Network Orientation

Gerard Tel

RUU-CS-91-8
March 1991

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands,
Tel. : ... + 31-30-531454

Network Orientation

Gerard Tel

Technical Report RUU-CS-91-8
March 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

Network Orientation

Gerard Tel*
Department of Computer Science, University of Utrecht,
P.O. Bozx 80.089, 3508 TB Utrecht, The Netherlands
(Email: gerard@cs.ruu.nl)

Abstract

This paper analyses how the symmetry of a processor network influences the ex-
istence of a solution for the network orientation problem. The orientation of cliques,
hypercubes and tori is the problem of assigning labels to each link of each processor,
in such a way that a sense of direction is given to the network. In this paper the prob-
lem of network orientation for these two topologies is studied under the assumption
that the network contains a single leader, under the assumption that the processors
possess unique identities, and under the assumption that the network is anonymous.
The distinction between these three models is considered fundamental in distributed
computing,.

It is shown that orientations can be computed by deterministic algorithms only
when either a leader or unique identities are available. Orientations can be computed
for anonymous networks by randomized algorithms, but only when the number of
processors is known. When the number of processors is not known, even randomized
algorithms cannot compute orientations for anonymous processor networks.

Lower bounds on the message complexity of orientation and algorithms achieving
these bounds are given.

1 Introduction

In this paper the problem of orienting processor networks is considered for cliques, hy-
percubes and tori. The orientation problem concerns the assignment of different labels
(“directions”) to the edges of each processor, in a globally consistent manner. The label of
an edge indicates in which direction in the network this edge leads, and this information
is useful for purposes of routing and traversal of networks.

The results obtained for this problem serve to illustrate a number of fundamental re-
sults in distributed computing obtained during the last decade. The paper treats issues
of symmetry in networks of processors in depth; the results in this area have to do with
deterministic versus randomized algorithms, election and name assignment, and the com-
putational power of anonymous networks. The paper includes brief discussions of some of
the most challenging problems in distributed computing, including fault-tolerance, syn-
chronism, and termination detection.

*The work of the author was supported by the ESPRIT Basic Research Action No. 7141 (project
ALCOM II: Algorithms and Complezity).

1.1 Computing Orientations

It was demonstrated by Santoro [San84] that the availability of an orientation decreases
the message complexity of important computations in networks of several topologies. (A
formal definition of orientations is deferred to Subsection 2.1). For example, an Q(N log N)
lower bound was proved (see Korach et al. [KMZ84]) on the message complexity of elect-
ing a leader in an unoriented clique of V processors. For oriented cliques an algorithm
using O(N) messages exists; see Loui et al. [LMW86]. Kranakis and Krizanc’s algorithm
for computing boolean functions on hypercubes [KK90a] assumes that an orientation of
the hypercube is available. Similarly, Beame and Bodlaender’s algorithm for computing
boolean functions on torus networks [BB89] assumes that an orientation of the torus is
available. For both network topologies it is not known, whether the same complexity (for
computing arbitrary boolean functions) is achievable in unoriented networks. It is known
though [KK90a] that the collection of computable functions is larger for oriented networks.

Surprisingly, although the importance of orientations is well known, only few papers
have addressed the question how orientations can be computed in networks where no
orientation is available. Peterson [Pet85] has presented an efficient election algorithm
for oriented tori, and claimed that this algorithm can be adapted to work on unoriented
tori, thus avoiding the question of computing an orientation. Korfhage and Gafni [KG85]
have presented an algorithm to orient directed tori. The orientation problem for tori was
also studied by Syrotiuk et al. [SCP93]; see the end of Subsec. 2.4. (In this paper only
undirected tori are considered.) There has been considerable interest in the problem of
orienting a ring network [1J93, SP87, CS92].

1.2 Network Symmetry

A fundamental notion in the study of distributed algorithms is the issue of the required
symmetry of a solution. In this paper the orientation problem is studied under three differ-
ent symmetry assumptions: all processors execute a different algorithm, namely a standard
algorithm parametrized by the name of a processor (named network); one processor ex-
ecutes a different algorithm, all others execute the same algorithm (leader network); all
processors execute the same algorithm (anonymous network). (These assumptions will be
presented more precisely in Subsection 2.2.) The class of deterministically computable
functions is the same for leader networks and for named networks. It was shown by An-
gluin [Ang80] that anonymous networks can deterministically compute strictly less func-
tions than leader networks. It was later shown by Itai and Rodeh [IR81] that anonymous
networks can simulate leader networks with a randomized algorithm when the number of
processors is known. Also, when the number of processors is not known, anonymous net-
works can randomizedly compute strictly less function than leader networks. The results
in this paper illustrate these fundamental results by analyzing the solvability of orientation
as a function of the required symmetry.

About this paper. This paper is organized as follows. In Section 2 the orientation
problem and the three symmetry models are defined, lower bounds are proved, and im-
possible cases are identified. In Section 3 the problem is considered for cliques, in Section 4
the problem is considered for hypercubes, and in Section 5 for tori. In Section 6, which
is of a very technical nature, a different characterization of orientations is presented. Sec-

tion 7 contains conclusions and general remarks, and discusses some important problems
in the area of distributed computing.

2 Preliminary Results

In Subsection 2.1 the formal definitions of the considered network topologies are given,
and the formal definitions of labelings and orientations. In Subsection 2.2 leader networks,
named networks, and anonymous networks are defined, and some algorithms are given
to simulate one type of network on the other. In Subsection 2.3 a lower bound on the
complexity of network orientation is proved. In Subsection 2.4 it is proved that the problem
cannot be solved on anonymous networks using deterministic algorithms.

2.1 Definitions of Networks and Orientations

Processor networks are identified with graphs, where the nodes are the processors and
an edge between two nodes exists if the corresponding processors are connected by a
communication channel. For each topology a labeling will be defined as an assignment, in
each node, of labels to the edges of each node. An orientation is defined as a labeling where
the labels satisfy an additional global consistency property. A different characterization
of orientations, based on the sequence of labels found on the edges of any closed path, is
given in Section 6; that section is very technical.

The Clique. The cligue (on N nodes) is a network (consisting of N nodes), where each
node is connected to every other node. The clique on N nodes has IN(N — 1) edges,
and every node has degree N — 1. A labeling of the clique is an assignment in every
node of different labels from the set {1,..,.N — 1} to the edges incident to that node. An
ortentation of the clique is a labeling, for which each node v can be assigned a unique
name A (v) from the set {0,1,.., N}, such that the edge connecting node v to node w is
labeled (M(w) — M (v) mod N) in node v.

The Hypercube. The n-dimensional hypercube (n > 0) is a network consisting of N =
2" nodes, where each node can be assigned a unique name from the set {(bg, ..., bn—1) : b; =
0,1}, in such a way that node b = (by, ..., b,_,) is connected to the nodes (bo, ..., b;, ..., ba_1),
1 = 0...n — 1. The n-dimensional hypercube has %nN edges, and every node has degree
n. A labeling of the hypercube is an assignment in every node of different labels from the
set {0,1,..,n — 1} to the edges incident to that node. An orientation of the hypercube is
a labeling, for which each node v can be assigned a unique name N (v) = (b, ..., bn_1), in
such a way that the edge connecting nodes v and w is labeled ¢ in both v and w if M(v)
and N (w) differ in bit .

The Torus. The n X n torus is a network consisting of N = n? nodes, where each node
can be assigned a unique name from the set Z, x Z,, in such a way that node (i,j) is
connected to the four nodes (3,5 + 1), (4,7 — 1), (¢ + 1,5), and (¢ — 1,5). (Addition and
subtraction here is modn.) The n X n torus has 2n? edges, and every node has degree
4. A labeling of the torus is an assignment in every node of different labels from the set
{up, down, right, left} to the edges incident to that node. An orientation of the torus is

a labeling, for which each node v can be assigned a unique name N'(v) = (3, 5), such that
the edge (v, w) is labeled up (or down, right, left, respectively) in v if N'(w) = (4,5 + 1)
(or (3,7 — 1), (¢ +1,5), (¢ — 1, 5), respectively).

For a labeling £, let £,(v) be the label assigned to edge (u,v) in node u. A network is said
to be labeled if a labeling is known to the processors in that network, and oriented if an
orientation is known. To allow a processor to distinguish between its links, it is assumed
that a labeling £ of the network is given initially. The aim of an orientation algorithm (for
cliques, hypercubes or tori, respectively) is to terminate in each node v with a permutation
my (of {1,..., N =1}, {0,...,n — 1}, or {up, down, right, left}, respectively), such that the
labeling O = 7(L), defined by O,(w) = m,(L,(w)), is an orientation.

2.2 Network Models

In this paper it is assumed that processors and communication are asynchronous and
reliable. The time between two steps of one processor may be arbitrarily large (but is
always finite) and messages that are sent will be received after an arbitrarily large, but
finite delay, and unaltered. It is not assumed that messages, sent over the same link, will
be received in the order in which they were sent. The number of processors is denoted by
N and the number of links by E. The complexity of a distributed algorithm is expressed
as the number of messages exchanged in an execution of the algorithm. A more precise
measure is the bit complezity, which is expressed as the total number of bits transmitted
in the messages together.

A distributed algorithm consists of a local algorithm for each processor. Different
assumptions about the required symmetry of the algorithm are considered.

Leader Network. A network is called a leader network or said to contain a leader if
there is exactly one processor which knows that it is “the leader”. The availability
of a leader can be exploited by providing a distinguished local algorithm for it, while
all other processors execute the same local algorithm (which is different from the
leader algorithm).

Named Network. A network is called a named network if each processor is assigned a
unique name (an identification number). The name of a processor is known to that
processor, but not to other processors.

Besides uniqueness no assumptions about the names may be used to prove the cor-
rectness of the algorithm (such as, that the numbers are taken from a certain bounded
range {1,...,M}). For the analysis of the bit complexity of algorithms, however, it
is usually assumed that a name is represented in O(log N) bits.

Anonymous Network. A network is called an anonymous network if all processors ex-
ecute the same algorithm and no names are known.

The Power of Leader and Named Networks. It has turned out that leader networks
and named networks are equivalent in terms of the computations that can be carried out
on these networks. Each of the two models can be simulated by the other, because in a
leader networks unique names can be assigned, and in named networks a leader can be
elected. Algorithms for this purpose will be given in Subsection 2.2.1.

Deterministic and Randomized Algorithms. In order to express the computational
power of anonymous networs, as compared to leader or named networks, it is necessary
to distinguish between deterministic and randomized algorithms. The execution model
of asynchronous distributed systems is a non-deterministic one. This means that the
next step in a computation is in general not uniquely defined by the (global) state of a
computation. As an example one may consider the situation where two processors have
sent a message to a third processor v. As v is usually able to receive a message from any of
its links, the next step in the computation is chosen by the run-time system, which defines
which of the two messages will be received first. Thus in general a distributed algorithm
(even if v’s reaction to the receipt of a message is specified precisely and deterministically)
describes a class of possible ezxecutions rather than a single execution.

An algorithm is deterministic if the processors terminate in each possible execution of
this class. For a randomized algorithm it is not required that the processors terminate
in each execution of the algorithm, but only that this happens with a high probability (1
usually). (A probability distribution on the class of executions must be defined.) Thus,
although infinite executions of a randomized algorithm may exist (and usually do exist),
the algorithm is nonetheless regarded correct if the probability of such an execution is 0.

Note that an algorithm being a deterministic algorithm does not imply that its output
is completely determined by its input; the non-determinism of the execution model may
result in a large number of different executions, each with different outcome. For example,
the Echo algorithm (to be described later; see Algorithm 1) is a deterministic algorithm,
but every spanning tree of the network is a possible outcome of the algorithm. The deter-
minism of the algorithm refers to the fact that each of the possible executions terminates,
not that there exists only one execution or that all executions yield the same result.

The Power of Anonymous Networks. Anonymous networks are weaker than leader
and named networks in terms of the computations that they can perform. Leader and
named networks can simulate anonymous networks (namely, by making the leader algo-
rithm equal to the non-leader algorithm, or by not using the name, respectively). On the
other hand, Angluin [Ang80] has shown that no deterministic algorithms exists to elect
a leader in anonymous networks. With arguments similar to hers it will be shown that
no deterministic algorithms for orienting anonymous networks exist. As deterministic ori-
entation algorithms do exist for leader and named networks, it follows that anonymous
networks can compute strictly less functions than leader or named functions when de-
terministic algorithms are used. Consequently, randomized algorithms must be used for
election, orientation, and other tasks in anonymous networks.

