Mechanising proofs of program

transformation rules

K. Sere, J. von Wright

RUU-CS-91-11
May 1991

Utrecht University
Department of Computer Science
Paduslaan 14, P.O. Box 80.089,

» 3508‘ TB Q.;rgchf,_ The N_ethe(lénds,
Tel. : ... + 31 - 30 - 531454

o
R . k4
et £

. P

e
. s
. L#

e

ral

e
Wi
z

2

0924-3275

ISSN

1 Introduction

Stepwise refinement is a methodology for developing programs from high-level
program specifications into efficent implementations. The refinement calculus of
Back [1,2] is a formalisation of this approach, based on the weakest precondition
calculus of Dijkstra [7].

Practical program derivation within the refinement calculus [4] has shown that
refinement steps often tend to be very similar to each other. Rather than always
inventing a refining statement and proving the correctness of the refinement, it is
convenient to have access to a collection of program transformation rules whose
correctness has been verified once and for all. Every step in the development
process is then an application of such a rule,

General rules are easily formulated in the refinement calculus. The rules
are verified within the calculus either by appealing to the definition of correct
refinement or to some rule that has already been proved. Collections of rules can
thus be designed in hierarchy: correctness proofs of higher-level rules appeal to
rules on lower levels.

Correctness proofs of refinement steps and transformation rules involve lots
of proof detail and routine work that could in principle be left to a mechanical
theorem prover. In this paper we show how hierarchies of transformation rules
can be designed and how their proofs can be checked using the theorem prover
HOL.

The HOL system (Higher Order Logic, [9]) is a theorem prover, which has
been used mainly for formal specification and verification of hardware. However,
the higher order features of HOL are convenient also when defining program-
ming notations and semantics and when reasoning about correctness and program
transformations.

Our main contribution is the formalisation of a collection of program transfor-
mation rules and their hierarchical proofs in HOL. We also show how application
of these rules can easily be automated. In this way the result of an application
of a transformation rule is mechanically calculated, and hence more trustworthy.

The specific collection of rules that we consider is useful when deriving parallel
algorithms as so called action systems [3] within the refinement calculus. The
method we use to formalise rules and their proofs is, however, completely general
and can be used to formalise any set of rules.

The idea of using transformation rules in program development is not new [11].
What we believe is new is our formalisation of their proofs in HOL. Preliminary
work in this direction was done in [5)]. Recently there have been some attempts to
automate the verification of derivations within other frameworks also. It is shown
in [10] that the LP theorem prover can be used as a transformation calculator

2

for program derivation in the Bird-Meertens calculus. An attempt to mechanise

UNITY is reported in [8]. The developed proof system is implemented on the
Boyer-Moore theorem prover.

Overview We proceed as follows. In Section 2 we present the HOL system.
We also describe how the basic concepts of programming, states predicates and
predicate transformers, can be formalised in HOL. In Section 3 we show how
programs can be derived within the refinement calculus. Program derivation
within the refinement calculus relies heavily on the use of program transformation
rules. In Section 4 we identify a collection of rules that is useful when deriving
parallel programs. We show that such a collection can be built in a hierarchical
manner. In Section 5, we show how the correctness of our rules is established
within the HOL system and how rule application can be automated. Finally,
Section 6 contains some concluding remarks and directions for further research.

2 Using the HOL system

The HOL system is a proof assistant for higher-order logic based on the Edin-
burgh LCF theorem proving system [9]. This in turn is a combination of predicate
calculus and the typed lambda calculus. In this section we describe the main fea-
tures of the HOL system. We also show how some basic concepts of programming
(states, predicates and predicate transformers) can be formalised in HOL,

2.1 Basic concepts of the HOL system

When working with the HOL system one always works inside some theory. Within
a theory one can define types, constants and axioms and prove theorems. The
HOL theory (to be distinguished from the HOL system) is a hierarchy of pre-
defined basic theories, defining among other things the types bool, representing
truth values, and num, representing the natural numbers. Together with these go
axioms and theorems of logic and arithmetic. Every user-defined theory has the
HOL theory as a parent. Thus the definitions, axioms and theorems of the HOIL
theory are always available.

