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Attribute grammars describe the computation of attributes: values attached to nodes of a
tree. The tree is described with a context free grammar. Attribute computation is defined
by semantic functions. AGs are used to define languages and form the basis of compilers,
language-based editors and other language based tools. For an introduction and more on
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Abstract

Higher Order Attribute Grammars (HAGs) are an extension of normal attribute
grammars in the sense that the distinction between the domain of parse-trees and
the domain of attributes has disappeared: parse trees may be computed in attributes
and grafted to the parse tree at various places. As a result semantic functions may
be described by attribute evaluation.

We will present the basic definitions for HAGs, and compare them with attribute
coupled grammars, extended affix grammars and functional programming languages.
We will indicate how multi-pass compilers and a compiler for supercombinators can
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It will be shown that, especially in the case of incremental evaluation, the con-
ventional execution model has to be generalised. Such a model, based on function
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encompasses many of the more ad-hoc optimisations one finds in standard imple-
mentations of normal attribute grammars.
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Higher order attribute grammars [Vogt, Swierstra and Kuiper 89] were introduced by pro-
moting abstract syntax trees (i.e. recursive data structures) to “first class citizens”:

e they can be the result of a semantic function

e they can be passed as attributes

e they can be grafted into the current tree, and then be attributed themselves, prob-
ably resulting in further trees being computed and inserted into the original tree.

Trees used as a value and trees defined by attribution are known as non-terminal attributes
(NTAs).

It is known that the (incremental) attribute evaluator for Ordered AGs [Kastens 80,
Yeh 83, Reps and Teitelbaum 88] can be trivially adapted to handle Ordered Higher Order
AGs [Vogt, Swierstra and Kuiper 89]. The adapted evaluator, however, attributes each
instance of equal NTAs separately. This leads to nonoptimal incremental behaviour after
a change to a NTA, as can be seen in the recently published algorithm of [TC90]. Our
evaluation algorithm [Vogt, Swierstra and Kuiper 91] handles multiple occurrences of the
same NTA (and the same subtree) efficiently in O(]|Affected| + |paths_to_roots|) steps,

where paths_to_roots is the sum of the lengths of all paths from the root to modified
subtrees.

The new incremental evaluator can be used for language-based editors like those generated
by the Synthesizer Generator ([Reps and Teitelbaum 88}) and for minimizing the amount
of work for restoring semantic values in tree-based program transformations.

The remainder of this article is structured as follows. Section 2 will discuss the short-
comings of conventional AGs. Section 3 defines AGs and (O)HAGs. A compiler for
supercombinators is presented in section 4. We discuss related formalisms in section 5.
Section 6 presents basic incremental techniques necessary for the incremental evaluator
presented in section 7. Finally, section 8 presents a discussion.

2 Shortcomings of AGs

One of the main shortcomings of attribute grammars has been that often a computation
has to be specified which is not easily expressable by some form of induction over the
abstract syntax tree. The cause for this shortcoming has been the fact that often the
grammar used for parsing the input into a data structure dictates the form of the syntax
tree. It is however in no way obvious why especially that form of syntax tree would be
the optimal starting point for performing further computations.

A further, probably more esthetical than factual, shortcoming of attribute grammars is
that there exists usually no correspondence between the grammar part of the system and
the (functional) language which is used to describe the semantic functions.

A third shortcome of AGs is that the attributes can be used to diagnose or reject syn-
tax after attribuation but cannot be used to guide the syntax before attribuation. The
following sections will discuss the above mentioned shortcomings in more detail.
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2.1 Multi pass/Many pass compilers

The term compilation is mostly used to denote the conversion of a program expressed in
a human-oriented source language into an equivalent program expressed in a hardware-
oriented target language. A compilation is often implemented as a sequence of trans-
formations (SL, L,), (L1, L2), ..., (L, TL), where SL is the source language, TL the
target language and all L; are called intermediate languages. In attribute grammars SL
is parsed, a structure tree corresponding with SL is build and finally attribute evaluation
takes place, the TL is obtained as the value of an attribute. So an attribute grammar
implements the direct transformation (SL, TL) and no special intermediate languages are
used. The concept of an intermediate language does not occur naturally in the attribute
grammar formalism. Using attributes to emulate intermediate languages is difficult to do
and hard to understand. Higher order attribute grammars (HAGs) provide an elegant
and powerful solution for this weakness, as attribute values can be used to define the
expansion of the structure tree during attribute evaluation.

In a multi-pass compiler compilation takes place in a fixed number of steps, which we will
model by computing the intermediate trees as a synthesized attributed of earlier computed
trees. These attributes are then used in further attribute evaluation, by grafting them

onto the tree on which the attribute evaluator is working. A pictorial description of this
process is shown below.

Root

Parse-tree Step 2 Step 3 Step 4
Figure 1: The tree of a 4-pass compiler after evaluation

Attribute Coupled Grammars (ACGs)[Ganzinger and Giegerich 84] exactly define this ex-
tension, but nothing more. The Cornell Synthesizer Generator [Reps and Teitelbaum 88}
provides only one step: the abstract syntax tree, which is used as the starting point for
the attribution is computed as a synthesized attribute of the parse tree. A larger example
of the application of this mechanism can be found in [Vogt, Swierstra and Kuiper 89].

2.2 Separate semantic functions

A direct consequence of the dual-formalism approach (attribute grammar part versus
semantic functions) is that a lot of properties present in one of the two formalisms are
totally absent in the other, resulting in the following anomalities:



e often at the semantic function level considerable computations are being performed
which could be more easily expressed by an attribute grammar. It is not uncommon
to find descriptions of semantic functions which are several pages long, and which
could have been elegantly described by an attribute grammar

e in the case of an incrementally evaluated system the semantic functions do not

profit from this incrementality property, and are either being completely evaluated
or completely re-used.

Here we will demonstrate the possibility to avoid the use of a separate formalism for de-
scribing semantic functions. In Figure 2 a grammar is given which describes the mapping
of a structure consisting of a sequence of defining identifier occurrences and a sequence of
applied identifier occurrences onto a sequence of integers containing the index positions
of the applied occurrences in the defining sequence. Thus the program:

let a,b,cin a, ¢, c, b ni

is mapped onto the sequence [1, 3, 3, 2]. In the grammar the inherited and the synthesized
attributes of a non-terminal are separated by a —, and their types have been indicated
explicitly. The productions are explicitly labeled, and these labels have been used as

semantic functions in constructing the attribute ENV. In the example the following can
be noted: ’

e The attribute ENV is a higher order attribute. The tree structure is built using
the constructor functions env and empty_env, which correspond to the respective
productions for ENV. The attribute APPS.env is instantiated (i.e. a copy of the
tree is attributed) in the occurrences of the first production of APPS, and takes the
role of a semantic function.

e The first production rule for the non-terminal ENV contains two initial attributes.
Attributes from this class are initialised by the constructor functions, to which they
are passed as an extra set of parameters. This is a syntactic feature which may be
considered as an extension of the usual approach in ordinary attribute grammars,
where the terminal symbols are allowed to have synthesized attributes which are
usually initialised by the scanner.

o Notice that there may exist many instantiations of the enw-tree, all with different
attributes. There thus does not any longer exist an one-to-one correspondence
between attributes and abstract syntax trees. As we will see in a later section this
has severe consequences for the efficient implementation, which can no longer be a
straightforward extension of the conventional evaluators; at the same time however
we will see how a number of problems which have to be dealt with separately in
these conventional implementations can be handled implicitly by our more general
approach.

We finish this section by noticing that any function defined in a functional language can be
computed by a HAG without making use of separate semantic functions. This will not be
proved here; we will only show as an example a grammar which models the computation
of the factorial numbers in Figure 3. ‘



ROOT( — int* seq)

::= block(let DECLS in APPS ni)
APPS.env := DECLS.env
ROOT.seq := APPS.seq

DECLS( — int number, ENV env)
::= def(DECLS, identifier)

DECLSy.number := DECLS,.number + 1

DECLS,.env := env(fidentifier.id, DECLS, .number], DECLS, .env)
| empty._decls()

DECLS.env := empty_env()

DECLS.number := 1

APPS(ENV env — int* seq)
::= use(APPS, identifier, ENV)
APPS;.5eq := APPS,.seq ++[ENV.indez]
ENV := APPSy.env
ENYV.param := identifier.id
APPS, .env := APPSy.env
|  empty_use()
APPS.seq :=[]

ENV(ID param — int indez)
= env([ID id, int number], ENV) .
ENV,.indez := if ENVy.param=id — number
[| ENVy.param#id — ENVj.index
fi
ENV;.param := ENVy.param
| empty_env()
ENV.indez := errorvalue

Figure 2: A Higher Order Attribute Grammar



ROOT( — int res)

::= start(integer, F)
F.n := integer
F :=loop()
ROOT.res := F.res

F(int n — int res)
= loop(F)
F:=if Fy.n=1 — stop()
[ Font — loop()

fi
Fin:=Fy.n-1
Fo.res := Fy.res X Fg.n
| stop()
F.res := 1

Figure 3: Computation of a factorial number by a HAG

2.3 HAGSs and editing environments

This section expresses some thoughts about HAGs and editing environments and is almost

literally taken from [T'C90].

