Termination of term rewriting;:

from many-sorted to one-sorted

H. Zantema

RUU-CS-91-18
June 1991

Utrecht University
Department of Computer Science

S
W%
3 z
\fp N Padualaan 14, P.O. Box 80.089,
7})

3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30-531454

Termination of term rewriting:

from many-sorted to one-sorted

H. Zantema

Technical Report RUU-CS-91-18
June 1991

Department of Computer Science
Utrecht University
P.0.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0824-3275

Termination of term rewriting:
from many-sorted to one-sorted

H. Zantema
Department of Computer Science
Utrecht University
P.O. box 80.089
3508 TB Utrecht
The Netherlands

Abstract

A property of many-sorted term rewriting systems is called persistent if it is not
affected by removing the corresponding typing restriction. Persistency turns out to
be a generalization of direct sum modularity. We show that strong normalization
is persistent for the class of term rewriting systems for which not both duplicating

rules and collapsing rules occur, generalizing a similar result of Rusinowitch for
modularity.

1 Introduction

Usually term rewriting systems are one-sorted: all terms and subterms are of the
same type. The notion of term rewriting systems extends in a natural way to many-
sorted terms. In this case a set of sorts, a set of operation symbols and a set of
variable symbols is given. Each operation symbol has a sort (one of the sorts) and
an arity. This arity is not simply a number, but a sequence of sorts. Each variable
symbol has a sort. For every sort the set of terms of that sort is defined inductively in
a straightforward way. This definition of terms is standard in the theory of algebraic
specifications ([3]).

A many-sorted term rewriting system (TRS) is a set of pairs | — r, where I
and r are terms of the same sort. As usual [is not allowed to be a single variable
and all variables in r also occur in I. Contexts, substitutions and the reduction
relation are defined as expected, inducing definitions of normal forms, weak and
strong normalization and confluency.

This is a very natural definition. One important application of TRS theory
1s in algebraic specifications, and the nature of algebraic specifications is many-
sorted. The above notion of a many-sorted TRS is exactly what is needed for
automatic implementation of many-sorted algebraic specifications and for applying
Knuth-Bendix completion for the many-sorted case. Further, many variations of the
A-calculus can be described as many-sorted TRS’s, like the Ar-calculus.

Any many-sorted TRS is trivially mapped to a one-sorted TRS by removing
all sort information and keeping the same reduction rules. We call a property of
many-sorted TRS’s persistent if a many-sorted TRS has the property if and only if
its adjoined one-sorted TRS has the property.

In this paper we show that every persistent property of the reduction relation
of a TRS is also a modular property. In our view persistency is more basic than
modularity; modularity can be considered as a particular case of persistency. Since
strong normalization is not modular we conclude that it is neither persistent. We
prove that restricting to TRS’s in which not both duplicating rules and collapsing
rules occur, strong normalization is persistent, generalizing Rusinowitch’ result ([6])
stating that strong normalization is modular for the same class of TRS’s.

2 Many-sorted term rewriting

First we introduce some standard terminology. Let S be a finite set representing
the set of types or sorts. An S-sorted set X is defined to be a family of sets (Xs)ses-
If S with #S5 > 1 is not specified we speak about many-sorted instead of S-sorted.
By one-sorted we mean S-sorted with #S = 1; by n-sorted we mean S-sorted with
#S = n. For S-sorted sets X and Y an S-sorted map ¢ : X — Y is defined to be a
family of maps (¢, : X, — Y,)ses. For an S-sorted sets X an S-sorted relation r on
X is defined to be a family of relations (r, C X, x X,),es.

By S* we denote the set of finite sequences of elements of S, including the empty
sequence. Let F be a set of symbols, called operation symbols. For every operation
symbol an arity and a sort is given, described by functions

ar: F—S* and st: F - S.