The logic of HOL is higher-order logic (simple type theory) which was origi-
nally developed by Church [6]. The typing means that every entity must have a
type assigned to it. Polymorphic types containing type variables are permitted.
We write x:t to indicate that the object x has type t. We let type names that
begin with an asterisk (*) denote type variables.

Types can be combined into pair types and function types. A pair (x:ty1 ¥ :ty2)
has type tyi#ty2. A function which maps arguments of type ty1 to values of
type ty2 has type tyt—ty2.

Goals (sequents) are pairs (A,t), where A is a list of terms (the assumptions)
and t is a term (the conclusion). If a goal has been proved, a corresponding
theorem is returned.

It should be noted that the user can define any boolean term (even a contra-
diction) to be an axiom. A theory where no new axioms are introduced is called
definitional. The theories described in this paper are definitional. This means
that the theories are guaranteed to be consistent.

Standard theories and libraries The HOL system contains a number of
standard theories that are parents of every theory. We will use the theories of
natural numbers (type num) and lists (a list of elements of type ty has type
(ty)list). There are also libraries with theories that can be loaded into any

theory. For example, if we want to reason about sets within a theory, we can load
a set library.

A note on HOL syntax The HOL systems uses standard ASCII character
combinations for the logical symbols. However, in this paper we use ordinary
logical syntax (note that the truth values are written T and F and that quan-
tifiers bind weaker than logical connectives). Application of a function £ to an
argument x is written £ x or £(x). Function application associates to the left
so £ x y is the same as (f x)y. We will usually omit parentheses in order to
make function expressions more readable. Note that quantifiers bind weaker than
logiocal connectives.

Terms of the HOL logic are written in double quotes. Theorems are written
with a turnstile symbol (I-) separating the assumptions list from the conclusion.
Lists are written within square brackets with semicolon separating the elements,
so [a;b;c] is a list with three elements a, b and c. To make example HOL

texts more readable, we will generally leave out type information if the types are
obvious from the context.

2.2 Proofs in HOL

Proofs in HOL can be made both by forward and backward reasoning. When
forward reasoning is used, a valid inference rule is applied to a number of theorems
and/or terms, and the result is a new theorem. There are a number of pre-proved

inference rules in the HOL system and the user can combine these into new
inference rules.

Backward proof is supported by the goal stack of the HOL system. A boolean
term can be set up as a goal and then reduced using tactics. A tactic is a function
which is applied to a goal and returns subgoals. A subgoal which matches an
existing theorem is solved. When the backward proof is finished (i.e., when all
subgoals have been solved), the HOL system constructs a forward proof of the

original goal. HOL tactics can be combined into more powerful tactics by means
of special functions called tacticals.

The HOL system is embedded in the functional language ML [9]. When
starting a HOL session, an ML environment is set up. The user interacts with
the HOL system through ML, making definitions and evaluating expressions.
The HOL system can be used without much knowledge of ML. However, the

more experienced ML programmer can write elaborate tactics that automate
large parts of proofs.

2.3 Formalising programming concepts in HOL

We generally consider states to have the polymorphic type *s. When reasoning
about a specific statement, this type will be instantiated to a product type with
one component for every (global) program variable. Thus variables have no name;
they are identified by their position in the state tuple. In the examples below, we
assume that the state has type bool#num#nun, corresponding to the Pascal-style
variable declaration

var b: bool; z,y : num;

Predicates and predicate transformers A predicate assigns a truth value
to every state. We let pred abbreviate the predicate type *s—bool (actually,
the HOL system does not permit abbreviating a polymorphic type; we do it here

for notational convenience only). We will typically use the symbols p and q for
predicates.

We define operators on predicates by lifting the corresponding logical opera-
tors. The defining theorems are as follows:

Fdesf false = As. F

Fdef true = As. T

Faes not p = Xs. —p s

Fae pand g = Xs. ps A q s
Fds Por q = As. pesVgqs

Faesy pimpq = As. ps = qs

where s has type *s. The implication (partial) order on predicates is defined as
follows:

Fder p implies q = Vs. ps = q s

Note that and, imp and implies are defined to be infix operators (curried func-
tions).