A weakness of the first-order attribute-grammar editing model is its strict separation of
syntactic and semantic levels, with priority given to syntax. The attributes are completely
constrained by their defining equations, whereas the abstract-syntax tree is unconstrained,
except by the local restrictions of the underlying context-free grammar. The attributes,
which are relied on to communicate context-sensitive information throughout the syntax
tree, have no way of generating derivation trees. They can be used to diagnose or reject
incorrect syntax a posteriori but cannot be used to guide the syntax a priori.

A few examples illustrate the desirability of permitting syntax to be guided by attribution:

1. In a forms processing environment, we might want the contents of a male/female
field to restrict which other fields appear throughout the rest of a form.

2. In a programming language environment, we might want a partially succesful type
inference to provide a declaration template that the user can further refine by manual
editing.

3. In a proof development or program transformation environment, we might want
a theorem prover to grow the proof tree automatically whenever possible, leaving
subgoals for the user to work on wherever necessary.

For more details the reader is referred to [TC90, Vogt, v.d. Berg and Freije 90].

6



3 Definitions for AGs and (O)HAGs

In this section higher order attribute grammars (HAGs) are being defined. In AGs there
exists a strict boundary between attributes and the parse tree. HAGs remove this bound-
ary. A new kind of attributes, so called non-terminal attributes (NTAs), will be defined.
These are both non-terminals of the grammar as well as attributes defined by a semantic
function. During the initial construction of a parse tree a non-terminal attribute X occur-
ring in the right hand side of a production is considered as a non-terminal for which only
the empty production (X — €) exists. During attribute evaluation NTA X is assigned a
value, which is constrained to be a non-attributed tree derivable from X. As a result of
this assignment the original parse tree is expanded with the non-attributed tree computed
in the NTA X and its associated attributes are scheduled for computation. A necessary
condition for a HAG to be well-formed is that the dependency graph of every possible
partial tree does not give rise to circularities; a direct consequence of this is that attributes
belonging to an instance of a NTA should not be used in the computation leading to this

NTA.

First, attribute evaluation of HAGs is explained, followed by a definition of normal at-
tribute grammars (based on [Waite and Goos 84]) including local attributes. In the next
step higher order attribute grammars are defined.

3.1 Attribute evaluation

Evaluation of attribute instances, expansion of the labeled tree (see definition 3.9) and
adding new attribute instances is called attribute evaluation and might be thought to
proceed as follows.

To analyze a string according to its higher order attribute grammar specification, we first
construct the labeled tree derived from the root of the higher order attribute grammar.
Then evaluate as many attribute instances as possible. As soon as virtual non-terminal
instance (see definition 3.8) X is computed, expand the labeled tree derived from the root
at the corresponding leaf X with the labeled tree in X and add the attribute instances
resulting from the expansion. The virtual non-terminal X has now become an instantiated
non-terminal X. Continue the evaluation until there are no more attribute instances to
evaluate and all possible expansions have been performed.

The order in which attributes are evaluated is left unspecified here, but is subjected to the
constraint that each semantic function is evaluated only when all its argument attributes
have become available. When all the arguments of an unavailable attribute instance have
become available, we say it is ready for evaluation.

Using the definition of attribute evaluation and the observation to maintain a work-list S
of all attribute instances that are ready for evaluation we get, as is stated in [Knuth 68,
Knuth 71] and [Reps 82], the following Attribute evaluation algorithm of Figure 4.

The difference with the algorithm defined by [Reps 82] is that the labeled tree T' can be
expanded during semantic analysis. This means that if we evaluate a NTA X, we have to
expand the tree at the corresponding leaf X with the tree computed in X. Furthermore,

7



procedure evaluate(T: an unevaluated labeled tree)
let D = a dependency relation on attribute instances
S = a set of attribute instances that are ready for evaluation
a, B = attribute instances
in
D := DT(T) { the dependency relation over the tree T }
S := the attribute instances in D which are ready for evaluation
while S # 0 do
select and remove an attribute instance a from S
evaluate o
if « is a NTA of the form X
then ezpand T at X with the unevaluated tree in o
D :=Dvu DT(X)
:= S U the attribute instances in DT(X) ready for evaluation
fi
forall 8 € successor(a) in D do
if 8 is ready for evaluation
then insert 8 in S
fi
od

od Figure 4: Attribute evaluation algorithm

the new attribute instances and their dependencies of the expansion (the set DT(X))
have to be added to the already existing attribute instances and their dependencies, and

the work-list S must be expanded by all the attribute instances in DT(X) that are ready
for evaluation.

3.2 Definition of AGs

A context free grammar G = (T, N, P, Z) consists of a set of terminal symbols T, a set
of non-terminal symbols N, a set of productions P and a start symbol Z € N. To every
node in a structure tree corresponds a production from G.

Definition 3.1 An attribute grammar is a 3-tuple AG = (G,A,R). G=(T,N,P,Z) is
a contezt free grammar.

A= |J AIS(X) U |J AL(p) is a finite set of attributes,

X€e€TUN peEP
R = |J R(p) is a finite set of attribution rules.
p€EP

AIS(X) N AIS(Y) # O implies X = Y. For each occurrence of non-terminal X in
the structure tree corresponding to a sentence of L(G), exactly one attribution rule is
applicable for the computation of each attribute a € A.



Elements of R(p) have the form
a:=f(...,%..)

In this attribution rule, f is the name of a function, a and v are attributes of the form
X.a or p.b. In the latter case p.b € AL(p). In the sequel we will use the notation b for p.b
whenever possible. We assume that the functions used in the attribution rules are strict
in all arguments.

Definition 3.2 For each p : Xo — Xi...X, € P the set of defining occurrences of
attributes is

AF(p) = {Xi.a | X;.a:= f(...) € R(p)}
U {pb | pbi= f(...) € R(p)}
An attribute X.a is called synthesized if there ezists a production p : X — x and X.a is

in AF(p); it is inherited if there ezists a production ¢: Y — pXv and X.a € AF(q). An
attribute b is called local if there exists a production p such that p.b € AF(p).

AS(X) is the set of synthesized attributes of X. AI(X) is the set of inherited attributes
of X. AL(p) is the set of local attributes of production p.

Definition 3.3 An attribute grammar is complete if the following statements hold for all
X in the vocabulary of G:

o Forallp : X — x € P,AS(X) C AF(p)

o Forallq : Y — uXv € PAI(X) C AF(q)
e Forallpe P,AL(p) C AF(p)

o AS(X)U AI(X) = AIS(X)

o AS(X)NAI(X) =0

Further, if T is the root of the grammar then AI(Z) is empty.

Definition 3.4 An attribute grammar is well defined (WAG) if, for each structure tree
all attributes are effectively computable.

Definition 3.5 Foreachp : Xo — Xi...Xn € P the set of strict attribute dependencies
is given by

DDP(p) = {(B,@) | @:= f(...B...) € R(p)}
where o and B are of the form X;.a or b. The grammar is locally acyclic if the graph of
DDP(p) is acyclic for each p € P.

We often write (o, 8) € DDP(p) as (o« — 8) € DDP(p), and follow the same conventions
for the relations defined below. If no misunderstanding can occur, we omit the specifi-
cation of the relation. We obtain the complete dependency graph for a labeled structure
tree by “pasting together” the direct dependencies according to the syntactic structure of
the tree.



Definition 3.6 Let S be the atiributed structure tree, and let Ky...K, be the nodes
corresponding to an application of p : Xo — Xi...X, and v, § attributes of the form
K;.a or b corresponding with the attributes o, 8 of the form X;.a or b. We write (v — §)
if (@ — B) € DDP(p). The set DT(S) = {(v — )}, where we consider all applications
of productions in S, is called the dependency relation over the tree S.

The following theorem gives another characterization of well-defined attribute grammars.
A proof can be found in [Waite and Goos 84].

Theorem 3.1 An attribute grammar is well-defined iff it is complete and the graph
DT(S) is a-cyclic for each structure tree S.

3.3 Definition of Higher order AGs
An higher order attribute grammar is an attribute grammar with the following extensions:

Definition 3.7 For each p : Xo — X;...X,, € P the set of non-terminal attributes
(NTAs) is defined by

NTA(p) ={X; | X; := f(...) € R(p)}

Because a non-terminal attribute is also an attribute, an actual tree may contain NTAs
(not yet computed non-terminal attributes) as leafs. Therefore we change the notion of a
tree. Two kinds of non-terminals are distinguished, virtual non-terminals (NTAs without
a value) and instantiated non-terminals (NTAs with a value and normal non-terminals).

Definition 3.8 A non-terminal instance X in a tree is called

e a virtual non-terminal if X € | ] NTA(p) and the function defining X has not yet
peP
been evaluated

o an instantiated non-terminal if X ¢ | J NTA(p) or X € |J NTA(p) and the func-

peP peP
tion defining X has been evaluated

Definition 3.9 A labeled tree is defined as follows

o the leafs of a labeled tree are labeled with terminal or virtual non-terminal symbols

o the nodes of a labeled tree are labeled with instantiated non-terminal symbols

From now on, the terms “structure tree” and “labeled structure tree” are all used to refer
to a labeled tree. In the text a non-terminal attribute X will be indicated as X.