The combination of F and S is called an S-sorted signature. Operation symbols of
which the arity is the empty sequence are called constants. Let X be an S-sorted set

of symbols, called variables. We define the S-sorted set 7 (F, X) of terms inductively
by

o X, CT(F,X), for s € S;

o f(t1,...,ta) € T(F,X), for f € F with ar(f) = (s1,...,8,) and st(f) = s
and t; € T(F,X), fori=1,...,n.

)

In this description we do not allow overloading: all operation symbols and variable
symbols are assumed to be distinct.

A substitution o is defined to be an S-sorted map o : X — T(F,X). It is
extended to an S-sorted map & : 7(F,X) — T(F,X) by defining inductively

® 5,(z) = o(z)for z € X, and s € S

® 5,(f(t1,---stn)) = f(Gs(t1),..,84,(ta)) for f € F with ar(f) = (s1,...,5,)
and st(f) =s,and t; € T(F, &), fori=1,...,n.

For any t € T(F, X), we write t° instead of ,(t).

An S-sorted term rewriting system (TRS) is defined to be an S-sorted set R
with B, C T(F,X), x T(F,X), for s € S. Elements (I,r) of R, are called rules of
sort s and are often written as I — r if there is no confusion with the many other
meanings of the symbol —. The reduction relation of an S-sorted TRS R is the
S-sorted relation — g on 7(F,X) inductively defined by

o [—p, r7 for every (I,r) € R, and every substitution o;

o f(t1,-..,ta) =R,s f(t1,...,t,...,ta) (only ¢ replaced by t;) for every f € F
with ar(f) = (s1,...,8,) and st(f) = s, and ¢; € T(F,X), fori=1,...,n,
t € T(F,X), and ty —p,, t}.

3k

The usual definition of TRS as in [4, 1] corresponds to the one-sorted case, i.e.,
#S =1.

An S-sorted TRS is called terminating or strongly normalizing if for every s € S
there exist no infinite reductions of the reduction relation — R,s- Notions like weak
normalization and confluence are similarly generalized from one-sorted to many-

sorted TRS’s.

3 Persistency

By removing all sort information every many-sorted term can be mapped to a one-
sorted term as follows. Let F' be the set of symbols obtained by adding a prime
(") to every symbol of . For f € F with ar(f) = (s1,...,8,) we define the arity
of f' € F' to be n. In this way F' defines a one-sorted signature. Since there
is only one sort there is no need for an explicit notation for the sort. We choose
X' = U,es Xs to be the set of one-sorted variable symbols; recall that the sets X,
are assumed to be disjoint.

Every term over F of any sort can be mapped to a term over 7 by adding prime
symbols to all operation symbols. This map

G):UT(.F,X)‘ - T(F,X',
s€S

is inductively defined by
o O(x) = z for every = € X, for every s € S;

® O(f(t1,...,tn)) = f'(O(t1),...,0(t,)) for all f € F and terms t,...,%, of
the right sort.

The map © is defined on TRS’s in an obvious way: for any many-sorted TRS R the
one-sorted TRS ©(R) is defined to consist of the rules ©(l) — ©O(r) for the rules
! = r from R.i On easily observes that for ¢,t' € T(F, X),:

t —R, tV = @(t) —o(R) @(t').

A property of (many-sorted) TRS’s is called a reduction property if it only de-
pends on the reduction relation defined by the TRS, and not on the shape of the
rules of the TRS. For example, confluency, and weak and strong normalization are
reduction properties, left-linearity and orthogonality are not.

A reduction property is called persistent if for every many-sorted TRS R the
property holds for R if and only if it holds for ©(R).

The notion of persistency is closely related to the notion of modularity as it
is discussed in [4, 5]. Modularity has been extensively studied in [6, 7, 8, 5]. A
reduction property of one-sorted TRS’s is called modular if for every pair of (one-
sorted) TRS’s R; and R, with disjoint sets of operation symbols the property holds
for both R; and R; if and only if it holds for R; & R;. Here R; @ Rj denotes the
union of both TRS’s; it is a one-sorted TRS over the disjoint union of the sets of
operation symbols.

Theorem 1 Ewvery persistent reduction property is modular.