The predicate z < y is represented as "A(b,x,y) .x<y" in our example state
space. Note that substitution in predicates is easily achieved by a combination of
application and abstraction; e.g., (z < y)[2/z] is formalised as "A(b,x,y) . (A (b,
x,y) .x<y) (b,2,y)" which is beta reduced to "A(b,x,y).2<y", exactly as it
should.

When reasoning about programs with local variables, we need to consider an
enlarged state space of type *#*s where the first component is the added variable.
Predicates on this state space have type *#*s->bool, in this paper abbreviated
epred.

Predicate transformers have type pred—pred, abbreviated ptrans, or epred
—epred, abbreviated eptrans. We will typically use the symbol ¢ for predicate
transformers (the choice is motivated by the fact that we will identify predicate
transformers with commands). We then define basic properties of predicate trans-
formers, the two most important of which are monotonicity and conjunctivity:

Fdes momotonic ¢ = Vp q. p implies q = (c p) implies (c q)
Fdes conjunctive ¢ = Vp q. c(p and q) = (c pP) and (c q)

We will return to operators on predicate transformers in Section 5.

Properties of predicates and predicate transformers For proving predi-
cate properties, we have devised a tactic PRED_TAUT_TAC that proves simple pred-
icate tautologies without quantifiers. It is built on the TAUT_TAC tactic from the
HOL-library on tautologies. Theorems involving quantification usually require
rewriting into boolean form and then standard proof techniques.

We also use least fixpoints of monotonic functions on predicates. We will
not go into details here, we simply assume that fix f gives the least fixpoint of
an arbitrary monotonic function £ on predicates. The definition of fix and the
proofs of fixpoint properties are quite straightforward in HOL.

3 Refinement calculus

3.1 Specification language

We consider the language of guarded commands of Dijkstra [7], with some exten-
sions. We have two syntactic categories, statements and actions. A statement S

6

is defined as

S = Ti=c¢ (multiple assignment statement)
skip (skip-statement)
abort (abort-statement)
{@} (assert statement)

if A;] ...] A, & (conditional composition)
do A1 | ... | A.od (iterative composition)

|

|

|

| 8158, (sequential composition)

|

|

| |[var z; S || (block with local variables)

Here A,,..., A, are actions, g is a boolean expression, z is a (list of) variable(s),
e is a (list of) expression(s) and Q is a predicate.

The assert statement {Q} acts as skip, if the condition Q holds in the initial
state. If the condition Q does not hold in the initial state, the effect is the same
as abort. The other statements have their usual meanings.

An action (or guarded command) A is of the form 4 = ¢ — S where g is
a boolean expression (the guard or enabling condition gA4) and $ is a statement

(the body sA).

Action systems An action system is a statement of the form
[var z; Sp; do A1 | ... | 4, od I (1)

where z denotes the local variables of the system.
An action system specifies a parallel computation, with non-interfering actions
executing in parallel. Action systems and their parallel semantics are discussed

in details in [3,4]. The syntactic form (1) of action systems is, however, enough
for our purposes.

Weakest preconditions The refinement calculus s based on the weakest pre-
condition calculus of Dijkstra [7]. We therefore assume that a weakest precondi-
tion semantics is given for the statements. For the assert statement and block
with local variables we have that

wp({Q}L,R) = QAR
wp(|[var z; S]|,R) = Vz.wp(S,R)

For the iteration, we define wp(do g — S od, Q) to be the least fixpoint of the
function

(9V @) A (=g Vwp(S,X))

in predicate variable X. With this definition we permit unbounded nondetermin-
ism, which can be introduced e.g., by an uninitialised block.

The weakest preconditions for the other statements are defined in the usual
manner.

3.2 Refinement of statements

Let § and S’ be statements. Statement S js said to be refined by the statement
S', denoted S < S, if for every postcondition R,

wp(S, R) = wp(S', R).

Refinement captures the notion of statement S’ preserving the correctness of
statement S. More precisely, S < S’ holds if and only if P(S)Q = P(S')Q for
every precondition P and postcondition ¢, where P(S)Q stands for the total
correctness of § w.r.t. P and Q.

We say that the statements S and S’ are (refinement) equivalent, denoted
S=§,ifS$<8 and $'<8S.