A leader can be elected in an anonymous network by a randomized algorithm, provided
that N is known to the processors (Theorem 2.11). This implies that a leader can be
elected in anonymous cliques and hypercubes, because the size of those networks N can be
computed from the degree of a node. The algorithm will be presented in Subsection 2.2.2.
It was shown by Itai and Rodeh [IR81] that there exists no randomized election algorithm
(for rings) when the number of nodes is unknown!. With an argument similar to theirs
it will be shown (see Subsection 5.3) that there exists no randomized algorithm to orient
anonymous tori of unknown size. As orientation algorithms do exist for leader and named

! As a technical detail it should be noted here that according to our definitions only processor terminating
algorithms are considered; see also Subsection 7.3.

tori of unknown size (see Section 5), it follows that anonymous networks can compute
strictly less functions than leader or named networks, even when randomization is allowed.

2.2.1 Leader Networks and Named Networks

In this subsection an algorithm is described to elect a single processor as a leader in a
named network, which uses (at most) O(EN) messages. Subsequently an algorithm is
described to assign unique names in a leader network, which uses 2E + N — 1 messages.
These algorithms prove the following two theorems.

Theorem 2.1 If a problem can be solved using M messages on a leader network, it can
be solved using M + O(NE) messages on a named network.

Theorem 2.2 If a problem can be solved using M messages on a named network, it can
be solved using M + 2E + N — 1 messages on a leader network.

The problem of electing a leader (in a named network) has received considerable attention
during the last decade, and more efficient solutions than the one described here are known.
The Spanning Tree algorithm proposed by Gallager, Humblet, and Spira [GHS83] can be
used to elect a leader using O(N log N + E') messages, which implies the following, stronger
result.

Theorem 2.3 If a problem can be solved using M messages on a leader network, it can
be solved using M + O(N log N + F) messages on a named network.

Electing a Leader in a Named Network. The algorithm to elect a leader in a named
network uses as a building block an algorithm known as the Echo algorithm. Using the
‘Echo algorithm (Algorithm 1) a single processor can flood its name over the network and
eventually receive a confirmation that all processors have received its identity.

The flooding of the processor’s name is initiated by sending a message to all neighbors.
Processors receiving the name for the first time forward it, and record the link on which
they first received the name, thus defining a spanning tree in the network. A processor
confirms that all processors in its subtree have received the name by “echoing” the name
to its father in the tree. The initiator terminates after receipt of a message (either an
echo or a flooding message) from all of its neighbors. When this happens, all processors
have confirmed the receipt of the initiator’s identity (as proved, for example, in [Tel94,
Sec. 6.2.3]).

The variables for each processor v are: name, and dgr,, the name of v and number of
links of v (constants for v actually); rcvd,, the number of messages that v has received;
and father,, the link over which v first received a message. The name n of the initiator
is transmitted in a (name,n) message.

The algorithm for leader election (Algorithm 2) is obtained from the Echo algorithm
through the application of a mechanism called eztinction (cf. [Tel94, Sec. 7.3.1]); see also
below. To elect a leader, each processor initiates the flooding of its own identity using the
Echo algorithm. However, processor v processes (name,n) messages only if n > name,.
Moreover, if v has ever received a (name,n) message (with n > name,), it processes
(name,n') messages only if n’ > n. To this end, processor v maintains a variable larnm,,
which is the largest name n that v has seen.

Processor v is the initiator:
begin rcvd, ;=0
for [=1 to dgr, do send (name,name,) via link ! ;
while rcvd, < dgr, do
begin receive msg via link [;
revd, :=revd, + 1
end
end .

Processor v is not the initiator:
begin rcvd, :=0;
while rcvd, < dgr, do
begin receive msg via link [;
if rcvd, = 0 then
(* First message defines the spanning tree *)
begin father, :=1;
forall links k& # | do send msg via k
end ;
revd, :=revd, + 1
end ;
send msg through link father,
end .

Algorithm 1: THE ECHO ALGORITHM.

As a result, only the flood initiated by the processor with the largest name (w say)
is processed by all other processors, and thus only processor w terminates the Echo algo-
rithm. When this happens, w floods (lead, name,,) messages to all processors to inform
them about the leader. The processors terminate the election when they have received a
(lead,n) message via every link. To this end, processor v maintains a variable ldrc, to
count the number of (lead,n) messages it has received. Upon termination v considers
itself leader iff leader, = name,. The processor with the largest name, and only this
processor, considers itself leader.

The properties of the algorithm are summarized in the following theorem.

Theorem 2.4 There ezists a deterministic algorithm to elect a leader in a named network.
The algorithm exchanges O(EN) messages.

Assigning Names in a Leader Network. The algorithm to assign names in a leader
network, Algorithm 3/4, consists of two global phases, each initiated by the leader. The
first phase, which again relies on the Echo algorithm, constructs a spanning tree in the
network and computes, for each node, the size of the subtree of each of its children. In
its echo, processor v reports the size of its subtree. In the second phase the leader assigns
itself the number 0, and distributes the remainder of the set {0,.., N — 1} over its children,
where each child receives as many numbers as there are nodes in its subtree. Each node,
upon receipt of an interval of numbers from its father, assigns itself the smallest number
and distributes the remainder of the interval over its children in a similar manner.

begin rcvd, := 0 ; larnm, := name, ; ldrc, :=0 ;
for [=1 to dgr, do send (name, name,) via link [;
while ldrc, < dgr, do
begin receive message msg via link [;
if msg = (lead,n) then
begin if ldrc, = 0 then
(* First (lead,n) message, forward *)
forall k£ = 1..dgr, do send (lead,n) via k ;
ldre, :=ldre, + 1 ; leader, :=n
end
else (* a {name,n) message *)
begin
if n > larnm, then
(* Larger name, this implies first receipt! *)
begin larnm, :=n ; revd, :=0; father, :=1;
forall k£ # | do send (name,n) via k
end ;
if n > larnm, then
begin rcvd, ;= revd, +1 ;
if revd, = dgr, then
if n = name,
then forall k£ do send (lead,name,) via k
else send (name,n) via father,
end
(* If n < larnm, the message is ignored. *)
end
end
(* Processor v is the leader iff leader, = name, *)
end .

Algorithm 2: LEADER ELECTION WITH THE ECHO ALGORITHM.

The algorithm uses three types of messages, namely (forw), (son, s), and (inte,a,b)
messages. The variables of processor v are: rcvd,, dgr,, and father, as in the Echo
algorithm; subtr,[1..dgr,], the size of the subtree of each child; and name,, the name that
v will be assigned by the algorithm. The algorithm terminates in each processor, and
when processor v terminates, name, is an integer in {0,.., N — 1}, different from name,,
for every w # v. ‘

The properties of the naming algorithm are summarized in the following theorem.

Theorem 2.5 There ezists a deterministic algorithm to assign names in a leader network.
The algorithm exchanges ezactly 2E + N — 1 messages.

It is interesting to note, that the processors do not start phase 2 simultaneously, but
rather each processor does so at its own time. A similar algorithm, which sends echo’s
also in the second phase and therefore has a message complexity of 2F + 2(N — 1) was
given by Bouabdallah and Naimi [BN89]. The echo’s of the second phase make the leader

the last process to terminate, so that termination of the leader signals termination of the
entire algorithm.

Processor v is the leader:
begin rcvd, ;=0 ;
for | =1 to dgr, do send (forw) via link [;
while rcvd, < dgr, do
begin receive msg via link [; revd, := revd, + 1 ;
if msg = (son, s) then subtr,[l] := s
else subtr,[l] :=0
end ;
(* Start phase 2 *)
name, :=0; given :=0 ;
for [=1 to dgr, do
if subtr,[l] > 0 then
begin send (inte, given + 1, given + subtr,[l]) via l ;
given = given + subtr,[l]
end
(* given now equals the number of processors *)
end .

Algorithm 3: ASSIGNING NAMES IN A LEADER NETWORK (LEADER).

Extinction. To apply an algorithm for a leader network to a named network it is not
necessary to pass through a separate election phase as described in Algorithm 2 or [GHS83].
It is possible to combine the election with an algorithm for a leader network by applying the
extinction principle to this algorithm directly. To be more precise about this construction,
let LNA be an algorithm that solves some network problem for a leader network. (LNA

stands for “leader network algorithm”.) The following two assumptions are made about
LNA.

1. LNA is initiated only by the leader.

2. All processors are involved in every possible execution of LNA and have terminated
before the leader terminates.

These assumptions hold for most algorithms for leader networks, but are not implied by
the definition of a leader network. Every leader algorithm, however, can be modified (in
a straight—forward way and at the expense of at most 2F extra messages) so as to satisfy
these assumptions.

An algorithm NNA for a named network is constructed as follows. (NNA stands for
“named network algorithm”.) Each processor v has all the variables of algorithm LNA
(those of the leader as well as those of the non-leaders), and a variable larnm,,, which is
initialized to name,. Each processor initiates algorithm LNA (as if it were the leader),
but tags all messages with its name. When a message of LNA is received, the name n
contained in it is compared with larnm,,. If n < larnm, the message is simply ignored. If
n = larnm, the message is processed as in algorithm LNA (the leader part if n = name,,
the non-leader part if n > name,). If n > larnm,, v resets the variables of LNA to their

initial value, sets larnm, := n, and processes the message as in (the non—leader part of)
LNA.

Processor v is not the leader:
begin rcvd, :=0;
while rcvd, < dgr, do
begin receive msg via link [;
if rcvd, = 0 then
(* The first message defines the spanning tree *)
begin father, :=1;
forall links k # [do send (forw) via k
end ;
revdy = revd, +1
if msg = (son,s) then subtr,[l] := s
else subtry[l] :=0
end ;
(* Report to the father in the tree *)
size := 1+ 097 subtr,[l] ;
send (son, size) via link father, ;
(* Phase 2 *)
receive (inte,a,b) ;
name, :=a ; given :=a ;
for [=1 to dgr, do
if subtr,[l] > 0 then
begin send (inte, given + 1, given + subtr,[l]) via [;
given = given + subtr,[l]
end
end .

Algorithm 4: ASSIGNING NAMES IN A LEADER NETWORK (NON-LEADER).

Let w be the processor for which name,, > name, for all v # w. No processor v # w
succeeds to terminate the execution of LNA it initiated, as w does not cooperate in this
execution (use assumption 2). Eventually, all processors cooperate the execution of LNA
which was initiated by w. When this execution terminates, the network problem is solved
by this execution of LNA. The construction of algorithm NNA proves the following result.

Theorem 2.6 If a problem can be solved using M messages on a leader network, it can
be solved using O(N M) messages in the worst case on a named network.

Regardless of the function computed by LNA, algorithm NNA implicitly performs an
election, because exaclty one processor (w) succeeds to terminate its own execution of
LNA. The number of messages sent by algorithm NNA is usually much higher than the
number stated in Theorem 2.3. The extinction construction compares more favorable with
the earlier result when the time complexity is considered. The election algorithm referred
to in Theorem 2.3 uses time proportional to N (in the worst case), so that the separate
election stage adds (V) time to the time needed by algorithm LNA. The extinction
construction results in an algorithm that runs in the same amount of time as the original
algorithm (when time is measured from the moment that all processors have started).
Furthermore, in several particular cases it has been observed that the average case
complexity of the resulting algorithm is much better than its worst case complexity. Chang

10

and Roberts [CR79] proposed an election algorithm where extinction is applied to an
algorithm in which the leader sends a message on a ring of processors and receives it back
after N steps. They proved that the worst case complexity of their algorithm is O(N?),
and that the average case complexity is O(V log N). Mattern [Mat89] has shown that the
average case complexity of Algorithm 2 is O(Flog N). These results suggest the following
(open) question.

Open Question 2.7 What conditions must be satisfied by algorithm LNA to guarantee
that the average case complezity of algorithm NNA equals log N times the complezity of
algorithm LNA?

2.2.2 Randomized Algorithms for Anonymous Networks

In this subsection an algorithm (based on an algorithm by Matias and Afek [MAS89]) is
presented to elect a leader in an anonymous network of which the number of processors is
known to each processor. The algorithm operates in phases, each of which is very similar
to the election algorithm for named networks.