Proof: Let p any persistent reduction property of many-sorted TRS’s. Let R,
and R; be one-sorted TRS’s with disjoint sets of operation symbols. We define a
two-sorted TRS R as follows. The sorts are denoted by s; and s;, the operation
symbols are the operation symbols from both R; and R;. The arity of an operation
symbol from R, of arity n is defined to be (sy,s;,...,38;1), and its sort is defined to
be s,. Similarly the arities and sorts of the operation symbols from R, are defined
to consist solely from s;. Now the terms of sort s; of R correspond one-to-one to the
terms of R;. Further the reduction relation at sort s; of R corresponds one-to-one

to the reduction relation of R;. The same holds for ‘1’ replaced by ‘2’, we conclude
that

p(R) <= p(R1) A p(Ry).

On the other hand the terms of ©(R) correspond one-to-one to the terms of R; @ R,
and the reduction relation of ©(R) corresponds one-to-one to the reduction relation

of R ® R;. So
P(O(R)) < p(R: ® Ry).

Since p is persistent p(R) and p(©(R)) are equivalent; combining this with the above
results gives

P(R1 @ Ry) <= p(Ri) A p(Ry),
which we had to prove. O

4 Termination

Since strong normalization is not a modular property we conclude from theorem 1
that strong normalization is neither a persistent property. The basic counterexample
in [8] and the proof of theorem 1 lead to the following counterexample. Let S =
{s1,52}; the following variables and operation symbols are defined:

e z is a variable of sort s;;

® y,z are variables of sort sy;

e 0,1 are constants of sort s;

e f is an operation symbol of sort s; and arity (s;, s, $1);
® g is an operation symbol of sort s; and arity (s3, s3).

Let the S-sorted TRS R consist of the following rules:

f(0,L,z) — f(z,z,2)
9(y,2) — y
9(y, 2) - z.

One easily shows that the S-sorted TRS R is strongly normalizing, while
f(g(ov 1),9(0’ 1),9(0, 1)) - f(0,g(0, 1)ag(oa 1)) - f(oa lag(oa 1)) -
f(g(o, 1),9(0a 1)a g(O’ 1)) A

is an infinite reduction in ©(R). This implies that strong normalization is not a
persistent property.

In this paper we show that strong normalization is persistent for a particular class
of many-sorted TRS’s. For defining that class we need some definitions. A reduction
rule is called a collapsing rule if its right hand side is a single variable. A reduction
rule is called a duplicating rule if for some variable the number of occurrences in the
right hand side is greater than the number of occurrences in the left hand side. For
example, in the above example the first rule is duplicating and the second and the
third are collapsing rules.

In [6] it is shown that strong normalization is modular in the class of one-sorted
TRS’s without collapsing rules and also in the class of one-sorted TRS’s without
duplicating rules. In this paper we generalize this result: we show that strong
normalization is persistent for the class of many-sorted TRS’s not containing both
collapsing rules and duplicating rules.

Any infinite reduction of R is trivially translated to an infinite reduction of O(R).
As a consequence, strong normalization of ©(R) implies strong normalization of R.
The difficult part is the converse: assume strong normalization of R and derive strong
normalization of ©(R). Without loss of generality we assume that F’ contains some
symbol of empty arity; so the existence of an infinite reduction of ©(R) implies the
existence of an infinite ground reduction of O(R).

5 No collapsing rules

We shall define a well-founded partial order on ground terms in such a way that the
value of a term decreases by applying any non-collapsing rule of ©(R). This will
prove strong normalization of ©(R) if R contains no collapsing rules.

Let R be a strongly normalizing S-sorted TRS over function symbols F. Choose
one variable symbol y, for every sort s, let J be defined by Vs = {y,}. Let T =
Uses T(F,)), and let >7 be the relation on T defined by

t>rt’ <= t,¢ have the same sort s and ¢t —}, t'.