The refinement relation is reflezive and transitive, i.e., it is a preorder. If we
identify statements with their weakest precondition predicate transformers (we
will do this in Section 5), then the refinement relation is a partial order and
refinement equivalence becomes equality.

The statement constructors are also monotonic with respect to the refinement
relation, i.e.,

T < T'= S[T] < S[T"]

for any statement S in which T occurs as a substatement (S = S[T]). The
refinement relation is studied in more detail in [1,2].

Context dependent replacements In practice, we are often faced with a
situation where the context S is such that S [T} < S[T"] does in fact hold, even
though T' < T’ does not hold. This kind of contezt dependent replacements can
be established correct by the following technique [2].

Assume that we can prove

(1) S[T] < S[{Q}; T) (context introduction) and
(2) {@}; T < T’ (refinement in conté:tt).

By monotonicity and transitivity we then have that S[T] < S[T'). The first
step introduces information about the context in the form of an assert statement
at the appropriate place, the second step uses this information. This shows the
importance of assertion statements in the refinement calculus.

8

Note that we are always permitted to remove any context assertion, i.e.,
SHQ}; T < S[T)

1s always valid (because {Q}; § < § always holds).

Stepwise derivation of programs The refinement relation provides a formal-
ization of the stepwise refinement method for program construction. One starts

with an initial high-level specification/program statement S,, and constructs a
sequence of successive refinements of this,

50<5 <...< 81 <85,

By transitivity, S, will then be a refinement of the original program S;. An
individual refinement step may consist of replacing some substatement 7T of ;[T
by its refinement T’. The resulting statement S;y; = S;[T’] will then be a
refinement of S; by monotonicity.

The refinement calculus can be also used to derive general program transfor-
mation rules. The correctness of the rules is verified once and for all relying on
the definition of refinement between two statements or on some other transfor-
mation rule that has already been proved. The rules are often accompanied by
some application conditions. In practice, a refinement step usually consists of the
application of such a transformation rule. The correctness of the refinement step
is in this case verified by showing that the application conditions of the rule are
satisfied.

In order for the refinement calculus to be really useful in practical program
development, the program designer should have access to a library of verified pro-
gram transformation rules. We will later show how collections of transformation
rules can be built up hierarchically within the refinement calculus. The main

emphasis is on showing how such a hierarchy can be verified using a mechanical
theorem prover, the HOL system.

4 Hierarchies of program transformation rules

In this section, we derive a collection of program transformation rules in a hier-
archical manner. The aim of this specific collection is to provide enough rules for
turning any initial specification in our language into an action system. Some of
the rules are proper refinements while most of them are equivalencies.

4.1 Basic rules

The correctness of rules in this subsection is shown by an application of the defi-
nition of correct refinement between statements, i.e., by appealing to the weakest
precondition semantics of the statements (we omit the rather straightforward
proofs of these rules here).

Assert statement The rules for the assert statement allow us to introduce (and
remove) context information in a program text. These rules are very important
in practice: they make it possible to do context dependent replacements. Also
most of the other rules assume that some context assertions are present. Such
assertions can be introduced using these rules.

The first two rules show how assertions can be introduced and removed.

wp(S, Q) = true = S S; {@} (2)
{@hsS < s. (3)

An assert statement is refined by another assert statement provided that the
refining assertion is weaker than the original assertion:

I

(P=Q) = {P} < {Q} @)

Assertions can be propagated forwards and backwards in a program text:
P=wp(5,Q) = {P}s$ < $;{q) ()
S;{Q} {wp(S,Q)}; S; {Q} (6)

There are many other rules for manipulating and propagating assertions. For
details, we refer to [2,4].

n i

if-introduction A sequentially composed context assertion and arbitrary state-
ment can be replaced with an if-statement that contains a single action only.

{9}, S = if g— SA. (7)
Fold-unfold Our next rule is a basic loop folding and unfolding rule.

dog—-Sod = ifg—)S;dOg—»Sodﬂ—'g—»skipﬁ. (8)

10

Manipulating actions The following two rules apply for both conditional com-
position and iterative composition although we give them only for iteration.

do A; | A;0d = do A4, | A; od 9)
do Al I] A2 od = do gAl VgA2 — if Al u A2 fi od. (10)

We can always eliminate disabled actions from conditional composition and iter-
ation:

{-gAi};if AL | A, i = {~gA,);if A, 6 (11)
{ma}ido g1 = 81 12— Si {=q1} 0d = {~g1};do g — Sy; {-gy) od.
(12)

As a special case of (12) we have a rule for do-elimination:

{-¢9};dog— Sod = {-g}. (13)

Introducing local variables Using the following rule we can add new local
variables and assignments to these into arbitrary statements.

