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Abstract

A processor farm is a distributed system that consists of a unique master pro-
cessor together with a number of identical slave processors. The master processor
interacts with some environment that generates tasks to be solved by the slave
processors. The processors are connected via some communication network that
takes care of the communication of the tasks between the master and the slaves.
We show how a combination of action systems and the refinement calculus can
be used to formally derive, in a stepwise manner, a communication network and
protocol between the processors forming an arbitrary processor farm.

1 Introduction

A processor farm [9,12] is a distributed system that consists of a unique master pro-
cessor together with an arbitrary number of identical slave processors connected via
a communication network. An environment generates tasks that the farm is required
to solve. The tasks are given to the master that distributes them to the slaves for
solving. A slave returns some answer to the master for each task it solves. The net-
work between the master and the slaves takes care of the delivery of the tasks and
corresponding answers.

The processor farm paradigm has turned out to be a very useful and practical
methodology for parallellizing algorithms in scientific computing [9). We study the
formal derivation of a distributed system that models the communication in an arbitrary
processor farm. The derivation is carried out within the action systems framework.

*The work reported here was supported by the Finsoft III program sponsored by the Technology
Development Centre of Finland. The author is on leave from Abo Akademi University, Department
of Computer Science, SF-20520 Turku, Finland. The stay of the author at Utrecht University was
supported by the Dutch organisation for scientific research under project nr. NF 62-518 (Specification
and Transformation Of Programs, STOP). A short version of this article will appear in the Proceedings
of IFIP TC6/WG6.1 11th International Symposium on Protocol Specification, Testing and Verification,
Stockholm, Sweden, 18-20 June 1991, North-Holland.



The action system formalism for parallel and distributed computations was intro-
duced by Back and Kurki-Suonio in [4]. The bekaviour of parallel and distributed
programs is in this framework described in terms of the actions which processes in the
system carry out in co-operating with each other. Several actions can be executed in
parallel, as long as the actions do not have any common variables. The actions are
atomic: if an action is chosen for execution, it is executed to completion without any
interference from the other actions in the system. Atomicity guarantees that a parallel
execution of an action system gives the same results as a sequential and nondetermin-
istic execution.

The use of action systems permits the design of the logical behaviour of a system
to be separated from the issue of how the system is to be implemented. The decision
whether the action system is to be executed in a sequential or parallel fashion can
be postponed to a later stage, when the logical behaviour of the action system has
been designed. The construction of the program is thus done within a single unifying
framework. Action systems have many similarities with other event-based formalisms
like UNITY [7].

The action system approach makes stepwise refinement of parallel programs simple
and convenient. Parallel programs are Jjust special kinds of sequential statements, so
stepwise refinement of both sequential and parallel programs can be carried out within
the same framework.

The refinement calculus, which is relies on the weakest precondition calculus of Dijk-
stra [8], is a formalization of the stepwise refinement approach to program construction.
It was first described by Back in [2] and has been further elaborated in [6,13,14].

A method for stepwise refinement of action systems in a temporal logic framework
was put forward by Back and Kurki~Suonio [4]. Refinement of action systems within the
refinement calculus has been described by Back and Sere in [5,15]). The total correctness
of an action system .4 is in these frameworks preserved by its refinement A’. However,
the behavior of .4’ during execution may not be the same as the behavior of A. Hence,
the input—output correctness of parallel programs is preserved, but not necessarily their
reactive behavior, i.e., the way in which they interact with their environment during
the execution. Recently these frameworks were extended by Back 3] to cover even this
aspect.

We show through a case study how a proof rule for correctness of refinement in
a reactive context (3] can be used to derive reactive systems. The application area
of our case study is the communication network in a processor farm. The network
together with a protocol for communication over unreliable channels is derived. We
show how asynchronous communication over channels that store and lose messages can
be modeled within our framework.