Here —}, denotes the transitive closure of —nR,. Since R is strongly normalizing

>t is a well-founded partial order on T. Let >; be the lexicographic order on IN x T
defined by

(k) >1 (K,t) <= k>KV(k=FKAt>rt)

it is also well-founded. Let M(IN x T') be the set of finite multisets over IN x T and
let >p be the corresponding multiset order induced by >;. It is well-founded again,

6

see [2]. The empty multiset is denoted by [], a one element multiset by [(k,)] and
multiset union by | .
We define four functions on one-sorted ground terms:

sort : T(F') — S, rank:T(F') — N,
top: 7(F') —» T, mult: T(F')— M(N x T).

For any operation symbol f of arity (s1,...,s,) and sort s, and any uy,...,u, €
T (F') we define
sort(f'(u1,...,un)) = s.

We define a partition of {1,...,n} into two subsets A and B by
A={ie{1,...,n}|sort(u;) = s;},

B={ie{1,...,n} | sort(u;) # s;}.
Now rank, top and mult are defined inductively by

rank(f'(u1,...,un)) = max(r';‘lsa/.lxrank(u,—),r’_réaéx(rank(u,-)+1)),

top(f'(ur, ..., ua)) = f(t1,...,tn),
where ¢, = top(y;) if i€ A,
L = ya if i€ B,

mult(f'(u1,...,un)) = (|:| mult(ui)) || (|][(rank(u;), top(u:))}).

i=1 i€B

The base of this inductive definition is in the operation symbols of empty arity; the
maximum of an empty set of natural numbers is defined to be 0, the multiset union
of an empty set of multisets is defined to be [].

The idea of this technical definition is the following. Each one-sorted term can
uniquely be split up into maximal many-sorted parts. These many-sorted building
blocks are organized in a tree structure. Now sort denotes the sort of the root of the
one-sorted term, rank the height of the corresponding tree structure, top the building
block containing the root, and mult the multiset of all building blocks, labelled with
their heights, except for the building block containing the root.

We define the weight function W : T(F’) —» M(IN x T) by

W(u) = mult(u) || [(rank(u),top(u)],

so the weight is the multiset of all building blocks labelled with their heights, in-
cluding the building block containing the root. We shall prove that W(u) >m W(v)

for every ground reduction step u — v in O(R) if R contains no collapsing rules.
Before doing so we need some lemmas.

Lemma 2 Let u € T(F'). Then k < rank(u) for every (k,t) € mult(u).

7

Proof: By induction on the structure of u. Let u = f'(uy,...,u,) and let (k,t) €
mult(u). Then either

(k,t) € mult(u;) for some i, giving k < rank(y;) < rank(u),

or
k = rank(u;) for some i € B, giving k < rank(y;) + 1 < rank(u).

For any one-sorted ground substitution o : X’ — T (F') we define a correspond-
ing S-sorted substitution & for which &, : X, — T(F,)), is defined by

3 2 if sort(o(z)) # s
Gs(z) = { top(o(z)) if sort(o(z)) = s.

Lemma 3 Let o : X' — T(F') be any one-sorted ground substitution and let t €
Uses T(F, X), be any term with t € U,es X,. Then

top(©(t)°) = 4.

Proof: By induction on the structure of ¢. Let ¢t = f(¢,,...,t,) for some f of sort
s and arity (s1,...,8,). Definefori=1,...,n:

fo= {y,‘ if sort(©(t;)7) # s;
' top(©(2;)7) if sort(O(¢;)?) = s;.

If t; is not a variable then sort(©(t;)°) = s;. From the induction hypothesis we
conclude ¢/ = {;. If t; is a variable, then t7 = {; according to the definition of 5. So
for all: =1,...,n we have t7 = ;. We conclude

top(O(t)”) = top(O(f(ts,...,ta))")
top(f/(©(t1)°, ..., O(ta)"))

f(i’l"'-a{n)
= f(t1,...,t)
= .

Lemma 4 Let | — r be any rule of an S-sorted TRS. Let o : X' —. T(F') be any
one-sorted ground substitution for which sort(I”) = sort(r”). Then

top(©(1)7) > top(O(r)”).