S = |[var z; S[z := h/skip]] (14)

The rule holds provided that S is a statement that does not contain any oc-
currence of the variable z. This rule is very important when designing parallel
algorithms as we often need to model the replication of data among a collec-
tion of processes e.g. when we change a scalar variable into an array for loop
parallelisation. This is done in the form of new auxiliary variables, see [4].

4.2 Derived rules

More powerful rules can be derived based on the basic rules. The correctness
proofs of these rules appeal to rules that have already been proved. The rules

below are used in practice to derive action systems from other statements in the
specification language.

Restricted fold-unfold The first rule is a loop fold-unfold rule that can be
applied only in a certain context: '
{9};dog—Sod = {g};5;do g— S od. (15)

This folding rule is useful as such, but it also makes the subsequent proofs easier
to carry out. The correctness of this rule is established by appealing to the basic

rules (8), (9), (11) and (7).

11

Creating action systems Finally, we give rules to construct iterative compo-
sitions. These rules do not make much sense in strictly sequential programs, but

become important, when deriving action systems, as iterative compositions are
the basic ingrediences in these systems.

An application of the first rule turns any statement into an iterative compo-
sition.

{9};S;{~9} = {g};do g— S; {-g} od. (16)

We give the proof of this rule below. The same proof is given later in the HOL
framework for comparison.

{9};do g — S; {~g} od

{9}; S; {-g};do g — S; {~g} od { by (15)}
{9}; S; {-g} { by (13)}

o

Using the following rule, a statement can be turned in to an action and moved
into an iterative composition.

{@};Si{~g}ido ¢' - §';{~g} od = {Q};do g — Si{-g} 1 ¢' - S';{-g} od
(17)

where @ = g A —g’. Repeated application of rules (16) and (17) makes it pos-
sible to create an action system with more than two actions from a sequential
composition of statements.

An if-statement can be turned into an iterative composition provided that the
single action created disables itself.

if g8 {~g}fi = {g};do g— S;{~g} od. (18)

5 Proving transformation rules in HOL

We shall now show how action systems can be formalised in HOL and how trans-
formation rules are proved and applied in the HOL system. In the HOL formal-
isation, we identify statements with their weakest precondition predicate trans-
formers. To distinguish between statements and their HOL formalisations, we
shall call the latter commands. A command c will thus have type ptran and
we write ¢ q rather than wp(c,q) for the weakest precondition of command ¢
with respect to predicate q. Actions are formalised as pairs (g:pred,c:ptrans)
where g is the guard and c is the command.

12

5.1 Definition of action system commands

To keep as close to the syntax of action systems as possible we give names to the
commands that occur in action systems. For conditional composition and itera-
tion we first define restricted versions. We have the following defining theorems
(where v is the state tuple and q has type pred):

Fies assign e q = Av. q (e v)
Faes skip q = q

Fder abort q = false

Fdes assert p q = p and q

Faes (ci seq c2) q = c1(c2 q)

Faes i22 (g1,c1) (g2,c2) q = (g1 or g2) and (g1 imp (c1 q)) and (g2 imp (c2 q))
Faer do1 (b,c) q = tix(Ap. (b or q) and ((not b) or (c P)))
Fdes block (c:eptrans) q = Av. Vx. ¢ (A(x,v). q v)(x,v)

Note that the argument e of the assignment is a state ezpression, i.e., a n-valued
function (where n is the number of state components) of type *s—*s and that
seq is defined to be an infix operator. Note also that the command c in the block
is a predicate transformer on an extended state space. The local variable x has
the polymorphic type *. :

A command that is formed using the action system constructs defined above
will be called an action system command. As an example command on the state
space type bool#num#num (corresponding to a variable triple (b, z,y)), we con-

sider the multiple assignment z, y := y+1,z. It is formalised in HOL as "assign
A(b,x,y).(b,y+1,x)".

