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The complexity of coloring games on perfect
graphs

Hans L. Bodlaender* Dieter Kratsch '

Abstract

In this paper we consider the following type of game: two players must
color the vertices of a given graph G = (V, E), in a predescribed order, such
that no two adjacent vertices are colored with the same color. In one variant,
the first player which is unable to move loses the game. In another variant,
player 1 wins the game, if and only if the game ends with all vertices colored.
In this paper, we obtain several results on the complexity of the problem
to decide whether there is a winning strategy for player 1 in a given game
instance, when G is restricted to split graphs, interval graphs, or bipartite
graphs.

1 Introduction

Much research has recently been done on restrictions of NP-complete graph problems
to special classes of graphs (see e.g., [7]). In contrast, only little research has been
done on restricting graph problems that are e.g. PSPACE-complete to special classes
of graphs. In this paper we consider two PSPACE-complete graph problems, and
look at their complexity when restricted to a number of important classes of perfect
graphs, namely the split graphs, the interval graphs, and the bipartite graphs.

The problems we consider come from two games, where two players alternately
color the vertices of a graph. To be precise, we actually consider classes of games,
where game-instances differ in details like: the number of colors, and the graph
where the game is played on, but not in the ‘basic rules’.

The first game we consider is the SEQUENTIAL COLORING GAME. In this game,
a graph G = (V, E), a linear ordering of G (i.e., a bijection f: V — {1,2,---,|V|}),
an ownership function of G (i.e., a function owner : V — {1,2}), and a finite set of
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colors C are given. The game is played with two players, 1 and 2, that always have
full information. Until the game ends, the player that is the owner of the smallest
numbered yet uncolored vertex v must color v with a color from C that has not been
given before to any vertex adjacent to v. Le., player owner(1) must color f~1(1),
then player owner(2) must color f~1(2), etc. The game ends when a player is unable
to color a vertex that he must color, or when all vertices are colored. In the former
case, the player that must color a vertex v but is unable to do so, loses the game.
In the latter case, the player owning the last vertex f~!(|V'|) wins the game.

The SEQUENTIAL COLORING CONSTRUCTION GAME is similar, with the dif-
ference that now player 1 wins, if and only if the game ends when all vertices are
colored. This game arises in the following, more or less practical situation. Suppose
a number of jobs must be sceduled on a number of machines, in a fixed order. There
are a number of constraints of the type: ‘job 7 and job j may not be sceduled on the
same machine’. The order, and the constraints are known in advance. Not all jobs
however will be sceduled by the same algorithm: e.g. another machine or users will
make sceduling decisions for some of the jobs. This situation can be modeled in a
straightforward way as an instance of the SEQUENTIAL COLORING CONSTRUCTION
GAME (see [3]), and there exists an algorithm that makes sure that all jobs can be
sceduled, if and only if there is a winning strategy for player 1 in this game instance.

In this paper we consider the computational complexity of the following type of
problems: given a game (instance) from a game (class), determine whether there is
a winning strategy for player 1. We use the name of the game (class) to denote this
problem.

In [3] it was proved that SEQUENTIAL COLORING GAME and SEQUENTIAL
COLORING CONSTRUCTION GAME are PSPACE-complete, even when there are
exactly three colors. If there are two colors, then efficient polynomial time algorithms
exist for the problems. Also, if the linear ordering has bounded separation number,
then the problems can be solved in polynomial time. (See [3] for details.)

In [3] it was also observed that — when the restrictions on the problem remain
true under insertion of isolated vertices — we equivalently may assume that players
alternately color the vertices (i.e., owner(i¢) = ¢ mod 2): insert between every pair
of vertices that is owned by the same player a new isolated vertex owned by the
other player.

In this paper we consider the complexity of the problems, when the graph G is
restricted to certain classes of perfect graphs. After some necessary definitions in
section 2, we consider split graphs in section 3, interval graphs in section 4, and
bipartite graphs in section 5. Some open problems are mentioned in section 6.



2 Definitions

In this section we give most of the definitions and notations used in this paper.