Definition 3.10 A semantic function f in a rule X := f(...) is correctly typed if f
returns a term representing a parse tree derivable from X

10



This definition will be used to ensure that a NTA X will be expanded with a labeled tree
which is derivable from X. Note that a check whether a function is correctly typed can
be done statically.

Definition 3.11 An higher order attribute grammar is complete if the underlying AG is
complete and the following holds for all productionsp:Y — p € P:

» NTA(p) C AL(p)
and for all X € NTA(p):

e Xeyu
o For all rules a := f(v) in R(p), X & v
o For all rules X := f(v) in R(p), f is correctly typed.

The above definition defines NTAs as local attributes which only occur as a non-terminal
at the right-hand-side of a production and as an attribute at the left-hand-side of a
semantic function. If we look at the Attribute evaluation algorithm in Figure 4, there are
two potential problems:

e non-termination

e attribute instances may not receive a value

The algorithm might not terminate if the labeled tree grows indefinitely, in which case
there will always be virtual non-terminal attribute instances which can be instantiated
(Figure 6). There are two reasons why an attribute might not receive a value:

¢ a cycle shows up in the dependency relation D: attribute instances involved in the
cycle will never be ready for evaluation, so they will never receive a value.

e there is a non-terminal attribute instance, say X, which depends on a synthesized
attribute of X.

The second reason may deserve some explanation. Suppose we have a tree T containing
rule p and X is a non-terminal attribute instance in 7. Furthermore the dependency
relation D of all the attribute instances in T' contains no cycles (Figure 5).

If we take a closer look at node X in T, then if X doesn’t depend on synthesized attributes
of X it can be computed. But should X depend on synthesized attributes of X, as in
Figure 5 it can’t be computed. This is because the synthesized attributes of X are
computed after the tree is expanded. So a non-terminal attribute should nor directly
nor indirectly depend on its own synthesized attributes. To prevent this we let every
synthesized attribute of X depend on X. Therefore the set of extended direct attribute
dependencies is defined.
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Definition 3.12 For each p: Xy — X;... X, € P the set of extended direct attribute
dependencies is given by

EDDP(p) ={(a—B)|B:=f(...a...) € R(p)}
U{(X =) | X € NTA(p) and v € AS(X)}

Thus a non-terminal attribute can be computed if and only if the dependency relation D
(using the EDDPs) contains no cycles. This result is stated in the following lemma.

Lemma 3.1 Every virtual non-terminal attribute will be computed if and only if there
will be no cycles in D (using the EDDP) during attribute evaluation.

Proof The use of EDDP(p) prohibits a non-terminal attribute 3 to be defined in terms
of attribute instances in the tree which will be computed in B. Suppose 3, which is of
the form X, depends on attributes in the tree which is constructed in B. The only way
to achieve this is that B somehow depends on the synthesized attributes of X , but by

definition of EDDP(p) all the synthesized attributes of X depend on § and we have a
cycle.

X:=fXs)
X(— int s)
::=q(one)

X.s:=1 T 1
| r (two) %eaass’

Xs:=2

o]
>

Figure 5: The non-terminal attribute can’t be computed, a cycle occurs if the extra
dependency is added (dashed arrow)

Definition 3.13 An higher order attribute grammar is well-defined if, for each labeled
structure tree S all attributes are effectively computable using the algorithm in Figure 4.

It is clear that if D never contains a cycle during attribute evaluation, all the (non-
terminal) attribute instances are effectively computable. Whether they will eventually be
computed depends on the scheduling algorithm used in selecting elements from the set
S. It is generally undecidable whether a given HAG will have only finite expansions. For
instance whether the grammar in Figure 6 has only finite expansions is undecidable. The
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R(—)

p=r(X) R
X(—) |
::= loopA(A)
A:=iff(..) = loopX() X
I — stop() _I_
fi A
A=) |
::=loopX(X) X
X :=loopA()
| stop()

Figure 6: Finite expansion is not guaranteed

tree may grow indefinitely depending on the function f. For a more detailed discussion
about well-defined-ness the reader is referred to [Vogt, Swierstra and Kuiper 89].

We used the terms “attribute evaluation” and “attribute evaluation algorithm” to define
whether an AG is well-defined. Instead of using an algorithm we could have defined a
relation on labeled trees, indicating whether a non-attributed labeled tree is well-defined.
We used the algorithm because from that it is easy to derive conditions by which it can
be checked whether a HAG is well-defined.

3.4 Ordered HAGs (OHAGSs)

In [Kastens 80] a condition is described for well-defined attribute grammars (WAGs):
The semantic rules of an AG are well-defined if and only if there is no sentence in the
language with circularly dependent attributes. In [Jazayeri 1975] it was proved that de-
ciding whether an AG is well-defined is an exponential problem. In [Kastens 80] ordered
attribute grammars (OAGs) were defined: an attributed grammar is ordered if for each
symbol a total order over the associated attributes can be found, such that in any context
of the symbol the attributes may be evaluated in that order. A specific algorithm is given
to construct a total order out of a partial order which describes the possible dependencies
between the attributes of a non-terminal. If the thus found total order does not introduce
circularities the grammar is called ordered. This property can be checked by an algorithm,
which depends polynomially in time on the size of the grammar.

Visitsequences are computed from these total orders and the DPP(p)’s. These visitse-
quences define for each productions a total order on the defining attributes occurrences in
that production, which determines the order in which these attributes may be computed.

An ordered HAG is now characterized by the following condition: a similar total order
on the defining attribute occurrences in a production p can be defined. It determines a
fixed sequence of computation for the defining attribute occurrences, applicable in any

13



HAG /\ redAlaced
R I{A R %
X é] X.s X Xs X.atree

Figure 7: The same part of a structure tree in a HAG and the corresponding reduced AG

tree node labelled with production p.

In this subsection a condition, based on OAGs, is given which may be used to check
whether a HAG is ordered.

3.5 Deriving partial orders from AGs

To decide whether a HAG is ordered the HAG is transformed into an AG and it is checked
whether the AG is an OAG. The derived orders on defining attribute occurrences in the
OAG can be easily transformed to orders on the defining occurrences of the HAG.

In the previous section (Lemma 3.1) it was shown that the EDDP ensured that every
NTA could be computed. The reduced AG of a HAG is now defined as follows:

Definition 3.14 Let H be a HAG. The reduced AG H’ is the result of the following
transformations to H:

1. in all right hand sides of the productions all occurrences of X are replaced by the
corresponding X

2. all thus converted non-terminals are equipped with an extra inherited attribute X.atree
3. all occurrences X in the left hand side of the attribution rules are replaced by X.atree

4. all synthesized attributes of previously NTAs X now contain the attribute X.atree in
the right-hand-side of their defining semantic function and are thus explicitly made
depending on this attribute.

The transformation is demonstrated in Figure 7. This definition ensures that all synthe-
sized attributes of NTA X (X.atree in the reduced AG) in the HAG can be only computed
after NTA X (X.atree in the reduced AG) is computed.

14



Theorem 3.2 A HAG is ordered if the corresponding reduced AG is an OAG.

Proof Map the occurrences of X.atree in the orders of the reduced AG derived from a
HAG to NTAs X. The result are orders for the HAG in the sense that the HAG is ordered.

O

We note that this procedure may result in a HAG being rejected, because the derived AG
is not ordered; the test may be too pessimistic. Sometimes a HAG is ordered although
the reduced AG is.not an OAG, as is shown in Figure 8.

R(—)

= p(AA) ..
A[0] := R.a_tree

. - At
All] := R.a_tree Ai// AJI Jl Aq// .
A(_))[] t oeD T ] ? UEE n%}}u

t
| g ] H
[y i i i

a=q (zero) zero zero R one one

|  r(one) P
A

! H
zero one

Figure 8: The lowest tree shows a cycle in the attribute dependencies which is only
possible in the reduced AG

The class of OAGs is a sufficiently large class for defining programming languages, and it
is expected that the above described way to derive evaluation orders for OHAGs provides
a large enough class of HAGs.

3.6 Visitsequences for an OHAG

The difference with visitsequences as they are defined by [Kastens 80] for an OAG is
that in a HAG the instruction set is extended with an instruction to evaluate a non-
terminal attribute and expand the labeled tree at the corresponding virtual non-terminal.
The following introduction to visitsequences for a HAG is almost literally taken from
[Kastens 80).

The evaluation order is the base for the construction of a flexible and efficient attribute
evaluation algorithm. It is closely adapted to the particular attribute dependencies of the
AG. The principle is demonstrated here. Assume that an instance of X is derived by

S = uYy —-p uwwXzy -4 uvwzy = s.
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Then the corresponding part of the structure tree is

S
u Y y
/l\ rule p
v X x

| rule q

w

An attribute evaluation algorithm traverses the structure tree using the operations "move
down to a descendant node” (e.g. from Ky to K x) or "move up to the ancestor node”
(e.g. from Kx to Ky). During a visit of node Ky some attributes of AF(p) are evaluated
according to semantic functions, if p is applied at Ky. In general several visits to each
node are needed until all attributes are evaluated. A local tree walk rule is associated to
each p. It is a sequence of four types of moves: move up to the ancestor, move down to
a certain descendant, evaluate a certain attribute and evaluate followed by expansion of

the labeled tree by the value of a certain non-terminal attribute. The last instruction is
specific for a HAG.

