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SYNCHRONOUS LINK-LEVEL PROTOCOLS”

Anneke A. Schoone

Department of Computer Science, University of Utrecht,
P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.

Abstract. Aho et al. gave several protocols for sending a sequence of bits over an
error-prone link an a synchronous environment. We investigate how the Krogdahl-Knuth
technique of system-wide invariants can be used for proving the protocols correct.

1. Introduction. Aho et al. [AWYU] consider the problem of sending a sequence of bits
over an error-prone link in a synchronous environment. They distinguish different classes of
possible errors, and try to devise protocols of minimum complexity for the different classes that
would ensure the full transmission of a sequence. The protocols that Aho et al. devise are
stated in terms of finite-state automata. This is a way of precisely formulating a protocol, and
has the advantage of providing a measure for the complexity of the protocol, namely the
number of states of the automata. Aho et al. first prove that if all errors are allowed, no
correct protocol is possible. Next they consider protocols for the case that the communication
links only admit deletion errors. They begin by proving that one-state automata do not suffice
for a correct protocol. We feel however that the proof hereof is not completely fair, as
connection-management issues are used in a counter example. Halpern and Zuck [HaZu] give
a knowledge-based protocol of which they claim that it contains all protocols defined by Aho
et al., together with a correctness proof.

The disadvantage of a correctness proof in terms of finite-state automata is that all possi-
ble state transitions have to be checked. Considering the protocols of Aho et al., the question
arose whether it is possible to give a correctness proof making use of system-wide invariants
(and thus by assertional verification). These were introduced as a proof method for protocols
in a distributed environment by Krogdahl {Kr] and Knuth [Kn], and strongly advocated by
Lamport [La]. However, a main assumption in this proof method is that only one atomic
action takes place at a time, while in the protocols proposed by Aho et al. synchronicity is
assumed, i.c., operations of sender and receiver take place at the same time. Also, information
is derived from things not happening at a certain time. Hence, to make the protocols amenable
to assertional verification, we lessen the constraint of synchronicity slightly, while retaining the
correctness of the protocols. Chandy and Misra [ChMi] use a different approach for an asser-
tional verification of a synchronous program. They lump all atomic actions located at the
different processors which are supposed to be executed at the same time together into one large
action which is considered to be atomic.

*This research was supported by the ESPRIT Basic Research Actions of the EC under contract No. 3075 (Project ALCOM).



In the next section we give both the model of Aho et al. and the model which we use
for the correctness proofs. Section 3 presents the actual protocols in our notation together with
the correctness proofs. For one of the protocols only the ideas were sketched in [AWYU].
The (non-trivial) details are shown in section 3.3.

2. The models. We first give a short synopsis of the model used by Aho et al. (details
can be found in [AWYU]). After a short introduction to assertional verification we give the
modifications which lead to our model, and state the necessary assumptions.

2.1. The original model. Aho et al. considered the situation of two processors i and J
connected by unreliable communication links, where a sequence of bits must be transmitted
from i to j. Actions to be taken by the processors are described in terms of finite automata.
Processors i and j operate in a synchronous fashion. At each time step, they both do one
move. A move of the sender i is based upon its current state, the symbol received over the
communication link, and the symbol to transmit. It can consist of a change in state, sending a
symbol over the link, and possibly advancing its input (reading the next bit of the input). A
move of receiver j is based on its current state, and the symbol received over the link. It can
consist of a change in state, sending a symbol over the link, and possibly writing a 0 or a 1 on
the output (i.e., appending it to the bit sequence that it is accumulating).

The information that can be exchanged over the communication links, in each direction
per “‘time step’’, are the bits 0 and 1, and ‘‘nothing”’, which is represented by the symbol A.
The following transmission errors are considered:
— deletion errors, in which a 0 or 1 is sent, but A is received;
— mutation errors, in which a 0 or 1 sent is received as a 1 or 0, respectively; and
— insertion errors, where a A sent is received as a 0 or 1.