Let graph G = (V, E), linear ordering f : V — {1,2,---,|V|}, set of colors C,
and ownership function owner: V — {1,2} be given. A partial coloring is a function
col: {1,---,1} — C for some i, 0 < i < |V|, and for all (v,w) € E, f(v), f(w) €
{1,---,1} : col(f(v)) # col(f(w)). A partial coloring col: {1,---,i} — C is a total
coloring, if ¢ = |V|. We say that a partial coloring col: {1,---,i} — C is a winning
position (or winning) for player a (a = 1,2), if player a has a winning strategy in
the considered game, when started with all vertices j € {1,---,%} colored with color
col(j), and all vertices i +1,- - -, |V| uncolored. A color c is called a legitimate move
from partial coloring col : {1,---,1} — C,if i + 1 < |V]|, and there does not exist
an edge (v,w) € E, with f(v) € {1,---,1}, f(w) = ¢+ 1, and col(f~!(v)) = c. The
color classes of a partial coloring col : {1,---,i} — C, are the sets {f~1(j) | col
(7) = ¢} C V for all colors c € C.

For G = (V,E), W C V, Ng(W) denotes the set of neighbors of W: {v €
V|3weW:(v,w) € E}.

A perfect elimination ordering of a graph G = (V, E) is a linear ordering f :
V — {1,---,|V|}, such that for all v,w,z: if f(v) < f(w) < f(z), and (v,w) € E,
(v,z) € E, then (w,z) € E.

A graph G = (V,E) is called a split graph, if V can be partitioned into two
sets Vi, V2, with V; an independent set (Vv,w € V; : (v,w) ¢ E), and V; a clique
(Vv,w € V3 : (v,w) € E). We call V; the independent set of G, and V, the clique of
G. Split graphs have perfect elimination orderings.

A graph G = (V, E) is bipartite, if V can be partitioned into two independent
sets V1, V,, called the color classes of G.

A graph G = (V, E) is an interval graph, if one can associate with each vertex
v € V an interval [b,,e,] C R, such that for all v,w € V, v # w: (v,w) €
E & [by,€y] N [by,ew] # 0. Interval graphs have perfect elimination orderings. A
very natural one is to order the vertices with respect to the right endpoints of the
associated intervals.

More on split graphs, interval graphs, and other classes of perfect graphs can be
found in [4, 6].

3 Split graphs

In this section we consider the SEQUENTIAL COLORING GAME and the SEQUENTIAL
COLORING CONSTRUCTION GAME on split graphs. We show NP-hardness and
co-NP-hardness of the problems, even when the linear ordering is such that first
all vertices in the ‘independent set’ must be colored, and then all vertices in the
‘clique’. In all but one cases, we may assume that one player owns all vertices in
the independent set and the other player owns all vertices in the clique.



We use the following problem to transform from:

PERFECT COLORING OF 3-REGULAR GRAPHS

Instance: 3-Regular graph G = (V| E).

Question: Is there a coloring f : V — {1,2,3,4} of G with four colors,
such that for all v € V: f({v} U Ng(v)) = {1,2,3,4}?

In other words, in a perfect coloring, for each vertex v, each color appears exactly
once in the set of colors given to v and its neighbors. Bakker et. al. [1] showed that
PERFECT COLORING OF 3-REGULAR GRAPHS is NP-complete.

Theorem 3.1

The SEQUENTIAL COLORING GAME on split graphs is NP-hard, even when first
every vertex in the independent set and then every vertex in the clique appears
in the linear ordering, and player 1 owns every vertex in the independent set, and
player 2 owns every vertex in the clique.

Proof.

To show NP-hardness, we use a transformation from the PERFECT COLORING FOR
3-REGULAR GRAPHS problem. Let G = (V, E) be a 3-regular graph with |V| = n.
W.l.o.g. suppose that n > 6.

Now construct a split graph G’ = (V’, E') as follows. Let V! = VUV, with V; =
{vi|veV},i=1,2. Let E' = {(v1,w2) | (v,w) € Eorv=w}U{(vg,ws) | va,w2 €
Va2, vg # we}. Let f be an arbitrary linear ordering on G. Now let f’ be the linear
ordering on G', with for all v € V:

fi(vi) = f(v)
fllva) = n+f(v)

Let owner(v;) =i, forallve V, i=1,2.

