Symmetric orderings for unsymmetric
sparse matrices

H.A.G. Wijshoff

RUU-CS-91-19
June 1991

Utrecht University

W :

< - Department of Computer Science
P

s gi) Padualaan 14, P.O. Box 80.089,

4771 '8\» 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Symmetric orderings for unsymmetric
sparse matrices

H.A.G. Wijshoff

Technical Report RUU-CS-91-19
June 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Symmetric Orderings for Unsymmetric Sparse Matrices*

Harry A.G. Wijshoff

Department of Computer Science
Utrecht University

Abstract

The efficient solution of large sparse systems of linear equations is one of the key
tasks in many computationally intensive scientific applications. The parallelization
and efficiency of codes for solving these systems heavily depends on the sparsity struc-
ture of the matrices. As the variety of different structured sparse matrices is large,
there is no uniform method which is well suited for the whole range of sparse matrices.
Investigations in the problem of parallelizing direct methods for solving large, struc-
turally unsymmetric, sparse systems of linear equations has led to the development

of a collection of new ordering algorithms (heuristics) for structurally unsymmetric,
sparse matrices.

1 Introduction
Implementations of direct solvers for solving general sparse linear systems of equations:
Az =b

mostly perform very poorly on vector/parallel architectures. This is mainly caused by
the fact that the exploitation of parallelism and vectorization of such a code is strongly
dependent on the sparsity structure of the matrix A. As the sparsity pattern of the matrix
A is assumed to be arbitrary and unstructured, the utilization of any parallelism and/or
vectorization will lead in most cases to very inefficient code. It is here that orderings can
play an important role, because they transform the sparsity structure of a sparse matrix
into a special form which renders the possibility of efficient parallelization or vectoriza-

tion. There are essentially two types of orderings, unsymmetric orderings and symmetric
orderings.

Definition 1.1
i) An ordering of a sparse matriz A is called symmetric if the ordering can be represented
by

A=PAPT,

*This work was done in part while the author was visiting CSRD, University of Illinois, 305 Talbot
Lab., 104 S. Wright St., Urbana, Ilinois 61801 under funding of the National Science Foundation under
Grant No. US NSF CCR-8717942, and the US Department of Energy under Grant No. US DOE DE-
FG02-85ER25001.

with P a permutation matriz.
i) An ordering of a sparse matriz is called unsymmetric if the ordering can be represented
by
A=PAQT,
with P and Q permutation matrices.

Note that symmetric ordering have the property that the associated graphs of A and A
are isomorphic, i.e., only the numbering of the nodes differs. For a formal definition of the
associated graph of a sparse matrix, see the next section. Unsymmetric orderings are ob-
tained by independent row and column interchanges of the matrix, with P representing the
row interchanges and Q representing the column interchanges. So, where the unsymmetric
orderings change certain properties of the sparse matrix, like, for instance, the eigenvalues,
symmetric orderings maintain these. Also, if 4 is a diagonally dominant matrix, then after
a symmetric ordering the resulting matrix will still be diagonally dominant, whereas an
unsymmetric ordering destroys this property. One can very well ask whether it makes any
sense to maintain properties of an arbitrary sparse matrix A, which in most cases does
not have any of these nice properties. However, as will be pointed out in section 4, these
symmetric orderings can be preceded by possibly an unsymmetric ordering which brings
the matrix into a more (numerically) acceptable form, which is maintained throughout
the symmetric ordering.

In this paper we will describe some new algorithms (heuristics) for symmetric orderings
which bring a general sparse matrix into “bordered upper triangular block form”. The
advantage of such a form is that it allows large grain parallelism when computing the
LU factor of the matrix. Orderings for unsymmetric! matrices received less attention in
the literature than orderings for symmetric matrices. Lately a number of unsymmetric
orderings for unsymmetric matrices have been proposed [EGL*87], which bring a matrix in
bordered upper triangular block form. These orderings, however, do not allow an effective
factorization. This is caused by the fact that the numerical values of the entries of the
matrix are not taken into account when ordering a matrix. The orderings as described
in this paper are based on two algorithms commonly used for ordering matrices: Tarjan’s
algorithm [Tar72] and Nested, One-way Dissection [Geo73]. From these two orderings
which are very different in nature (Tarjan’s algorithm brings an unsymmetric matrix into
lower triangular block form and Nested, One-way Dissection brings a symmetric matrix
into arrowhead form, i.e., doubly bordered diagonal block form) two orderings are derived
H1 and H2 which both bring an unsymmetric matrix in bordered upper triangular block
form. The composition of these two orderings appears to be very effective and is used in
the hybrid ordering: H*, which will be described in section 4.