We proceed as follows. In section 2, we present the action systems formalism. The
proof rule that we base our derivation on is presented in section 3. The case study is
documented in sections 4-7. In section 4, an initial specification is given. In section
9, we introduce a proper form for a processor farm with one master processor and
a number of slave processors. We assume a fully connected network. In section 6,
we develop a system that works on a partialy connected communication network. In



section 7, a communication protocol is imposed between the master and the slaves. We
end in section 8 with some remarks on the methodology.

2 Reactive systems as action systems

Action systems An action system A is an initialized iteration statement
A=|[var z;S;do A1 [ ... [ A 0d ]| : 2

on state variables y = z U 2. The variables z are the global variables and the variables
z are local to A. Each variable is associated with some domain of values. The set of
possible assignments of values to the state variables constitutes the state space. The
initialization statement S assigns initial values to the state variables.

Each action A4; is of the form g; — Si, where the guard g; is a boolean expression
and the body S; a sequential statement on the state variables. The guard of action A4
will be denoted gA and the body sA. The state variables referenced in action A will

be denoted by vA. The behaviour of an action system is that of Dijkstra’s guarded
iteration statement [8].

Parallel action systems Let P = {p,,..., pi} be a partitioning of y, i.e.,
(i) piCyand p; #0, for i = 1,...,k,
(i) Uiy pi = y and

(iii) piNpj =0 when i #j,fori,j =1,...,k.

We identify each partition p; with a process, with the variables in p; as local variables.
We say that action 4 involves process p,ifvANp#0.

Let procA = {p € P | Ainvolves p}. Two actions 4 and B are independent
in partitioning P if procA N procB = (. An action 4 is private in P, if |procA| = 1,
otherwise it is sharedin P. We permit actions that are independent in some partitioning
to be executed in parallel in that partitioning. As two independent actions do not have

any variables in common, their parallel execution is equivalent to executing the actions
one after the other, in either order.

Reactive action systems An action system can be viewed as a reactive program,

where the system interacts with some environment (an other action system) through
its global variables.

Let

A [ var z; S;do A, ] --- | A, od]|: 2 and

B [ var y; T;do By | --- ] B,od]|:u
where S and T only initialize the local variables z and y respectively. The parallel
composition A || B: zU u of A and B is defined to be

AllB=|[var z,y; S; T;do A1 | --- | Am ] Bi| -+ | Baod]l:zUu
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where we assume that z Ny = 0. This is the same as the union operator in UNITY [7],
except that we keep track of which variables are local and which global (UNITY only
has global variables).

Let A be the action system above. Let z = Z1,2. We can hide some of the variables
in A by making them local as follows

A =|[var z; 4] : »

Hiding the variables z makes them inaccessible to the actions outside A’ in a parallel
composition of action systems. Using parallel composition and hiding we can structure
large action systems into smaller, reactive action systems, which commuticate with
each other via the shared, visible variables.

Consider an action system C
C=|{var u;S;do G| - ]| Cnod]|: 2.
Let A= {Ay,...,A;} and B = {By,...,B)} be a partitioning of the actions in C with
z = vA-vB-—:

Yy = vB-vA-2
w vANvB - 2.

We can then write C as follows
C'=|[var w; S, A||B]|:z
where the reactive components A and B are

A [ var z; Ty;do A1 | -- | Ay od]|:w,z
B = |[vary; T5;do By | --- | Biod}|: w,2.

Here S’ : w, z initializes the variables w,2, Ty : z,w, z the variables z and 7, : Yy, w,z
initializes the variables y so that |[ var u; S l:z = |[var u; §'; Ty; T, ]| : z. The
reactive components interact via the visible variables w and z.

3 Derivation of reactive action systems

Reactive refinement Consider an action system A : z, z and its reactive refinement
(to be defined) A’ : 2/, z, where the local variables z,z’ of the action systems may be
different, but the global variables z must be the same. We either have that there is
a one-to-one correspondence between actions in .4 and A/, or that executing a single
action in A corresponds to executing a sequence of two or more actions in .A’. In the
latter case we require that the actions of .4 are simulated by the actions of A’ as will
be explained below.