Visitsequences for a HAG can be easily derived from visitsequences of the corresponding
reduced AG. In an OAG the visitsequences are derived from the evaluation order on the
defining attribute occurrences. A description of the computation of the visitsequences in

an OAG is given in [Kastens 80]. The visitsequence of a production p in an AG will be
denoted as VS(p) and in the HAG as HVS(p).

Definition 3.15 FEach visitsequence VS(p) associated to a rule p € P in an AG is a
linearly ordered relation over defining attribute occurrences and visits.

VS(p) C AV(p) x AV(p), AV(p) = AF(p)UV(p)
V(p) = {vril0 < i < ||p|l,1 < k < novx, X = X;}

vk,0 denotes the k-th ancestor visit, Uk,iy ¢ > 0 denotes the k-th visit of the descendant X;,
|lp|| denotes the number of non-terminals in production p and novx denotes the number
of visits that will be made to X. For the definition of VS(p) see [Kastens 80]. We now
define the HVS(p) in terms of the VS(p).

Definition 3.16 Fach visitsequence HVS(p) associated to a rule p € P in a HAG is a
linearly ordered relation over defining attribute occurrences, visits and expansions.

HVS5(p) C HAV(p) x HAV(p), HAV(p) = AV(p) U VE(p)

VE(p) = {e: | 1 <i < 1pll}
where AV(p) is defined as in the previous definition.

HVS(p) = {g(7) = 9(8) | (v — 8) € VS(p)}
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with g : AV(p) — HAV(p) defined as

(a) = e; if a is of the form X;.atree
RY=1 a otherwise

e; denotes the computation of the non-terminal attribute X; and the expansion of the
labeled tree at X; with the tree computed in X;.

Note that a descendant of a virtual non-terminal can only be visited after the virtual
non-terminal is instantiated. The visitsequences for OAGs are defined in such a way that
during a visit to a node one or more synthesized attributes are computed. Because all
synthesized attributes of a virtual non-terminal X depend by construction on the non-
terminal attribute, the corresponding attribute X.atree in the OAG will be computed
before the first visit.

In [Kastens 80] it is proved that the check and the computation of the visitsequences VS ()
for an OAG depends polynomially in time on the size of the grammar. The mapping from
the HAG to the reduced AG and the computation of the visitsequences HVS(p) depend
also polynomially in time on the size of the grammar. So the subclass of well-defined
HAGs derived by computation of the reduced AG, analyzing whether the reduced AG is
an OAG and computation of the visitsequences for an HAG can be checked in polynomial
time. Furthermore an efficient and easy to implement algorithm, as for OAGs, based on
visitsequences can be used to evaluate the attributes in a HAG.

4 A compiler for supercombinators!

In this example we will give a description of the translation of a A-expression into super
combinator form. The purpose of this section is two-fold. In the first place it serves as an
example of the use of higher order attribute grammars. In the second place it will serve
as an introduction to the use of combinators, an implementation technique on which the
later to be discussed incremental evaluation is based.

In implementing the A-calculus, one of the basic mechanisms which has to be provided
for is the B-reduction, informally defined as a substitution of the parameter in the body
of a function by the argument expression.

In the formal semantics of the calculus this substitution is defined as a string replacement.
It will be obvious that implementing this string replacement as such is undesirable and
inefficient. We easily recognise the following disadvantages:

1. the basic steps of the interpreter are not of more or less equal granularity

2. the resulting string may contain many common subexpressions which, when evalu-
ated, all result in the same value

IThis section is completely based on Generating Supercombinator Code using Higher Order Attribute
Grammars, Maarten Pennings and Ben Juurlink, Department of Computer Science, Utrecht University.
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3. large parts of the body may be copied and submitted to the substitution process,
which are not further reduced in the future but instead are being discarded because
of the rewriting of an if-then-else-fi reduction rule

4. because substitutions may define the value of global variables of A-expressions de-
fined in the body of a function, the value of these bodies may change during the
evaluation process. It is thus almost impossible to generate code which will perform
the copying and substitution for this inner A-expression.

The second of these disadvantages may be solved by employing graph-reduction instead
of string reduction. Common sub-expressions may be shared in this representation. To
remedy the other three problems [Turner 79a] shows how any lambda-expression may
be compiled into an equivalent expression consisting of SKI-combinators and standard
functions only. In the resulting implementation the expressions are copied and substituted
“by need” by applying the simple reduction rules associated with these combinators.
Although the resulting implementation, using graph reduction, is very elegant, it leads to
an explosion in the number of combinator occurrences and thus of basic reduction steps.
In [Hughes 85] supercombinators are introduced; although the first and third problem are
not solved its advantages in solving the fourth problem are such that it is still considered
an attractive approach.

In this section we will describe a compiler for lambda-expressions to supercombinator code
in terms of higher order attribute grammars. The algorithm is based on [Hughes 82].

The basic idea of a super-combinator is to define for each function which refers to global
variables, an equivalent function to which the global variables are being passed explic-
itly. The resulting function is called a combinator, because it does not contain any free
variables any more. At the reduction all the global variables and the actual argument
are substituted in a single step. Because the code of the function may be considered as
an invariant of the reduction process it is possible to generate machine code for it, which
takes care of construction of the graph and the substitution process.

The situation has then become fairly similar to the conventional stack implementations of
procedural languages, where the entire context is being passed (usually called the static
link) and the appropriate global values are being selected from that context by indexing
instructions. The main difference is that not the entire environment is being passed,
but only those parts which are explicitly being used in the body of the function. As a
further optimisation subexpressions of the body, which do not depend on the parameter
of the function, are abstracted and passed as an extra argument. As a consequence their
evaluation may be shared between several invocations of the same function.

4.1 Lambda expressions

As an example consider the lambda expression f =[Az:[Ay:e-([Az:z-(z-y- y) (2
(¢-y)-y)]-z)-7]]. In this expression @, o and 7 are constant functions, e.g. the add and
successor operation, and the number 7. Note that

f-®-a = o-()z:2-(®-a-a)-(z-(c-a)-a)]-8)-7
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= o-(¢-(®-a-a)-(®-(6-a)-a))-7

Expression f may be thought of as a tree. This mapping is a one to one since we assume
application (-) to be left-associative. The corresponding abstract syntax tree—in linear
notation—has the form
Iop(x,lop(y,lap(lap(lco(e),Iap(lop(z,Iap(lap(lid(z),|ap(|ap(|id(x),|id(y)),Iid(y)))
Jap(tap(lid(z),lap(lco(o),lid(y))) lid(y))

) )
Jid(x)

) )
Jleo(T)

) ) )

where we use the following definition for type lexp representing lambda-expressions

lexp ::= lop(id, lexp) {-introduction}
| lap(lexp,lexp) {function application}
| lid(id) {identifier occurrence}
|  lco(id) {constant occurrence}

The type id is a standard type, representing identifiers. Another standard type is num,;
it is used to represent natural numbers. In order to model the binding process we will

introduce a mapping from trees labeled with identifiers (id) to trees labeled with naturals
(num) instead:

name == num

nexp ::= nop(name, nexp)
|  nap(nexp,nexp)
|  nid(name)
|  nco(id)

In this conversion, identifiers are replaced by a number indicating the “nesting depth” of
the bound variable. Hence, z, y, and z from our example will be substituted by 1, 2, and 3
respectively. Constants are simply copied. Although this mapping could be formulated in
any “modern” functional language, we are striving for a higher order attribute grammar,
so this is a good point to start from.

The non-terminal lexp will have two attributes. The first, an inherited one, will contain the
environment, i.e. the bound variables found so far associated with their nesting level. A
list of id’s with index-determination (I-!(i)) suits our needs (note that [z,y,z]"'(z) = 1).
The second attribute, a synthesized one, returns the “number-tree” of the above given
type nexp.
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env == [id]

lexp<|env, Tnexp>

lexp<|eo, Tno> ::=lop(id, lexp<|ey, Tn1>)
—(id in eg);
e1 = eo+t+{id];

no := nop(er” (id), 1)
| Iap(lexp<lely Tn1>a 1exp<leg, Tn2>)
€1 = €g; €2 := €0y
ng := nap(ny, na)
| lid(id)
id in eg;
no := nid(eg’ (id))
| leo(id)
ng := nco(zd)

Since we will follow the convention that the startsymbol of a (higher order) attribute
grammar cannot have inherited attributes we introduce an extra non-terminal start:

start<Tnexp>

start<Tno> ::= root(lexp<le, Tn1>)
e:=[];
Ng =M

The lambda expression we gave at the start of this paragraph “returns” the following
attribute:
nop(1,nop(2,nap(nap(nco(@),nap(nop(3,nap(nap(nid(3),nap(nap(nid(1),nid(2)),nid(2)))
,nap(nap(nid(3),nap(nco(c),nid(2))),nid(2))

) )
,nid(1)

) )
,nco(7)

4.2 Supercombinators

Before starting to generate super-combinator code we would like to stress that it is easier
to derive supercombinator code from nexp shaped expressions than from lexp shaped
expressions. Thus, the supercombinator code generator attributes the nexp-tree, not the
lexp-tree. This is were higher order attribute grammars come into use for the first time:
the generated nexp tree is substituted for a non-terminal attribute.
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start<Tcexp>

start<fco> ::= root(lexp<le, In>, mexp<lc;>)
e:=];
EXp = n;
€=

The non-terminal nexp has a synthesized attribute of type cexp. This type, representing
supercombinator code, is defined as

params == [name]

cexp ::= cop(params, cexp)
|  cap(cexp, cexp)
|  cid(name)
| cco(id)

As may be seen from the above definition, combinators generally have multiple parameters.
With cop([3,1, 2], E) we denote a combinator with three dummies. In standard notation
this would be written as [A312 : E] which is equivalent to [A3 : [A1 : [A2 : EJ]].