2.2. Assertional verification. A very useful concept if one wants to use system-wide
invariants is the concept of a protocol skeleton. Protocol skeletons are generic descriptions for
classes of protocols all of which have some underlying structure in common. A protocol
skeleton consists of a number of operations which consist of a piece of program. Such an
operation is viewed as an atomic action, i.e., it can not be interrupted. We do not specify any-
thing about an assumed order in which the operations may take place, however an operation
can contain a so-called guard: a boolean expression between braces { }, and the operation may
only be executed if the guard is true, otherwise nothing happens. For example, a processor
may only execute the code for receiving a message if there is indeed a message present to
receive.

The most basic operations in a distributed protocol one can think of for processor i are
(assuming (i, j) is a direct link) : send a message to j (S;), receive a message from j (R;),
and do an internal (local) computation (I;). Operations and variables are subscripted by the
identity of the processor that performs and maintains them, respectively. This yields the fol-
lowing protocol skeleton.



Basic protocol skeleton :
S; : begin send a message end

R; : {a message has arrived}
begin receive the message; compute end

I; : begin compute end

We will only state the corresponding operations S;, R;, and I; for processor j explicitely if
there are more differences than the interchanging of the symbols i and j.

We can use these operations as building blocks for bigger operations that we also con-
sider to be atomic, thereby adding extra structure in the order of computation and/or the order
of communication. We will call the resulting protocol skeleton a refined protocol skeleton.

In assertional verification the idea is that if an assertion (a relation between process vari-
ables for example) holds initially, and is kept invariant by all possible operations, then it will
hold always in the distributed system, whatever order of operation takes place in an actual exe-
cution. Such an assertion is called a system-wide invariant.

The advantage of the use of protocol skeletons in assertional verification is the follow-
ing. If one has a refined protocol skeleton or an algorithm which can be viewed as a special
instance of a protocol skeleton, then any system-wide invariant which holds for the protocol
skeleton, will hold also for the refined protocol skeleton or the algorithm. This is the case sim-
ply because the invariant was proven correct for any order of operations in the general case,
and hence also for the special order of operations which will take place in the refined protocol
skeleton or the algorithm.

System-wide invariants are very well suited to prove the partial correctness (or safety)
of a protocol skeleton, e.g., that if a value is written in a variable, it is the correct value. In
general they are less suited to prove total correctness (or liveness), e.g., that all variables are
written in finite time. Although the freedom of deadlock can be stated in a system-wide invari-
ant, this does not mean that the freedom of deadlock for a general protocol skeleton automati-
cally carries over to the freedom of deadlock for a refinement of that protocol skeleton. As the
order of operation in the latter might be more restricted because extra guards were introduced,
freedom of deadlock will correspond to a different system-wide invariant. In this paper, we
restrict ourselves to the proof of the partial correctness of the protocols of Aho et al.

2.3. Our model. In the model of Aho et al., the non-arrival of a physical bit in a time step
was termed: the arrival of the symbol A. Thus we assume that in our model, messages can
have three different contents: 0, 1, and A. We will denote a message with contents m as <m>.
Hence we write <A> and mean: a physical message with empty contents. We need a physical
message in our model to render the guard of the receive operation true: ‘‘a message has
arrived”’.

We model the different classes of errors by operations acting on the ‘‘contents’’ of the
communication links. Hence we assume that outside the error operations, messages sent are
not lost, garbled, duplicated, or delayed infinitely long. Thus a message sent always arrives in
finite time at its destination. We also assume that messages are not reordered: links have the
FIFO property, i.e., a message sent first, arrives first. 'We do not really mean to say that the
communication links have those properties, but that all the errors that do occur, can be



described by the error operations.