We now claim that there is a winning strategy for player 1 in the SEQUENTIAL
COLORING GAME played on G’ with linear ordering f’, ownership function as de-
fined above, and with n + 3 colors, if and only if G has a perfect coloring (with four
colors).

Note that player 1 has a winning strategy, if and only if there is a partial coloring
of V}, such that there is no proper coloring of G’ with n + 3 colors, containing that
coloring. For when such a coloring exists, then player 1 colors V; with that coloring,
and player 2 will be unable to color all vertices in V, and loses, otherwise player 2
is able to color all vertices in V; and wins.

Suppose G has a perfect coloring col : V — {1,2,3,4}. Then player 1 colors V}
in the same way: color v; with col(v) for all v; € V;. Now every vertex v, € V;
is adjacent to a vertex with color i, for each 7 € {1,2,3,4}. So player 2 has only
n + 3 — 4 colors available to color the clique V;. This is impossible because |V2| = n,
hence player 1 wins.



Now suppose G has no perfect coloring. We consider four different cases.

Case 1. Player 1 used at most three different colors to color the vertices of Vj.
There are at least n other colors, so player 2 can use these to color the vertices of
Va.

Case 2. Player 1 used exactly four different colors to color the vertices in
Vi, say c1,c¢3,¢3,¢4. Then at least one vertex v, € V5 is not adjacent to a color
¢ € {c1, ¢, c3,ca}, because otherwise the partial coloring of V; would imply a perfect
coloring of G. The partial coloring of V; can now be extended to a total coloring
of G', by giving color ¢ to v,, and using the other n — 1 colors to color the other
vertices of V;.

Case 3. Player 1 used 4 < k < n colors to color the vertices of V. We prove
by induction to k, starting with k = 4, that any k-coloring of V} is contained in a
(n + 3)-coloring of G', if 4 < k < n holds. The case that k = 4 is dealt with in Case
2.

Suppose the assertion is true for k > 4, k < n — 1. Let & be a partial (k + 1)-
coloring of V; with color classes I3, I5,- -+, Ix4;. W.lo.g. suppose that |I;| < || <
“++ £ |Ig41]. Hence |Ii| < 2. Let ¢ : Vi — {1,---,k} be the partial k-coloring of
Vi, defined by ¢/(v) = 1, if é(v) = 1 or &(v) = 2; and ¢/(v) = &(v) — 1 otherwise.
By induction hypothesis, there is a (n + 3)-coloring ¢ : VUV, — {1,---,n + 3},
containing c'.

Now note that || < n/(k + 1) implies that |Ne:(f1)| < £, since any vertex of
V1 has degree four. As k“% <n+3—kfor4 <k<n-—1,it follows that there is
at least one color a that does not belong to ¢(V1) U ¢(Ngi(I1)). Hence, if we change
¢ such that all vertices in I; get color a, then we obtain again a coloring ¢ of G'.
Note that the color classes of the partial coloring, obtained by restricting ¢’ to V; are
exactly Iy, I, - - -, Ix41. So & is contained in a coloring ¢ of G, that can be obtained
from ¢” by renaming some colors.

Case 4. Player 1 used n different colors to color the vertices in W, i.e., every
vertex in V] received a different color. Consider the bipartite (n — 4)-regular graph
G" = (V1 U Vo, E") with E" = {(vi,w1) | (v1,w2) & E, vy € V4, wy € V3}. Since
every r-regular bipartite graph contains a perfect matching (see e.g., [2], p. 133), G”
has a perfect matching. Player 2 colors each vertex v, with the color r, such that
there is a matching edge (w;,v2) in G”, and w; was colored with color r by player
1. This yields a total coloring of G'.

We have shown that the graph G has a perfect coloring, if and only if player 1
has a winning strategy in the corresponding instance of SEQUENTIAL COLORING

GAME. As the transformation can be carried out in polynomial time, the theorem
now follows. O

By just changing the roles of player 1 and player 2, we directly obtain the following
result.