Proof: From lemma 3 we obtain top(©(!)®) = I°. If r is no variable we obtain
from lemma 3 that top(©(r)?) = r%; if r is a variable we obtain the same from the
definition of &. In both cases we derive from the definition of >7:

top(0(1)°) = I° > r® = top(O(r)?).

Lemma 5 Let l — r be any rule of an S-sorted TRS. Let o : X' — T(F') be any
one-sorted ground substitution. Then

rank(©(1)7) > rank(©(r)").
Proof: For any term ¢ in 7(F, X) define

A(t)= |J{z € X, | z occurs in t and sort(z?) = s},
s€S

and

B(t)= |J{z € X, | z occurs in t and sort(z°) # s}.
s€S

Using the definition of rank one easily proves by induction on the structure of ¢ that

rank(0(t)%) = ma,x(xrg?()t{) rank(z),zrélg,(af)(rank(m)+ 1))

for every non-variable term ¢. Since all variables of r occur in ! we have A(r) C A({)
and B(r) C B(l), and the lemma follows, also if r is a variable. O

Lemma 6 Let | — r be any rule of an S-sorted TRS. Let o : X' — T(F') be any
one-sorted ground substitution for which sort(1°) = sort(r”). Then

W((1)7) >u W(O(r)").
Proof: For any term ¢ in T(F, X) define
p(t) = (rank(©(¢)”), top(O(t)7));
by definition p(t) is an element of W (t). Lemmas 4 and 5 imply
p(©(1)7) >1 p(©(r)).

Lemma 2 implies that all other elements of W(©(r)?) are smaller than p(O(r)7)
with respect to >;. We conclude that all elements of W(©(r)?) are strictly smaller

than the element p(©(1)”) of W(©(1)?) with respect to >;. This proves the lemma.
(]

Lemma 7 Let u,v € T(F') for which rank(u) > rank(v). Then
mult(u) >a mult(v).

Proof: Note that rank(u) > 0. From the definitions of rank and mult easily follows
that mult(u) contains an element (ko,to) with ky = rank(u) — 1. From lemma 2
we conclude that k < rank(v) < ko for every (k,t) € mult(v). So all elements

of mult(v) are strictly smaller with respect to >; than (ko,to) € mult(u). Hence
mult(u) >p mult(v). O

Lemma 8 Let f' € F' of arity n > 0 and let uy,...,un,uf € T(F') for which
sort(ux) = sort(u}) and W(ux) >p W(u}) and top(ux) >r top(u}). Let

u=f(ur,...,un) and v = fl(ur,...,u,...,u,))
(only up replaced by u)). Then
W(u) >y W(u') and top(u) >7 top(u').
Proof: By definition we have either top(u) = top(u') or
top(u) = f(...,top(u),...) and top(v') = f(...,top(u}),...).
Since top(ux) >7 top(us) and >7 is closed under contexts we conclude in both cases
that top(u) >r top(u’).

From lemma 2 and W(ux) >u W(u;) we conclude that rank(uz) > rank(u}).
From the definition of rank follows rank(u) > rank(u’).

Let (s1,...,8n) = ar(f) and s = st(f). As before let
A={ie{1,...,n}|sort(u;) = s;},
B={ie{l1,...,n}|sort(u;) # s;}.

Now by definition

W) = (|]mut(u)) || (1] [(rank(us), top(u)l)] [(rank(u), top(a))]

i=1 i€B

we have to prove that W(u) >y W(u').
We distinguish two cases: k € B and k € A. First assume k € B. Combining
the inequalities W (ur) > W(u}) and (rank(u),top(u)) >, (rank(u'), top(u’)) gives

mult(us) | J[(rank(ue), top(uk))] | |[(rank(u), top(u))] >
mult(us) | [(rank(u}), top(uf))] L [[(rank(u') top(u)].

10

Add to both the left hand side and the right hand side of this inequality
(Ll mult(u)) [([[(rank(us), top(us))]).
k

i=1,.on,if i€B\{k}
Then the left hand side is equal to W (u) and the right hand side is equal to W(u'),
proving W(u) >y W(u').