Hence communication is modeled as follows. The link (i, j) is represented by two FIFO
queues of messages Q[i,j] and Q[j,i]: the messages from i to j and from j to i, respec-
tively. We denote the fact that a message m is on its way from processor i to processor j
over the direct link (i, j) as <m>e Q[i,j]. Thus we get the following send and receive pro-
cedures.

proc send <m>1to j byi =

begin append <m> to Q[i,j] end

proc receive <m> from j by i =
{<m> is the first message in Q[j,i]}
begin delete <m> from Q[j,i] end

The error operations we consider are:

Ef: {3<x>e Q[i,j]} begin <x>:= <A>end (deletion)

Ef: {3<x>e Qli,jlwithx #A} (mutation)
begin if x = O then <x> = <1> else <x> = <0> fi end

E,f, : {3<A>e€ QJi,j]} begin choose x € {0,1}; <A> = <x> end (insertion)

and the corresponding operations Ef, E[, and E} for messages in Q[j,i]. With statements of
the sort <x> = <y> we mean: change only the contents and not the position or the existence
of the message in the queue. Thus we have made the following extra assumption about the
system of processors and communication links.

Assumption 2.1, Transmission delays are sufficiently bounded such that the arrival of an
empty message (i.e., the non-arrival of a bit) can be inferred.

In synchronous computation it is usually assumed that messages are transmitted with a fixed
delay, but assumption 2.2.1 is sufficient to make the transition from the synchronous model
where the non-arrival of a message is used as information to an asynchronous model which is
driven by the arrival of (possibly empty) messages. The assumption is not necessary if we
allow messages with three possible contents, forgetting the original meaning. However, these
three different contents cannot be represented by a single bit any more.

In the model of Aho et al., the class of an error is defined by the relation between the
symbol sent and the symbol received. In our model an error is an operation upon the contents
of a message queue. These different viewpoints lead to a discrepancy for the case of deletion
and insertion errors. This is discussed further in section 3.3.

The remaining assumptions in our model are the following.

Assumption 2.2. Messages are not lost, garbled otherwise than in the specified error opera-
tions, duplicated, or delayed infinitely long.
Assumption 2.3. Messages are not reordered.

As we want to model a synchronous system, we include one send and one receive action of
one processor into one operation. Thus the operation will consist of the work to be done by
one processor in ‘‘one time step’’. The operation will be guarded by the arrival of a message.
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The assumption that links have the FIFO property (assumption 2.3) is not meaningful in the
original synchronous model, but is necessary now. To see this, consider the case that Q[i, j)
and Q[j,i] both contain one message, and that processor i receives one message from j. It
then also sends a message to j. Hence Q[i, j] now contains two messages. If these messages
were reordered, j would receive the second message first. This clearly could never happen in
the synchronous model of Aho et al., hence we have to exclude this possibility here.

To start the protocols, we assume that both Q[i,j] and Q[j,i] initially contain one
empty message. This is done to remain close to the model of Aho et al., otherwise we would
have to introduce a separate starting operation to send the first message. We denote the asser-
tion ‘‘there is exactly one message in Q[i, j] which is empty” as <A>e! Q[i,j). Thus we
get as a general synchronous protocol skeleton:

Protocol skeleton SP:
Initially <A>e! Q[i,j]land <A>e! QIj,i].

R¥:{Qlj,i1#2}
begin receive <m> from j; compute; send <x>to j end

R;" : defined similarly, and

Ef,E{,Ef, E},El", and EI : as defined above.
Given protocol skeleton SP, we are now ready to prove the first invariant.

Lemma 2.1. Using protocol skeleton SP, the total number of messages in Q[i,j] and Q[j,i]
is 2.

Proof. Initially this is true. Recall that operations are considered to be atomic actions, hence
the assertion only has to reflect the state of the queues after completion of an operation. The
error operations do not change the number of messages in the queues, only their contents.
Hence these operations do not falsify the assertion. In operation RS¥ the number of messages
in Q[j,i] is decreased by one, while the number of messages in Q[i, ] is increased by one.
Hence the total number stays the same. For operation st” the same holds with i and j inter-
changed. Thus the assertion is kept invariant by all possible operations. W

Let the system state be the entity consisting of the set of values of the local variables
and the contents of message queues. We now define the concept of a balanced state, which
corresponds to the states which can occur in the synchronous model of Aho et al.

Definition 2.1. A system state is balanced if the number of messages in Q[i, /] is equal to
the number of messages in Q[j,i].