2 The H1 Ordering

For describing the orderings in this section and in the other sections we need some graph
theoretical concepts. We will briefly introduce the relationship between sparse matri-

ces and graphs. For a more detailed account of this relationship the reader is referred
to [BM76, DERSS6].

!Whenever we refer to a sparse matrix as (un)symmetric we mean throughout the paper: (un)symmetric
in structure.

aAhLhwWN—

Figure 1: A 5 x 5 sparse matrix and its associated digraph.

Definition 2.1 Given an unsymmetric (square) sparse matriz A (N x N). The digraph
associated with A is defined to be the graph G(V, E) with |V| = N such that (z,y) € E if
and only if (z,y) is a non-zero entry in A.

In other words A is the adjacency matrix of G(V, E). An example of a 5 X 5 sparse matrix
and its associated digraph are depicted in figure 1. A symmetric ordering is nothing else
than a suitable numbering of the nodes of the associated digraph.

Tarjan’s algorithm [Tar72] for bringing a sparse matrix into lower triangular block form

is an efficient algorithm (O(|V| + | E|)) for finding the strongly connected components of
the associated digraph.

Definition 2.2 Given a digraph G(V, E). A strongly connected component is a mazimal
connected subgraph G'(V', E') of G such that all paths from one node in G' to another
node in G’ include only nodes from G'.

The algorithm is based on a depth-first search on the graph G and makes use of a stack
ST to store the current, strongly connected component. Whenever a strongly connected
component is found the stack is emptied and the search for a new strongly connected
component starts. A strongly connected component is found whenever all edges from any
node of a subtree of the depth first search tree point only to nodes which are contained
in that subtree. To verify this condition a node «a of the tree is labeled with a low value
indicating “the highest node in the tree which is pointed to by a node of the subtree
with root a”. If the depth-first search traverses in the upward direction (backtrack) the
low value of the current node is updated by the minimum of the low value it already
had and the low value of its son. Whenever the low value is equal to the numb value

and all neighbors of a node have been considered, the condition of a strongly connected
component is met.

Tarjan’s Algorithm

t=1
1 Choose an arbitrary node a of G which has not been considered yet
(If all nodes have been considered then the algorithm is finished);
2 Push o on the stack ST and assign:
numb(a) = low(a) = 1;
t=1+1;
3 if not all neighbors of & have been considered yet;
then
Take a neighbor 8 of a which has not been considered yet;
if 8 is on the stack;
then
low(a) = min(low(a), numb(5));
goto 3;
else (8 is not numbered yet)
a = f;
goto 2;
else
if low(a) is equal to numb(a);
then
STRONGLY CONNECTED COMPONENT FOUND;
remove a and all entries on top of & from the stack;
discard all edges pointing to these nodes;
4 if stack is not empty;
then

take 8 which caused a to be pushed on the stack and assign:
low(B) = min(low(a), low(B)); and
a = 3 (backtrack);
goto 3;
else
goto 1;

In figure 2 the contents of the stack is depicted during the Tarjan’s algorithm on a sample
graph. Of every pair i-j, the first number is the numb value of a node and the second
number indicates its low value. Below each stack the corresponding step of the algorithm
is shown (for instance, 3te should be read as “the else~clause of the then—clause of step
3).

A disadvantage of this ordering is that most sparse matrices do not allow a nice de-
composition into strongly connected components2. This is particularly the case whenever
the matrix contains a large cycle. This is caused by the fact that, if the associated di-
graph has a long cycle a;, as,. .., a,,a, then all the nodes of this cycle have to be in one
strongly connected component. In figure 3 and figure 4 a sparse matrix (west2021 from
the Harwell/Boeing collection [DGLP82]) is depicted together with the reordered matrix
after using Tarjan’s algorithm combined with a transversal algorithm to obtain a zero—free
diagonal (see section 4). As can be seen the resulting matrix has one very large diagonal

2Strongly connected components form a unique decomposition of a graph.