General conditionals and iterations Using list recursion we can define con-
ditionals and iterations with an arbitrary number of actions (we first define
lguard of an action list to be the disjunction of the guards in the list):

Faes (lguard [1 = false) A (lguard (CONS a al) = (FST a) or (1guard al))
Faer (if [1 = abort) A (if (CONS a al) = if2 a (lguard al,if al))
Fdef do al = doi (lguard al,if al)

with action a:pred#ptrans and action list al:(pred#ptrans)list. In HOL
syntax, [] is the empty list and FST and SND are pair projections.

For convenience, we also define one-action conditional and two-action itera-
tion:

Faes if1 (g,¢) = it [(g,c)]
Faer do2 (g1,c1) (g2,c2) = do [(g1,c1);(g2,c2)]

13

5.2 Proving basic properties of commands

When we work with action systems, the restricted syntax permits us to assume
that all statements are monotonic and conjunctive.

In our formalisation we work with predicate transformers, and we cannot as-
sume that monotonicity and conjunctivity always hold. Thus, some program
transformation rules in HOL will have explicit monotonicity or conjunctivity as-
sumptions. To automate the proof that a given action system command is mono-
tonic or conjunctive, we have then written conversions (a conversion is an ML
function which takes a term as an argument and returns a theorem) prove_mono
and prove_conj.

An example of a theorem that is usually taken for granted but must be proved
explicitly in the HOL formalisation is the associativity of sequential composition:

F (c1 seq ¢2) seq ¢3 = c1 seq (c2 seq c3)

The action system command syntax contains some redundancy. Also, simple
cases of the if and do commands can be rewritten using other commands. The
following theorems are examples of such relations between commands (the proofs
are simple exercises in using HOL).

F abort = assert false
F skip = assert true
b do [(g,c)] = do1 (g,c)

The refinement relation The refinement relation ref is defined as an infix
operator:

Faes ¢ ref ¢/ = Vq. (c q) implies (c’ q)

The fact that ref is a partial order on commands order follows immediately
from the fact that implies is a partial order on predicates. Thus refinement
equivalence is represented by equality.

5.3 Proving refinement rules

We next prove the correctness of program transformation rules using the ideas
of Section 4. Thus basic rules are proved by appealing to the semantics. After
that higher-level rules can be proved by means of the basic rules and so on. As
an example, we show a proof dialogue for one simple higher-level rule.

14

Proving basic rules We shall now discuss how the basic rules shown in Section
4 can be proved in our HOL-formalisation. We will not show the proofs in any
detail. Rather we want to describe how the proofs can be performed.

The basic rules (2)-(6) for assertions are easily proved by rewriting with the
definitions and then applying the predicate tautoIogy proving tactic PRED_TAUT_TAC:

conjunctive ¢ I (c q = true) = (¢ = ¢ seq (assert q))
F ((assert q) seq c) ref c

F p implies q = (assert p) ret (assert q)
conjunctive c p implies (¢ q) =

((assert p) seq ¢ = (assert P) seq c seq (assert q))
F ¢ seq (assert p) = (assert (c P)) seq c seq (assert p)

(note the conjunctivity assumptions in two of the rules).

The rules for if-introduction (7) and V-distributivity (10) follow directly from
the definitions:

F (assert g) seq ¢ = if1 (g.c)
F do2 (g1,c1) (g2,c2) = dot (g1 or g2, if2 (gi,c1) (g2,c2))

The rule for eliminating a loop (13) and the rule for unfolding (8),

 (assert (not g)) seq do1(g,c) = assert (not g)
monotonic ¢ F doi (g,c) = if2 (g,c seq (dot (8,¢))) (not g,skip)

both follow from the fixpoint definition of do. The rule for eliminating a disabled
action in a loop (12),

monotonic ¢ - (assert (not gi)) seq (do2 (g1,c1) (g2,c2 seq (assert (not g1l)))
= (assert (mot g1)) seq (doi (g2,c2 seq (assert (not gi)))

is a bit harder to prove. The proof is divided into two refinement proofs, both
using the following two lemmas (where DO stands for the statement do g— S od
and S is assumed to be monotonic):

(VQ- wp(S,Q) = =PV wp(5',Q)) = {P};S<{P}; s
(gV @) A(=gVwp(S,X)) = X) = (wp(DO, Q)= X)

The first of these lemmas is proved from definitions and the second one from the
defining properties of least fixpoints.