Lemma 2.2. Using protocol skeleton SP, the following assertions hold invariantly:
(1)  in a balanced state both R* and R are enabled,
(2)  in an unbalanced state one of R{” and R is enabled, the other is disabled,

(3) operation Ris” transforms a balanced state in an unbalanced one and vice versa, as does
operation R,
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(4) starting from a balanced state, a sequence of two consecutive R%-operations can only
consist of RF¥ and then R, or R and then R, and in both cases this leads to a bal-
anced state.

Proof. Obvious from the definition and the protocol skeleton. W

Hence we can restrict ourselves to balanced states and need not worry whether it was
R, R or RfF; RFF. (This is the case under the assumption that RS and R} are indepen-
dent, i.e., the action that i takes does not depend on the value of a local variable of j. This
should be the case in any protocol.)

Thus the artificial difference that we created in this model between *‘R;” before Ri""
and “‘R’F after R"" in contrast with *“Rf at the same time as R in the original model
can be overlooked if we confine ourselves to balanced states.

3. Assertional proofs of the protocols of Aho et al. In this section we specify refined
skeletons for the protocols of Aho et al. for different (combinations of) errors. We discuss the
protocol for the case of deletion errors only in section 3.1. In section 3.2 we consider deletion
and mutation errors, while the combination of deletion and insertion errors is discussed in sec-
tion 3.3.

First we give some general notation. The sequence of bits that i should transmit to j is
in string;, and j outputs it in string;. For sake of notation and easy formulation of invariants,
we consider the sequences as arrays which are subscripted by n; and n;, respectively, to give
the current position. Hence a statement like ‘‘advance the input’’ is encoded as n; == n; +1.
However, we nowhere make use of any further properties of arrays, and we could as well use
a one-way tape with one head.

The states of i and j are recorded in the variables state; and state;, respectively. For
the values of the variable state we use numbers, for 2-state automata we use numbers modulo
2, and for 3-state automata we use numbers modulo 3, respectively. As the actions of the pro-
tocol skeleton differ for i and j, we will denote their actions as S” and RJD. As superscript
we use a code for the class of errors allowed.

3.1. Deletion errors only. The protocol Aho et al. give for the case of deletion errors
only can be viewed as a special implementation of the alternating bit protocol, in which the
control bit is not sent, but *‘signaled’’ by the sending of non-A symbols at either odd or even
time steps. The protocol takes the following form in our model and notation.

Protocol D :
Initially  state; = state; = 0, m; = n; = 1, <A>e! QI[i,jl, <A>e! Q[j.il.



SP: {Qlj.i1#2}
begin receive <x> from j;
if  state; = 0 A x = A then send <string;[n;1> to j; state; == 1
elif state; = 0 Ax # A thensend <A>to j; n; == n;+1
else send <A>to j; state; == 0
fi
end

RP: {Qi,j12@}
begin receive <x> from i;
ifx=A
then send <A>toi; state; = state; +1 mod 2
else send <I>toi;
if state; = 1
then stringj[nj] =xon = nj+1
else state; = 1
fi

end

E{ and Ef as in section 2.3.
For this protocol we can derive the following invariants.

Lemma 3.1. Using protocol D, the following assertions hold invariantly:
(1) state; =0 = <A>tilof Q(i,jlv Qli,jl= 9,

(2) statej= 0 = <A>uilof Q[j,i]vQlj,il= 9,

B) <x>tilof Qli,jlAax #A = x = string;[n;] A state; = 1,

@) <x>uilof Q[j,ilax #A = state; = 1.

Proof. (1). Initially state; = 0 and <A>e Q[i,j] is the last (and only) message, hence the
assertion holds. Operation E,-‘} cannot change the content of an empty message. Operation RJD
receives a message and deletes it from Q[i, j]. If it was the last one, then Q[i,j] = & now
holds; if it was not, then <A > remains the last message in Q[i,j]. Operation S,-D can send a
message such that the last message in Q[i,j] does not contain A any more; however, then
state; is changed to 1. If SP renders the premise true by setting state; = 0, then i sends <A>
to j. Hence the assertion is kept invariant by all possible operations.