A At
UL L
O~V N

RN
(N
O~V N

AN
22 UL N L
B30~ 0NN
AN

[
A0~V NA

UL |
o~V INNA

et HID N
Por 8t
OO N A

1Tean
[
o~VWINN

-HHHOWINDNA
UL L
D0 Nt

RPN
[|
VI~V INNA

NWINDNA
[L L
@~ 0NN

TSI
11
O~WN N

~WINN -

4t 3et

2 3tt 3tt 4t 3tt 4t 4t 2 3et 4t

2

2
3te 3te 3te 3ta

2 3tt 3at 4t 2

2

2
3ta 3te 3te

2

3te

9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 2: The stack contents during Tarjan’s algorithm on a sample graph.

Figure 3: The west2021 matrix of the Harwell/Boeing collection.

block. This leads to a bad load balance whenever the diagonal block structure is used to
parallelize the LU factorization.

Because of the above mentioned we developed an ordering H1 based on Tarjan’s al-
gorithm, which extracts from the digraph a small set of nodes such that the remaining
graph allows a better decomposition into strongly connected components. In the order-
ing the size of each strongly connected component is monitored during construction, and,
whenever the size grows larger than a certain threshold (Tsize), an attempt is made to
delete a small number of nodes from the graph such that the strongly connected compo-
nent will not grow any further. The number of nodes to be removed from the graph for
each strongly connected component has to be smaller than another threshold (Tsepara-
tor), which is mostly expressed as a fraction of the size of the current strongly connected
component. The total set of nodes which have been removed from the graph will form a
border in the resulting matrix when they are numbered last.

Suppose in Tarjan’s algorithm the numd and low value of a current node a equals
N and M respectively (M < N). In this case N — M gives an indication of how many
more nodes will be added to the nodes of the subtree of a before a strongly connected
component is found. On the other hand, if all the nodes on the path from low(a) to a,
not including o itself, were deleted from the graph, then either, the low value of a would
become equal to a, or the low value of & would point to a node 3 for which the low and
numb values would become equal. The first case happens when the nodes on the path
from low(a) to a are numbered consecutively. If this condition is not met, the latter case
could happen. In figure 5 these 2 cases are shown. For both cases the nodes numbered 1
and 2 are removed from the graph. In the first case the deletion of the nodes would result
into a being the root of a strongly connected component. In the second case, more than
one strongly connected component will be formed. However, because of the numbering,
viewing the remaining nodes on the stack as one strongly connected component will still
maintain the single strongly connected components as separate diagonal blocks in the

h] RutEt R
i L u
N W e 4l
{ o o
. -
l + - v'"\'\- .’g
ety .l T
A ey, R L t ave wibs . ..
TR L in
R ;
b oa]
Y . VN '
R j
4 n, '
2N Lont | i
. . 't
. J HE o
. tl '
Moy oo i
IS - o
I > . :
1 W |
l‘ I o :
I’ .] . ¥ H
] D
! X [
! v Ky i
* - TN
1 . D) .
J \“:| -’

Figure 4: west2021 reordered by Tarjan’s algorithm.

reordered matrix. To distinguish between “real” strongly connected components and the
ones obtained by removing nodes from the graph, we call the later ones cut connected
components.

Based on the previous observation a simple implementation of H1 is obtained. This
implementation requires checking the conditions whether the size M of the current strongly
connected component is larger than Tsize and the condition that the number of nodes to
be removed is smaller than Tseparator times M. In case 2 of figure 5 one can see that the
contents of the stack would be: 1,2,3,4,5,6,7,8,9 and @ = 5. The nodes of the current
strongly connected component are 3,4,5,6,7,8,9 and the nodes to be removed are 1, 2. So,
just taking the number of nodes on top of a as the size of the current strongly component
will not work in this case. Hence, in order to monitor the size of the current strongly
connected component Tarjan’s algorithm is modified so that each element is removed
from the stack and stored in a set CSCcomponent, whenever backtracking occurs. The
resulting implementation of H1 is obtained by changing step 3 and 4 of Tarjan’s algorithm

to:

-1

3 if not all neighbors of a have been considered yet;
then
Take a neighbor 3 of a which has not been considered yet;
if 3 is on the stack;
then
low(a) = min(low(a), numb(f3));
goto 3,
else (8 is not numbered yet)

else
if low(a) is equal to numb(a);
then
STRONGLY CONNECTED COMPONENT FOUND;
remove « from the stack;
a together with the nodes of CSCcomponent form the
strongly connected component;
discard all edges pointing to these nodes;
make CSCcomponent empty;
else
if the number (M) of elements in CSCcomponent
is larger than Tsize;
then
if the number of nodes on the stack
on top of low(a) < Tseparator x M (*);
then
CUT CONNECTED COMPONENT FOUND;
move all the nodes in the stack
below a and above low(a)
(including low(a)) to the border;
a together with the nodes of CSCcomponent
form the cut connected component;
remove low(a) and all entries on top
of low(a) from the stack;
discard all edges pointing to these nodes;
make CSCcomponent empty;
4 if stack is not empty;
then
take B which caused a to be pushed on the stack and assign:
low(B) = min(low(a),low(B));
remove « from the stack and store it in CSCcomponent;
a = 3 (backtrack);
goto 3;
else
goto 1;

