Uniform d-emulations of rings, with an

application to distributed virtual ring

construction

E.M. Bakker, J. van Leeuwen

RUU-CS-91-21
June 1991

Utrecht University

SWe -
< = Department of Computer Science
o
o Y Padualaan 14, P.0. Box 80.089,
»

3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Uniform d-emulations of rings, with an

application to distributed virtual ring

construction

E.M. Bakker, J. van Leeuwen

Technical Report RUU-CS-91-21
June 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

1

Many distributed algorithms assume a special underlying structure of the commu-
nication network on which they are implemented. For example, it is desirable for
many token-based distributed algorithms such as leader finding (see e.g. [B86]) that
the underlying network has a ring structure. These algorithms demand a sequential
traversal of all the nodes (processes) by a token. The implementation of such a
traversal is easy in the case of a ring structure, whereas it may cost many extra
messages to traverse all the nodes of a network that does not have this topology. To

Uniform d-Emulations of Rings, with an
Application to Distributed Virtual Ring
Construction *

Erwin M. Bakker, Jan van Leeuwen
Department of Computer Science, Utrecht University
P.O.Boz 80.089, 3508 TB Utrecht, the Netherlands

Abstract

Emulations are a special kind of structure-preserving mappings between
processor interconnection networks (i.e., graphs). In this paper the notion
of (uniform) emulation is generalized to the notion of (uniform) d-emulation.
Several problems concerning the complexity of (uniform) d-emulations are
studied. It is shown that the problem of deciding for arbitrary graphs H and
G whether H can be uniformly d-emulated on G is NP-complete for every
fixed d € N. Also it is shown that the problem of deciding for arbitrary
rings R and planar graphs G whether R can be uniformly 2-emulated on G
is NP-complete. Further, a new constructive proof is given of the fact that
there always exists a uniform 3-emulation of a ring R on a graph G = (V,E),
if [VR| = k.|Vg| and k € N. This uniform 3-emulation of R on G is used as
a basis for a Distributed Virtual Ring Construction algorithm that uses 2 |E|
messages of O(1) bits and has time complexity < 2(]V| — 1). A traversal of
the constructed virtual ring costs 2(|V| — 1) messages.

Introduction

*This work was partially supported by the ESPRIT Basic Research Actions of the EC under

contract no. 3075 (project ALCOM).

match the demand for a special topology of the network there are two approaches.
One approach is to physically create this special structure in the network. Hence
it must be possible to rearrange the links, or the network must already have the
desired topology. In general this is not the case. Although this leads to interesting
problems, we will not study this approach here. A second approach is to build a
virtual network with the desired special structure on the given (arbitrary but fixed)
network. This method is followed in [A85], [HR87] and [HR88] and is well-known in
networking. In these papers a virtual ring is created in an arbitrary communication
network, i.e., a ring network is “simulated” on the given network. A useful notion
of efficient simulation of a network on another network was introduced by Fishburn

and Finkel in [FF82] and is called emulation. Extensive results on emulations can
be found in [B86] and [BL86].

Definition 1.1 Let G = (Vg, Eg) and H = (Vy, Ey) be graphs. G can be emulated
on H iff there exists a function f: Vg — Vi such that for every edge (v,w) € Eg :
f(v) = f(w) or (f(v), f(w)) € Ey. The function f is called an emulation of G on
H. The emulation f is called a uniform emulation of G on H iff for all v,w € Vi :

If7 @) =1F7(w)].

Let the graphs G and H model two different communication networks. According
to the definition, a function that maps all the nodes of G onto one node of H is an
emulation of G on H. In this case the network modeled by G is simulated on exactly
one node of the network modeled by H. Obviously this is not a desirable situation.
In general we want to distribute the work-load over all nodes of the network modeled
by H. Therefore in the following we will require that emulations f are “onto”.