(2). Initially the assertion holds. Likewise, in RjD, if state; is set to 0,<A>issenttoi. If j
sends a non-A symbol, state; is set to or remains 1. Operation S,~D does not affect the last mes-
sage of Q[j,i] unless it empties the queue.

(3). Initially the premise is false, hence the assertion holds. In operation S,-D, if i sends a
non-A message <x>, then x = string;[n;] and i sets state; to 1. When n; is increased,
another message is sent to j and <x> is no longer the last message. Operation E,-‘} on the last
message in Q[i, j] falsifies the premise, as does operation RjD if the last message from Q[i, /]
is received.

(4). Initially the premise is false. If in operation R}’ <1> is sent to i, state; becomes or



remains 1. If in RjD state; is set to 0, <A > is sent, hence <1> is no longer the last message in
Qlj,i]. Operation Ej‘}' may falsify the premise, and so does S,-D if the last message is received.
u

Lemma 3.2. Using protocol D, the following assertions hold invariantly:
(1)  the state is balanced and state; = state; = n; = n;,
(2) the state is balanced and state; # state; => n; = n;j— 1.

Proof. We prove the assertions by simultaneous induction. By lemma 2.2 we know that we
reach a balanced state from another balanced state by one operation S” and one operation R,D
in an arbitrary order, as the code of the operations is indeed independent. Initially
state; = state; = 0 and n; = n; = 1. If the state is balanced and state; = state; = 0, we
know by lemmas 3.1 and 2.1 that the first message in both queues is <A >, hence the next bal-
anced state will be state; = state; = 1. As m; nor n; is changed upon receipt of <A>,
n; = n; stll holds. If state; = 1, then the next state; = 0 and n; is not changed. If
state; = 1, then either n; is increased by one and state; remains 1, or n; is not changed but
state; is set to 0. Hence the next balanced state has state; = state; = 0 and n; = n; or
state; = 0, siate; = 1, and n; = nj— 1. From this last case, we get in the next state
state; = 0 and n; unchanged because <A > was received. Operation SP? cither sets state; to 1
and lets n; unaltered, or increases n; by one and leaves state; = 1. Hence the next balanced
state has either state; = 1, state; = 0, and n; = n; - 1; or state; = state; = 1 and n; = n;.
From the first one we get state; = 0 and n; unchanged because we had <A>e Q[j,i], and
from state; = O we get state; = 1 and n; is unchanged, hence we get state; = 0, state; = 1,
and n; = n; — 1. This exhausts all possibilities. W

Theorem 3.3. Using protocol D, string;[1:n; - 1] = string;[1:n; - 1].

Proof. Initially n; is 1, and the strings are both empty. The only operation which affects the
assertion is RjD, when n; is increased. This is only done if state; was 1 and <x>e Q[i, /]
with x # A held. Thus the last balanced state was state; = state; = 1 and hence n; = n;. By
lemma 3.1 we have that for this received message <x>, x = string;[n;] and hence
x = string;[n;]. As x is written in string;[ n;] and n; is increased afterwards in R}’, we now
have string;[ n; — 1] = string;[ n; — 1]. As the assertion held for the old value of n;j, we now
have string;[ 1 inj— 1]1= string;i[1:n;— 1] for the new value. B

This concludes the assertional proof of the partial correctness of protocol D for the case
of deletion errors only.

3.2. Deletion and mutation errors. We now assume that deletion and mutation errors
can occur, but no insertion errors. As the difference between the bits 0 and 1 now can be
obscured by mutation errors, another way is needed to distinguish them. In protocol D an
altermation between odd and even time steps marked the difference between retransmissions and
new values sent, while now an ‘‘alternation’’ between time steps that are 0, 1, and 2 modulo 3
distinguishes between retransmissions, a new 0, and a new 1. The protocol proposed by Aho
et al. is as follows.



Protocol DM :
Initially  state; = state; = 0, n; = nj = 1, <A>e! QI[i,jl, <A>e! Q[j,il.