4 o’é’ OO\O 4 o’ﬂ. 6 c[o
|]
! R

Figure 5: The 2 different cases when deleting nodes on the path from low(ea) to a.

(*) Note that because the nodes on which backtracking occurred are all removed from the
stack the number of nodes on top of low(a) equals the number of elements to be removed
from the graph exactly.

The above described algorithm still does not give a satisfactory solution whenever the
graph contains a large cycle, for instance. In this case the algorithm will push the cycle
onto the stack and by descending the stack it will at some point (when the threshold is
reached) put the remaining elements of the cycle in the border. This will affect the size
of the original strongly connected component only marginally. For these cases there are
two possible solutions. One solution is obtained by calling this algorithm recursively for
the remaining graph (the graph with the border nodes deleted). In the case of the large
cycle a second pass through the graph will cut the cycle at any given point as the first
pass already cut the cycle once. The recursive calls, however, are very costly because the
size of the remaining graph does not reduce significantly with each step.

The main reason for this algorithm to be not optimal is the fact that removing all the
nodes in between a and low(a) from the graph is not really necessary as only these nodes
have to be removed which are pointed to by nodes in the CSCcomponent. So, another
solution is given by a different variant of this algorithm. For this variant the neighbors
of a node which are lower in the stack than a particular threshold (Tpoint) are ignored.
To be specific in the then clause of the first then clause in step 3 of H1 low(a) is only
updated if low(a) — numb(p3) is smaller than Tpoint. After this the detection of the cut
connected component is a little bit more tedious. All the nodes of the CSCcomponent
have to be checked whether they have neighbors in the stack lower than low(a) in which
case these neighbors need to be added to the border. This search has to be done only for
these nodes of CSCcomponent which have not been updated once in step 3. This can be
easily achieved by marking these nodes whenever this occurs. So, the second then clause

[}) -
y P - "]
i e :-i {
)
1, Y r '|. e :! 1
" T ; {
\ e)
Vo B 5 ¢ :
s - . [.
& T e ! M
IING e :
o i 3
A
. |
- iL; . 4 "
: MR | .
- - 1
! O . Voo
e e s o
R ! !
wrt b ! _-'i
i3) o U
". “ \ ' ,‘- ,J! T h
e eed (A OV y
1 1
r by
. t »
n gt . N g
H K, iy
£ ' . 3
1,
. et TR, { :
of =
. l‘ " ‘o - ‘l ‘
. [’
© 1 W un o
PN S T o

Figure 6: west2021 reordered by H1.

becomes:
then
if low(a) — numb(B) < Tpoint;
then
low(a) = min(low(a), numb(3));
else
mark « as to be still checked yet;
goto 3;
else

By adding the additional elements the border can grow too large in which case the con-
struction is canceled and the algorithm proceeds with the next element in the stack. Note
that with this variant large cycles (or cycles with arcs) will be decomposed. The worst
case complexity of this variant is trivially bounded by Q(|V|? +|E|), however the expected
time for this algorithm is far less.

In figure 6 the result of this implementation of the ordering H1, with parameters Tsize
= N/10, Tseparator = 1/10 and Tpoint = 8, is shown for the same matrix as in figure 3.

The algorithms as described above allows a simple change to control the absolute
values of the entries in the border. By taking for each node as the first neighbor the one
which belongs to the largest absolute entry in the matrix, the values in the border could
be minimized. This will not always succeed, however. In the next sections other ways are
described to minimize the absolute values of the entries in the border.

3 The H2 Ordering

The H2 ordering is related to the Nested (One-way) Dissection algorithms. Nested dissec-
tion was introduced by A. George for finite element matrices [Geo73, GL81], and is now

10

widely used for structurally symmetric matrices. This ordering is based on the construc-
tion of separator sets.