Each processor starts as a candidate in phase 1; see Algorithm 5. To start a phase,
each candidate selects a name using a random function, and initiates the flooding of this
name using the Echo algorithm. Due to the possibility that different processors select the
same name, a processor may terminate the Echo algorithm as the root of a tree which
does not cover all processors. To detect this situation, the echos report the number of
processors in each subtree (as in Algorithm 3/4). When a processor terminates the Echo
algorithm as the root of a tree of NV processors, it becomes the leader. When the number
of processors in the tree is smaller than NN, the processor proceeds to the next phase as a
candidate.

To allow for a more compact coding of the algorithm, the phase number is made part
of the name of a processor. Crucial for the correctness of this algorithm is, that whenever
a processor has sent an echo ((sns,n, s)) it will thereafter never be a candidate and never
be elected. This is because after the sending of such a message by v, larnm, > name,
continues to hold, so v will never process a message carrying name,.

Lemma 2.8 If a processor starts phase k, no processor is elected in phase k' < k.

Proof. Assume processor w starts phase k, then processor w has never sent and will
never send a (sns,n,s) message for a phase k' < k. To become elected in phase k',
processor v must become the root of a tree of N nodes, all except the root having send a
(sns,name,, s) message. O

Lemma 2.9 If processor v becomes elected in phase k, name, in phase k is larger than
all other names selected in phase k.

Proof. To become elected, processor v first becomes the root of a tree of N processors,
which implies that all processors have sent a { sns, name,,, s) message. The sending of such
a message by processor u implies name, < larnm,, which continues to hold thereafter. [

Lemma 2.10 Algorithm 5 terminates with probability 1 in all processors, and when pro-

cessor v terminates leader, = name,, the largest name of any processor. This name is
the name of ezactly one processor.

11

Procedure Newphase:
begin phase, := phase, + 1 ; tmp := rand ;
name, := (phase,,tmp) ; rcvd, := 0 ; larnm, := name, ;
for | =1 to dgr, do send (name, name,) via link [
end

begin
phase, := 0 ; ldrc, := 0 ; Newphase ;
while ldrc, < dgr, do
begin
receive message msg via link [;
if msg = (lead,n) then
begin if ldrc, = 0 then
forall k = 1..dgr, do send (lead,n) via k
ldre, :=ldrc, + 1 ; leader, :==n ;
end
else (* a (name,n) or (sns,n,s) message *)
begin
if n > larnm, then
(* Larger name, this implies first receipt.
Processor v is defeated forever. *)
begin larnm, :=n ; revd, =0 ;
father, :=1; subtr,[l] := 0;
forall k # [do send (name,n) via k
end ;
if n > larnm, then
begin rcvd, :=revd, +1
if msg = (sns,n,s)
then subtr,[l] := s else subtr,[l] :=0;
if rcvd, = dgr, then
if n = name, then
if 1+ 0 subtr,[l] = N
then forall k do send (lead,name,) via k
else Newphase
else send (sns,n,1+ Y097 subtr,[l]) via father,
end
end
end
end .

Algorithm 5: ELECTION FOR ANONYMOUS NETWORKS.

Proof. Consider a phase k that is started by one or more processors. Assuming that no
processor starts phase k + 1, the processor(s) with largest name in phase k will receive all
the echo’s necessary to pass through the Echo algorithm in phase k. Hence, if no processor
starts phase k + 1 and there is a single processor with the largest name it will be elected
(because it is root of a tree of size N). Moreover, if no processor starts phase k + 1 and
there are multiple processors with the largest name in phase k they will start phase & + 1
(because they are root of a tree of size smaller than N), which is a contradiction. Thus,

12

once phase k is started, either a processor becomes elected in that phase, or phase k + 1
will be started.

There is a positive constant p (depending on the probability distribution of the rand
function) such that, if more than one processor starts phase k, at least one processor will
become defeated in phase k with probability at least p. This implies that with probability
1 eventually all processors except one become defeated.

The remaining processor w becomes elected and floods (lead, name,,) messages over
the network, which cause all processors v to terminate with leader, = name,,. O

Theorem 2.11 There ezists a randomized algorithm for election in anonymous networks
of known size, which terminates with probability 1.

The expected message complexity depends on the probability distribution of the rand
function. It is left as an open problem to the reader to obtain a complexity as low as
possible.

2.3 Lower Bounds for Network Orientation

Let N denote the number of processors and E the number of links in the network. In
this subsection a lower bound of Q(FE) messages is shown on the message complexity of
orientation algorithms, for the topologies considered in this paper.

Theorem 2.12 Any algorithm for the orientation of cliques, hypercubes or tori exchanges
at least E — %N messages in every execution.

Proof. For a labeling £, let £L“** (where v and w are neighbors of u) be the labeling
defined by L (v) = L,(w), LL**(w) = L,(v), and all other labels of £*** are as in
L. (L£»** is obtained by exchanging £,(w) and £,(v).) It can be verified that for every
orientation O (of a clique, hypercube or torus), and every v, u, and w, O%** is not an
orientation.

Consider an execution of an orientation algorithm, with initial labeling £, that termi-
nates with a permutation m, for each node (where O = n(L£) is an orientation). Assume
furthermore that in this execution some node u did not send nor receive any message to
or from its two neighbors v and w. As u has not communicated with v, nor with w, the
same execution is possible if the network is initially labeled with £***, and all proces-
sors terminate with the same permutation. However, O’ = #(L*%%) = O%¥¥ is not an
orientation, and the algorithm is not correct.

It follows, that in every execution every node must communicate with at least all its
neighbors except one. d

Corollary 2.13 The orientation of the N clique requires the exchange of Q(N?) messages.
The orientation of the n—dimensional hypercube requires the exchange of Q(n2"™) messages.
The orientation of the n x n torus requires the exchange of Q(n?) messages.

Along the same line a lower bound on the bit (and/or time) complexity can be derived.
A generalization of the argument used in the proof of Theorem 2.12 derives an incorrect
result if the communication patterns on (u,v) and (u,w) are identical (but not necessarily

13

empty in both cases). This means that the same messages are exchanged on (u,v) and
(u,w) (and at the same time, if time is considered). The argument then shows that for
each u there are at least (u) different patterns of communication. (6(u) denotes the
degree of u, and as the considered networks are regular, we henceforth write & instead.) If
only one message is sent per link (and no information is coded in the time at which it is
sent), it contains at least log d bits, and the bit complexity is Q(E log §). When the time of
sending a message is used to code information, a lower bit complexity may be achievable.

2.4 Deterministic Orientation of Anonymous Networks

In this subsection it will be shown that the orientation problem cannot be solved for
anonymous networks by using deterministic algorithms. This result is obtained by provid-
ing symmetric initial labelings that cannot be turned into an orientation by a deterministic
algorithm.

Definition 2.14 A labeling L (of a clique, hypercube or torus) is symmetric if there ezists
a permutation o (of {1,..,N — 1}, {0,..,n — 1} or {up, down, right, left}) such that for
all links (u,v), L,(v) = a(L,(u)).

Equivalently, £ is symmetric if for all nodes u, v, , v/, v/, £,(v) = L, (v') implies £,(u) =
L, (u'). Alabeling is a pre-orientation if it can be turned into an orientation by application
of the same permutation in every node.

Definition 2.15 A labeling L is a pre-orientation if there exists a single permutation m,
such that with w, = no for all v, 7(L) is an orientation.

Theorem 2.16 If, for an anonymous network, there exists a symmetric labeling which is
not a pre-orientation, then this network cannot be oriented by a deterministic algorithm.

Proof. Let £ be a symmetric labeling, and assume a deterministic algorithm is started
in a network with initial labeling £. There is an execution E of this algorithm in which
every processor executes exactly the same sequence of steps.

'To see this, consider the environment of a processor consisting of its (local) state and
the contents of its incoming links. Initially all processors have an identical environment
(namely, where the state is the initial one and all links are empty). If at any moment the
processors are in identical environments and a step is enabled in one processor, the same
step is enabled in all processors. Assume this step is executed in all processors. After the
step all processors are again in the same state. If the step included the receipt of a message
msg via link [, this message is removed from the incoming link ! of every processor. If
the step included the sending of a message msg via link [, this message is added to the
incoming link o(!) of every processor, because £ is symmetric. Thus, after the execution
of the step in every processor, the processors are in identical environments again.

By assumption, the algorithm terminates. Because every processor has executed the
same sequence of steps, it terminates with the same permutation 7, in every processor.
Because £ is not a pre-orientation, my(£) is not an orientation, and the algorithm is
incorrect. |

It remains to show that there exist symmetric labelings that are not pre-orientations.

14

Corollary 2.17 There exists no deterministic algorithm to orient an anonymous clique
of size N, where N is not prime.

Proof. It is left as an exercise to find a suitable labeling for N = 4. For N > 4, write
N =pg with 1 <p < N and ¢ # 2. For convenience, number the nodes from 0 to N — 1,
and define £ as follows. Set £,(u) = (u — v) mod N when p is not a divisor of u or not a
divisor of v. When p divides both u and v, set £,(u) = (v — «) mod N.

To show that £ is symmetric, observe that £,(v) + £,(u) = N always (so o(l) = N —1
satisfies the requirement in Definition 2.14).

To show that £ is not a pre—orientation, observe first that for an orientation @ of the
clique, the following holds for every node v and all labels a and b. If, starting from node
v, first the link labeled with a is traversed, and (from the reached node) the link labeled
with b, the same node is reached as when first b is traversed and then a. As permuting
the labels of all links does not change this property, the same holds for pre—orientations.

Labeling £, however, does not satisfy this property, as is easily verified with v = 0,
a =1, b = p. Starting from node 0, traversing the link labeled with 1 and then the link
labeled with p, one arrives in node p+ 1. Traversing first the link labeled with p and then
the link labeled with 1, one arrives in node N — p+ 1. Finally, p+1# N — p+ 1 because

q#2. O

Suitable labelings are easily found for hypercubes and tori of even size because their
bipartiteness can be employed.

Corollary 2.18 There ezists no deterministic algorithm to orient an anonymous hyper-
cube of dimension n > 1.

Proof. For convenience, label the nodes with bitstrings of length n as in the definition
of the hypercube. Call a node even if it has an even number of 1’s in its bitstring and
odd if it has an odd number of 1’s. For v labeled with (by,...,b,_,) and u labeled with
(boy -evy biyorey buy), set L,(v) = ¢ when u is even, and L,(v) =n—1-1 when u is odd.

To show that £ is symmetric, observe that £,(v) + £,(u) = n — 1 always (because
every link connects an even node with an odd node).

To show that £ is not a pre—orientation, observe that for an orientation © of the
hypercube, for every u and v, O,(v) = O,(u). As permuting the labels of all links does
not change this property, the same holds for pre-orientations.

Labeling £, however, does not satisfy this property (for n > 1), as is easily verified. OJ

Corollary 2.19 There exists no deterministic algorithm to orient an anonymous torus of
even size.

Proof. For convenience, label the nodes with elements of Z, x Z,, as in the definition
of the torus. Call the node labeled with (3,j) even if 2|(i + j), and odd otherwise. For
node v labeled with (4,5) and u labeled with (¢, + 1) ((3,5 — 1), (i + 1,5), (i — 1,5)), let
L,(u) = up (down, right, left) if v is even, and £,(u) = down (up, left, right) if v is odd.

To show that £ is symmetric, observe that £,(v) = £,(u) for every link (u,v) (as one
of them is even and the other is odd).

To show that £ is not a pre-orientation, observe that for an orientation O of the torus,
for every v and v, O,(v) # O,(u). As permuting the labels of all links does not change this

15

begin for I =1 to N — 1 do send (name, name,) via [;
revd, ;=0
while rcvd, < N -1 do
begin receive {name, n) via link [;
revd, = rcvdy + 1 5 neighy[l] :=n
end ;
(* Compute node label *)
label, := #{k : neigh,lk] < name,} ;
for{=1to N—-1do
begin (* Compute neighbor’s node label and link label *)
Il:=#{k : neigh,[k] < neigh,[l]} ;
if name, < neigh,[l] then ll:=1l+1;
np{l] := (Il — label,) mod N
end
end .

Algorithm 6: ORIENTATION OF NAMED CLIQUES.

property, the same holds for pre—orientations. Labeling £ does not satisfy this property
as observed above. O

The problem of deterministically orienting anonymous tori was addressed from a different
point of view by Syrotiuk et al. [SCP93]. Syrotiuk et al. studied the question of restricting
the permissible initial permutations such that a deterministic solution becomes possible.