For the remaining case k € A first assume that top(uz) >7 top(u}). Since > is
closed under contexts we then have top(u) > top(u’). Since rank(u) > rank(u’) we
obtain

(rank(u), top(u)) > (rank(u'), top(u')).
From lemma 2 we conclude that all elements of W(u') are strictly smaller with
respect to >; than (rank(u), top(u)) € W (u), proving W(u) >u W(u').

In the remaining case we have k¥ € A and top(uz) = top(u}). If rank(u;) =
rank(u;) we conclude from W(ur) >p W(u}) that mult(ug) >p mult(u}). On
the other hand if rank(u;) > rank(u}) then we conclude from lemma 7 that again
mult(ux) >» mult(ul). Adding (rank(u), top(u)) >, (rank(u’), top(u’)) gives

mult(ux) | |[(rank(w), top(u))] > mult(u) |_[(rank(u’), top(u'))].
Add to both the left hand side and the right hand side of this inequality

(L_I kmult(u;)) LJ (.L_}lg[(rank(u.-),top(u,—))]).

i=1,...,n,

Now the left hand side equals W(u) and the right hand side equals W(v’), so
W(u) >p W(w'), concluding the proof. O

Lemma 9 Let R be a strongly normalizing S-sorted TRS without collapsing rules.
Let u,v € T(F') for which u —o(r) v. Then W(u) >y W(v) and top(u) >7 top(v)

Proof: Induction on the structure of the relation —o(Rr)- The base of this induction
follows from lemma 4 and lemma 6; the condition sort(l°) = sort(r?) is trivially

fulfilled since there are no collapsing rules. The induction step is exactly lemma 8.
o

Theorem 10 Let R be an S-sorted TRS without collapsing rules. Then R is strongly
normalizing if and only if O(R) is strongly normalizing.

Proof: The ‘if’-part is trivial. For the ‘only if’-part let R be a strongly normal-
izing S-sorted TRS and assume that there is an infinite ©(R)-reduction. Ground
substitution in this reduction leads to an infinite ground O(R)-reduction. Apply-
ing the weight function W to this reduction leads to an infinite strictly descending
chain in M(IN x T) with respect to > M, according to lemma 9. This contradicts the
well-foundedness of the order > on M (NxT). O

11

6 No duplicating rules

For proving persistency of strong normalization of TRS’s without duplicating rules,
we need an extra function size : 7(F’) — IN defined inductively by

size(f'(u1,...,u,)) = #B + i:size(u.-)

for any operation symbol f of arity (si,...,s,) and sort s, and any uy,...,u, €

T (F'), where B is defined by

B={ie{1,...,n} | sort(w;) # s;}.

So size is the number of many-sorted building blocks minus one.
We define a new weight function W’ : 7(F') = IN x M(IN x T) by

W'(u) = (size(u), W(u)).
The lexicographic order >1, on IN x M(IN x T') is defined by
(n,m) >p (n',m') <= n>n'V(n=n'Am>ym),

clearly this order is well-founded. We shall prove that W'(u) > W'(v) for every

ground reduction step u — v in ©(R) if R contains no duplicating rules. First we
derive some properties of size.

Lemma 11 Let | — r be any non-duplicating rule of an S-sorted TRS. Let o :
X' — T(F') be any one-sorted ground substitution. Then

size(©(1)”) > size(O(r)?).

Proof: For any term ¢ in 7(F,X) and any = € X' let n(t,z) be the number of
occurrences of z in ¢, and let

B(t) = |J{z € X, | z occurs in t and sort(z’) # s}.
s€S

Using the definition of size one easily proves by induction on the structure of ¢ that

size(O(t)") = () n(t,z) *size(z”)) + Y n(t,z).

zeX' z€B(t)

for every non-variable term ¢. Since n(l,z) > n(r,z) for all z € X' the lemma
follows, also if r is a variable. O

Lemma 12 Let R be an S-sorted TRS. Let u,v € T(F') for which u —o(R) v and
sort(u) # sort(v). Then size(u) > size(v).