Theorem 3.2

The SEQUENTIAL COLORING GAME and the SEQUENTIAL COLORING CONSTRUC-
TION GAME on split graphs are coNP-hard, even when first every vertex in the
independent set and then every vertex in the clique appears in the linear ordering,
and player 2 owns every vertex in the independent set, and player 1 owns every
vertex in the clique.

We also have the following result.

Theorem 3.3

The SEQUENTIAL COLORING CONSTRUCTION GAME on split graphs is NP-hard,
even when first every vertex in the independent set and then every vertex in the
clique appears in the linear ordering.

Proof.
Again we transform from PERFECT COLORING FOR 3-REGULAR GRAPHS. (One
can also use the DOMATIC NUMBER problem (cf. [5]) instead.)

Let G be a 3-regular graph. Let an arbitrary linear ordering f of G be given.

Construct a graph G' = (V', E') as follows: let V' = V; U V, U V3 U V,, with
i={g|1<i<n},Va={n|veV}LVa={u|veV} Vi={y|1Z<
1 < 4}’ and E' = {(xi7yj) ' zt € W, yj € ‘/4} U {(’037“73) | vs,wz € V3, v 7£
w}U{(y',9%) | 4',97 € Vi, i # j}U {(¥3%,9%) | v® € V3, 37 € Va} U {(vz,w3) | v; €
Vo, w3 € V3, v=wV(v,w) € E}. (So, VUV, form the independent set, and V3UVj
form the clique.)

Player 1 owns every vertex in V;; player 2 owns every other vertex. Let f': V' —
{1,2,---,3n + 4} be the linear ordering of G', defined by

fi(z) = ¢ (=t e V1)
fi(va) = n+fv) (v2€W)
fllvs) = 2n+ f(v) (vs€W)
flly') = 3n+i (v eW)

We now claim that there is a winning strategy for player 1 for the SEQUENTIAL
COLORING CONSTRUCTION GAME, played on G' with linear ordering f', n + 4
colors, and ownership, as described above, if and only if G has a perfect coloring.

Suppose G has a perfect coloring col : V — {1,2,3,4}. When coloring V;, player
1 selects four colors that were not used by player 2 when coloring V;. (There are at
least four such colors.) Let these colors be ¢;, ¢, ¢3, cs. Now player 1 colors each
vertex vy € V; with color c(y), i.e. with color ¢;, if v is colored with ¢ in the perfect
coloring of G. Now player 2 cannot use colors ¢;, ¢z, ¢3, ¢4 when coloring V3. So
player 2 must color V3 with all n other colors, and then he can and must color V,
with colors ¢;,- -+, v4. So player 1 wins the game.

Next suppose that G has no perfect coloring. Player 2 starts by giving each ver-
tex z* color 7. After player 1 has colored V5, there must be at least one vertex v € V;
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and a color @ € {n + 1,7+ 2,n + 3,n + 4} such that v; is not adjacent to a vertex
in V, with color a. (Otherwise, the coloring of V; would imply a perfect coloring of
G: give v € V color r — n, where r is the color of v2.) So player 2 can color V3, such
that at least one vertex in Vj receives a color a € {n + 1,n +2,n + 3,n + 4}. But
now V, cannot entirely be colored, as V; contains four vertices that are adjacent to

vertices in all the colors in {1,2,--,n,a}. So player 2 wins the game. This proves
the claim, and, because the transformation can be done in polynomial time, also the
theorem. a

By noting that inserting isolated vertices in a perfect elimination ordering yields
again a perfect elimination ordering, we have the following corollary:

Corollary 3.4

SEQUENTIAL COLORING GAME, and SEQUENTIAL COLORING CONSTRUCTION
GAME are NP-hard and coNP-hard, when restricted to split graphs, with the linear
ordering a perfect elimination ordering, and players alternately coloring one vertex.

4 Interval graphs

In this section we give a polynomial time algorithm for the SEQUENTIAL COLORING
CONSTRUCTION GAME for interval graphs for a certain type of linear orderings.
This type includes the perfect elimination orderings and the reversals of these as
special cases.

Definition. Let G = (V, E) be an interval graph, and let for each v € V two
numbers be given b,, e, € R, such that

e YveV:b,<e,
e Vo,w e V:(v,w) € E & [by,e]N [by,eu] #90.