3 The Orientation of Cliques

In this section algorithms for the orientation of cliques will be given. All algorithms
described in this section determine an assignment of unique labels from the set {0,.., N—1}
to the nodes and obtain the orientation from this node labeling.

3.1 Named Cliques

In case the network is named, the label of processor v will be the number of proces-
sors with a smaller name (its rank; see Algorithm 6). The names are exchanged using
{name,n) messages, and stored in an array neigh,[1..N — 1] in processor v.

Theorem 3.1 There ezists a deterministic algorithm to orient named cliques, which uses
N(N —1) messages (of O(log N) bits each) and completes in time O(1).

The computation of all ranks in the second part of the algorithm is done more efficiently by
sorting the names, but this still costs 2(/V log N) internal processing time. An algorithm
requiring less internal processing is obtained, when a processor only computes its own
rank locally, after which the ranks are exchanged in a second round of communication.

3.2 Leader Cliques

16

Processor v is the leader:
begin label, :=0 ;
forl=1to N—-1do
begin send (youare,!) via link [;
mll] =1
end
end .

Processor v is not the leader:
begin receive (youare,num) via link [;
label, := num ; m,[l] := N —num ; rcvd, :=1;
forall k£ # ! do send (iam,num) via k ;
while rcvd, < N -1 do
begin receive (iam,num) via link [;
revd, = revd, + 1 ;5 m,[l] := (num — label,) mod N
end
end .

Algorithm 7: ORIENTATION OF A LEADER CLIQUE.

If a leader w is available, w enforces its local link labeling upon the whole network
by assigning processor v its label of the link connecting w to v; see Algorithm 7. The
leader assigns the labels using (youare,!) messages, and the other nodes communicate
the names among them using (iam,!) messages. A non-leader processor must receive
a (youare,!) message as the first message in this algorithm. Earlier arriving (iam,!)
messages are supposed to be implicitly buffered and processed after the receipt of the
(youare,) message.

Theorem 3.2 There exists a deterministic algorithm to orient leader cliques, which uses
(N —1)* messages (of O(log N) bits each) and completes in time O(1).

3.3 Anonymous Cliques

According to Corollary 2.17, there exists no deterministic algorithm for the orientation of
anonymous cliques (when N is not prime). In this subsection a randomized algorithm for
this task is presented (see Algorithm 8). It will be shown, that the algorithm terminates
with probability 1, that an orientation is computed when the processors terminate, and
that its parameter C' can be chosen such that the message and bit complexity of the
algorithm are optimal with a very high probability.

All processors start phase 1 as active processors with an empty name string. In each
phase, each active processor draws a random number from the range [1..C] and sends the
draw to all processors. All processors (including active ones) wait until they have received
the draw of every active processor. The draw is appended to the name string, and a
processor becomes passive if its name string is now unique. Otherwise, it is active again
in the next phase. The algorithm terminates when there are no active processors in a
phase. By then, every processor has a unique name string, and the processors are ranked
according to the (lexicographic) order of the name strings. The link labels are chosen as
in the algorithm for named networks.

17

begin for { = 0 to N — 1 do intvl,[l] := (0,N - 1) ;
active, := N ; phase, :=1 ;
while active, > 0 do
begin rcvd, :=0 ;
if intvl,[0].lo # intvl,[0].hi then
(* v is active, draw label ¥*)
begin draw,[0] := rand(1..C) ; revd, :=rcvd, +1 ;
for/=1to N-1do
send (draw, phase,,draw,[0]) via [
end ;
while rcvd, < active, do
begin receive (draw, phase,,c) via link [;
(* Messages of a later phase are not received yet *)
revdy = revd, + 15 draw,[l] :=c¢

end ;
Split-Intervals ;
active, :=0;

for |=0to N—-1do
if intvl,[l].lo # intvl,[l].hi then active, := active, + 1 ;
phase, := phase, + 1
end ;
for/=1to N—-1do
m[l] := (intvl,[l).lo — intvl, [0].lo) mod N
end .

Algorithm 8: ORIENTATION OF AN ANONYMOUS CLIQUE.

In Algorithm 8 the construction of the name strings is done implicitly, and the com-
putation of the ranks is done during the construction of these strings. In this way each
processor needs only a bounded amount of storage (O(log N) bits) per link. To this end,
processor v maintains a ranking interval intvl,[l] for each link ! and for v itself. In each
phase the intervals are split according to the draws in that phase. To allow for compact
coding of the algorithm, v stores its own draw and ranking interval in the same array (at
location 0).

The variables of processor v are: phase,, the phase v is executing; active,, the number
of active processors in the current phase according to v; rcvd,, the number of draws
already received by v in the current phase; draw,, an array to store the draw of each
active processor in the current phase; and intvl,, an array to store an interval (lo, hi)
for each processor. The active processors send their draw in each phase in a (draw,p, c)
message, where p is the phase number and ¢ the draw.

The procedure Split-Intervals performs the task of computing the new ranking interval
for each processor, given the old intervals and the draws. Before execution of this proce-
dure, (1) the intervals that occur are disjoint and their union is {0,.., N —1}, and (2) when
interval (a, b) occurs there are exactly b — a + 1 processors that have this interval. The
procedure counts for these b— a+ 1 processors the number of times each draw occurs, and,
if b, is the number of processors with a.draw < c, assigns the interval (a + b.,a + by — 1)
to the processors with draw ¢ (for ¢ = 1..C).

18

It must first be remarked that for each processor v, the interval computed for v is the
same in all processors.

Lemma 3.3 For processors v, u, w, at the end of each phase intvl,[L,(v)] =
intvly,[L,(v)], and intvl,[L,(v)] = intvl,[0].

Proof. This equation holds at the beginning of phase 1, each processor is active, and for
each processor v active, = N.

Assume intvl,[L,(v)] = intvl,[L,(v)] = intvl,[0] holds at the beginning of a phase,
and for each u active, equals the number of processors v with intvl,[0].lo # intvl,[0].hi.
Exactly the processors v with intvl,[0].lo # intvl,[0].h: send draws in this phase and each
processor waits until exactly this number of draw messages have been received. Thus,
Split-Intervals is called with the same collection of draws in every processor, and after the
execution of Split-Intervals in every processor intvl,[L,(v)] = intvl,[L.,(v)] = intvl,[0]
holds again. Also, active, is recomputed as the number of processors v with intvl,[0].lo #
intvl,[0].hi at the end of the phase.

Using induction the integrity of the data is shown to be maintained through each
round. (i

Theorem 3.4 When Algorithm 8 terminates an orientation is computed.

Proof. First observe that it terminates after the same round in every processor, because
each processor computes the same number of active processors at the end of each round.

After termination, each processor has an interval of size 1, and the intervals for different
processors are disjoint. Thus the intervals define a ranking of the processors, from which
the correctness of the computed permutations follows. a

The remainder of this subsection is devoted to the complexity analysis of the algorithm.
Let R be the stochastic variable defined as the number of rounds needed in an execution
of the algorithm. Define Q, to be the probability that R > d.

Lemma 3.5 Q; < min(1, g—:)

Proof. To determine the number of rounds one may as well assume that also passive
processors continue to extend their name string, as this has no influence on the uniqueness
of the name strings of active processors. After d rounds each processor has randomly
selected a name string from a universe of U = C? possible name strings. The probability
that more phases are necessary equals the probability that, among N random selections
from a universe of size U, there are multiple occurrences of the same selection.

If U = C?% < N2, use that Q, is a probability so Q; < 1. For U > N2, find

Qs = Pr (There are multiple occurrences under N

random selections from U.)

= 1 — Pr (N random selections from U are all unique.)
B 1_(_qXU—1 ><U—N+1)

U U X ... U
U-N\V N\Y N2
1-(2=22) —1-(1-2 — > N2,
< (i) (1 U) <U or U >

19

Observe that Q; — 0 when d — oo, which implies that the algorithm terminates with
probability 1. The expected number of rounds is defined as E(R) = } 72, d x Pr(R=d),
which equals 72, Qa.

Lemma 3.6 E(R) < 2log; N +2.

Proof.
00 210gc N-1 o)
Z Qs = Z Qs + Z Qu
d=0 d=0 d=2logs N
2loge N-1 0)
N
< X 1+ XY =
d=0 d=2logs N
< 21 ! !
< 2OgCN + 1+-C—+E+”'
C
< 2logo N + C—§210g0N+2.

O

With C = N2, the expected number of rounds is less than 3, and the probability that
more rounds are used is very small. Thus, the expected number of messages (or bits,
respectively) is less than 3N? (or 3N2(log C), respectively). With C a small constant, the
expected number of bits is O(N?log N).

Theorem 3.7 There exists a randomized algorithm to orient anonymous cliques, which
terminates with probability 1.

4 The Orientation of Hypercubes

In this section algorithms for the orientation of hypercubes will be given. Subsection 4.1
presents an algorithm for a leader hypercube, which uses exactly 2F messages. It follows
from Theorem 2.3 and Corollary 2.13 that a message optimal algorithm is obtained by
preceding this algorithm with an efficient election algorithm. In Subsection 4.2 a differ-
ent solution is analyzed, namely the algorithm obtained when extinction is applied to
the algorithm in Subsection 4.1. Subsection 4.3 considers the problem for anonymous
hypercubes.

4.1 Leader Hypercubes

In this subsection an algorithm is proposed, which extends the initial labeling of the
leader’s links to an orientation. The initial labeling and the availability of a leader uniquely
define an orientation as expressed in the following theorem (given here without proof).

Theorem 4.1 Let L be a labeling of the hypercube and w be a designated node. There
exists ezactly one orientation O which satisfies O, (v) = L, (v) for each neighbor of w.

The algorithm computes exactly this orientation, and, moreover, a corresponding la-
beling of the nodes with bitstrings of length n, where the leader is labeled with (0,...,0).

20

begin rcvd, := 0 ; dist, := 0 ; label, := (0, ...,0) ;
for I =0 to n —1 do (* Send for phase 1 *)
begin send (dim, [} via link [;
m[l] =1
end ;
while rcvd, < n do (* Receive for phase 2 *)
begin receive (label,) (* necessarily via link [*)
revd, = revd, + 1
end
end .

Algorithm 9: ORIENTATION OF LEADER HYPERCUBE (LEADER).

This node labeling is also uniquely defined. The algorithm uses three types of messages.
The leader sends to each of its neighbors the label of the connecting link in (dim,) mes-
sages. Non-leaders send their node label to other processors in (iam, (b, ...,b,_;)) mes-
sage. Non-leaders inform their neighbors about the label of connecting links in (label,)
messages.

The algorithm is given as Algorithm 9 (for the leader) and Algorithm 10 (for non—
leaders). It consists of two phases, where in the first phase messages flow away from
the leader, and in the second phase messages flow towards the leader. In the sequel,
let w denote the leader processor. A predecessor of node v is a neighbor u of v for which
d(u, w) < d(v,w), and a successor of node v is a neighbor u of v for which d(u, w) > d(v, w).
In a hypercube node v has no neighbor u for which d(u,w) = d(v, w) and a node at distance
d from the leader has d predecessors and n — d successors.

The leader initiates the algorithm by sending a (dim, i) message over the link labeled
t. When a non-leader processor v has learned its distance dist, to the leader and has
received dist, messages from its predecessors, v is able to compute its node label. Processor
v forwards this label in an (iam, (bo, ..., b,_1)) message to its successors. To show that v
is indeed able to do so, first consider the case where v receives a (dim, i) message via link
l. As the message is sent by the leader, dist, = 1, and all other neighbors are successors.
The node label of v is (by, ..., b,—1), where b; = 1, and the other bits are 0. (The label of
link / becomes i in this case.) Thus v forwards (iam, (by,...,b,_;)) via all links k # I.

Next, consider the case where v receives an (iam, (b, ..., b,—;)) message. The distance
d of the sender of this message to the leader is derived from the message (the number of
I’sin (bg,...,b,—1)). (iam,label) messages are sent only to successors, thus the sender is
a predecessor of v and dist, = d+ 1. As v has dist, neighbors at distance d, v waits until
dist, (iam,label) messages have been received. By then v computes its node label as
the logical disjunction of the received node labels, and forwards it to the neighbors from
which no (iam, label) was received, as these are the successors.