We permit so called stuttering actions in A’ ) i.e., actions which do not correspond
to any state change in .A. We have that for any execution of the action system A, the
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meaning of A is unchanged (i.e., the weakest precondition transformer is the same) if
we permit a finite number of skip actions (stutterings) to be inserted into the execution.
Moreover, the behavior of A in any reactive context is also unchanged if we add stut-
terings. The only restriction is that we may not add an infinite sequence of successive
stutterings. This framework is similar to the approaches of Abadi and Lamport [1],
Jonsson [10], Lam and Shankar [11] and others.

We have the following general rule for proving refinement in reactive contexts [3].

THEOREM 1 Let A and A’ be two action systems with local variables z = u,v and
z' = ', v respectively and with the global variables z. Then A is reactively refined by
action system A’, denoted A < A', if there ezists a relation R(u,h,u',v) such that the

following conditions hold:
(i) 3h.R(u0, k, u'0, v0).

(i) For each action A’ in A’'

z,h,z = z0,h0,20 A R(u,h,u',v) A g4’
[s4')
du, h.(R(u,h,u',v) A (sA~(gAA 2,z = z0, z0)V (h < hO A 2,z = 20, 20))
must hold.
(iii) R(u,h,v',v) = (gA'=(gAVh > 0)).

Here P[S]Q denotes the total correctness of statement S w.r.t. P and Q@ and S~(P),
the generalized inverse statement of S [6], corresponds to the strongest postcondi-
tion of S w.r.t. P. The O-indexed values denote initial values for the variables.
Further, let A = |[varz; S; do 4; | ... | Am od]| : 2z, which is equivalent to
[ var z; S; do V2, gA; —if 4, | ... | Am fiod ]| : z. Then gA = V2, gA; and
SA=if 4, ] ... | An fi.

Theorem 1 (ii) states that an action in A’ corresponds to an action in A, if it
corresponds to a change in the state in 4. It corresponds to a stuttering action, if it
does not correspond to any change in the state in A

Refinement of reactive action systems The reactive refinement relation has the

basic properties required of a refinement relation, i.e., reflexivity, transitivity and mono-
tonicity [3].

THEOREM 2 Let A, A, A", B, B’ be action systems and w a list of variables. Then the
following properties hold:

(i) Az A

() ARA' A" A< A",

(ili) If A X A’ and B < B’ then
() A|B=A'|| B,



(b) |[var w; A]| 2 |[ var w; A ]|.

This means that we can do stepwise refinement in terms of reactive refinement. Starting

from some action system 4o that serves as the initial specification, we can construct a
sequence of action system refinements

Ao A1 X... XA,

until we reach a reactive system .4, that is considered adequate.

Reactive refinement relation is monotonic with respect to parallel composition and
hiding. This implies that we may replace any reactive component A of a reactive system
C[A] with its reactive refinement .A’. In other words, we always have that

A=A = ClA] < ClA).

A reactive component is here a component built out of action systems using paralle]
composition and hiding.

Preserving temporal properties The reactive refinement relation preserves tem-
poral logic properties: if .4 satisfies a temporal logic formula ¢ and A < A’, then A’
will also satisfy ¢, provided that @ is insensitive to stuttering. A temporal logic formula
¢ is said to be insensitive to stuttering, if ¢(s) & ¢(s’) holds for any two execution

sequencies s and s’ that are the same if any finite sequence of stuttering transitions are
removed from s and s’.

4 Case study: A processor farm in its environment

As a case study in stepwise refinement of reactjve systems we derive an action system
that models the communication structure in a processor farm [9,12]. The farm consists
of a unique master processor and an arbitrary number of identical slave processors.
The purpose of the slaves is to solve in parallel the tasks which originally reside in the
master. After solving a task, each slave returns an answer to the master and receives
a new task. Tasks are assumed to be unique and they can be solved in any order. We
assume for simplicity that the tasks are arbitrary integers. We are not interested in
what it means to actually solve a task.

The tasks are generated by some environment system (not specified here) that
executes in parallel with the farm. They are given to the processor farm for solving
through a queue g. The answers are delivered to the environment through a queue
s. The queues belong to the partition corresponding to the process executing on the
master processor.