A linear ordering f : V — {1,2,---,|V|} of G is called an interval representation

compatible linear ordering (or: irclo), if and only if there exists a function g : V — R,
such that

e VveV:b, <g(v)<e,

o Yo,w€V: f(v) < f(w) & g(v) < g(w).
g is called the stitch-function of irclo f.

In other words, an irclo f is obtained by choosing a point in each interval with a
stitch-function ¢, and then ordering the vertices in the order on the real line of the
corresponding stitch-points.

Clearly, the perfect elimination ordering of G, obtained by ordering vertices with
respect to the right endpoints of the corresponding intervalsis an irclo. The ‘reversal’
of this ordering is also an irclo, as is shown by the following lemma.
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Lemma 4.1
If f:V — {1,---,n} is an irclo, then the reversal of f, f*’(:) = n+1— f(z) is also
an irclo.

Proof.

Suppose f is an irclo with respect to interval representation [b,,e,] C R for all
v € V, and with stitch function g. Now f™ is an irclo with respect to interval
representation [—e,, —b,] for all v € V, and stitch function —g. 0

In our algorithm, the following function plays a vital role. Let C denote the set of
colors.

Definition. last is a function, mapping partial colorings col : {1,---,7} — C and
colors ¢ € C to real numbers:

last(col, c) = max{e, | 1 < f(v) < i Acol(t) = c}

Definition. A partial coloring coly : {1,---,2} — C dominates a partial coloring
coly : {1,---,i} — C, if and only if there exists a bijection ¢ : C — C, such that for
all ¢ € C: last(coly, ¢) > last(colz,¥(c)).

We may and will assume that the bijection 3 in the definition above is order-
preserving, in the sense that for all pairs of colors ¢;, c; € C: if last(coly,c1) >
last(coly, c3), then if last(colz,¥(c1)) > last(coly,¥(cz)). (If col; dominates cols,
then one can use for 3 the bijection, obtained by first ordering C with respect to
last(coly, c), then ordering C with respect to last(cols, ¢), and mapping the 7’th color
in the first ordering to the #’th color in the second ordering, for all 7, 1 <1 < |C].)

We assume that G = (V, E), and b, e,, g(v) (for all v € V) are given. To ease
presentation, we assume that V = {1,2,3,--- ,n}, and f(i) =iforalli € V; f is
an irclo.

Lemma 4.2

Suppose coly : {1,:--,i} — C dominates col; : {1,---,1} — C, with order preserving
bijection 9, and c is a legitimate move for ¢ + 1 from coly, then ¥(c) is a legitimate
move for ¢ + 1 from col,.

Proof.

Suppose ¥(c) is not a legitimate move for 7 + 1 from col;. Then there exists a j <1
with (7,4) € E and coly(j) = 9¥(c). So last(coly,¥(c)) > e;, hence last(coli,c) > e;.
Write ex = last(coly, c). From (j,1) € E, it follows that e; > b;. Also, k¥ < 7, hence
g(k) < g(3). So ex > e; > b;, and b < g(k) < g(2) < e;. Now [b, ex] N [b;, €] # @,
hence (i, k) € E. But then ¢ was no legitimate move for :+1 from coly, as coly (k) = c.
Contradiction. 0



Lemma 4.3
Color cis allowed for 1+ 1 from col : {1,---,¢} — C, if and only if last(col, c) < b;y;.

Proof.

If last(col,c) > biy1, then there exists a j, 1 < j <4, with col(j) = ¢ and ¢; > biy;.
We now have: b; < g(i) < g(i + 1) < ej41. Hence [b;,e;] N [biy1,€i41] # 0, ie.,
(4,5 +1) € E. Hence c is not allowed for 7 + 1.

Alternately, suppose that c is not allowed for 2 + 1 from col. Then there must be
aj,1<j <1, withcol(j) = c,and (j,i+1) € E. Asb; < g(j) < g(i+1) < ¢j41 and
[5;, 5] N [bit1, €i41] # B, we must have that e; < biy;. Now last(col,c) > e; > biy.
a

Lemma 4.4
If a partial coloring col; : {1,---,1} — C is winning for player 1, and col; dominates
partial coloring col; : {1,---,i} — C, then col; is winning for player 1.