In the first phase, each non-leader processor v computes its node label. In the second
phase, each non-leader processor v learns from its successors the orientation of the links
to the successors, and computes the orientation of the links to the predecessors. This
information is sent over the link in (label, i) messages. A processor sends (label, i)
messages to its predecessors as soon as it has received these messages from all successors,

21

begin rcvd, := 0 ; dist, :=n +1 ; label, := (0, ...,0) ;
forall ! do neigh,[l] := nil ;
while rcvd, < dist, do (* Receive for phase 1 *)
begin receive msg via link ! ; revd, :=revd, +1 ;
(* msg is a (dim, 2) or (iam, (b, ...,bn—1)) message *)
if msg is (dim, ¢) then
begin dist, :=1;
neigh,[l] := (0,...,0) ; label,[i] := 1
(* So now label, = (0, ..,1,..,0), with one 1 *)
end
else
begin dist, := 1 + # of I’s in (bo,...,bn—1) ;
label, := (label, or (bg,...,bn-1)) ;
neighy[l] := (bo, ..., bn—1)
end
end ;
(* Send for phase 1 *)
forall | with neigh,[l] = nil do
send (iam, label,) via link [;
while rcvd, < n do (* Receive for phase 2 *)
begin receive (label, ¢) via link [;
revd, i=revdy + 1 m[l] =14
end ;
(* Send for phase 2 *)
forall ! with neigh,[l] # nil do
begin 7,[l] := bit in which label, and neigh,[l] differ ;
send (label, =,[l]) via link !
end
end .

Algorithm 10: ORIENTATION OF LEADER HYPERCUBE (NON-LEADER).

and then terminates. The leader terminates when (label, i} messages have been received
from all neighbors.

The variables for processor v are: rcvd,, the number of messages already received;
dist,, the distance to the leader (computed when the first message arrives, initialized to
n + 1); label,, the node label computed by v; neigh,[0..n — 1], an array holding the node
labels of the predecessors of v; and =, to store the orientation.

Lemma 4.2 The algorithm terminates in every processor.

Proof. Using induction on d it is easily verified that all processors at distance at most d
eventually send the messages for phase 1. For d = 0, only the leader itself has distance d
to the leader and it may send the messages without receiving other messages first. Assume
all processors at distance d to the leader send all messages for phase 1, and consider a
processor v at distance d + 1 from the leader. As all predecessors of v eventually send the
phase 1 messages to v, v eventually receives one of these messages, and sets dist, := d+ 1.
When v has received the phase 1 messages from all of its d+ 1 predecessors, v sends phase
1 messages itself (to its successors).

22

Similarly it is shown that all processors send the messages of phase 2 and terminate.
O

Lemma 4.3 After termination O = w(L) is an orientation. For neighbors v and u, label,
and label, differ ezactly in bit O,(u) (which is equal to O,(v)).

Proof. According to Theorem 4.1 there exists exactly one orientation O and one corre-
sponding node labeling M such that O, (v) = £,(v) and N(w) = (0, ..,0).

In phase 1 the processors compute the node labeling A, as is seen by using induction
on the distance to the leader. Node w sets label,, to (0, ...,0), which is A/ (w). Neighbor v
of w sets label, to (by,...,b,_1), where b; is 1 if the link from w to v is labeled 4 in w, and
0 otherwise. Thus label, = N (v).

Now assume all nodes u at distance d from w compute label, = N(u) and consider
node v at distance d + 1 from w. N (v) is a string of d+ 1 I’s and n —d — 1 0’s. Node
v has d + 1 predecessors, and N (u) is found for predecessor u by changing one 1 in A (v)
into a 0. Thus the conjunction of the d + 1 labels A'(u) is indeed NV '(v).

After phase 1, for predecessor u of v, neigh,[l] = label, with | = £,(u). In phase 2,
v computes 7,[l| as the bit in which label, and neigh,[l] differ, so that label, and label,
differ exactly in bit m,[l], which is O,(u) as required. The same label is used by u for the
link, after u receives v’s (label, ,[l]) message. O

The properties of Algorithm 9/10 are summarized in the following theorem.

Theorem 4.4 There exists a deterministic algorithm to orient leader hypercubes, which
ezxchanges the asymptotically optimal number of 2E messages.

The bit complexity. As the (iam,label) messages of the algorithm consist of a node
label, they contain a string of n bits. It will now be shown that the algorithm can be
implemented using only messages of O(logn) bits. The (dim, i) and (label, i) messages
contain a number between 0 and n — 1 and thus contain O(logn) bits.

The algorithm does not need all information contained in the (iam,label) messages.
It suffices to transmit the number of 1’s, the smallest index at which there is a 1, and the
sum modulo n of the indexes for which there is a 1. For a node label label = (by, ..., b,_1)
define the weight, low, and index sum as weight(label) = #{i : b, = 1}; low(label) =
min{i : b = 1}; izsum(label) = (T,,_; i) modn. Finally, the summary is the tuple
smmry(label) = (weight(label), low(label), izsum(label)). The summary of a node is
the summary of its node label.

Lemma 4.5 Let v be a node at distance d+ 1> 2 from w.

(1) dist, = d + 1 can be derived from one summary of a predecessor of v.

(2) The summary of v can be computed from the d + 1 summaries of v’s predecessors.
(3) The node label of v can be computed from the summary of v and the d + 1 summaries
v’s predecessors.

(4) The node label of a predecessor u of v can be computed from the node label of v and
the summary of u.

Proof. (1) The computation of dist, is trivial as weight(N (u)) equals d(u,w).

23

(2) Now let d+1 summaries of predecessors of v be given. d of the d+ 1 summaries have
low equal to low(N (v)), while one summary has a higher low (the predecessor whose label
is found by flipping the first 1 in A'(v)). This gives low(N (v)), but also identifies the index
sum izsumyg of a node label which differs from A (v) in position low. Thus izsum(N (v)) =
(txsumg + low(N(v))) mod n. This completes the computation of smmry(N (v))).

(3) Let M(v) = (bg,...,bn_1). The d + 1 indices i for which b, = 1 are found as
izsum(N (v)) — izsum(N (u)) mod n for the d + 1 choices of u as a predecessor of v.

(4) For a predecessor u of v, N'(u) is found by flipping the bit indexed (izsum(N (v)) -
izsum(N (u))) mod n) from 1 to 0 in M(v). O

It follows from Lemma 4.5 that it suffices in the orientation algorithm to send the sum-
mary of node label instead of the full label, and hence the algorithm can be implemented
with messages of O(log N) bits. As the messages are used to assign different labels to
Q(n) links, the information in the messages cannot be compressed below O(logn) bits.

4.2 Named Hypercubes

The algorithm to orient leader hypercubes can be preceded by an election algorithm (cf. the
construction of Theorem 2.3) and then yields an orientation algorithm for named networks
with properties summarized in the following theorem.

Theorem 4.6 There exists a deterministic algorithm to orient named hypercubes, which
ezchanges the asymptotically optimal number of O(E) messages.

An alternative algorithm is obtained when extinction is applied directly to Algo-
rithm 9/10. Denote, as in Subsection 2.2.1, by LNA Algorithm 9/10 and by NNA the
algorithm obtained when extinction is applied. Cf. Theorem 2.6, algorithm NNA has a
worst case message complexity which is bounded by N x 2E, which is n4™. In this section
it will be shown that the worst case message complexity of algorithm NNA is actually
bounded by n3". The proof is due to Anneke A. Schoone.

Define the face of the hypercube spanned by two nodes w and v, denoted face(u, v),
as the set of nodes “between” w and v.

face(w,v) = {u : d(w,u) + d(u,v) = d(w,v)}

The face spanned by two nodes at distance d forms a d-dimensional hypercube itself. The
same face is spanned by each pair of opposite nodes in this sub-~hypercube.

Lemma 4.7 The n—dimensional hypercube has 3™ faces.

Proof. For each w there are (Z) nodes v at distance d of w, and each of these v defines
a different face containing w of dimension d. However, each face of dimension d is found

for 2¢ different choices of w (and a suitable v), so the number of faces of dimension d is

(2" x (Z))/2¢ =274 x (Z). Thus the total number of faces is 3_;_, 2" ¢ x (Z) =

(1+42)" = 3",]

24

For the analysis of algorithm NNA cost is charged to the number of times a processor
exits the receive loop of phase 1. If processor v does so in the execution of LNA initiated
by w, one unit of cost is charged to face(w,v).

Lemma 4.8 Each face gets charged at most one cost unit.

Proof. If processor v exits the receive loop of phase 1 in the execution of LNA which is
initiated by w, then processor w has the largest name of all processors in face(w,v). This
is because all processors in the face must forward the messages carrying w's name. As
only one processor w in the face has the largest name (in the face), and the same face is
not spanned by w and a node other than v, the lemma follows. a

Theorem 4.9 Algorithm NNA sends at most n3"™ messages in the worst case.

Proof. In algorithm LNA each processor sends n messages, all of them after the waiting in
phase 1 has terminated. Thus the number of messages sent in algorithm NNA is bounded

by n times the number of cost units charged. The proof is completed using Lemmas 4.7
and 4.8. |

4.3 Anonymous Hypercubes

The algorithm in Subsection 4.1 can be combined with the election algorithm for anony-
mous networks in Subsection 2.2.1, because the number of nodes is known. This proves
the following result.

Theorem 4.10 There exists a randomized algorithm to orient anonymous hypercubes,
which terminates with probability 1.

5 The Orientation of Tori

In this section the problem of finding orientations for a torus is studied. It will be shown
that deterministic algorithms for the orientation of leader and named tori exist, and that
anonymous tori can be oriented by a randomized algorithm if and only if the size of the
torus is known to the processors. For n = 4, the n X n torus is isomorphic to the 4—
dimensional hypercube. An algorithm to orient it is easily obtained by application of the
algorithm to orient the hypercube, followed by a local relabeling based on a processor’s
node label. The case n = 3 is simply ignored in this paper. In this section n x n tori are
considered for n > 5, for a reason which will become clear in the next paragraph.

The orientation problem will be solved in two stages. The first stage computes a
consistent prelabeling, and the second stage computes the orientation. The first stage is
necessary because in torus networks it is in general not possible to extend the labeling of a
single processor to a global orientation. In an oriented torus the up and down neighbor of
one processor are at distance 2 of each other, and there exists one path of length 2 between
them, provided n > 5. The same holds for the right and left neighbor. Each processor
has pairs of neighbors which are at distance 2 of each other, for which there exist two
paths of length 2 between these nodes (see Figure 11). It follows that a labelling which

25

O——®

Figure 11: NEIGHBORS OF NODE v IN THE TORUS.

assigns the labels up and down to processors forming such a pair cannot be extended to
an orientation.

The first stage of the algorithm divides the four links of each processor into two pairs,
with the property that the links of one pair must have opposite labels in an orientation.

Definition 5.1 A prelabeling P of the torus is an assignment in each node of labels from
the set {hori, verti} to the links of that node, such that each label is used twice.

A prelabeling P is consistent if for all nodes v and neighbors u and w of v, P,(u) = P,(w)
implies that there exists one path of length 2 between w and w.

When a consistent prelabeling is available, a node may label the verti links with up and
down and the hori links with left and right, and this labeling can be extended to an
orientation. When a prelabeling is given, the opposite of a link is the single link with the
same label, and the perpendicular links are the two links with different label.

5.1 Named Tori

On named tori both stages can be performed by deterministic algorithms.

begin forall links ! do bag,[l] :=0 ;
forall ! do send {one,name,) via l ;
revd, ;=0 ;
while rcvd, < 16 do
begin receive msg via link [; revd, := revd, +1
(* It is a {one,n) or (two,n) message *)
if msg is a (one,n) message
then forall k # ! do send (two,n) via k&
else bag,[l] := bag,[ljU {n}
end ;
find [;, Iz such that bag,[l1] N bag,[l2] =0 ;
label l;, ls with hori and the other links with verts
end .

Algorithm 12: PRELABELING A NAMED TORUS.

26

a,b,e,d
1,7, k,1

O——O—®

C

Figure 13: THE MESSAGES RECEIVED BY PROCESSOR v.

Computing a Prelabeling. The algorithm to compute a consistent prelabeling in a
named network is given as Algorithm 12. Each processor sends its name to each neighbor
and each neighbor forwards the name one step further. Thus, the name of each processor
is transmitted through 16 links, and each processor receives 16 messages (4 through each
link). Of the 16 messages received, 8 contain names which are received only once, and 4
contain names which are received twice, but through different links (see Figure 13).Two
links via which the same name is received are perpendicular; so, when a processor has
received its 16 messages a consistent prelabeling can be computed. The names are first
sent in a (one, n) message, and forwarded in a (two,n) message. The names received in
(two,n) messages are stored in sets bag, for each link.