Our initial specification Fy for the processor farm is as follows:
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Figure 1: A processor farm.
Fo= |[ var r € bag of integer;
r=0;
do
I lg| >0— z,q:= hd(q),tl(q); r:=r Uf(z) (ins)
Il Irl>0-z:=2'"{2'€r};ri=r—2;8:=5-2 (rem)
od

II: ¢, s € queue of integer

The corresponding partitioning is P = {{g,8,r}}. The nondeterministic assignment
statement z := z'.Q (2] assigns to the variable z an value z’ so that assertion Q holds
for z and z’. The queues and bags are unbounded and have the capacity of storing at
least 1 task. A centered dot - denotes concatenation of an element with a queue. The
integer variable z is assumed to be local to each action body.

We have described the behaviour of the farm with two separate actions, ins and
rem. If only one action is used, an outside observer can observe a temporal property,
where each task that is removed from g, is immediatly solved and the answer is inserted
to s without delay. Our solution models the fact that this takes time. The tasks can be
solved in arbitrary order. We model this property by the bag r: should r be a queue,
we would observe a temporal property where tasks leave ¢ and corresponding answers
enter s in the same order. We assume that the elements are chosen from r in a fair
manner. (For details in fairness issues in this context, the reader is refered to [3].)

In subsequent sections we show how the action system Fg, which interacts with its
environment through the visible variables q and s, is stepwise turned into a processor
farm with a master processor together with n, n > 1, slave processors. The Processors
are connected via a point—to—point network. There is no global memory among them.
Our target architecture is presented in Figure 1.



5 Master and slaves

Refinement step: Split an action We start by creating a solving action. In the
final version we want the actual task solving to be a private action of each slave. We
split the action ins into two separate actions: one action for removing tasks from ¢ and
an other for solving a task. We replace the bag r with a bag ol that holds the tasks
and a queue 02 that holds the answers: if o1 would be a queue, we could observe tasks
floating through the farm in a FIFO order. This replacement can be carried out as r
is local to Fy.
The refining reactive action system Fj is as follows:

F1 = |[ var ol € bag of integer; 02 € queue of integer;

01,02 :=0,0;
do

| lal >0 — z,q:= hd(q),tl(g); 01 := 01 Ux (ins')
| lo1] >0 — x:=x'{x' € 01}; 01 := 01 — x; 02 := 02 -£(x) (sol)
I l02] >0 — x,02 := hd(02),t1(02); 5 := 5 - 2 (rem”)
od

ll: ¢, 5 € queue of integer

(We highlight the refined statements with a different font.) The underlying variable
partitioning is P = {{q, s,01,02}}.

The action ins’ in F; corresponds to action ins in Fo and rem’ in F; corresponds to
action rem in Fo. The new action sol does not correspond to any state change in .
Hence, it corresponds to a stuttering action. The correctness of this reactive refinement
is shown by the following lemma.

LEMMA 1 Fy <X F.

Proor Let R(r,h,01,02) =4 h = lel] A r = (f(o1) U 02). Here h equals the
number of tasks in bag ol, i.e., the maximum possible number of consequtive sol
actions (stutterings).

We have to show that the conditions (i)(iii) in Theorem 1 are satisfied with this
relation:

(i) 3h.R(r0, k, 010, 020) holds with 4 = 0.
(ii) It is easily checked that for each action A in Fi

r,h,q,s = r0,h0, 40,50 A R(r,h, o1, 02) A gA
[s4]
3r,h.(R(r,h,01,02) A (sFs (9FoAr,q,8 = r0, ¢0,50)Vh < hOA T, q,5 = r0, q0, 50))
holds. We have that sF5 (¢Fo A r,q,s = r0, q0, s0) is
g = t(q0) A r = r0 U f(hd(g0)) A |q0] > 0

\
dz€r0.r=r0-2zAs5=30-2A|r0| > 0.
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(iii) R(r,h,01,02) = (¢9F1 = (¢FoV h > 0)) where g% = |g| > 0V |r| > 0,
9F1= g/ >0V]o1l| >0V |02 >0 and k = |ol|. We have that

(<) Assume gFoV h > 0. Then either lg| > 0, which implies |g| > 0, or |r| > 0,
which implies |f(01)U 02| > 0. In the latter case either If (o1)] > 0, which implies
lo1] > 0, or |02| > 0. Finally, if & > 0, then lo1] > 0.