Let us have a closer look at expression e = [Az : z-(z-y-y)-(z- (0 - y) - y)] which
is a subexpression of our previous example. Any subexpression of (the body of) e that
does not contain the bound variable (z) is called free. So z, y, o, z-y, o-y, and

z -y -y are free expressions. Such expressions can be abstracted out, an example being
F=[A1234:4-(1-2)-(4:3-2))-(z-y)-y-(0-y).

This transformation from e to f improves the program since, for example, z - y only needs
to be evaluated once, rather than every time f is called. Of course f is not optimal yet:
the best result emerges when all mazimal free expressions are abstracted out.

Figure 9: The paths from the root to the tips containing the current dummy are indicated
by thick lines thus clearly isolating the maximal free expressions.

As may be seen from Figure 9, z-y-y, o -y, and y are maximal free expressions. In order
to generate the supercombinator for e, each maximal free expression is replaced by some
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dummy. We reserve the index “0” for the actual parameter introduced by the A.

[Az=z-(w-y-y)-(z°(0-y)-\y)l

Hence we find as a possible supercombinator:
a=[A1230:0-1-(0-2-3)]
with bindings {1 z-y.y, 2 0.y, 3+ y} so that e equals
a-(z-y-y)-(o-y)y

We will now describe an algorithm which finds all maximal free expressions. We could
associate a boolean with each expression indicating the presence of the current param-
eter in the expression. This attribution then depends on this parameter. So, if we are
interested in the maximal free expressions of the surrounding expression, we would have
to recalculate these attributes.

We use another approach instead: a level is associated with each expression indicating the
nesting depth of the most local variable occurring in that expression. If this depth equals
the nesting depth of the current parameter, the expression contains this parameter as a
subexpression and hence it is not free. Since we substituted all identifiers in lexp by a
unique number indicating their depth, the level of an expression simply is the maximum
of all numbers occurring in that expression.

level == num

cexp<Tlevel>

cexp<Tlp> ::= cop(params, cexp<tl;>)
lo =0

| cap(cexp<Tli>, cexp<tily>)
lo = 11 max lz

| cid(name)
lo := name

|  cco(id)

Combinators and constants form a special group. They contain no free variables so their
level is set to 0, the “most global level”—the unit element of “max”. On the other hand,
there is no need to abstract out expressions of level 0, since they are irreducable. They
form the basis of the functional programming environment.

As a next step, let us concentrate on generating the bindings. A binding is a pair n +— ¢
with n € name and ¢ € cexp. Since no variable may be bound more than once, we need to
know which variables are already bound when we need a new binding. So, we introduce
an “environment-in” (initially empty) and an “environment-out” (returning all maximal
free subexpressions).
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bind == {name — cexp}
cexp<Tlevel, |name, | bind, {bind, {cexp>
Cexp0<T10a ana liOa TOO, TCO>
::= cop(params, cexp, )
lo:=0;
0g 1= 1g; Cp = CeEXP,
| cap(cexp1<Tll, lnla lila TOI, Tcl>’ cexp2<T12, ln2, li% TO2’ T62>)
Ny := Ng; N2 (= No;
lo = 11 max 12;
if (lo = no) \" (lo = 0)
then i, 1= ip; 13 := 01; 0p:= 09; ¢ := cap(¢y, ¢2)
else op := 1o U {|io| + 1 — cexpy}; co := cid(0g(cexp,))
fi
|  cid(name)
lo := name; { [, >0}
if Io =Ny
then o, := 1o; ¢ := cid(0)
else o := 4o L {|io| + 1 — cexpy}; co := cid(0y(cexp,))
fi
|  cco(name)
lo = 0,
0g := 1g; Co = CeXP,

Since we are not interested in the body of a combinator, we leave out the attributes of
cexp, in cop(params, cexp,). The operator U is defined as follows:

Su{nwc} :=if c € rng(S) then S else SU {n — c} fi

thus performing common-subexpression optimisation. This ensures that the bindings
generated for the body of [\y : y - z - 2] are {1 — z} instead of {1 — z, 2 — z}

The final addition is devoted to generating the combinator body itself. Each time a
subexpression c¢ generates a binding n + ¢, expression ¢ is replaced by a reference to the
newly introduced variable: cid(n).

4.3 Compiling

So far we described properties of the supercombinator code. Now we are ready to discuss
the actual compilation of nexp to cexp. In order to achieve this, we already extended
nexp with a synthesized attribute of type cexp. This attribute will contain the super-
combinator code of the underlying nexp expression. Compilation of nap, nid, and nco is
straightforward, nop still requires some work because the applications to the abstracted
expressions have to be computed.

In case of a nop(name, nexp<fc>), we must eliminate the A and introduce a A. Hence
we must determine the combinator body and bindings of ¢. This simply means that we
have to attribute expression ¢! Therefore we introduce a non-terminal attribute:
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nexp<Tcexp>
nexp<fco> ::= nop(name, nexp<tc;>,cexp<1l, |n, |i, To, Tc2>)
CeXp = ¢y,
n := name; ¢ := {};
co := fold(cop(II;(a)++[0], cz), II5(a)) where a = tolist(o)
| nap(nexp<Te;>,nexp<tc;>)
Co = cap(cl,cz)
| nid(name)
co := cid(name)
|  neo(id)
co 1= cid(id)

where “tolist” converts a set of bindings to a list of bindings and
fold i1 cexp — [cexp] — cexp
fold(e, []) =c
fold(c, m++([a]) =cap(fold(c,m),a)

II, :: [name — cexp] — [name]

I ([1) =[]
(o [n — ¢]) =II;.04+n]

I, :: [name — cexp] — [cexp]

I2([}) =(]
2 (0+HH[(n — c])=I1,.0++[c]

The function “tolist” that converts a set to a list offers a lot of freedom: we may pick any
order we want. We may exploit this freedom to generate better code: order the expressions
in such a way that their levels are ascending. Since application is left associative this
results in the largest maximal free expressions for the surrounding expression.

5 Related formalisms

In this section we will discuss a number of related approaches, trying to solve the kind
op problems discussed in this chapter. In the end of this chapter HAGs are positioned

between several other programming formalisms, and their strengths and weaknesses will
be placed into context.

5.1 ACGs

Attribute Coupled Grammars were introduced in [Ganzinger and Giegerich 84] in an at-
tempt to model the multi-pass compilation process. Their model can be considered as a
limited application of HAGs, in the sense that they allow a computed synthesized attri-
bute of a grammar to be a tree which will be attributed again. This boils down to a HAG
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with the restriction that NTA may be only instantiated at the outermost level.

5.2 EAGs

Eztended Affizr Grammars [Koster 91] may be considered as a practical implementation of
Two-Level Grammars. By making use of the pattern matching facilities in the predicates
(i.e. non-terminals generating the empty sequence) it is possible to realise a form of
control over a specific tree. The style of programming in this way resembles strongly the
conventional Miranda style. An (implicitly) distinguished argument governs the actual
computation which is taking place. Extensive examples of this style of formulation can
be found in [Cleaveland and Uzgalis 77). Here you may find an thorough introduction
into Two-Level grammars, and as an example a complete description of a programmmg
language, including its dynamic semantics, is given.

5.3 Functional languages with lazy evaluation

It is a well-known secret that attribute grammars may be directly mapped onto lazy-
evaluated functional programming languages: the non-terminals correspond to functions,
the productions to different parameter patterns and associated bodies, the inherited at-
tributes to parameters and the synthesized attributes to elements of the result record
[Kuiper and Swierstra 87).

This mapping depends essentially on the fact that the functional language is evaluated
lazy. This makes it possible to pass an argument which depends on a part of the function
result. In functional implementations of AGs this seeming circularity is transformed away
by splitting the function into a number of functions corresponding to the repeated visits
of the nodes. In this way some functional programs might be converted to a form which
no longer essentially depends on this lazy evaluation. All parameters in the attribute
grammar formalism correspond to strict parameters in the functional formalism because
of the absence of circularities.

Most functional languages which are lazy evaluated however allow circularities. In that
sense they may be considered to be more powerful.

5.4 Schema

In this section we will try to give a schema which may be used to position different
programming formalisms against each other. The basic task to be solved by the different
implementations will be to solve a set of equations. As a running example we will consider
the following set:

1) z =5
(2 vy = z+2
3B) 2z = v
4) v = 7
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e garbage collection (GC)

One of the first issues we mention captures the essence of the difference between
functional and declarative styles on the one hand and the imperative styles on the
other. When solving such a set of equations there may be a point that a specific
variable is not occurring any more in the set because it has received a value and this
value has been substituted in all the formulae. The location associated with this
variable may thus be reused for storing a new binding. In an imperative program-
ming language a programmer has to schedule its solution strategy in such a way
that the possibility for reuse is encoded explicitly in the program. An assignment
not only binds a value to a variable, but it also destroys the previously bound value,
and thus has the character of an ezplicitly programmed garbage collection action. So
after substituting z in equation (2), we might forget about z and use its location
for the solution of further equations.