12

Proof: This is only possible if u = ©(I)” and v = z° for some o : X’ — T (F’) and
some collapsing rule | — z. Let O(!) = f'(u1,...,u,). If ux = z for some k then
the lemma follows from the definition. Otherwise = occurs in some non-variable uy,
and assuming size(uf) > size(z”) as an induction hypothesis we obtain

size(u) = size(f'(...,ux,...)7) > size(uf) > size(z?) = size(v).

Lemma 13 Let R be an S-sorted TRS without duplicating rules. Let u,u’ € T(F)
for which u —gg) u'. Then

size(u) > size(u’) Vv (size(u) = size(u') A W(u) >p W(u') A top(u) >r top(u')).

Proof: First assume that u = ©(l)” and u’ = r° for some rule ! — r. If sort(u) =
sort(u’) then the lemma follows from lemmas 11, 4 and 6; otherwise it follows from
lemma 12.

Next let ux —o(r) uf, for

u=f'(u1,...,us) and o' = f'(ug,...,u,...,u,))

(only uy replaced by uj) for some operation symbol f of arity (sy,...,s,). As an
induction hypothesis we assume that the lemma holds for (u,u}). If sort(ui) =
sort(u;) then from the definition of size follows that size(u) > size(u’) & size(uy) >
size(u;) and size(u) = size(u’) & size(ux) = size(u}). Now the lemma follows from
lemma 8.

In the remaining case we have sort(ux) # sort(u}). From lemma 12 now follows
size(ux) > size(u}); from the definition of size we conclude

size(u) > size(u’) V (size(u) = size(u’) A sort(uz) = s;).

If size(u) > size(u’) we are done, in the remaining case we have sort(uy) = s and we
have to prove that W(u) >u» W (') and top(u) >7 top(u’). Since sort(ux) # sort(ul,)
we conclude that uy = ©(I)” and uj, = z° for some collapsing rule ! — z. From
the definition of top follows that top(u) —g top(u’), so top(u) >r top(u’). Since
rank(u) > rank(u’) we conclude W(u) >p W(u'). O

Theorem 14 Let R be an S-sorted TRS without duplicating rules. Then R is
strongly normalizing if and only if O(R) is strongly normalizing.

Proof: The ‘if’-part is trivial. The ‘only if’-part follows from the fact that W* (u) >t

W'(u') for every u,u’ € T(F') for which u —o(r) ¥, which is immediate from lemma
13. O

13

References

[1] N. Dershowitz, J.-P. Jouannaud, Rewrite Systems. Handbook of Theoretical
Computer Science, vol. B: Formal Models and Semantics (ed. J. van Leeuwen),
pp- 243—320, Elsevier/MIT press, 1990.

[2] N. Dershowitz, Z. Manna, Proving Termination with Multiset Orderings. Com-
munications of the ACM vol. 22(8), pp. 465—476, 1979.

[3] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification. Vol 1, EATCS
Monographs on Theoretical Computer Science 6, Springer, 1985.

[4) JW. Klop, Term Rewriting Systems. To appear in: Handbook of Logic in
Computer Science, vol. 1 (eds. S. Abramsky, D. Gabbay and T. Maibaum),
Oxford University Press, 1991.

[5] A. Middeldorp, Modular Properties of Term Rewriting Systems. Ph.D. thesis
Free University Amsterdam, 1990.

[6] M. Rusinowitch, On Termination of the Direct Sum of Term Rewriting Systems.
Information Processing Letters vol. 26, pp. 65—70, 1987.

[7] Y. Toyama, On the Church-Rosser Property for the Direct Sum of Term Rewrit-
ing Systems. Journal of the ACM vol. 34(1), pp. 128—143, 1987.

[8] Y. Toyama, Counterezamples to Termination for the Direct Sum of Term
Rewriting Systems. Information Processing Letters vol. 25, pp. 141—143, 1987.

14