(=) Assume gF;. Then either |g| > 0, which implies |g| > 0, or |o1| > 0, which
implies & > 0, or |02| > 0, which implies |r| > 0.

a

Refinement step: Introduce the slaves We now bring about the n slaves in the
form of the variables y.i, i = 1,...,n. The bag ol is replaced with a queue pl. The
queue 02 is replaced by the variables y and a queue p2 that holds the answers. The
booleans idle.i, i = 1,...,n, denote whether a slave holds a solved task or not. The
action sol is splitted into 2n separate actions and the associated variable partitioning
is P = {{q,s,p1,p2},{y.i,idle.i} fori = 1,...,n}. (We indicate replication of
declarations, statements and actions by a for—clause after the construct.)
The new version of the farm is as follows:

F2 = || var p1,p2 € queue of integer;

idle.i € boolean,y.i € integer for i = 1,...,n;
P1,p2:=0,0; idle.i = true fori=1,... , N
do
I lgl >0 — z,q:= hd(q),ti(q); p1 :=p1-x (ins")
[ Ip1] > 0A idle.i — (sl1.9)
x,p1:= hd(p1),t1(p1); y.i,idle.i := f(x),false
fori=1,...,n
[ —idle.i — p2:=p2-.y.i; idle.i := true (82.9)
fori=1,...,n
[ Ip2l >0 — x,p2 := hd(p2),t1(p2);s:=s-2 (rem")
od

1l ¢, 8 € queue of integer

Each action in F; is shared by a master—slave pair in partitioning P.

The action ins” in F; corresponds to action ins’ in F; and rem” in JF3 corresponds
to rem’ action in F,. The new actions 8l.i,82.i, i = 1,...,n, in F; correspond to
stuttering actions. The correctness of the refinement is shown by the following lemma.

LEMMA 2 Fy X Fo.

ProoF The lemma follows from Theorem 1 with R(ol, 02, h,idle,pl,y, p2) =4 h=
H A o0l =pl A 02 = OUp2 where H is the number of slaves currently busy (i.e., for

which —idle.i holds) and O is the set of answers y.t held by the currently busy slaves.
(m} .



Refinement step: Separate task solving from communication As a final re-

finement in creating the slaves, we isolate the task solving into a private action for each
slave. Let us first decompose the system:

Fs = |[ var pl,p2 € queue of integer;
p1,p2:= 0,0, M || So
1I: ¢, s € queue of integer

where the master M is

M= | do
| lgl >0 — z,q:=hd(q),tl(q); pl := p1 -z (ins")
[ 1p2] >0 — z,p2:= hd(p2),tl(p2); s :=s8-2 (rem)

od

II: ¢,8,p1,p2 € queue of integer
and the slaves Sy are
So = |[ var [idle.i € boolean,y.i € integer] for i=1,...,n;
idle.i = true fori=1,...,n;
do
I Ip1] > 0 A idle.i — (s1.9)

z,pl := hd(pl), tl(pl); y.i, idle.i := f(z), false
fori=1,...,n

| -idle.i — p2 := p2. y.i; idle.i == true (s2.1)
fori=1,...,n
od

1I: p1,p2 € queue of integer

We have that F, = F;. Each action is still shared by a unique master—slave pair.
We now refine the reactive slave component S, separately from the master. We
replace the variables y by the new variables z, and add a boolean array rec.i, i =
1,...,n. Each boolean rec.i denotes whether the corresponding slave has received a
task for solving or not. The partitioning is P = {{r1,p2},{idle.i,z.i,rec.i} for i =
1,...,n}.
The refined system is as follows:

S1 = |[ var idle.i,rec.i € boolean,z.i € integer fori=1,...,n;
idle.i,rec.i = true,false for i=1,...,n;
do
I Ip1| > 0A idle.i — (s1.4)

z,pl := hd(pl), t(pl); z.i, idle.i,rec.i := x, false, true
fori=1,...,n

| rec.i — z.i:=£(z.i);rec.i:= false (ss.1)
fori=1,...,n

[ -idle.i A -rec.i — p2 := p2- z.i; idle.i := true (s2'.9)
fori=1,...,n
od

1I: p1,p2 € queue of integer

10



We now have that the solving actions ss are private in partitioning P.