Proof.

We use the following notation in this proof: for a partial coloring col : {1,---,i} —
C, 1t < n, and color ¢ € C, we denote with (col + ¢) the partial coloring {1,---,7,7+
1} — C, defined by (col + ¢)(j) = col(j) for 1 < j <3, and (col +c)(z +1) = c.

To prove the lemma, we use downward induction to 7, starting with ¢ = n.

Clearly, if ¢ = n, then both coly : {1,---,i} —» C and col; : {1,---,i} — C are
total colorings, and hence winning positions for player 1.

Suppose that for certain i < n, the lemma is true for all partial colorings
{1,---,i4+1} — C. We consider the case that player 1 owns i + 1, and the case that
player 2 owns i + 1.

First suppose that player 1 owns ¢ + 1, coly is a winning position for player 1 and
dominates coly; coly,coly : {1,:--i} — C. Suppose that coloring ¢ + 1 with color ¢ is
a winning move for player 1 from coly, i.e., the partial coloring (col; + ¢) is winning
for player 1. Then by lemma 4.2, ¥(c) is a legitimate move for ¢ + 1 from col,. It
is also a winning move. To prove this, it is, by induction hypothesis, sufficient to
prove that (col; + ¢) dominates (col; + ¢(c)). This follows, because for all colors
c # ¢, last((coly + c), ) = last(coly, c') > last(colz, P(c')) = last((colz + ¥ (c)), ¥(c)),
and last((coly + ¢),¢) = eip1 = last((coly + ¥(c)), ¥(c)).

Next suppose that player 2 owns ¢+ 1. We now show that if col; : {1,---,i} - C
dominates coly{1,---,i1} — C, and col; is a winning position for player 2, then coly
is also a winning position for player 2. We consider several cases.

Case 1. Player 2 cannot move from col;. Then, by lemma 4.2 he also cannot
move from col;. Hence col; is a winning position for player 2.

Case 2. Player 2 has a winning move from col,, say this move consists of coloring
1+ 1 with c.



Case 2.1. 1p~¥(c) is a legitimate move for ¢+1 from col;. Note that (col; +1~(c))
dominates (coly + ¢). As (coly + ¢) corresponds to a winning position for player 2,
(coly + ¥~*(c)) cannot correspond to a winning position for player 1, hence ¥~*(c)
is a winning move for player 2 from cols.

Case 2.2. Player 2 has no legitimate move for 7 + 1 from col;. Clearly then col;
corresponds to a position that is winning for player 2.

Case 2.3. ~'(c) is not a legitimate move for 7 + 1 from coly, but ¢’ is a
legitimate move for ¢ +1 from col;. By lemma 4.3 we have that last(col;, ') < biyy <
last(coly,~1(c)). Now (coly + ¢’) dominates (col; + ¢): use bijection ' : C — C,
defined by ¢'(¢”) = (") for all " € C, " # ¢, ¢' # ¥~(c), and ¥'(c) =
¢, ¥'(¥~1(c)) = ¥(c). One can easily check the domination requirements: for
" # d,¢7Y(c), last({coly + '), ") = last(coly, ") > last{coly, (")) = last((coly +
c), ¥(c")); last((coly + '), ) = eiy1 = last((coly + ¢), c); and last((coly +c), ¥~ (c)) =
last(coly,¥=(c)) > last(coly, ) > last(colz, ¥(c)) > last((colz + c),¥'(p~2(c))). We
have shown that (col; + ¢’) dominates (col, + c), hence, by induction, ¢ is a winning
move for player 2 for ¢ + 1 from col;.

This ends our cases analysis, and the inductive proof of our theorem. 0

Lemmas 4.3 and 4.4 enable us to identify the ‘best possible moves’ for players 1 and
2.

Lemma 4.5

Let col : {1,---,i} — C be a partial coloring, ¢ < n, and suppose there exists at
least one color ¢ € C with last(col, c) < b;y;.

(1) Suppose player 1 owns ¢ + 1. Player 1 has a winning move for 7 + 1 from col,
if and only if coloring ¢ + 1 with the color ¢ fulfilling the following condition is a
winning move for ¢ + 1 from col for player 1: last(col,c) < b;y; and there does not
exist a color ¢’ with last(col, c) < last(col,c’) < biy1.