Theorem 5.2 There exists a deterministic algorithm to compute a consistent prelabeling
on a named torus, which exchanges 16 N messages.

Computing an Orientation. An orientation can be computed by an algorithm based
on the Spanning Tree algorithm by Gallager, Humblet, and Spira [GHS83|. A brief de-
scription of this algorithm follows. During the execution of the algorithm the network is
partitioned into fragments, each with a fragment name. Initially, each fragment consists
of a single node, and the name of the fragment is the name of the node.

During the execution fragments are enlarged because fragments combine and form
new, larger fragments. To this end the processors in a fragment cooperate to select one
link which leaves the fragment as the preferred link of the fragment and send a connect
message via this link. Eventually the fragment at the other end of the preferred link agrees
to connect the two fragments, after which a new, larger fragment is formed. The name

27

For processor v:
send (answer, m,[l]) via l ; (* to u *)
send (dione, 7,[k]) via one link k¥ perpendicular to !

For processor u:
receive (answer, ll) via [; (* from v *)
a[l] := oppos(ll) ; (* The opposite direction *)
oloppos(l)] := 11 ;
send (direq) via the two links perpendicular to [;
receive { dians, kk) via link & ;
alk] := kk ; o[oppos(k)] := oppos(kk)
(* Now o is the permutation to be applied to all
link labels in the fragment. *)

For all other processors:
when a (dione, ll) message is received via link I:
send (ditwo,!l) via the two links perpendicular to !

when a (ditwo, Il) message is received via link [

and a {direq) message via link k:
send (dians,l) via link &k

Algorithm 14: FRAGMENT COMBINE PROTOCOL.

of the new fragment is chosen to be the name of one of the combining fragments®. This
name is flooded towards all nodes in the old fragment of which the name is not chosen to
be the new name.

The algorithm terminates when the entire network consists of a single fragment. The
name of the fragment to which processor v belongs is frname,.

The orientation algorithm is found as an extension of the Spanning Tree algorithm.
It is ensured, that processors which share the same fragment name, also share the same
orientation. To this end, when the new fragment name is flooded to the processors that
must update fr v, also the relative omdentation of the two fragments is flooded. It
must be shown how this relative orientation is computed.

The combining of fragments is embedded in the protocol given in Algorithm 14. As-
sume node v in fragment F' answers the connect message of node u in fragment G with
an answer message, where the combined fragment will have the name (and orientation)
of fragment F'. Processor v includes in the answer the label of the link over which it is
sent, and this defines for « the new label of the link over which the message is received, as
well as the opposite link. It remains to find the correct orientation of the two perpendic-
ular links. To do this (see Figure 15), v sends over one link ! perpendicular to link (v, u)
a message (dione,,[l]), which is forwarded by the receiving node as a (ditwo, m,[l])
message. Processor u sends a (direq) message via the two links perpendicular to link
(u,v). A processor which receives both a (ditwo,!l) and a (direq) message, replies to

*In [GHS83] it occurs that a new name is chosen for a new fragment, but the algorithm can easily be
modified so as to use an existing name for the new fragment.

28

ditwo A\ ditwo

Figure 15: EXTRA MESSAGES IN THE CONNECTING PROCEDURE.

the (direq) message with a (dians,!l) message. Thus u receives an answer to one of its
(direq) messages, which gives the orientation of the links perpendicular to (u,v).

To distinguish between the messages of different invocations of the connect protocol,
all messages are tagged with the fragment names of F and G (not shown in Figure 15).
The connect protocol to combine two fragments exchanges 6 messages each time two
fragments are combined, and as exactly N — 1 merges take place, the message complexity
of the orientation protocol exceeds the complexity of the underlying algorithm by 6N — 6
messages.

Thus the complexity of the second stage is O(N log V), which exceeds the complexity
of the first stage in order of magnitude.

Theorem 5.3 There erists a deterministic algorithm for the orientation of named tori,
which exchanges O(N log N) messages in the worst case.

5.2 Leader Tori

Computing a Prelabeling. A preorientation can be deterministically computed only
by a computation starting from the leader. This computation could start by applying the
naming algorithm (Algorithm 3/4), followed by Algorithm 12.

Theorem 5.4 There exists a deterministic algorithm to compute a consistent prelabeling
on a leader torus, which exchanges 2E + N — 1+ 16N = 21N — 1 messages.

Computating an Orientation. Asthe computation of a consistent prelabeling includes
the assignment of names, stage 2 can be performed as for named tori, which would cost
O(N log N) messages. Using the same ideas as for the connect protocol, Algorithm 14, it
is possible to give an algorithm which exchanges only O(/N) messages. The details of this
algorithm are left as an exercise for the reader.

Theorem 5.5 There ezists a deterministic algorithm for the orientation of leader tort,
which exchanges O(N) messages.

29

Figure 16: A SYMMETRIC LABELING WHICH IS NOT A PRE-PREORIENTATION.

5.3 Anonymous Tori

Although in an anonymous network a consistent prelabeling can be computed (by a ran-
domized algorithm), it is impossible to compute an orientation, even by use of a random-
ized algorithm, when N is not known.

Computing a Prelabeling. A consistent prelabeling can be computed in an anonymous
torus, but only by a randomized algorithm if the size of the torus is even.

Theorem 5.6 There exists no deterministic algorithm to compute a consistent prelabeling
for an anonymous torus of even size.

Proof. The proof uses the same techniques as the proofs in Subsection 2.4. A labeling
is a pre—prelabeling if it can be turned into a consistent prelabeling by the application of
a fixed function py from {up, down, left, right} to {hori, verti}. A symmetric labeling
which is not a pre—prelabeling is found by covering the torus with label patterns as in
Figure 16. In this labeling, the even nodes (E) must label links 1 and 2 the same, while
the odd nodes (O) must assign the same label to links 2 and 4. a

A consistent prelabeling can be computed by a randomized algorithm which is an
extension of Algorithm 12. Processors cannot send their name, but instead draw a random
number (in the range [1,..., M], say) and send this number together with a phase number
(initially 1). Processors receiving 12 (two,n,p) messages, but not carrying four numbers
twice and four numbers once, reply by sending (refuse,n,p) messages. These messages
are sent back to the processors from which the number n originated and causes them to
draw a new number in the next phase.

The probability that a “collision” occurs in a processor can be made small by choosing
M large. The precise formulation of the algorithm, as well as the analysis of its expected
message complexity is left to the reader.

Theorem 5.7 There exists a randomized algorithm to compute a consistent prelabeling
for an anonymous torus.

Computing an Orientation. It has been established in Subsection 2.4 that anonymous
tori cannot be oriented by deterministic algorithms. The results presented so far suffice to

30

Figure 17: ALGORITHM A TERMINATES CORRECTLY ON A SMALL TORUS.

construct a randomized algorithm for the orientation of tori when the size of the network
is known. To this end, Algorithms 5, 3/4, and the algorithm sketched in Subsection 5.1
can be combined.

Theorem 5.8 There exists a randomized algorithm for the orientation of anonymous tori,
when the number of processors is known.

The main result of this subsection is to prove that no such algorithm exists when the
size of the torus is not known. The proof relies on techniques similar to those used by
Itai and Rodeh [IR81] to establish that no (randomized) algorithm exists to compute the
size of a anonymous ring network. An execution leading to a correct result on a (small)
torus is finite, and hence it has a positive probability of being “accidently simulated” by a
fragment of a larger torus. If this occurs in two different parts of the larger torus, processes
may terminate with incompatible orientations, and this may happen with an arbitrarily
large probability.

Theorem 5.9 There ezists no (randomized) algorithm for the orientation of tori when
the number of processors is not known.

Proof. Assume there exists an algorithm A that is able to compute an orientation in an
ng X ng torus Ty (see Figure 17). That is, there exists an execution Ez of A on the ng x ng
torus in which every processor terminates, and the resulting labeling is an orientation.
Define a message chain as a series of messages (M, My, ..., M}), such that M,,, was sent
by the processor that received M;, and was sent only after the receipt of M,. Let the
longest message chain in Ez have length L.

Next consider a torus 77 of size n, X n; with n, > 2L + 1. The l-neighborhood of
processor v is the set of processors with distance at most ! to v. Processor (i,7) in T}
corresponds to processor (¢ mod ng,j mod ng) in Tp. In execution Ez, all processors of
T, take finitely many steps, and in particular draw a random number only finitely often.
Thus, there is an ¢ > 0 such that for each processor v, of T3 the probability that all
processors in the L-neighborhood of v, draw the same numbers as the corresponding
processor in Ty draw in Ez is at least e. If this happens there is an execution of A on T; in
which processor vy terminates after executing exactly the same steps as in execution Ez
(see Figure 18).

The size of T; can be chosen large enough to have an arbitrarily high probability that
this occurs for at least one processor v,. The size of T3 can be chosen large enough to

31

e T

Litir 1l
O e

11t

[

TTTTT
i
HIE
HI
ERRN

(e M7 T0T T
OTUP
ITITT T TII0T TT0I0 1T

T T

o O

L
[T
[
[
LI
TTHTT

111
[

T 1T

Processors corresponding
to the same processor

L1
111
[
L

LILEL

Figure 18: A SUBSET OF THE PROCESSORS SIMULATES FEr.

have an arbitrarily high probability of this to happen for at least 2 processors vy and vy,
where vy and v; terminate with different orientations (see Figure 19). O

6 Alternative Characterization of Orientations

The definitions of orientations given in Section 2.1 were based on the existence of partic-
ular (global) name assignments to nodes. By (implicitly) computing such a global name
assignment, all orientation algorithms in this paper implicitly elect a leader.

Breaking symmetry, however, is a non—trivial task even in oriented networks (even
though in oriented networks it is easier than in unoriented networks). It is thus to be

Figure 19: PROCESSORS TERMINATE WITH INCONSISTENT LABELINGS.

32

expected that breaking symmetry is a “harder” task than finding an orientation, and that
more efficient or simpler algorithms can be found which compute an orientation without
breaking the symmetry. To prove the correctness of such algorithms it would be necessary
to express the correctness of an orientation without making reference to a corresponding
node labeling. A characterization of orientations, based only on the link labels, is derived
in this section.

Orientations can be characterized by the properties of the label strings of closed paths,
as defined below. A path (of length k) in a network is a sequence of nodes vy, vy, .., U,
such that for each 4, v; is connected to v;;;. A path vg,v,..,vx is closed if vg = .
For a path P = vg,vy,..,v; in a labeled network, the label string LS(P) is the sequence
Lo, (v1), Ly, (v2), ey Lo,_,(vk). The reverse of a path P = vg,v;,..,v is the path P® =
Uk, ..., U1, Yg. The concatenation of paths P, = vy, vy,..,v and P, = wy, wy, ..., w;, where
Uy = Wy, is the path Py P, = vy, vy, .., Vg, Wy, «oey Wy

6.1 The Clique

Let a labeling £ in a clique be given. For a path P = wvy,vy,..,v, let Sum(P) =
S84 L4, (uiy1), that is, the sum of the labels in the label string of P, where addition
is modulo N.

Theorem 6.1 The following two are equivalent:
(1) L is an orientation.
(2) A path P is closed if and only if Sum(P) = 0.

Proof. Assume 1. By the definition of an orientation there exists a labeling A of the
nodes such that £,(v) = N(v) — M (u). Using induction on the path, it is easily shown
that Sum(P) = N(vx) — N(vo). As labels are from the set {1,..,N — 1}, £,(v) # 0, and
all node labels are different. It now follows that vy = v, if and only if Sum(P) = 0.

Assume 2. Pick an arbitrary node vy, set M'(vg) = 0 and for all u # vy set N(u) =
L, (u). It remains to show that this node labeling satisfies the constraints in the definition
of an orientation. That is, for all nodes u; and uy, £, (u2) = N(uz) — N(u,). For u # vy,
note N (vy) = 0 and N(u) = L, (u) so Ly (u) = N(u) — N(vp). As P = vg,u,vp i8
closed, Sum(P) = 0, hence L,(vg) = —L,(u) = NM(vo) — N(u). For uy,us # vy, as
P = wy,uy,us, v is closed, Sum(P) = 0 and hence L,,(u3) = —L,,(u1) — Ly, (vo)

(W (1) = N (00)) = W (wo) = N(uz)) = N (uiz) — A (ur). 0

6.2 The Hypercube

Let a labeling £ in a hypercube be given. For a path P = vy, vy, .., vk, let #;(P) be the
number of ¢’s in LS(P).