The actions s1'.i in &; correspond to actions sl.i in Sp and 2.7 in &y correspond
to actions 2.7 in Sg. The new actions 8s.i,i=1,...,n,in 8; correspond to stuttering
actions. The correctness of this reactive refinement is shown as follows.

LEMMA 3 S < S;.

PROOF The correctness of the refinement follows from Theorem 1 using R(y, h, z, rec, idle)
=4t h=H A Vi.l.n. P.iA Q.i where H is the number of slaves currently holding an
unsolved task (i.e., for which rec.i holds), P.i =4 =idle.i A rec.i = y.i= f(z.9) and
Q.i =4 ~idle.i A —rec.i = y.i=2.4. O

Summing up Let F; be as follows

Fa= |[ var pl,p2 € queue of integer;
p1,p2:=0,0; M || S;
1l ¢, s € queue of integer

We then have the following theorem:

THEOREM 3 F3 < Fy.

PRrOOF We have that Sp < S, by Lemma 3. Then F3 < F; follows by Theorem 2
using monotonicity of reactive refinement. O

6 A slave network

Let us turn our attention to the communication actions s1’ and 2. We want to
decentralize the queues pl and p2 so that each slave would have a task queue and an

answer queue of its own. However, we first have decompose the system F, anew, as
the target queues are visible to M in S;. Let therefore

Fs = |[ var idle.i,rec.i € boolean, z.i € integer for i =1,...,n;
idle.i, rec.i = true,false for i=1,...,n;T;| S, | Ao
II: 4,5 € queue of integer

where the task system 7g is

To = |[ var pl € queue of integer;

pl:=;

do

| lgl>0— z,q:=hd(g),ti(q); pl :=pl-2z (ins")
I Ip1] > 0 A idle.i — (s1".7)

z, pl := hd(pl), t(pl); 2.i,idle.i, rec.i := z, false, true
fori=1,...,n

od
1I: ¢ € queue of integer; idle.i, rec.i € boolean, z.i € integer for i=1,...,n

11



the solving actions are

82 = I[ do
[ rec.i — z.i:= f(2.i); rec.i := false ‘ (ss.i)
fori=1,...,n
od

)I: rec.i € boolean, z.i € integer for i = 1,...,n

and the answer system Ay is

Ao = |[ var p2 € queue of integer;

p2:=0;

do

[ -idle.i A —rec.i — p2 := p2- 2.4; idle.i := true (82".9)
fori=1,...,n

0 1p2|>0— z,p2:= hd(p2),tl(p2); s := 5z (rem")
od

1I: & € queue of integer; idle.i, rec.i € boolean, z.i € integer for i=1,...,n

We have that 4 = F5. The reactive components Tg and .Ag are now refined separately.
We only show how to further refine To, Ao is treated in a similar manner.

Refinement step: A task array Let us decentralize the local queue pl of Ty by
replacing it with the queues u.1,...,u.n with the variable partitioning P = {{¢},
{u.i}, {idle.i, z.i,rec.i} fori=1,..., n}. This models a processor farm where each
slave has a separate communication process to receive and forward tasks.