SPM:{Qlj.i1#2}
begin receive <x> from j;

if state; = 0

then send <1> to j; state; = 1

else send <A> 1o j;
if state; = 2 Ax 2 A
then if string;[n;] = 1 then state; == 1 fi; n; == n; +1
else suate; = state; +1 mod 3
fi

end

RPY:{Qi,j1# @}
begin receive <x> from i;
ifx=2A
then send <A>toi; state; = statej +1 mod 3
else send<l>toi;
if state; = 0 then string;[n;] .= 1; nj = n;+1
elif state; = 2 then string;[n;] = 0; ;= nj+1
fi; state; = 2

end

E{, EZ, E, and E[T as in section 2.3,

For protocol DM we can derive the following invariants.

Lemma 3.4. Using protocol DM, the following assertions hold invariantly:
(1) state; = O v state; = 2 = <A>tilof Q[i,jlv Qli,jl= O,

(2) statej = O v state; = 1 = <A>tail of Q[j,i]l v Qlj,i]= O,

(3) <x>tuilof Q[i,jlAax #A = state; = 1,

@ <x>uilof Q[j,ilax #A = swte; = 2.

Proof. Obvious from the protocol and the allowed error operations. W

Lemma 3.5. Using protocol DM, the following assertions hold invariantly:
(1) the state is balanced and state; = state; =
n; = nj Astring;[n; — 1) = string;[n; — 1],
(2) the state is balanced and state; = state;— 1 mod 3 =
n; = nj+1 A string;[(n;] = 0,
(3) the state is balanced and stare; = state; +1mod 3 =
n; = nj+1 Astring;[n;] = 1.

Proof. We will prove the three assertions by simultaneous induction. Again we can use



-10 -

lemma 2.2 to observe that in going from one balanced state to the next we need to consider
onc SPY and one RPM operation in arbitrary order. Initially state; = state; = O and
n; = n; = 1, hence the strings are equal, as they are both empty. By lemma 3.4 we have that
both queues contain <A.>, hence in the next balanced state state; = state; = 1 and n; and n;
are unchanged. From this state we get state; = state; = 2 and n; and n; remain unaltered.
As state; = 2 implies that <A>e Q[i,j], we have state; = 0 and n; unchanged. In opera-
tion SDM three things can happen. First, state; == 0 and n; remains unchanged; secondly,
state; = 1, n; is increased by one, and string;[(n; - 1] = string;[ n;] = 1, rendering assertion
(3 true; and thirdly, state; remains 2, n; is increased by one and
string;[n; — 1] = string;[n;] = O, rendering assertion (2) true. Starting from the balanced
state state; = 2, state; = 0, n; = n; +1, and string;(n;]1 = 0, we have <A>e Q[i, j], hence
the next szate; = 1, next state; = 0, and n; and n; unchanged. Again, <A> is in both queues,
hence the next balanced state is state; = 1 and state; = 2 with n; and n; unchanged. As in
operation RDM the message <A> was received, <7L> was sent to i, also. Hence state;
becomes 2 w1th n; unchanged. From state; = 2 now two things can happen: either <A > is
received, state; = 0, and n; is unchanged, leaving assertion (2) true, or a non-A symbol is
received causing a O to be written in string;[ n;] and n; is increased, thus rendering assertion
(1) true. Starting from the balanced state suate; = 1, state; = 0, n; = n;+1, and
string;[nj}J= 1. As <A>e Q[j,i], next swte; = 2 with n; unchanged. In RjDM two things
can happen: string;[n;] := 1, n; is increased by one, and state; = 2, rendering assertion (1)
true, or state; = 1 and n; is unchanged leaving assertion (3) true. As <A> is in both queues,
the next balanced state is state; = 0 and state; = 2 with n; and n ; unchanged. The next state
is state; = 1, state; = 0, with n; and n; unchanged, which completes all possibilities. W

Theorem 3.6. Using protocol DM, string;[1:n;— 1] = string;[1:n;—1].
Proof. Follows from lemma 3.5. B

This concludes the assertional verification of the safety of protocol DM .