Definition 3.1 Given a graph G = (V, E) a separator set S of G is a subset of V such
that there ezists sets B and C with

a) B,C and S disjoint,

b) BuSuC =YV, and

c) there ezist no edges (z,y) € E withz € Bandy € C (ory€ B andz € C).

Whereas nested dissection works very well for regular grid type matrices in general
this ordering will not always produce a nicely structured matrix. This is particularly the
case when this ordering is used for structurally unsymmetric matrices. First structurally
unsymmetric matrices are not likely to arise from regular grids. Secondly in order to use
nested dissection the unsymmetric matrix A is expanded to A+ AT. In case that A is very
unsymmetric the number of non-diagonal, non-zero entries will grow with approximately a
factor of 2 making the interconnection structure of the associated digraph more interwoven.
These considerations lead to the development of a second ordering H2 which will exploit
the unsymmetricity of the matrix.

The ordering H2 is based on the construction of separator sets of the adjacency matrix
of A+ AT. In fact the initial algorithm used for finding these separator sets does not
appear to be very important. For the implementation of H2 we used a straight-forward
implementation of automatic nested dissection [GL81]. However, other initial orderings
could have been used such as one-way dissection, more sophisticated implementations
of automatic nested dissection [LRT79], or the graph bisection heuristics as proposed
by [LL87]. Nested dissection will bring the matrix into arrowhead form. As the objective
of the H2 ordering is to bring the matrix into bordered upper triangular block form,
nested dissection seems to be too rigorous. It is this fact which is exploited by the H2
ordering. After each stage when a separator set S is constructed the ordering H2 will
reduce the number of nodes in S thereby allowing additional fill-in to be created in the
upper triangular part of the matrix. This is established by moving nodes of the set S to

either B or C depending on what case they are in. For each node a of the set S we can
distinguish 3 cases:

1. there are no edges (a,3) with 3 € B
2. there are no edges (8,a) with 8 € C

3. a is neither in case 1 or 2.

If @ is in case 1 then « is moved to C and if « is in case 2 then a is moved to B. If
o is in case 3 it has to remain in S. In figures 7, 8, and 9 the three different cases are
shown together with the corresponding actions (node « is moved to o’ transforming edges
e, f, and g to ¢’, f’, and g’). Notice that these transfer will create only edges from the
set B into C. These edges will account for the fill-in in the upper triangular part of the
resulting matrix. The algorithm updates each time, when it moves a node out of the
set S, the cases of its neighbors in S as these can be affected by this transfer. Let’s for
the argument sake assume that the probabilities of an edge pointing to the “left” or to
the right “right” are almost equal, which is not unreasonable as the separator sets are
constructed on A + AT. Then it can be seen that the higher the degree of a node in S is
the more likely it will be that this node cannot be moved to either B or C. This explains

11

-
[}]
w
3 =71
4
g =]
Q
>
O
g
R wa . ,”
¥ [/ 5]
1.-“ 1]
1]
Q
< :
- LTS
~
w ",
u 7,

..e
.7

= “\\ . MD e
7 \\ _

g’

s
7
7 /{
e %

)

€ Z
. /’r/
Id:é

‘\ - A//A/

e 2 7 ,,”/4/”‘
s S ¢ 77
. -mes - ,4 /I,
- L 4
LICIE F C

Figure 10: A neighbor 8 of « is moved from set B to set C.

why the initial algorithm used for finding the separator sets does not have to be as optimal.
This is caused by the fact that good (small) separator sets are likely to contain nodes with
high degree.

The reduction of the separator sets can be optimized. For each node a of § which is in
case 3, its neighbors could be transferred from set B to C and visa versa, such that a will
get into case 1 or 2 and can be moved out of the separator set. This can only be done for
these neighbors of & in B (C) which have only incoming (outgoing) edges. In figure 10, a
neighbor 8 of a in set B, which has only incoming edges (e, f, and g), is moved to set C
creating edges e’, f’, and g’. By moving this neighbor the state of « is changed from 3 to
1. The state of « is only changed, when all the nodes in set B which are pointed to by «
can be moved to C, or, when all the nodes in set C which are pointing to a can be moved
to set B. Note that, because of the condition that only nodes in B (C), of which all the
edges are incoming (outgoing), are moved, the edges which are introduced between B and
C will all point from B to C. So, the resulting algorithm is:

1 Find an initial separator set S for A + AT
2 Reduce S as much as possible by moving nodes
which are in case 1l or 2to Bor C
3 Move each node 8 of B which satisfies:
i) there is a node « in S which points to 3, and
ii) there are no nodes in B which are pointed to by
to C provided that | B| is greater than some threshold
repeat 2
4 repeat the algorithm on B respectively C until B and C
have the desired size

Instead of moving nodes from B to C nodes can also be moved from C to B in a similar
way. The complexity of this algorithm is O(|E}{log|E|) as each edges is only examined a
constant number of times when reducing each separator set.