The reactive system 7Tp is refined to T below:

Ty = |[ var u.i € queue of integer for i=1,... , N3
wi=@ fori=1,...,n;
do
I lg>0—1z,q:= hd(g),tl(¢);u.1:=u.1-x (ins™)
| wij>0- (ft.9)

x,ui = hd(ui),tl(ui);u(i+ 1) :=uw(i+1)-x
fori=1,...,n-1
| Jui]>o0Aiddle.s — (s1".4)
X,u.i := hd(u.i),t1(w.i); 2.i,idle.i, rec.i := z, false, true
fori=1,...,n
od
1| ¢ € queue of integer; idle.i, rec.i € boolean, 2.i € integer for i=1,...,n

The action ins™ in T; corresponds to the action ins” in Ty and the actions s1”.i in T
correspond to actions s1’.i in 7p. The new actions ft.i, i = 1,...,n,in 7; correspond to

stuttering actions as they do not correspond to any state change in 7y. The correctness
of this reactive refinement is shown by the following lemma.

12



LEMMA 4 To < T;.

PROOF Let R(pl,h,u) =4 h = |U%; u.i| A pl= U= u.i. The lemma follows from
Theorem 1. O

Summing up Let Fg be as follows

Fe = || var idle.i,rec.i € boolean, z.i € integer for i=1,...,n;
idle.i,rec.i = true,false for i=1,...,n;T; | Sz || Ao
1I: ¢, s € queue of integer

with variable partitioning P = {{q,s,p2},{u.i},{idle.i,rec.i,z.i} fori = 1,...,n}.
In this partitioning, the task solving can go on simultaneously with the communication
of the tasks and answers due to the independence of the actions.

We have the following theorem:

THEOREM 4 Fyz < Fe.

ProOF We have that Top < 7; by Lemma 4. The theorem now follows by Theorem 2
using the monotonicity of reactive refinement. O

7 A communication protocol

Finally, we refine the network further by introducing a more elaborate communication
protocol between some of the processors: we require that each task that is sent by the

master is acknowledged by the first slave. If a task is not acknowledged, it will be
resent.

Let F7 be as follows

Fr = |[ var u.2 € queue of integer for n > 1; idle.1, rec.1 € boolean, 2.1 € integer;

idle.1,rec.1 := true, false; u.2 =9 for n > 1;C, | R
II: ¢, 5 € queue of integer
where

Co = |[[ var u.l € queue of integer;
u.l=0;
do
I lgl >0 z,q:= hd(q),tl(g); u.1:= u.l -2 (ins™)

[ lv.1]>0— z,u.1:= hd(u.1), tl(uv.1); 4.2 := u2-z (ft.1)

forn>1

[ |u.1] > 0A idle.1i — (s1".1)
z,u.l := hd(u.1), tl(u.1); 2.1, idle.1, rec.1 := z, false, true

od

II: ¢, 4.2 € queue of integer; idle.1, rec.1 € boolean, 2.1 € integer

and where R contains the rest of the actions in Fe in the usual manner. We have that

Fe¢ = F7. We have now isolated the task communication between the master and the
first slave by making u.1 local to Co.
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Refinement step: Ack-messages We model the acknowledgements to be sent in
actions ft.1 and s1”.1 by a new queue au that contains the ack-messages, here the

tasks in the order received. This queue resigns in the partition corresponding to the
first slave.

Ci = |[ var u.1,au € queue of integer;
u.l,au:=0,0;
do
[ lgl >0— z,q:= hd(q),tl(q); u.1:= u.l-2 (ins"")
| jul] >0 (f1.1)
z,u.l := hd(u.1),tl(u.1); u.2,au:= u.2- z,au - x
forn>1
| |u.l] >0Aidle.l — (s1.1)

z,u.1 := hd(u.1), tl(u.1);
z.1,1dle.1, rec.1,au := z, false, true, au - x
[ lau| > 0 — au:= t1(au) (ack)
od
1I: ¢, 4.2 € queue of integer; idle.1, rec.1 € boolean, 2.1 € integer

The new action ack in C; corresponds to a stuttering action as there is no correspon-
dance to it in Cp. The correctness of this reactive refinement is shown below.

LEMMA 5 Co < (.