(ii) Suppose player 2 owns 7 + 1. Player 2 has a winning move for i + 1 from col,
if and only if coloring ¢ + 1 with the color ¢ fulfilling the following condition is a
winning move for ¢ + 1 from col for player 2: last(col, c) is minimal over all ¢ € C.

Proof.

From the assumption 3¢ € C : last(col, ¢) < b;4; it follows that at least one color is
possible for ¢ 4+ 1 from col.

(1) Suppose last(col,c1) < last(col,c;) < biy1. Then ¢y, c; are allowed colors for
t+1 from col. The coloring (col+c¢;) dominates the coloring (col+c;): take ¥(c') = ¢’
for ¢ # ¢, ¢2; Y¥(c1) = ¢z, Y(c2) = ¢;. One easily checks the domination conditions.
So, if coloring ¢ + 1 with ¢; is winning for player 1, then coloring ¢ + 1 with ¢, is
also winning for player 1. It follows that ‘the best possible move’ for player 1 is the
color, that is still allowed (i.e., has last(col,c) < bi4+1), and has maximal last(col, c)
among all colors that are allowed.

(ii) Similar to (i). ]
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From lemma 4.5 we obtain the following algorithm to solve SEQUENTIAL COLORING
CONSTRUCTION GAME on interval graphs with an irclo. Each move, the ’best’ move
is selected according to lemma 4.5. From this lemma it follows that the algorithm
indeed outputs the correct player that has a winning strategy.

for all c € C do last(c) := —o0;
game_end := false;
1= 1
while : < n and not(game_end)
do begin check whether there exists ¢ € C with last(c) < bj41.

if such ¢ does not exist

then begin game_end := true;
go to ezit
end;
if owner(z) =1
then begin find color ¢ € C with last(c) < by, and last(c)
is maximal among all colors ¢’ with last(c’) < b;41;

last(c) := e;;
end
else begin find color ¢ € C with last(c) minimal;
last(c) 1= ¢;
end

end;
exit:  if game_end then output(“winning strategy for player 2”)
else output(“winning strategy for player 1”)

To speed up the algorithm, we do not use an array to store the numbers last(c) for
¢ € C, but use a balanced search tree (e.g., an AVL-tree, or a 2-3-tree.) It is easy
to see that with such a data structure, the ‘find’-operations, and the updates of the
values last(c) can be implemented to take O(logn) time per operation or update.
As we have O(n) such operations and updates, the total time of the algorithm is

O(nlogn).

Theorem 4.6
SEQUENTIAL COLORING CONSTRUCTION GAME, when restricted to interval graphs

and the ordering an interval respresentation compatible linear ordering, is solvable
in O(nlogn) time.

5 Bipartite graphs

In this section we show that SEQUENTIAL COLORING GAME and SEQUENTIAL
COLORING CONSTRUCTION GAME are PSPACE-complete for bipartite graphs.

11



Theorem 5.1
SEQUENTIAL COLORING GAME, with three colors, is PSPACE-complete, when re-
stricted to bipartite graphs.

Proof.
We use a transformation from SEQUENTIAL COLORING GAME (without restrictions
on the graphs) with three colors.

Let a graph G = (V, E) be given, n = |V|, and let a linear ordering f : {1,---,n}
and a function owner : V — {1,2} be given.

Now a graph G’ = (V’, E'), and linear ordering f' of G’, and ownership function

w' : V' — {1,2} are made in the following way. For each edge e = (v,w) € E,

four extra vertices Ve1, Ve2, Ve3, Veq4 are added to G. The edge e = (v,w) does
not appear in G', but instead there are edges (v,ve1), (V,ve2), (W,Ve1), (W, ve2),
(Ve,1yVed)s (Ve2,Veqs), and (ves,veq). Suppose f(v) < f(w). Then vey, -, Ve
are placed in the linear ordering f' after w but before the next vertex in V| and
f'(ven) < fl(Ve2) < f'(ves) < f'(veq). The player that owns w also owns ve 4. The
other player owns v, Ve2, Ve3.