15

Proving higher-level rules Having proved the basic rules we can prove higher-
level rules much in the same way as we would prove them by hand, i.e., as a
sequence of rewriting steps where every step appeals to a previously proved rule.

As an example, we shall show the proof of the rule for turning a statement
into an action system (16).

To do this, we assume that we have already proved the restricted fold-unfold
rule (15),

monotonic ¢ I (assert g) seq (doi(g,c)) = (assert g) seq ¢ seq (doi(g,c))

In our formalisation, the rule for turning a statement into an action system
(16) is expressed in the following theorem:

monotonic ¢ - (assert g) seq c seq (assert(mot g) =
(assert g) seq doi(g,c seq (assert (not g)))

The HOL proof of this theorem follows the proof shown in Section 4.2 quite
closely. However, there are two additions. We need to instantiate c to c seq
(assert (mot g)) in the previously proved restricted fold-unfold rule before we
can use it in the proof. We also rely on the associativity of sequential composition.

In the boxed HOL dialogues below, lines beginning with the prompt character
are user input (terminated with ;;), while the other lines are HOL replies
(for brevity, we show only the most important reply lines). Tactics are applied
to the goal through the ML function expand. We use two predefined tactics,
IMP_RES_TAC which adds assumption using resolution, and REWRITE_TAC which
rewrites using theorems in the argument list as well as some standard rewriting
theorems.

The proof proceeds as follows. First the goal is set up (using the function
set_goal).

#set_goal(["monotonic ¢"],
“(assert g) seq c seq (assert(mot g)) =
(assert g) seq doi(g,c seq (assert (mot g)))");;
"(assert g) seq (c seq (assert(mot g))) =
(assert g) seq (doi(g,c seq (assert(not g))))"
["monotonic c"]

We next use the following monotonicity lemma lemmai to add a resolved
assumption:

F monotonic ¢ => monotonic (c seq (assert (not g)))

(the proof of this lemma is straightforward).

16

#expand (IMP_RES_TAC lemmal);;
OK..
"(assert g) seq c seq (assert(mot g)) =
(assert g) seq doi(g,c seq (assert (mot gl
["monotonic c¢"]
["monotonic(c seq (assert(mot g 1]

Now the goal is rewritten using lemma2, which is the restricted fold-unfold
rule (15) with c instantiatiated to ¢ seq (assert(not g)).

#expand (REWRITE_TAC[lemma2]);;
OK..
"(assert g) seq (c seq (assert(mot g)) =
(assert g) seq
((c seq (assert(mot g))) seq (do1(g,c seq (assert(not g)))))"
["monotonic c¢"] '
["monotonic (c seq (assert(not N 1]

Finally we rewrite using associativity of seq (which has been proved in the
theorem seq_assoc) and do-elimination (13). This solves the goal and the HOL
system constructs the theorem corresponding to the initial goal (the HOL system
prints the assumption of the theorem as a dot)

#expand (REWRITE_TAC[seq_assoc;do—elimination])
OK..

goal proved
. F (assert g) seq (c seq (assert(not g))) =
(assert g) seq (doi(g,c seq (assert(mot g)))

The rule for turning an if-statement into an action system is proved directly
from the previous rule. The rule for adding a statement into a loop is proved in
a similar way, although the proof is much longer.

The rule for introducing local variables The rule for introducing a local
variable (14) cannot be proved as a single theorem in our theory. There are
many reasons for this. First, the two occurrences of S in the rule are (in our
formalisation) two separate objects, as they have distinct types (ptrans and
eptrans). Second, we cannot describe an assignment as ”assigning only to the
variable z”. Finally, we cannot formulate the side condition ”S does not contajn
any occurence of z”.

Instead of proving a single theorem corresponding to the rule, we can write an
ML conversion that proves any instance of the theorem. Such a conversion takes
two arguments: the original command c and the transformed command block
¢’ (where c’ is related to c as S[z := h/ skip] is related to S) and then returns
a theorem stating that they are equal.