PRrOOF Let R(h,au) =4 h = |au|. The lemma then follows from Theorem 1. O

Refinement step: A loss—only channel Until now we have associated variables
with processes. But we can also associate certain variables with channels as in the
UNITY framework [7]. In our processor farm, all the queues could in principle be
implemented by channels as they are accessed in a very restricted manner: there are
actions that only insert elements to the end of queues and others that only remove
elements from the front of queues provided the target queue is not empty. The following
action system, a reactive refinement of C;, models communication through a channel
that may lose messages.

Let us assume that u.1 and au in C; are unbounded channels between the master
and the first slave. Assume further, that the master keeps a copy, su, of u.1. When an
acknowledgement message via au in an action ack is received, the corresponding task,
which is the first element of su, is removed. Tasks are retransmitted along u.1, if an
acknowledgement for which hd(au) # hd(su) holds is received.
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Cz = |[ var t.1,au,su € queue of integer;
t.1,au,su:=0,0,0;

do
I lgl >0— z,q:=hd(q),tl(q);t.1,8u:=t.1 -x,8u-x (ins"")
I It1}>0— (ft'.1)
x,t.1:=hd(t.1),t1(t.1); u.2,au := u2-z,au -z
forn>1
I It.1] > 0Aidle.i — (s1.1)

x,t.1 := hd(t.1),t1(t.1);
z.1,idle.1,rec.1, au := z, false, true, au - z

| leu|>0— (ack')
do hd(au) # hd(su) — t.1,su:=t.1 - hd(su), t1(su) - hd(su) od;
au,su := tl(au), t1(su)

od

1I: ¢, u.2 € queue of integer; idle.1, rec.1 € boolean, z.1 € integer

We have replaced u.l by t.1 as technically u.1 in C; is not the same variable as t.1 in
C,.

There are no stuttering actions in Cz, but some code is added to actions ins” and
ack.

LEMMA 6 C; < C,.

PrOOF Let R(u.l,t.1,su,au) =4 u.l = t.1 A lau| > 0 = hd(su) = hd(au). The
lemma follows by Theorem 1. O

Summing up Let F3 be as follows

Fs = |[ var u.2 € queue of integer for n > 1; idle.1, rec.1 € boolean, 2.1 € integer;
idle.1,rec.1 := true,false; u.2 =0 for n > 1;C, IR
1l 4, 8 € queue of integer

With the variable partitioning
P = {{q,s,p2,5u},{t.i} fori=2,...,n,{idle.i, rec.i, z.i} fori=1,...,n}

and with the channels ¢.1 and au, Fg models a processor farm, where the tasks are
communicated from the master to the slaves via an unreliable channel t.1, see Figure 2.

We have the following theorem:

THEOREM 5 F7 < Fg.

Proor We have that Cp < C; by Lemma 5 and C1 X C; by Lemma 5. The theorem
now follows by Theorem 2 using transitivity and monotonicity of reactive refinement.
O

The resulting system is a correct reactive refinement of our initial specification:
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Figure 2: A processor farm with two channels.

THEOREM 6 Fy < Fs.

PRrOOF We first have that 5 X F1 by Lemma 1, 7; < F; by Lemma 2, F, = Fs
as only a decomposition is carried out, F3 < F4 by Theorem 3, F4 = F5 due to
decomposition and F5 < Fg by Theorem 4. Further, 77 is a decomposition of F4 and

by Theorem 5 we have that JFr X Fs. Hence, Fy < Fg by Theorem 2 using transitivity
of reactive refinement. O

8 Conclusions

We have demonstrated how a communication network and a protocol for a reactive
distributed system can be stepwise brought about using a combination of the action
systems formalism and the refinement calculus.

We used the parallel composition operator together with hiding to restructure our
action systems and the interfaces between them. Before carrying out the refinements
we decomposed the system so that the target variables became local to small reactive
components. In this way the refinements became manageable in size and the amount
of work in the proofs was reduced.

Each step basically consisted of refining the data representation. The relation R was
in each case quite easy to find: it basically counted the number of possible consecutive
stuttering actions combined with an invariant that holds between the new and the old
variables. A strenght of the approach is that when the relation R is given, the applied
proof rule is directly mechanizable.
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