3.3. Deletion and insertion errors. In case deletion and insertion errors (only) can arise,
we encounter the problem that modeling errors by operations acting on the contents of the
message queues, i.e., the contents of the links, leads to a difference with the model of Aho et
al. In our model, operations can be executed in any order and as often as wished, as long as
their guards are true. Thus, for a message <0>e Q|[i, j] we can have a deletion error, chang-
ing this message to <A>e Q[i,j]. But nothing now prevents an insertion error, changing it
to <1>e Q[i,j]. Thus we have produced a mutation error, in the terminology of Aho et al,,
as in their case the kind of error is determined by the relation between the symbol sent and the
symbol received. One way to restore the correspondence between the model of Aho et al. and
ours is to restrict errors: to demand that a message in a queue is subject of an error operation
only once. Another, easier, way is to use the fact that the protocols of Aho et al. for deletion
and insertion errors avoid insertion errors by never sending A: as A is never sent, insertion
errors in fact do not occur. Thus by leaving out the insertion error operations in the protocol
skeletons for the case of deletion and insertion errors and not sending A, we model the same
situation as Aho et al.
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Aho et al. gave two protocols for the case of deletion and insertion errors, but only in
words. Although the idea upon which the first protocol (DI 1) is based is simple, its actual
code is not as simple as that of the previous protocols, at least if ‘‘simple’’ is defined as: con-
sisting of only a few states. Our translation of the idea for the protocol needs four states for
the sender and even six states for the receiver, although we are not sure this is the minimum
number necessary with the idea of this protocol. The problem can be solved by a protocol
with fewer states, as the second protocol (DI 2) in this section demonstrates. The idea used in
protocol DI'1 is to distinguish new bits being sent and retransmissions of old bits of the string
by a parity bit, like in the alternating bit protocol. However, the need to remember the current
parity increases the number of states by a factor of two. In stating the protocol we will not do
this, but write n; mod 2 to denote the parity, since we feel that it is more clear in this way.
However, if one wants to state the protocol as a finite state automaton in the model of Aho et
al., each state has to be replaced by two states, one where the parity is odd, and one for an
even parity. The protocol sends the bit to transmit in odd time steps and the control bit in
even time steps. The straightforward transcription of this idea leads to the following protocol.

Protocol DI/ 1:
Initially  state; = state; = 0, n; = n; = 1, <A>e! Q[i,jl, <A>e! Q[j,il.

sPI:{Qlj.i1# 2}

begin receive < x> from j;
ifx #A Ax # n; mod 2 then n; .= n; +1 fi;
if state; = 0
then send <n; mod 2> to j

. else send < string;[ n;1> to j

fi; state; .= state; +1 mod 2

end

RPN :{Q0i,j1# 2}

begin receive <x> from i;
ifx # 7LAstatej = 0 then string;[ n;] = x; n; = nj+1fi;
if state; = 2 v state; = 1 Ax #A Ax = n; mod 2
then state; = state;— 1
else state; = state; +1
fi; send <n; mod 2> to i

end

EZ, and Ef as in section 2.3.

Processor j needs three states apart from the parity, because two states are used for remember-
ing whether to expect a parity bit or a bit with string information, while the third is used for
the case ‘‘a string bit is coming but it is probably a retransmission’’. The trick to repeatedly
write retransmitted values in the same position of string; does not work, as it might also be a
new value that is sent, but the receiver has no way of ‘‘knowing’’ that, and the old value
would be lost.
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Lemma 3.7. Using protocol DI 1, the following assertions hold invariantly:
(1) state; = Oa<x>tailof Q[i,jlAx =X = x = string;[n;],

(2) state; = 1 A<x>tailof Qi,jlAax #A = x = n; mod 2,

(3 <x>wilof Q[j,i]Ax #A = x = n; mod 2.

Proof. Obvious from the protocol skeleton and the allowed error operations. W

Lemma 3.8. Using protocol DI 1, the following assertions hold invariantly:
(1) the state is balanced => state; = state; v state; = 0 A state; = 2,
(2) the state is balanced and state; = 0 =

n; = n; Astring;[n;— 1] = string;[n; — 1],
(3) the state is balanced and (state; = 1 v state; = 2) =

(n; = nivna=n;—1) A string;[n;j— 1] = string;[n; — 1].