If G is emulated on H, then by definition for every edge (v,w) € Eg: f(v) =
f(w) or ((f(v), f(w)) € Eg. Thus if a ring R = (Vg, ER) is emulated on H, and
|[Vr| = |Vu|, then H must be Hamiltonian. In this case the notion of emulation is
rather restrictive, as many graphs are not Hamiltonian. Therefore we introduce a
generalization of this notion called: distance-d emulation (d € N), or d-emulation
for short. In the following dg : Vg x Vg — N denotes the usual distance function
on a graph G = (Vg, Eg), i.e., dg(v,w) is the length of the shortest path between v
and w in G (undefined if v and w are not connected). The subscript G is omitted if
there is no chance of confusion.

Definition 1.2 Let G = (Vg,Eg) and H = (Vy, Ey) be graphs, and d € N. G
can be d-emulated on H iff there erists a function f : Vg — Vy such that for every
edge (v,w) € Eg : dy(f(v), f(w)) < d. The function f is called a d-emulation of
G on H. The d-emulation f is called a uniform d-emulation of G on H iff for all
v,w € Vg : [f(v)| = |f}(w)].

As before we will require that d-emulations be “onto”. If f is a d-emulation of
G on H, then for every edge (v,w) € Eg: dy(f(v), f(w)) < d. The idea is that

G is the virtual network and H is the physical network. Thus a virtual link, i.e., a
link of the network modeled by G, consists of < d physical links, i.e., links of the
network modeled by H. The d could be called the dilation of the mapping. Note
that l-emulations are precisely the emulations as defined in Definition 1.1. It is
clear that for larger d, larger classes of graphs can be (uniformly) d-emulated on
a graph H. In fact, for d = diam(H), every graph G with |Vg| = k - |Va| (k a
positive integer) can be uniformly d-emulated on H. In this paper we will study the
notion of d-emulation in more detail and especially consider d-emulations of rings.
d-Emulations of rings turn out to be the key-notion needed for the design of virtual
rings in communication networks. We will indicate how this is used in the context
of distributed computing.

The paper is organized as follows. In the remainder of this section some basic
results concerning (uniform) d-emulations are given. In Section 2 the complexity of
finding uniform d-emulations is studied. It is shown that it is NP-hard to decide
whether there exists a uniform d-emulation of a graph G on an arbitrary graph H
for every fixed d € N. Furthermore, it is shown that it is NP-hard to decide whether
there exists a uniform d-emulation of a ring on an arbitrary planar graph for d = 2.
It is however always possible to find a uniform 3-emulation of a ring on an arbitrary
graph (this follows from [K68]). We give a new constructive proof of this fact. Next
we discuss the application to distributed virtual ring construction. The distributed
virtual ring construction algorithm as described in [HR87] and [HR88] constructs
a virtual ring on a graph H, but virtual links may consist of up to 2(|Vy| — 1)
physical links. In Section 3 a new Distributed Virtual Ring Construction algorithm
is described in which each virtual link consists of at most 3 physical links. In the
same section some conclusions for distributed computing and suggestions for further
research are given.

We end this section with some basic properties of uniform d-emulations that will
be useful in the sequel.

Notation 1.3 Let G = (V,E) be a graph. For everyv € V and d € N the set
of nodes at distance < d of v is called the d-neighborhood of v and denoted as
Niglv]={w | w €V and d(v,w) < d}. We let Nyg(v) = Nyg[v]\ {v}. We ommit
the subscript G if there is no chance of confussion.

Let H = (Vy, Eg) be a graph. Recall that the kth power of H, denoted as H*,
is the graph with the same node-set as H and (v,w) € Egx iff dy(v,w) < k. We
have the following lemma.

Lemma 1.4 Let G = (Vg, Eg) and H = (Vy, Ey) be graphs. Let k,d € N be such
that k | d (k divides d). There ezists a (uniform) d-emulation of G on H iff there
exists a (uniform) (d/k)-emulation of G on HE.