17

5.4 Applying rules using HOL

We have shown how to prove the correctness of program transformation rules
using HOL. We now consider applying the rules to an actual command (i.e., a
term representing a program text).

To simplify application of a specific rule to a term, we write a conversion
that takes the term as one argument and possibly a number of other arguments
(depending on the rule) and returns the desired refinement as a theorem. As a
trivial example, we show how to do the following assertion introduction:

=1 = z:=1;{z=1}

when working in the two-variable (z,y) state space of type num#num.
We take the rule for introducing an assertion (2):

conjunctive ¢ F (c q = true) = (¢ = ¢ seq (assert q))

The conversion for this rule is called apply_assert_intro. It takes the original
command ¢ (which may be a complicated expression) as a first argument and
the desired post-assertion q as a second argument. It then proves that the first
argument is a conjunctive command (using prove_conj described above) and
instantiates the rule. The dialogues below show what this looks like in practice.
We first let t1 represent the command z := 1 and t2 represent the predicate
¢ = 1. Then we perform the rule application.

#let t1 = "assign A(x,y).(1,y)";;
t1 = "assign A(x,y).(1,y)":term

#let t2 = "A(x,y).(x=1)";;
t2 = "A(x,y).(x=1)":term

let thl = apply_assert_intro ti t2;;
thl = F (assign A(x,y).(1,y) (A(x,y).(x=1)) = true) =
(assign A(x,y).(1,y)) =
(assign A(x,y).(1,y)) seq (assert Alx,y). (x=1))

We still have a proof obligation left: the antecedent of the implication in
the theorem thi. Assuming that it is proved in theorem th2 (that proof is a

simple HOL exercise), we can get the desired result using modus ponens (the
HOL inference rule MP):

let th3 = MP thi th2;;
th3 = I (assign A(x,y).(1,y)) =
(assign A(x,y).(1,y)) seq (assert A(x,y).(x=1))

18

Inspection shows that th3 formalises the desired refinement equivalence.
In a more user-friendly program development environment, the proof obliga-
tion should be presented to the user. After the user has indicated how it is to

be proved, the system should automatically perform the modus ponens inference
and produce the theorem th3.

Refining a subcomponent In general, we want to refine only a small sub-
component T of a large program text. If the subcomponent is replaced by an
equivalent component 7" then the subcomponent replacement is a simple case of
substituting equals in HOL theorems. It is possible to write a conversion that
performs the subcomponent replacement in the case when T is strictly refined by
T’. This conversion takes as arguments a term representing a program A X.5(X)
with the subcomponent indicated by the dummy X and a theorem representing
the refinement T < T in isolation. It returns the theorem representing the whole
refinement S[T] < S[T"]. For details of how this is implemented, we refer to [5].

6 Conclusion

We have shown how program transformation rules used in the action system
approach to program development can be proved using the HOL system. Our
formalisation of action systems is based on previous work in [5], but we have
adopted a more realistic formalisation of the state space. This formalisation
permits local variables to be handled in a satisfactory way.

By designing a hierarchy where higher-level rules are proved by appealing to
lower-level rules, we can prove the correctness of powerful rules while keeping the
proofs reasonably short. The HOL system supports this hierarchical approach.
Proving the transformation rules using HOL gives us confidence in the correctness
of these rules. This is especially valuable in the case of transformation rules for

loops, where the formulas involved can be quite complicated and where intuitive
reasoning may lead to false conclusions.

Once a transformation rule has been proved correct, it can be applied to a
given action system, possibly with the restriction that some side conditions must
be satisfied. We have shown that one can write ML functions which perform rule
application. This way a refinement step is implemented as a theorem that has
been proved automatically in HOL.

A lot remains to be done before the building blocks described in this paper
can be used in serious program development work. First of all, a more compre-
hensive rule collection has to be designed and proved in HOL. Flexible automatic

19

[10] U. Martin and T. Nipkow. Automating squiggol. In M Broy, editor, IFIP

TC 2 Working Conference on Programming Concepts and Methods, pages
223-236. April 2-5 1990. Sea Gallilee, Israel.

[11] H. Partsch and R. Steinbriigge. Program transformation systems. ACM
Computing Surveys, 15:199-236, 1983.

21