Theorem 6.2 The following two are equivalent:
(1) L is an orientation.
(2) A path P is closed if and only if for alli: #,(P)=0 (mod 2).

Proof. Assume 1. By definition, each node v can be assigned a unique name N@w) =

(bo, b1, .., bn_1), such that the edge (v, w) is labeled i in v if N'(w) = (bo, .., bi; .., bay). It fol-
lows by induction on the path, that with M (ve) = (bo, b1, .-, bn1) N (vr) = (o, €1y oy Cno1),

33

where ¢; = (b; + #:(P)) mod 2. Hence vy = v if and only if Vi : ¢ = b, ie,
Vi @ #;(P) mod 2 =0.

Assume 2. First note that for each edge (v,w), P = v,w,v is a closed path, which
implies (by 2) that £,(w) = £, (v). This implies that #;(P) = #,(PF®).

Next a node naming function A is defined. Pick an arbitrary node vy. For a node u,
let P be any path from vy to u and set N'(u) = (co, €1, .., Cn_1), Where ¢; = #;(P) mod 2.

It must now be shown that this definition is sound. Let P, and P; be two paths from
vo to u. Now P, PE is a closed path, so #;(P,Pf) =0 (mod 2). Because #,(P,Pf) =
#:(P,) + #:(P,) this implies that #,(P;) mod 2 = #,(P,) mod 2, so N (u) is independent
of the choice of a path from vy to u and the name function is well defined.

Next it is shown that names are unique. Assuming N(u;) = N (uz), let P; and P, be
paths from v, to u; and u,. Consider the path PP, from u; to ug. As #;(P) mod 2 =
#:(P;) mod 2, #,(PRP,) =0 (mod 2) for all i. It follows by (2) that PRP, is closed, so
Uy = Ug.

Finally it must be shown that for a node v with N'(v) = (b, b1,.., bn_1), Lo(w) =i
for the neighbor w with A(w) = (bo, .., b;,..,b._1). Let P be a path from v, to v, then
P’ = P,w is a path from v, to w. As the label string of P’ is just the label string of P

extended with £,(w) (that is, 7), it follows that N (w) = (bo, .., bsy .., bn1). O

6.3 The Torus

Let a labeling £ in a torus be given. For a path P = vy, vy, .., Uk, let #.,,(P) be the number
of up’s in LS(P), and let #4oun, etc., be defined similarly.

Theorem 6.3 The following two are equivalent:

(1) L is an orientation.

(1) A path P is closed if and only if #.,(P) — #aown(P) =0 (mod n) and # .gn:(P) —
#left(P) =0 (mod n)

Proof. Assume 1. By definition, each node v can be assigned a unique name N (v) = (3, j),
such that the edge (v, w) is labeled up (down, right, left) in v if N'(w) = (3,5 +1) ((3,7 1),
(i +1,7), (i — 1,7)). It follows by induction on the path, that, with AM(v,) = (4,)),
N(ve) = (@ + #up(P) — #down(P) mod n, j + #igni(P) — #1es(P) mod n). Hence vy = vy,
if and only if #.,,(P) — #4oun(P) =0 (mod n) and #,gn:(P) — #ieps(P) =0 (mod n).

Assume 2. First note that for each edge (v,w), P = v,w,v is a closed path, hence (by
2) #up(P) — #aoun(P) =0 (mod n) and #,gn(P) — #1e(P) = 0 (mod n). It follows
that if £,(w) = up (down, right, left) then L, (v) = down (up, left, right). This implies
that #.,(P) = #40un(P®), and so on.

Next a node naming function N is defined. Pick an arbitrary node v,. For a node
u, let P be a path from vy to u and set N (u) = (#4p(P) — #down(P) mod n, #ignt (P) —
#left(P) mod n)

It must now be shown that this definition is sound. Let P, and P, be two paths from
vo to u. Now P Pf is a closed path, 50 #.,,(PiPf) — #4oun(PAPf) = 0 (mod n) and
#right(PLPf) — #iex(PLPyY) = 0 (mod n). Because #.,(PLP) = #.up(P1) + #aoun(P2)
and #down(P1P2R) = #down(Pl) + #‘up(P2)7 the former lmphes #up(Pl) - #down(Pl) mod
n = #up(P2) — #down(P2) mod n. Similarly, the latter implies #ioni(P1) — Fies:(P1) mod

34

Anonymous networks
of unknown size

“Can simulate

Named Networks / deterministically”

Leader Networks “Can simulate

randomizedly”

Anonymous networks
of known size

Figure 20: LEADER, NAMED AND ANONYMOUS NETWORKS CAN SIMULATE EACH OTHER.

1 = F#right(P2) — #i1ese(P2) mod n. It follows indeed, that M (u) is independent of the choice
of a path from v, to © and the name function is well defined.

Next it is shown that names are unique. Assuming N(uw;) = N(ug), let P, and
P, be paths from v, to u; and u,. Consider the path PEP, from u; to u;. As
#up(P1) = #aown(P1) mod n = #.,,(P2) — #doun(P2) mod n, it follows that #.,(PP;) —
#ioun(PEP,) = 0 (mod n). Similarly, #.p(PEP) — #1ex(PFP) = 0 (mod n). It
follows by (2) that PRP, is closed, so u; = u.

Finally it must be shown that for a node v with N'(v) = (4,5), L,(w) = up for the
neighbor w with M(w) = (3,5 + 1). Let P be a path from v, to v, then P' = P,w is a
path from vy to w. As the label string of P’ is just the label string of P extended with
L,(w) (that is, up), it follows that N (w) = (4,5 + 1). The case for down, right, and left
is handled similarly. O

7 Discussion

In this paper the problem of finding orientations for two network topologies has been
studied under three model assumptions. The results of the study can be summarized as
follows. The problem of network orientation can be solved by a deterministic algorithm in
leader or named networks. The problem cannot be solved by a deterministic algorithm in
anonymous networks. In anonymous networks the problem can be solved by a randomized
algorithm if the size of the network is known (which is the case for cliques and hypercubes),
and cannot be solved by a randomized algorithm when the size is not known.

These results are in accordance with know results in the area of distributed computing,
cf. Figure 20. Named networks can simulate leader networks (Theorem 2.3) and vice versa
(Theorem 2.2). Anonymous networks can simulate leader networks with a randomized
algorithm when the network size is known (Theorem 2.11), but not when the size is
unknown.

7.1 Dependency of other assumptions

In this paper the solvability of the orientation problem was studied as a function of the
required symmetry of the solution. The solvability may as well be studied as a function of
other parameters.

35

7.1.1 Fault—Tolerance

In this paper is was assumed that the network were reliable, that is, processors and links
do not fail. Algorithms research in the past decade has frequently addressed the question if
processors can be coordinated in systems where processors can fail, for example, according
to one of the following fault models.

e Initially Dead Processors: It may occur that some processors do not execute a
single instruction of their local algorithm.

e Crashes: It may occur that some processors stop executing their local algorithm at
arbitrary moments in the execution.

e Byzantine Faults: It may occur that some processors execute steps which are
in disaccordance with their local algorithm, such as sending messages with wrong
information.

A result of Moran and Wolfstahl [MW87] indicates that no deterministic orientation
algorithm exists that is resilient to a crash of a single processor. This leaves open, whether
randomized solutions could tolerate processor crashes or even Byzantine faults. The re-
sults of Fischer, Lynch, and Peterson [FLP85] indicate, that deterministic algorithms can
coordinate non-trivial decisions in the presence of initially dead processors. This suggests
the question whether deterministic algorithms exist for the orientation of networks in the
presence of initially dead processors.

7.1.2 Refined Symmetry Assumptions

In this paper only three different symmetry assumptions were considered, namely that all
local algorithms are different (named networks), all local algorithms are identical (anony-
mous networks), or all local algorithms except one are identical (leader networks). Differ-
ent assumptions about the symmetry are possible.

o k—Leader: There are exactly k processors that execute the leader algorithm, and
all others execute the non-leader algorithm.

e Difference: There are two (or: k) different local algorithms, and each of them is
executed by at least one processor.

e [Maximally] Independent Leaders: The set of processors executing the leader
algorithm constitute a [Maximal] Independent set.

For each of these symmetry assumptions it can be investigated whether the class of com-
putable functions is [strictly] included in or [strictly] includes the functions computable
by leader or anonymous networks.

Open Question 7.1 Fit the computational power of these symmetry assumptions in Fig-
ure 20.

36

7.1.3 Synchronism Assumptions

In this paper asynchronous systems were considered. In these systems there is no bound
on the time necessary to perform one operation, and no bound on the time between
sending an receiving a message. A different model, which has frequently been used for
the development of distributed algorithms, is that of synchronous systems. In synchronous
systems bounds are known both on the time to perform one instruction and on the message
delay time. The following four models can be distinguished.

e Fully Asynchronous Networks: The model that is considered in this paper.

e Archimedean Networks: Bounds on the relative speeds of components do exist;
they can be very rough, however, and need not be known to the processors; see
Vitanyi [Vit85].

e Asynchronous Bounded Delay Networks: Processing time within a processor
is assumed to be neglictible, an upper bound is known on the message delay, and
processors have clocks that run at the same speed (barring a very small drift); see,
e.g., Korach et al. [KTZ88).

¢ Fully Synchronous Networks: Processors execute their local algorithm in discrete
rounds, and a message sent in round 4 is received before the receiver executes round
1+ 1.

A lot of research has addressed the influence of synchronism assumptions on the functions
that are computable, and the efficiency with which they can be computed.

The Power of Synchronism. Stronger synchronism assumptions do not increase the
class of functions computable by reliable networks. This statement follows from the exis-
tence of so—called “synchronizer” algorithms, implementing fully synchronous networks on
networks satisfying a weaker assumption. Awerbuch [Awe85] proposed a synchronizer for
fully asynchronous networks, and his “a—synchronizer” can be used even for anonymous
(but reliable) networks. A more efficient algorithm (in terms of messages exchanged by the
synchronizer) was presented by Korach et al. [KTZ88] for Asynchronous Bounded Delay
Networks.

The Efficiency of Synchronism. Stronger synchronism assumptions allow more effi-
cient algorithms. This statement can be illustrated by some results on the complexity of
electing a leader on a named ring network. It was shown (by various authors, e.g., Pachl
et al. [PKR84]) that on an asynchronous ring at least Q(Vlog V') messages must be ex-
changed. Vitanyi [Vit85] has demonstrated that on an Archimedean ring O(N) messages
suffice to elect a leader. The implicit constant hidden in the big—Oh notation depends on
the ratio between the various upper and lower bounds on the relative speeds of compo-
nents. Bodlaender and Tel [BT90] have shown, that on a synchronous ring O(/N) messages
suffice, each message can be of O(1) bits, and this is regardless of whether the processors
know N or not.

A striking example of the efficiency that can be obtained from synchronism is the
surprizing result that in a synchronous system any message M can be transmitted using
O(1) bits. This can be done by “coding M in time”, namely, sending a start message

37

and M time units later a stop message. The receiver obtains M by measuring the time
between the receipt of the two messages; see, e.g., [BT90].

Fault-Tolerance and Synchronism. Stronger synchronism assumptions are able to
tolerate larger classes of faults in unreliable networks. In a landmark paper, Fischer et
al. [FLP85] have shown that no non-trivial agreement can be deterministically reached
between processors in an asynchronous network in the possible presence of a single crash
fault. On the other hand, Lamport et al. [LSP82] have shown that in a synchronous
system agreement can be reached even in the presence of (up to almost N/3) Byzantine
faults. These results show that no deterministic synchronizer algorithm exists for fully
asynchronous systems where processor crashes may occur. The implementation of fault-
tolerant systems usually relies on the availability of clocks and an upper bound on message
delays (the Asynchronous Bounded Delay assumption). The fault-tolerant synchroniza-
tion of clocks (see Ramanathan et al. [RSB90] for an overview article) is an important
step in the implementation of a fully synchronous network.

7.2 Other Topologies

In this paper the orientation problem was studied for cliques, hypercubes and tori. The
problem can similarly be defined for other network topologies, such as shuffles, cube con-
nected cycles, or multi dimensional grids. Orientations can easily be defined for these
specific topologies, as was done for cliques, hypercubes, and tori.