¢ direction (DIR)

The next distinction we can make is whether the equations are always used for
substitution in the same direction, i.e. whether it is always the case that the left
hand side is a variable which is being replaced by the right hand side in the other
equations. This distinction marks the difference between the functional and the
logical languages. The first are characterised by exhibiting a direction in the bind-
ing, whereas the latter allow substitutions to be bi-directional. Depending on the
direction we might substitute (3) and (4) by a new equation z = 7 or (2) and (3)
byy=z+v '

¢ sequencing (SEQ)

Sequencing governs the fact whether the equations have to be solved in the way they
are presented, or whether there is still dynamic scheduling involved, based on the
dependencies. In the latter case we often speak of a demand driven implementation,
corresponding to lazy evaluation; in the first case we speak of an applicative order
evaluation, which has a much more restricted scheduling model. In the example
it is clear that we cannot first determine the value for z, then y and finally 2 and
v. As a consequence some languages are not capable of handling the above set of
equations.

e dynamic set of equations (DSE)
One of the things we have not shown in our equations above is that often we have
to do with a recursively defined set of equations or indexed variables. In languages
these are often represented by use of recursion in combination with conditional
expressions or with loops. We make this distinction in order to distinguish between
the normal AGs and the HAGs.

In the table in Figure 10 we have given an overview of the different characteristics of
several programming languages. The +’s and —’s are used to indicate the ease of use
for a programmer in respect to his programming task, and thus do not reflect things like
efficient execution or general availability.

Based on this table we may conclude that HAGs bear a strong resemblance to functional
languages like Miranda. Things which are still lacking are infinite data structures, poly-
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GC DIR SEQ DSE
Pascal - - - +
Lisp + - - +
Miranda + — + +
AG + - + -
HAG + - + +
Prolog + + +/- +
Pred. Logic | + + + +

Figure 10: An overview of language properties

morphism, and more powerful data structures. The term structures which are playing such
a prominent role in attribute grammars are not always the most natural representation.

6 Basic incremental evaluation techniques

In this section the problems with incremental evaluation of HAGs, conventional incre-
mental evaluation techniques for AGs and basic techniques for the incremental evaluation

of single visit HAGs will be presented. The incremental evaluation of OHAGs will be
discussed in the next section.

6.1 Problems with HAGs

The two main problems in the incremental evaluation of HAGs are the efficient evaluation
of multiple instantiations of the same NTA and the incremental evaluation after updating
a NTA. In section 2.2 we saw the replacement of a (semantic) lookup-function by a NTA.
This NTA then takes the role of a semantic function. As a consequence, at all places in
an attributed tree were the lookup-function would have been called the (same-shaped)
NTA will be instantiated. Such a situation is shown in Figure 11 where T2 is the tree
modelling e.g. part of the environment, and is being joined with T3 and T4 giving rise
to two larger environments. X1, X2 are the locations in the attributed tree were these
two trees are instantiated. These instantiations thus include a copy of the tree T2. The
following can be noted with respect to incremental evaluation in Figure 11, where the
situation (a) models the state before an edit action in the subtree indicated with NEW,
and (b) the situation after the edit action:

e NTA1 and NTA2 are defined by attribution.

e Trees T2 and T’2 are multiple instantiated trees in both (a) and (b). How can
we achieve an efficient representation for multiple instantiated (equal or non-equal
attributed) trees like T2 and T’2 in (a) and (b)?
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e NTA1l and NTA2 are updated when a subtree modification occurs at node NEW.
How can we identify efficiently those parts of an attributed tree (like T3 and T4 in
(b)) derived from an NTA which can be reused after NTA1 and NTA2 have been
updated?

"; NTAL lNTA2

Figure 11: A subtree modification at node NEW induces subtree modifications at node
X1 and X2 in the trees derived from NTA1 and NTA2.

Note that these problems do not occur in conventional AGs, but arise through the NTAs
in HAGs. Before we continue with some techniques for the incremental evaluation of
single visit HAGs some conventional incremental evaluation techniques are presented.

6.2 Conventional techniques

Below several incremental AG-evaluators will be listed. All of them can be trivially
adapted for the higher oder case but none of them is capable of efficiently handling
multiple instantiations of the same NTA and reusing slightly modified NTAs.

¢ OAG [Kastens 80, Reps, Teitelbaum and Demers 83]

¢ Optimal time-change propagation [Reps, Teitelbaum and Demers 83)
e Approximate Topological Ordering [Hoover 86]

¢ Function caching [Pugh 88]

The following observations hold for all of the above mentioned incremental evaluators:

e Attributes are stored in the tree. The tree functions as a cache for the semantic
functions during incremental evaluation.

e Equal structured trees are not shared. This is difficult because the attributes are
stored with the tree, and the opportunity for such sharing does not arise too often.

As will be shown later, the above two observations limit efficient incremental evaluation

of HAGs.
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6.3 Single visit HAGs

In this subsection we will introduce some methods needed for the efficient incremental
evaluator explained in the next section. These steps will be explained by first constructing
an efficient incremental evaluator for single visit HAGs. We define a single visit HAG to
be a subclass of the Ordered HAGs in which there is precisely one visit associated with
each production.

6.3.1 Consider a single visit HAG as a functional program

The HAG shown in section 2.2 is an example of such a single visit HAG. The single visit
property guarantees that the visitsequences VS(p) actually are visit functions, mapping
the inherited to the synthesized attributes.

6.3.2 Visit function caching/tree caching

The second step we take is the decision to cache the results of the visit functions instead
of the results of semantic functions, as was done in [Pugh 88]. This is more efficient
because a cache hit of a visit function means that this visit to (a possibly large) tree may
be skipped. Furthermore, a visit function returns the results of several semantic functions
at the same time. Note furthermore that we have modeled in this way the administration
of the incremental evaluation by using the function caching. No separate bookkeeping in
order to determine which attributes have changed and which visits should be performed
is necessary.

The implementation of function caching used for caching the visit functions of the func-
tional evaluator was inspired upon [Pugh 88]. A hash table is used to implement the
cache. A single cache is used to store the cache results for all functions. Tree T, labeled
with root N, is attributed by calling

visit_N T inherited_attributes

The result of this function is uniquely determined by the function-name, the input tree
and the arguments of the function. The visit functions can be cached as follows:

function cached.apply(visit_N, T, args) =
indez := hash(visit_N, T, args)
forall <function, tree, arguments, result> € cachefindez] do
if function = visit_N and EQUAL(tree,T)
and EQUAL (arguments,args)
then return result
fi
od
result := visit. N T args
cachefindez] := cachefindez] U {<visit_N, T, args, result>}
return result
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To implement visit function caching, we need efficient solutions to several problems. We
need to be able to

¢ compute a hash index based on a function name and an argument list. For a
discussion of this problem, see [Pugh 88| for more details.

o determine whether a pending function call matches a cache entry, which requires
efficient testing for equality between the arguments (in case of trees very large
structures!) in the pending function call and in a candidate match.

The case of trees in the last problem is solved by using a technique which has become
known as hash-consing for trees. When hash-consing for trees is used, the constructor
functions for trees are implemented in such a way that they never allocate new constructor-
cells with the same value as an already existing cell; instead a pointer to that already
existing cell is returned. As a consequence all equal subtrees of all structures which are
being built up are automatically shared.

Hash-consing for trees can be obtained by using an algorithm such as the one described
below (EQ tests true equality). As a result hash-consing allows constant-time equality
tests for trees.

function hash_cons(CONSTR, (p1, p2, ---, Pn)) =
indez := hash(CONSTR, (p1, p2, ---, Pn))
forall p € cachefindez] do
if p~.constructor = CONSTR

and EQ(p~.pointers, (p1, p2, ---, Pn))
then return p

fi
od
p := allocate_constructor_cell()
p~ := <CONSTR, (p, p2, ---, pn)>
cachefindez] := cachefindez] U {p}
return p

Now, the function call EQUAL(treel, tree2)in cached_apply may be replaced by a pointer
comparison (treel = tree2) in our previous algorithm. As for function caching, we need
an efficient solution for computing a hash index based on a constructor and pointers to
memory-cells.

6.4 A large example

Consider again the higher order AG in section 2.2, which describes the mapping of a
structure consisting of a sequence of defining identifier occurrences and a sequence of
applied identifier occurrences onto a sequence of integers containing the index positions
of the applied occurrences in the defining sequence. Figure 12.a shows the tree for the
sentence let a,b,c in c,c,b,c ni which was attributed by a call to
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visit ROOT (block (def(def(def(def empty_decls a) b) c))
(use(use(use(use(use empty_apps c) c) b) c)))

Incremental reevaluation after removing the declaration of c is done by calling

visit_ROOT (block (def(def(def empty_decls a) b))
(use(use(use(use(use empty.apps c) c) b) c)))

The resulting tree is shown in Figure 12.b, note that only the APPS-tree will be totally
revisited (since the inherited attribute env changed), the first visits to the DECLS and
ENYV trees generate cache-hits, and further visits to them are skipped.

s [error,2,error,error]

ROO!