Proof. For all (v,w) € Ey : dy(v,w) < d iff dgx(v,w) < (d/k). Hence a function
f : Ve — Vy is a (uniform) d-emulation of G on H iff f is a (uniform) (d/k)-
emulation of G on H*. O

From this lemma it follows that there exists a (uniform) d-emulation of G on H
if and only if there exists a (uniform) emulation of G on HY.

Lemma 1.5 Let f be a uniform d-emulation of G on H, and |Vg| = |Vy|. Ifv € Vg
and Ni,g(v) > k (k € N), then Nag(f(v)) > k.

Proof. f maps all the nodes that are element of Ny g(v) within distance d of f (v).
0

For all standard notions from graph theory the reader is referred to [H69]. Also
some familiarity with distributed algorithms and networking is assumed (see e.g.
[M89], [SK87]).

2 The Complexity of Finding Uniform d-Emula-
tions

In the following it is assumed that the reader is familiar with the theory of NP-
completeness, cf. [GJ79]. The problems studied in this section will be stated in
the same format as used in this book. The first problem of which the complexity is
studied is UNIFORM d-EMULATION.

Problem: UNIFORM d-EMULATION. (Fixed d € N.)
Instance: Connected graphs G = (Vg, Eg) and H = (Vy, Eg).
Question: Is there a uniform d-emulation of G on H?

In [B86] it is shown that this problem is NP-complete for d = 1. Here it will
be shown that UNIFORM d-EMULATION is NP-complete for every fixed d € N.

An interesting restricted version of UNIFORM d-EMULATION is the following
problem.

Problem: UNIFORM d-EMULATION OF RINGS. (Fixed d € N.)
Instance: A ring R = (Vg, Eg) and a connected graph H = (Vy, Eg).

Question: Is there a uniform d-emulation of R on H?

Recall that a simple circuit in G = (V, E) is a sequence [vy,...,v] of distinct
nodes v; € V such that (v;,vi41) € E for i € {1,...,(t — 1)} and such that (v,,v;) €
E. A Hamiltonian circuit in G is a simple circuit that includes all the nodes of
G. (Hamiltonian paths are defined the same way, without the requirement that
(vt,v1) € E.) The HAMILTONIAN CIRCUIT problem is defined as follows.

Problem: HAMILTONIAN CIRCUIT.
Instance: A graph G = (V, E).
Question: Does G contain a Hamiltonian circuit?

4

By Lemma 1.4 it is clear that if |[Vg| = |Vy|, then UNIFORM d-EMULATION
OF RINGS becomes equivalent to the question of deciding whether H? is Hamil-
tonian. It is well-known that HAMILTONIAN CIRCUIT is NP-complete (see e.g.
[GIT76]). Hence UNIFORM 1-EMULATION OF RINGS is NP-complete. Chvatal
proved in [C76] that HAMILTONIAN CIRCUIT restricted to graphs that are the
square of a graph is NP-complete. It follows that UNIFORM 2-EMULATION OF
RINGS is NP-complete as well. In Section 2.2 it will be shown that UNIFORM 2-
EMULATION OF RINGS is NP-complete even when restricted to graphs that are
planar. From this it follows that HAMILTONIAN CIRCUIT restricted to graphs
that are the square of a planar graph is NP-complete. Karaganis proved in [K68]
that the cube of a nontrivial connected graph G is Hamiltonian connected, i.e., there
exists a Hamiltonian path between any two nodes of G®. From this it easily follows
that G® is Hamiltonian. In Section 2.2 an alternative, constructive proof of this fact
is given. This proof will be used as a basis for the Distributed Virtual Ring Construc-
tion Algorithm in Section 3. Section 2.3 contains some remarks on polynomial-time
algorithms for constructing uniform d-emulations of rings. These polynomial-time
algorithms merely exist as a consequence of the existence of polynomial-time algo-
rithms for the HAMILTONIAN CIRCUIT problem restricted to special classes of
graphs.