See figure 1 for a graphical illustration of the construction. Note that G’ is
bipartite.

v w v w ve,l ve,2 Ve,3 Ve,4

! i 3+ 3+ 3+ i

Figure 1: Construction in proof of theorem 5.1

Now note the following: if a player ¢ colors a vertex w with Jv € V : (v,w) €
E, f(v) < f(w), then he must give w a color different from v in the game, played
on G’ with f/, ow', or else player 3 —¢ can win the game before the game reaches the
coloring of another vertex in V. if player 7 colors v and w with the same color, then
player 3 — ¢ gives vertices v(y,u),1, V(v,w)2, different colors. He can do this, because
these vertices have only incoming edges from v and w. He colors then v(, ) 3 different
from v(y,w),1 and v(yw),2. Player ¢ then loses as he cannot color v(y .),4. Note that if
player ¢ colors w different from v, then player 3 — ¢ must give v(, )1 and v(, )2 the
same color, hence player 1 has at least one possible color to give to v(yw)4-

It follows that there is a winning strategy for player 1 for the Sequential Coloring
Game played on G with f and owner, if and only if there is a winning strategy for
player 1 for the Sequential Coloring Game played on G’ with f’ and ow’.
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The theorem now follows by noting that the problem is in PSPACE, and that
the transformation can be carried out with logarithmic work space. o

Theorem 5.2
SEQUENTIAL COLORING GAME, with three colors, is PSPACE-complete, when re-

stricted to bipartite graphs, where vertices owned by the same player form an inde-
pendent set.

Proof.

Modify the construction in the proof of theorem 5.1 as follows: for (v,w) € E,
f(v) < f(w), if v and w are owned by the same player, then add v(,w)1," s V(v,w)4
as in the proof of theorem 5.1; if v and w are owned by different players, then just
keep the edge between v and w, without a local replacement. O

Next we consider SEQUENTIAL COLORING CONSTRUCTION GAME on bipartite
graphs.

Lemma 5.3

SEQUENTIAL COLORING CONSTRUCTION GAME with three colors is PSPACE-
complete, even if there are no edges between vertices owned both by player 2.

Proof.
We use a transformation from the standard SEQUENTIAL COLORING CONSTRUC-
TION GAME problem with three colors.

Given an instance of the latter problem, replace every vertex v € V that is owned
by player 2 by four vertices vy, vy, vs, v4, with edges (v, v2), (v1,vs), (v2, v3), (v2,v4),
and (vs,vs). All edges to v from lower numbered vertices now go to v;; all edges
from v to higher numbered vertices now go from v,4. Player 2 owns vy ; player 1 owns
v2, U3, and vs. The linear ordering is modified, by replacing v by the sequence vy,
V2, vz, v4. (See figure 2.)

1 2 3 4
2 1 1 1

Figure 2: Construction in proof of lemma 5.3

Now note that player 1 must color v4 with the same color as v,. It follows that
the same player has a winning strategy in the modified graph. O



Theorem 5.4

SEQUENTIAL COLORING CONSTRUCTION GAME with three colors is PSPACE-
complete, when restricted to bipartite graphs, where vertices owned by the same
player form an independent set.

Proof.
Transform from the problem, proved to be PSPACE-complete in lemma 5.3, and

replace every edges between two vertices that are both owned by player 1 in the
same way as in the proof of theorem 5.1. (]

6 Open problems

Although we obtained several results on the complexity of the SEQUENTIAL COL-
ORING GAME and the SEQUENTIAL COLORING CONSTRUCTION GAME for special
classes of graphs, there are still a large number of interesting cases open. Below we
mention some of the questions that we think are interesting, and are still unresolved.

e For split graphs, we were only able to obtain NP-hardness and coNP-hardness.
Are the problems, e.g., for arbitrary orderings of G, PSPACE-complete on split
graphs?

e What is the complexity of SEQUENTIAL COLORING GAME on interval graphs?

e What happens with the SEQUENTIAL COLORING CONSTRUCTION GAME on
interval graphs, when we allow arbitrary orderings?

e What are the complexities of the problems, when restricted to trees?
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