*.. let DECLS in APPS_\ ni
env

s,
e,
v, e
o o
~~~~~
--------------
...................

Figure 12: The tree before (a) and after removing c (b) from the declarations in let a,b,c
in c,c,b,c ni. The * indicate cache-hits looking up c. The dashed lines denote sharing.

Simulation shows that, when using caching, in this example 75% of all visitfunction calls
and tree-build calls which have to be computed in 12.b are found in the cache constructed
in evaluation 12.a. So 75% of the “work” was saved. Of course removing a instead of ¢
won'’t yield the same results.

7 Incremental evaluation of OHAGs

As was shown in the previous section, instead of caching the results of semantic functions
the results of visit functions are cached.

Although this idea seems appealing at first sight, a complication is the fact that attributes
computed in an earlier visit have to be available for later visits when necessary and thus
the model does not generalise easily to the multi-visit case.

Therefore so called bindings are introduced. Bindings contain attribute values computed in
one visit and used in one or more subsequent visits to the same tree. So each visit function
computes synthesized attributes and bindings for subsequent visits. Each visit function
will be passed an extra parameter, containing the attribute values which were computed
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by earlier visits and will be used in this visit. In this sense the implementation bears some
resemblance to the super combinator implementation which has been discussed earlier.
All the relevant information for the function is being passed explicitly as an argument,
and nothing more.

7.1 Informal definition of bindings

First, visitsequences from which the visit functions will be derived are presented and
illustrated by an example. Then the construction of the bindings and visit functions for
the example will be shown. Finally, incremental evaluation will be discussed.

7.1.1 Visit(sub)sequences

In the section 3 the so called Ordered Higher order Attribute Grammars (OHAGS), have
been defined. An OHAG is characterized by the existence of a total order on the defining
attribute occurrences in the productions p. This order induces a fixed sequence of com-
putation for the defining attribute occurrences, applicable in any tree node labeled with
production p.

Such a fixed sequence is called a visitsequence and will be denoted by VS(p). A visitse-
quence is an ordered list of instructions of the following four types (we will use a slightly
different notion of visitsequences as normal): “y :=...” (evaluate attribute «, a copy of
the attribution rule in the grammar), “y :=...” (evaluate non-terminal attribute ¥ and
expand the tree with the tree computed in ¥, again a copy of the rule in the grammar),
visit_X;_j (visit son X; for the j-th time) and visit_X,_j (visit the parent for the J-th time).
VS(p) is split into visitsubsequences VSS(p,v) where each visit is terminated by a visit
to the parent node. The attribute grammar in Figure 13 will be used in the sequel to
demonstrate visitsubsequences, bindings and visit functions.

7.2 Visit functions for the example grammar

The evaluator is obtained by translating each visitsubsequence VSS (p,v) into a visit func-
tion visit_N_v where N is the left hand side of p.

All visit functions together form a functional attribute evaluator program. We use a
Miranda-like notation [Turner 85] for visit functions. Because the visit functions are
strict, which results in explicit scheduling of the computation, visit functions could also
be easily translated into Pascal or any other non-lazy imperative language.

The first parameter in the definition of visit_N_v is a pattern describing the subtree to
which this visit is applied. The first element of the pattern is a marker, a constant which
indicates the applied production rule. The other elements are identifiers representing the
subtrees of the node. Following the functional style we will have one set of visit functions
for each production with left hand side N.
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R z=r(N) {Ni:=Ri;Ny:=Ns;Rz:=Nz}
N =2=p(X) {Xi:=Ni;Ns:=X.s;X.y:=Ny;Nz:=Xz+ Xis }
X =q(int) {X.s:=Xi; Xz := Xy + X.i + int.v }

R |ifz VS(p) VS(q)
[ — = VSS(p,l) = VSS(q,l)
r [} = X. := Ni = X.s:= X.i
N |i]s|y]z ; Visit X,1 ; VisitParent,1
; Ns:=Xus ; VSS(q,2)
p : ! ; VisitParent,1 = X.z:= )S.y + X.i + int.v
: ; VSS(p,2) ; VisitParent,2
X = X.y:= Ny
q ; Visit X,2
;i Nz:=Xz + Xs
int [v ; VisitParent,2

Figure 13: An example AG (top), the dependencies (left) and visitsequences (right). The
dashed lines indicate dependencies on an attribute defined in the first visit and used in
the second visit. VS(r) is omitted.

All other arguments, ezcept the last, of visit_N_v represent the inherited attributes used
in VSS(p,v). Before we discuss the results of a visit function, consider the grammar in
Figure 13 again. The inherited attribute X.i and the synthesized attribute X.s in Figure 13
are also used in the second visit to X and N but passed to or computed in the first visit.

Therefore, every visit_N_v not only computes synthesized attributes but also bindings
(inherited and synthesized attributes computed in visit_N_v and used in subsequent visits
to N). So wisit_N_v computes also novy — v bindings, one for each subsequent visit (novy
is the number of visits to N). The bindings used in visit_N_v+i but computed in visit_N_v
are denoted by binds_N'~'t:,

The last argument of visit_N_v is a list of bindings for visit_N_v computed in earlier visits
1...(v —1) to N. The bindings themself are lists containing attribute values and further
bindings. Both lists are constructed using hash consing. Elements of a list are addressed
by projection, e.g. binds_N*~".1 is the first element of the list.

We now turn to the visit functions for the visitsubsequences VSS(p,v) and VSS(q,v) of the
example grammar. We will put a box around attributes that are returned in a binding. In
the example this concerns |X.i| and {X.s|. The first visit to N will return the synthesized
attribute N.s, and a binding list binds_N'~* containing the later needed X.s together with
binds_X'~%. The binding list binds_N'~* is denoted by [|X.s|, binds_X!—2].

visit. N1 (p [X]) N.i = (N.s, binds_N'™%)
where X.i = N.i
(X.s, binds.X'™%) = visit_ X_1 X X.i
N.s = X.s
binds_N'~% = [[X.s], binds_X'™?]
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In the above definition (p [X]) denotes the first argument: a tree at which production
p is applied, with one son, denoted X. The second argument is the inherited attribute
¢ of N. The function returns the synthesized attribute s of N and a binding containing
X.s together with the bindings from the first visit to subtree X. Function visit_N_2
does not return a binding because it is the last visit to a N-tree. Here the projections
on binds_N'~? can be made implicit by replacing [binds_N'—?2], the last parameter of
visit_N_2, by [|X.s|, binds_X'~2].

visit. N.2 (p [X]) N.y [binds_N'—%] = N.z
where X.y = N.y
binds_X'™% = binds_.N*~%.2
X.z = visit X_2 X X.y [binds_X'—%]

= binds.N'~2 .1

N.z = X.z + X.s
The other visit functions have a similar structure.

visit. X_1 (q [int]) X.i = (X.s, binds_X'?%)
where X.s = X.1

binds.X'~? = [[X.i]]

visit. X_2 (q [int]) X.y [binds_X'™2%] = X.z

where binds_X'~% .1

X.z=X.y + X.i + int.v

We have chosen the order of definition and use in the where clause in such a way that the
visit functions could be also defined in an imperative language. A where clause contains
three kinds of definitions:

1. assignments and visits from the corresponding VSS(p,v).

2. lookups of attributes and bindings in bindings (for example in visit_N_2 the binding
binds_X' ™2 is looked up in binds_N'™%).

3. definitions for returned bindings. The precise definition of visit functions and bind-
ings is given in section 7.3.

7.2.1 Incremental evaluation

After a tree T is modified into T’, T’ shares all unmodified parts with T. To evaluate
the attributes of T and T’ the same visit function visit_R_1 is used, where R is the root
non-terminal. Note that tree T’ is totally rebuild before visit_R_1 is called, and all parts
in T’ that are copies of parts in T are identified automatically by the hash consing for
trees.

The incremental evaluator automatically skips unchanged parts of the tree because of
cache-hits of visit functions. Hash consing for trees and bindings is used to achieve
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efficient caching, for which fast equality tests are essential. Because separate bindings for
each visit are computed, for example visit_N_1 and visit_N_4 could be recomputed after
a subtree replacement, but visit_.N_{2,3} could be found in the cache and skipped. Some
other advantages are illustrated in Figure 11, in which the following can be noted:

o Multiple instances of the same (sub)tree, for example a multiple instantiated NTA,
are shared by using hash consing for trees (Trees T2 and T’2).

o Those parts of an attributed tree derived from NTA1 and NTA2 which can be reused
after NTAl and NTA2 change value are identified automatically because of the hash
consing for trees and cached visit functions (Trees T3 and T4 in (b)). This holds
also for a subtree modification in the initial parse tree (Tree T1).

e Because trees T1, T3 and T4 are attributed the same in (a) and (b) they will be
skipped after the subtree modification and the amount of work which has to be done
in (b) is O(|Affected T’2| + |paths_to_roots|) steps, where paths_to_roots is the sum
of the lengths of all paths from the root to all subtree modifications (NEW, X1 and
X2).

7.3 Definitions of visit functions and bindings

We now turn to the definition of visit functions and bindings.

Let p be a production of the form p:N — ... X; .... Let VS(p) be the visitsequence for
p. As before, novy is the number of visits to N. Let VSS(p,1) ... VSS(p,novy) be the
visitsubsequences in VS(p).:

VSS(p,v) is translated into the visit function visit_N_v as follows:

visit_ N_v (p [... X ...]) inhY [binds_N*~", ..., binds_.NC~1—="] =
(synl¥, binds_N*=**1 ..., binds_NY™""°N)
where Lines from 1) to 3).
1) The assignments and visits in VSS(p,v).
2) Lookups of attributes and bindings computed
in earlier visits.
3) Definitions for the returned bindings.

