomposition ({Y; | i € I}, T = (I, F)) of G’ with
treewidth M. Let X; = {v € V | {v1,v3,++,vk41} C Y;}. We claim that {Xi|ie
I},T = (I, F)) is a tree-decomposition of G with treewidth (M+1)/(K+1)-1.
Let (v,w) € E. Note that v;,v,,--- » VK41, W1, W2, * +, Wi+ form a clique in G'.
Hence, by lemma 6.2 there exists an ¢ € I with {vr, -, vk, w1, Wk} C Y,
and thus v,w € X;. Let j € I beon the pathin T fromi € T tok € I. If v €
XiNXk, then {vq,- -, vk} C YiNY;, and hence by definition of tree-decomposition
{v1, vk} C Y50 v € X;. Clearly, max;es | X;| - (K + 1) < maxes|Yi|. This
finishes the proof of our claim. It follows that treewidth(G’) > (treewidth(G) + 1) -
(K +1) — 1, and hence that treewidth(G') = (treewidth(G) + 1) - (K +1) — 1.

Now we are able to describe the polynomial time algorithm for the treewidth
problem: let G be the input graph. Make G’, and apply algorithm A to G'. Apply
the construction described above to make a tree-decomposition of G. This must be
a tree-decomposition with minimum treewidth: if the treewidth of G is k, then the
treewidth of G’ is (k+1)(K +1)—1, hence A outputs a tree-decomposition of G’ with
treewidth at most (k+1)(K+1)—1+K, hence the algorithm described above outputs
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a tree-decomposition of G with treewidth at most |((k + 1)(K +1) + K) /(K + 1)—
1] = k. Thus we would have a polynomial time algorithm for treewidth. O

In the same way we can prove the following theorem. With a different terminol-
ogy this result was also proved by Deo et al. [DKL87].

Theorem 6.4 If P # NP then no polynomial time approzimation algorithm A for
the pathwidth problem can guarantee A(G) — OPT(G) < K for a fized constant K .

7 Conclusion

We have presented a way to find bounded approximations to various parameters of
graphs. To be precise: for treewidth, minimum front size and minimum maximum
clique we obtain approximations that are never more than O(log n) times optimal,
and for pathwidth and minimum height elimination tree we obtain approximations
that are never more than O(log?n) times optimal.

An open problem is to find algorithms that give solutions that are only a constant
times optimal for any of the parameters discussed in this paper. In this paper we
have shown that there are no absolute approximations to the considered problems,
but it is not known if we can find solutions that are only a constant factor off the
optimal. Two related problems are how to permute A so that its Cholesky factor
has the minimum fill or the minimum operation count. Klein et al. [KARR90]
use a nested dissection algorithm somewhat similar to ours to give approximation
algorithms for these measures getting within O(log* n) and O(log® n) times optimal
(respectively) for graphs of bounded degree.
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