13

1ede
W LR
LR A 2) Y
B TN
g es o *
M A

Figure 11: west2021 reordered by H2.

In figure 11 the effect of this H2 ordering is shown on the same matrix as for figure 3.
The threshold used for reducing the B sets was | B|/(initial size of A) is greater than 0.04
and the desired size of B and C was chosen to be N/10. As can be seen from this figure
the implied border structure for this H2 ordering can be reasonably large. In the hybrid
ordering as described in the next section this effect is reduced. Note that the edges from
each S into B or C will represent non-zero elements in the border of the resulting matrix.
So, the size of these non-zero entries can be reduced by doing step 2 only for nodes which
have “large” edges pointing into B or C first and step 3 for those nodes which are neighbors
of these nodes. Secondly step 2 and 3 are done for the remaining nodes.

Because of the recursive nature of this ordering (the algorithm is repeated on each
set B and C repeatedly), this ordering is very suited to reduce the diagonal block sizes
to their desired size. One could think of running H1 first on each set B and C before
applying this algorithm. However, once H1 has been run on the matrix, subsequent runs
only marginally improve the reduction of the sizes of the diagonal blocks.

4 The Hybrid Ordering

Both the H1 and the H2 ordering as described in the previous sections are symmetric
orderings (heuristics). This allows us to precede these orderings by an initial ordering HO
which is unsymmetric and tries to push the largest possible elements of the matrix onto
the main diagonal. Note that these elements will stay on the main diagonal during either
H1 or H2. This HO ordering is obtained by extending the depth-first search algorithm for
finding a transversal of a sparse matrix [DERS6] to an algorithm which takes into account
the numerical values of the entries of the matrix. The transversal algorithm chooses at
each step the first row which will produce a non-zero on the main diagonal. If it does
not succeed in finding such a row it backtracks on a previous choice of a row. The HO
differs from this algorithm in the sense that it will consider only rows which will produce

14

a non-zero entry a;; on the main diagonal with
lai;| > Tdisp. max |a;|.

Depending on the choice of Tdisp this algorithm will succeed in finding a transversal or
not. As the optimal choice of Tdisp can differ a lot for different matrices, the algorithm
is implemented for different choices of Tdisp. First HO tries to find a transversal for
Tdisp = 10~2. If it does not succeed in finding a transversal Tdisp will be taken to be
10~4. After this Tdisp = 10~8, and if HO does not succeed in this case then the original
transversal algorithm is run. Note that the worst case complexity for HO is four times
the worst case complexity of the original algorithm. However, as the expected time for
the original algorithm is much less than the worst case time, HO can take considerably
more time than the original algorithm. The choice of the parameter Tdisp can be done
by the user, and depending on his knowledge of the structure of the matrix the time for
searching a transversal can be reduced significantly.
The hybrid ordering (heuristic) H* is defined to be:

1. Apply HO to A yielding A®.
2. Apply Tarjan’s algorithm to A? yielding 42

3. Apply H1 to each diagonal block of A? which is larger than some threshold Tblock.
This results in a matrix A3.

4. Apply H2 to each diagonal block of A3 larger than Tblock yielding A*.

The reason for applying Tarjan’s algorithm at the second step of the hybrid ordering is
that, if A! is reducible, then H1 is invoked on smaller matrices reducing the size of the
overall border. As can be concluded from the previous section the (dis)advantages of both
H1 and H2 are used in this hybrid ordering. First, as H1 allows a better manipulation of
the size of the border, this ordering is invoked first. Second, the disadvantage of the H2
ordering of introducing relative large borders is minimized by the fact that this ordering
is only invoked for diagonal blocks which are already reduced in size. Further the H2 is
more flexible in reducing the size of the diagonal blocks, which can be exploited to bring
the matrix in a reasonably balanced form. In figure 12 the effect of H* is shown for the
same matrix as in figure 3. Tblock is chosen to be N/10. It should be mentioned that
the implementation of this ordering does not require that the intermediate matrices 4°
are explicitly constructed at each stage. In fact only the permutation array has to be
constructed for each intermediate stage and the actual ordering can be performed after
the H2 ordering.