inhY are the available inherited attributes needed in and not available in visits before
VSS(p,v). synd are the synthesized attributes computed in VSS(p,v). The elements 1) to
3) are defined as follows. 1) is just copying from VSS(p,v). In 1) a Visit X,w is translated
into

(syn¥, binds Xv~v+!, ..., binds XV™m0X) =
visit X_w X; inhX [binds X'~", ..., binds X(v~1)=v]
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When X is a non-terminal attribute, the variable defining X is used as the first argument
pattern for visit_X_w.

There are three kinds of lookups in 2): Inherited attributes, synthesized attributes and
bindings. The lookup method is the same for all, so we will only describe the method
for an inherited attribute here. Let N.inh be an inherited attribute of N which is used in
visit_N_v but not defined in visit_N_v. Then, the lookup N.inh = binds_N*~".f is added,
for the appropriate e and {.

In 3) the bindings returned by visit_N_v are defined. Recall that the binds.N*~"*' are
defined in terms of the visitsequence of production p. binds.N*~**' is defined as a list
containing those inherited attributes of N and synthesized attributes of sons of N used in
visit_N_v and in visit_N_v+i (denoted by inout_N,*~***) plus the bindings of sons of N
computed by visits to N and used in subsequent visits to those sons of N in visit_N_v+i

(denoted by binds-sons_N,"~**+*). For example binds_N'~* in the example visit functions
in section 2 is

binds_N*™* = [inout_N,'™2, binds-sons_N,'~%] = [X.s, binds_X'"%],

where during execution the value of binds.N'~* will be [X.s, [X.i]]. inout_N,"~"*' and
binds-sons.N,"~*** are defined as follows:

inout_N,"~"*' = (N.inh U X.syn) N VSS(p,u) N VSS(p,v+i)

binds-sons_N,"** = { binds X"~ | (visit_X_w € V5S(p,v))
A (visit_X_j € VSS(p,v+i)) }

The following theorem holds for the above defined functional program.

Theorem 7.1 Let HAG be a well-defined Ordered Higher Order Attribute grammar, and
let S be a structure tree of HAG. The execution of the above defined functional program
for HAG with input S terminates and attributes the tree S correctly. Furthermore, no
attributes are evaluated twice.

7.4 Incremental evaluation performance

In this section the performance of the functional evaluator with respect to incremental
evaluation is discussed. The goal is to prove that the derived incremental evaluator re-
computes in the worst case a number of semantic function calls bounded by O(] Affected)).
Here Affected is the set of attribute instances in the tree which contain a different value,
together with the set of attribute instances newly created after a subtree modification.

This desire can be only partly fulfilled; it will be shown that the worst case boundary
is given by O(|Affected|+|paths_to_roots|). Here paths_to_roots are all nodes on the path
to the initial subtree modification and on the paths to the root nodes of induced subtree
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modifications in trees derived from NTAs. The paths_to_roots part cannot be omitted
because the reevaluation starts at the root of the tree and ends as soon all replaced
subtrees are either reevaluated or found in the cache.

Let VIS be the mapping from a HAG to visit functions as discussed in section 7.3. Let
T be a tree consistently attributed according to a HAG. Suppose T was attributed by

VIS(HAG)(T). Let T’ be the tree after a subtree modification and suppose T’ was attri-
buted by VIS(HAG)(T".

Theorem 7.2 Let Affected_Applications be the set of function applications that need to
be computed and will not be found in the cache when using VIS(HAG)(T’) with function

caching for visits and hash consing for trees. Then, Affected_Applications is O(|Affected|
+ |paths_to_roots|).

8 Discussion

In the foregoing sections we have shown how an incremental evaluator may be based on
concepts like hash-consing and function caching. Here we will elaborate on some further
possibilities for optimisation.

8.1 Skipping subtrees

An essential property of the construction of the bindings was that when calling a visit
function with its bindings, these bindings contain precisely that information that will be
actually used in this visit and no more. This is a direct result of the fact that these
bindings were constructed during earlier visits of the nodes, at which visits it was known
what productions had been applied and what dependencies are actually occurring in the
subtrees. There is thus little room for improvement here.

The situation is different however when we inspect the role of the first parameter to the
visit functions more closely: always the complete tree is passed and not only that subtree
that will actually be traversed by this visit. In this way we might miss a cache hit when
evaluating a changed tree. This effect is demonstrated in Figure 14. When editing the
shaded subtree this has no influence on the outcome of pass b, and may only influence
pass a.

The following modification of our approach will take care of this optimisation. When
building the tree we compute simultaneously those synthesized attributes of the tree
which do not depend on any of the inherited attributes. In this process we also compute a
set of functions which we return as synthesized attributes, representing the visit functions
parameterised with that part of the tree which will be visited when they are called.

This process consists of the following steps:

1. Every visit corresponds to a visit function definition. At those places where the visit
subsequences contain visits to sons, a formal function is called. Each visit function
thus has as many additional parameters as is contains calls to sons.
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vista _Visitb visita visit b

Figure 14: Changes in an unvisited subtree

2. The synthesized attributes computed initially represent functions representing the
calls to the subtrees. These functions are used to partially parameterize the visit
functions definitions associated with production applied at the current node under
construction, and these resulting applications are in their turn passed to higher
nodes via the synthesized attributes.

As a consequence of this approach the top node of a tree is represented by a list of visit
functions, all partially parameterized by the appropriate calls to their sons. Precisely
those parts of the trees which are actually visited by these functions are thus encoded via
the partial parameterisation. If the function cache is extended in such a way as to be
able to distinguish between such values, we do not have to build the trees at all, and may
simply use the visit functions as a representation.

8.2 Removing copy rules

As a final source for improvement we have a look at a more complicated case where
we have visits which pass through different, but not distinct parts of the subtree. An
example of this is the case were we model a language which does not demand identifiers
to be declared before they may be used. This naturally leads to a two-pass algorithm:
one pass for constructing the environment and the second pass for actually compiling the
statements.

We will base our discussion on the tree in Figure 15. We have indicated the dataflow
associated with the computation of the environment as a closed line, and the data flow
of the second pass which actually computes the code with a dashed line. Notice that the
first line passes through all the declaration nodes, whereas the second line passes through
all the statement nodes.

Suppose now that we change the upper statement in the tree, and thus construct a new
root. If we apply the aforementioned procedure, we will discover that we do not have to
redo the evaluation of the environment. The function computing this environment has
not changed.

The situation becomes more complicated if we add another statement after the first one.
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Figure 15: Removing copy rules

Strictly speaking this does not change the environment either. However the function
computing the environment has changed, and will have to be evaluated anew. This
situation may be prevented by noticing the following. The first visit to an L-node which
has a statement as left son actually passes the environment attribute to its right son, visits
this right son for the first time and passes the result up to its father. No computation
is performed. When writing this function, with the aforementioned transformation in
mind, as a A-term we get Af,z : f(x), where f represents the visit to the right son, and
z the environment attribute. When we partially parameterize this function however with
a function g, representing the visit to the right son, this rewrites to Az : g(z), which is
equal to g. In this way copy-chains may be short-circuited and the number of cache hits
may increase by making more functions constructed this way to be equal. Consider, as
an example, the first pass visit functions for the grammar of Figure 15:

visit_.L_1 (p [D,L]) env = L.env
where D.env = wisit.D_1 D env
L.env = visit_L_1 L D.env
visit.L_1 (q [S,L]) env = L.env
where { S contains no declarations }
L.env = visit.L_1 L env

The visit functions for production p may be shortcircuited to

visit.L_1 (p [D,(q [S,L?])]) env = L.env
where D.env = visit_D_1 D env
{ the copyrules for S may be skipped }
L.env = visit. L_1 L D.env

2These visit functions are merely meant to sketch the idea. In case L=(q [S2,L2]), we may shortcircuit
two statement nodes (and so on). This is what the aforementioned transformation is about.
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visit_.L_1 (p [D1,(p [D2,L])]) env = L.env
where Di.env = wsit_D_I D1 env
L.env = wvisit.L_1 (p [D2,L]) Di.env

visit_.L_1 (p [D,(r [empty]l)]) env = L.env
where L.env = wvisit. D_1 D env

We conclude by noticing that whether these optimisations are possible or not depends
on the amount of effort one is willing to spend on analysing the grammar, reordering
attributes, and splitting up visits into smaller visits. The original visit functions of
[Kastens 80] were designed with the goal to minimise the number of visits to each node
in mind. In the case of incremental evaluation one’s goals however will be to maximise
the number of independent computations and to maximise the number of cache hits.
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