Proof. (1). Obvious from the protocol skeleton. We prove assertions (2) and (3) by simul-
taneous induction. Initially (2) holds. As in a balanced state state; is determined by state;
according to (1), we will only state the value of state; in the sequel. From assertion (2), the
next balanced state has state; = 1. As before this transition we had n; = n;, we have by
lemma 3.7 (3) that n; is unchanged In R”'! two things can happen. Flrst, if the symbol
received was unequal A, we have by lemma 3.7 (1) that n; is increased such that n; = n; — 1
and the new value is string;[n; — 1] = string;[n ;i — 1]. Secondly, if the symbol received was
A, then n ; remains unchanged. Hence assertion (3) is rendered true. From this balanced state
with n; = n; — 1, if a non-A symbol is received in SPI1, then it was n; mod 2 by lemma 3.7
(3), hence n; is increased such that n; = n; holds again. Otherwise, n; remains n;j—1. In
operation RD’ ! we have by lemma 3.7 (2) that the next state; = 2 with n; unchanged From
the balanced state with state; = 1 and n; = n;, we get n; unchanged and next state; is either 0
or 2. In SP'! n; remains unchanged because of lemma 3.7 (3). Thus assertion (3) remains
true or (2) is rendered true. From the balanced state with state; = 2 and n; = n; — 1 we get
that the next state; = 1, n; unchanged, and in S?'! n; can remain unchanged or is increased
such that n; = n;. Hence assertion (3) remains true. From the balanced state with state; = 2
and n; = n; we get next state; = 1, n; unchanged, and n; unchanged, too. Thus assertion (3)
remains true. This completes all possible transitions. B

Theorem 3.9. Using protocol DI 1, we have
string;[1:n;— 1] = string;[1:n;— 1].

Proof. Initially this is true because the strings are empty. By lemma 3.8 the assertion remains
true as n; is increased. W

The second idea for a protocol for the case of deletion and insertion errors is based on
protocol DM for the case of deletion and mutation errors in section 3.2. This latter protocol is
based on the fact that the symbol A cannot be changed by the error operations to a symbol
# A. If we allow only deletion and insertion errors, we know that the symbol O is never
changed into the symbol 1. Thus we can use the same protocol in this case, if replace all sym-
bols appropriately: ‘A’ by ‘0", and *‘ # A"’ by ‘‘1”’. Hence we get the following protocol.
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Protocol DI2:
Initially  swate; = state; = 0, n; = n; = 1, <0>e! Q[i.jl, <0>€! Q[j,il.

SP2:{QU.i1# 2}
begin receive <x> from j;

if state; = 0

then send <1> to j; state; = 1

else send <0> to j;
if state; = 2 Ax =1
then if string;[n;]1 = 1then state; == 1fi; n; .= n; +1
else state; = state; +1 mod 3
fi

end

RP2:{QUi.j1#@}
begin receive <x> from i;

ifx=1

then send <0>to i; state; = state;+1 mod 3

else send <1>toi;
if  swate; = O then string;(n;]:= 1; n; = n; +1
elif swate; = 2 then string;[n;]1 = 0; n; = nj+1
fi; state; .= 2

end
E{, and Ef as in section 2.3.
Now we can derive the following invariants.

Lemma 3.10. Using protocol D/2, the following assertions hold invariantly:
(1) state; = O v state; = 2 = <x>tailof Q[i,jlax #1vQl[i,jl= D,
(2) statej = Ovstatej =1 = <x>tailof Q[j,ilax 21vQ[j,il= O,
(3) <I>tailof Q[i,j] = state; = 1,

4) <I>tilof Q[j,i] = statej = 2.

Proof. Obvious from the protocol skeleton and the allowed error operations. W

Corollary 3.11. Using protocol DI2, we have
string;[1:n;— 1] = string;[1:n; - 1].

Proof. This follows from lemma 3.10, the correspondence with operations SP# and RP¥, and
theorem 3.6. B

Similarly, this protocol can be used for the remaining possibilities of classes of errors.
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