For studying the effectiveness of the ordering H* more rigorously we have taken a
subset of the Harwell/Boeing collection of sparse matrices which are structurally unsym-
metric. The ordering was ran on each of these matrices with different parameter settings.
The parameter settings as presented in this paper for the different phases of the ordering
have proven to be the most successful. A description of these experiments can be found
in [GMWO91]. The results of H* on this subset of Harwell/Boeing matrices is shown in
table 1. The matrices bp_xxx, mahistlh, and shl_400 arise from linear programming, {s_630
is a facsimile convergence matrix, the matrix gre.1107 arises from Markov chain model-
ing, the matrix impcol_d is from a nitric acid plant model, and the westxxxx matrices
are from chemical engineering. The diagonal block sizes of the resulting matrices were all

15

vAy
;l.':"; "t
] .
W e
e e
2 s oftt
vhe!
Mige st
W e
s
J
:
]
* &
QI
=~ .
(X4
o> .}'"?.".'" \
N
e
\"'."l wroN
Ve ne e
BN
NS
a ay
'_‘
\ .
N~
.
\c
R ooty s 00 Saee

.
e e
NP T R iy T -

P
HER
o !
:l: "
“]

)

R
i
; 3y
P
H 7
! :

o ! o

T
R
o
]

I !
] .
o* J
2 k"

':
1 H
NI

: v
O
R n
o d
v, d
(M
: s
e

H
$
.

Figure 12: west2021 reordered by H*.

Dimension | Border Size

bp.1000 822 16
bp-1600 822 30
bp_800 822 19
fs.680 680 30
gre_1107 1107 327
impcol_d 425 25
mahistlh 1258 140
shl_400 663 0
west1505 1505 107
west2021 2021 118

Table 1: The effectiveness of H*.

16

smaller than N/10, with N the dimension of the matrix. As can be seen from this table
the resulting block sizes are all less than 10% of the dimension of the matrices except for
gre_1107 where the border size is almost one third of the dimension. This is caused by the
fact that this matrix has the property that the associated digraph consists of a multitude
of cycles which are all intertwined with each other making it extremely hard to decompose
the graph in separate components.

Concluding we can say that the orderings as presented in this paper are powerful tools
to bring a sparse matrix into bordered upper triangular block form, as they are very
different in nature but still allow a nice composition so that the various advantages of the
components can be exploited. Further, the orderings allow simple manipulations, so that
the growth of the entries in the border can be regulated. This is of crucial importance
for this ordering to be suited for incorporation into a direct solver. This matter will be
studied in full detail in a forth-coming paper [GMW91], together with some more results
about the effectiveness of the orderings.

Acknowledgments I would like to thank K. Gallivan and B. Marsolf for their helpful

discussions and implementation of the orderings, and Y. Saad for using the matrix display
tool from SparsKit.

References

[BM76] J.A.Bondy and U.S.R. Murty. Graph Theory with Applications. North-Holland,
1976.

[DER8S6] L.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, 1986.

[DGLP82] LS. Duff, R.G. Grimes, J.G. Lewis, and W.G.Jr. Poole. Sparse matrix test
problems. SIGNUM Newsletter, 17:22-23, 1982.

[EGL*87] A.M. Erisman, R.G. Grimes, J.G. Lewis, W.G.Jr. Poole, and H.D. Simon.

Evaluation of orderings for unsymmetric sparse matrices. SIAM J. Sci. Stat.
Comput., 8:600-624, 1987.

[Geo73] A. George. Nested dissection of a regular finite-element mesh. SI4W J. Numer.
Anal., 10:345-363, 1973.

[GL81] A. George and J.W. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

[GMW91] K. Gallivan, B. Marsolf, and H. Wijshoff. A Large-Grain Parallel System Solver.

Technical Report in Preparation, Center for Supercomputing Research & De-
velopment, 1991.

17

[LL87]

[LRT79]

[Tar72]

C.E. Leiserson and J.G. Lewis. Orderings for parallel sparse symmetric factor-
ization. In Proc. Third SIAM Conf. on Parallel Proc. for Scient. Comp., pages
27-31, Los Angeles, CA., 1987.

R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM
J. Numer. Anal., 16:346-358, 1979.

R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
puting, 1:146-160, 1972.

18