Kranakis and Krizanc [KK90b] define Cayley networks as follows. Let G be a (finite)
group generated by {gi,...,0:}. The Cayley network of G is the graph G = (V,E)
where V. = G and E = {(z,9) | 3 : = = gy Vy = gir}. The network topologies
considered in this paper are special cases of Cayley networks, obtained by substituting for
G groups with a relatively simple structure. More complicated groups give rise to different
network topologies. Cayley networks can be naturally oriented by defining O, (g:x) =t and
O,.+(z) = 3. The related orientation problems may give rise to complicated algorithms,
utilizing a large collection of algorithmical ingredients.

It is not clear whether the notion of orientations can be generalized to more general
classes of topologies, for example, the class of all regular graphs. Orientations of planar
graphs can be defined naturally. A labeling of a planar graph is an assignment in each
node v of numbers from 1 to dgr, to the edges of v. A labeling is an orientation if there
exists a planar embedding of the graph, such that for each node the link labels increase in
clockwise order.

Open Question 7.2 Develop algorithms for the orientation of planar networks.

7.3 Termination and Termination Detection

This subsection discusses two different notions of termination, namely processor termina-
tion and message termination. Message terminating algorithms are simpler to design and
can compute a larger class of functions. A brief discussion of the termination detection
problem is included.

38

var a., b, : integer ; (* Input, result *)

begin b, :=a, ;
forall links k do send (b,) via k ;
while true do
begin receive (b) ;
if b > b, then
begin b, :=b;
forall links k do send (b,) via k
end
end
end .

Algorithm 21: COMPUTING THE MAXIMUM IN AN ANONYMOUS NETWORK.

Processor and Message Termination. The results in this paper are derived for pro-
cessor terminating algorithms. In these algorithms eventually a system configuration is
reached in which all processors are in a terminated state. (Such a configuration is reached
in all executions of a deterministic algorithm, and with probability 1 in a randomized al-
gorithm.) In such a state, a processor is unable to execute further steps of the algorithm,
and the values of its variables in that state are the output of the problem.

An algorithm is message terminating if eventually a configuration is reached where no
further step of the algorithm can be taken, i.e., all processors are either in a terminated
state, or waiting to receive but there are no messages in the channels. (Such a configuration
is reached in all executions of a deterministic algorithm, and with probability 1 in a
randomized algorithm.) In a waiting state a processor is able to receive a message of
the algorithm, which would change the value of its variables. In a message terminated
configuration such a message will of course never arrive, but message termination is a
property of the global configuration and is unobservable to a single processor. Hence a
processor is not aware that its variable have converged to their final values (the “output”
of the algorithm).

It has turned out, that message terminating algorithms are often simpler to design and
verify, because aspects related to process termination can be ignored.

The Power of Termination. Itai and Rodeh [IR81] have shown that in anonymous
networks message terminating algorithms are able to compute a larger class of fuctions
that processor terminating algorithms. An illustration of this result is found by considering
the following problem. Each processor v in an anonymous network of unknown size has
an input a,, and it is required to compute in each processor the maximum over all inputs.

This computation can be carried out by a (deterministic) message terminating algo-
rithm as stated in the following theorem.

Theorem 7.3 Algorithm 21 terminates after ezchanging at most NE messages. When
the algorithm terminates, b, = max,, a,, for each processor v.

The proof is left as an exercise. On the other hand, the following impossibility result can
be shown by methods similar to those used in the proof of Theorem 5.9.

39

Theorem 7.4 There exists no (randomized) processor terminating algorithm to compute
the mazimum of the inputs in an anonymous network of unknown size.

Corollary 7.5 The class of functions computable by message terminating algorithms is
strictly larger than the class of functions computable by processor terminating algorithms,
for anonymous networks of unknown size.

Proof. That the first class includes the second class follows because a processor terminat-
ing algorithm is also message terminating. The strictness follows from the previous two
theorems. a

Termination Detection. Just like algorithms for leader networks can be used for
named networks by the application of an election algorithm, message terminating algo-
rithms can be made processor terminating by the application of a termination detection
algorithm. A termination detection algorithm runs concurrently with an arbitrary mes-
sage terminating algorithm. When the latter algorithm reaches a message terminated
configuration, the former algorithm eventually detects this and sends a terminate message
to all processors.

The design of termination detection algorithms has received a lot of attention during
the past decade. There do exist termination detection algorithms for leader networks
(Dijkstra and Scholten [DS80]) and named networks (Tan and Van Leeuwen [TL86]). The
existence of a termination detection algorithm for anonymous networks of known size
follows from the results in this paper or [Tel94, Sec. 8.3.4]. Corollary 7.5 implies that no
termination detection algorithm exists for anonymous networks of unknown size.

Acknowledgements. The members of the Utrecht Distributed Algorithms Group are
acknowledged for their stimulating discussions of the subject. I want to thank Anneke
Schoone for her proof of Theorem 4.9 and Petra van Haaften and Hans L. Bodlaender for
their careful proofreading.

40

References

[Ang80]

[Awe85]
[BB89]

[BN89)

[BT90]
[CR79)

[CS92]

[DS80]
[FLP85]
[GHS83]
[1393]
[IR81]
[KG85]

[KK90a]

[KK90b)

[KMZ84]

[KTZ88]

[LMWS86]

ANGLUIN, D. Local and global properties in networks of processors. In Symp. on Theory
of Computing (1980), pp. 82-93.

AWERBUCH, B. Complexity of network synchronization. J. ACM 32 (1985), 804-823.

BEAME, P. W., AND BODLAENDER, H. L. Distributed computing on transitive
networks: The torus. In Symp. on Theoretical Aspects of Computer Science (1989),
B. Monien and R. Cori (Eds.), vol. 349 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 294-303.

BOUABDALLAH, A., AND NAIMI, M. Parallel assignment to distinct identities in an

arbitrary network. In Third Annual Parallel Processing Symposium (1989), H. Jelinek
(Ed.).

BODLAENDER, H. L., AND TEL, G. Bit-optimal election on synchronous rings. Inf.
Proc. Lett. 36 (1990), 53-56.

CHANG, E. J.-H., AND ROBERTS, R. An improved algorithm for decentralized extrema
finding in circular arrangements of processes. Commun. ACM 22 (1979), 281-283.

CIDON, I., AND SHAVITT, Y. Message terminate algorithms for anonymous rings of
unknown size. In 6th Int. Workshop on Distributed Algorithms (Haifa, 1992), A. Segall
and S. Zaks (Eds.), vol. 647 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 264-276.

DuksTRA, E. W., AND SCHOLTEN, C. S. Termination detection for diffusing compu-
tations. Inf. Proc. Lett. 11, 1 (1980), 1-4.

FISCHER, M. J., LyNcH, N. A., AND PATERSON, M. S. Impossibility of distributed
consensus with one faulty process. J. ACM 32 (1985), 374-382.

GALLAGER, R. G., HUMBLET, P. A., AND SPIRA, P. M. A distributed algorithm for
minimum weight spanning trees. ACM Trans. Program. Lang. Syst. 5 (1983), 67-77.

ISRAELI, A., AND JALFON, M. Uniform self-stabilizing ring orientation. Information
and Computation 104, 2 (1993), 175-196.

ITAl, A., AND RODEH, M. Symmetry breaking in distributive networks. In Symp. on
Theory of Computing (1981), pp. 150-158.

KORFHAGE, W., AND GAFNI, E. Orienting a unidirectional torus network. Manuscript,
1985.

KraNAKIS, E., AND KRIZANC, D. Computing boolean functions on anonymous hy-
percube networks. Report CS-R9040, Centre for Mathematics and Computer Science,
Amsterdam, 1990.

KRANAKIS, E., AND KRIZANC, D. Computing boolean functions on Cayley networks.
Report CS-R9061, Centre for Mathematics and Computer Science, Amsterdam, 1990.

KoRACH, E., MORAN, S., AND ZAKS, S. Tight upper and lower bounds for some
distributed algorithms for a complete network of processors. In 8rd Symp. on Principles
of Distributed Computing (1984), pp. 199-207.

KoRACH, E., TEL, G., AND ZAKS, S. Optimal synchronization of ABD networks. In
CONCURRENCY ’88 (Hamburg, 1988), F. H. Vogt (Ed.), vol. 335 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 353-367.

Loui, M. C., MATSUSHITA, T. A., AND WEST, D. B. Election in a complete network
with a sense of direction. Inf Proc. Lett. 22 (1986), 185-187. Addendum: Inf. Proc.
Lett. 28:327, 1988.

41

[LSP82]

[MAS9]

[Mat89]
[MW87]

[Pet85]

[PKR84)
[RSB90]
[San84]

[SCP93]

[SP87]

[Tel94]
[TLg6]

[Vit85]

LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4 (1982), 382-401.

MATIAS, Y., AND AFEK, Y. Simple and efficient election algorithms for anonymous
networks. In 3rd Int. Workshop on Distributed Algorithms (Nice, 1989), J.-C. Bermond
and M. Raynal (Eds.), vol. 392 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 183-194.

MATTERN, F. Verteilte Basisalgoritmen, vol. 226 of Informatik Fachberichte. Springer-
Verlag, Berlin, 1989 (285 p.).

MORAN, S., AND WOLFSTAHL, Y. Extended impossibility results for asynchronous
complete networks. Inf. Proc. Lett. 26 (1987), 145-151.

PETERSON, G. L. Efficient algorithms for elections in meshes and complete networks.
Tech. Rep. TR 140, Dept. of Computer Science, Univ. of Rochester, Rochester, NY
14627, 1985.

PacHL, J., KoracH, E., AND ROTEM, D. Lower bounds for distributed maximum
finding algorithms. J. ACM 31 (1984), 905-918.

RAMANATHAN, P., SHIN, K. G., AND BUTLER, R. W. Fault-tolerant clock synchro-
nization in distributed systems. IEEE Computer (1990), 33—42.

SANTORO, N. Sense of direction, topological awareness, and communication complexity.
ACM SIGACT News 16 (1984), 50-56.

SYROTIUK, V. R., COLBOURN, C. J., AND PACHL, J. Wang tilings and distributed
orientation on anonymous torus networks. In 7th Int. Workshop on Distributed Algo-
rithms (Les Diablerets, 1993), A. Schiper (Ed.), vol. 725 of Lecture Notes in Computer
Science, Springer-Verlag.

SYROTIUK, V., AND PAcHL, J. A distributed ring orientation problem. In 2nd Int.
Workshop on Distributed Algorithms (Amsterdam, 1987), J. van Leeuwen (Ed.), vol. 312
of Lecture Notes in Computer Science, Springer-Verlag, pp. 332-336.

TEL, G. Introduction to Distributed Algorithms. Cambridge UP, 1994.

TaN, R. B., AND LEEUWEN, J. VAN. General symmetric distributed termination
detection. Tech. Rep. RUU-CS-86-2, Dept. of Computer Science, Univ. of Utrecht,
The Netherlands, 1986.

VITANYI, P. M. B. Time-driven algorithms for distributed control. Tech. Rep. CS—
R8510, Centre for Mathematics and Computer Science, Amsterdam, 1985.

42

Contents

1 Introduction

1.1 Computing Orientations
1.2 Network Symmetry e

2 Preliminary Results
2.1 Definitions of Networks and Orientations.
2.2 Network Models
2.2.1 Leader Networks and Named Networks
2.2.2 Randomized Algorithms for Anonymous Networks

2.3 Lower Bounds for Network Orientation,
2.4 Deterministic Orientation of Anonymous Networks

The Orientation of Cliques

3.1 Named Cliques
32 Leader Cliques
3.3 Anonymous Cliques
The Orientation of Hypercubes

4.1 Leader Hypercubes
4.2 Named Hypercubes,
4.3 Anonymous Hypercubes
The Orientation of Tori

51 Named Tori 0 i it e e e
52 Leader Torio
53 AnonymousTori

Alternative Characterization of Orientations

6.1 The Clique v i v i v it e te
6.2 TheHypercube oo
6.3 TheTorus v v v v vt ettt it e e e
Discussion
7.1 Dependency of other assumptions
7.1.1 Fault-Tolerance.
7.1.2 Refined Symmetry Assumptions
7.1.3 Synchronism Assumptions
7.2 Other Topologies
7.3 Termination and Termination Detection

43

........

........

........

........

........

........

........

........

........

16
16
16
17

20
20
24
25

25
26
29
30

32
33
33
34