2.1 The Complexity of UNIFORM d-EMULATION
In order to prove that UNIFORM d-EMULATION is NP-complete the following

lemma is useful.

Lemma 2.1 HAMILTONIAN CIRCUIT is NP-Complete for undirected bipartite
cubic graphs.

Proof In [P79] it is proven that HAMILTONIAN CIRCUIT is NP-complete for
directed graphs (digraphs) where every node v has indegree(v) = outdegree(v) =
2. Such a digraph G can easily be transformed into an undirected bipartite cubic
graph G’ that has a Hamiltonian circuit if and only if the original digraph has. To
see this, first transform G into the digraph G; by replacing every node v € V and

its adjacent in- and out-going edges (see Figure 2.1a) by the subgraph shown in
Figure 2.1b.

a) b)
Figure 2.1

It is easy to verify that G has a Hamiltonian circuit if and only if G; has. Next
transform G, into the undirected graph G by replacing every subgraph of G; as
shown in Figure 2.1b by a subgraph as shown in Figure 2.2.

()—O0—O)—@]

Figure 2.2

Again it is easy to see that G, has a Hamiltonian circuit iff G5 has. Furthermore,
G, is an undirected bipartite graph. Finally we replace every subgraph as shown in
Figure 2.2 by a subgraph as shown in Figure 2.3 to obtain an undirected bipartite
cubic graph G’ that has a Hamiltonian circuit iff G,, and hence, iff the original
digraph G has a Hamiltonian circuit. Clearly the transformation is polynomial-time
computable.

Figure 2.3

a
Theorem 2.2 UNIFORM d-EMULATION is NP-complete for every fized d > 1.

Proof. From [B86] we know that the theorem is true for d = 1. Now assume that a
fixed d € N,d > 2 is given. Clearly the problem is in NP, since a nondeterministic
algorithm can always guess a function f : Vg — Vi and check whether it is a uni-
form d-emulation in polynomial time.

To prove NP-completeness, we transform HAMILTONIAN CIRCUIT for undirected
bipartite cubic graphs (cf. Lemma 2.1) to this problem. Let G = (Vg, Eg) be an
arbitrary connected bipartite cubic graph with Vg = {vy, ..., Y(n-1)}. Note that |Vg]
is even and |Eg| = 3 |Vg| /2. We will construct a graph G; and a graph T such that
G has a Hamiltonian circuit iff there is a uniform d-emulation of T on G;. Transform
G into a graph G, = (Vg,, Eg,) by connecting a structure as pictured in Figure 2.4
to every v; € Vg. Some nodes are given special names for later reference. (The
nodes are named from v} to v}, passing over ¢; which is not indexed as a v;-node.
Node v} is identified with v;.)

Figure 2.4

We take ¢t > 6d.(2¢ — 1). Furthermore, if d is even we introduce a new node u for
every edge (v,w) € Eg and replace the edge (v,w) by two new edges (v,u) and
(u,w) in Gy (see Figure 2.5). Define Ug as the set of all the new nodes u that are
introduced in this way.

00— O—0O—®

Figure 2.5

Note that if (v;,v;) € Eg, then dg, (¢i,¢;) = d for d odd and d even. Next we
construct the graph T' = (Vr, ET) as pictured in Figure 2.6.

3
sta;+1} @

Figure 2.6
In Figure 2.6 we take

@ = 0 if dis odd or 7 is odd,
'7 1 3 otherwise,

and s = |451] 4+ d + ¢ — 2. Let V denote the set {0,...,(n —1)}.

Claim 2.3 G contains a Hamiltonian circuit if and only if there erists a uniform
d-emulation of T on G;.

Proof. [=] Let H = (Vy, Ef) be a Hamiltonian circuit in G. W.lo.g. we may

assume that Ey = {(vo, v1), (v1,v2), ..., (Va-1,v0)}. Define the function f : Vy — Ve,
by:

1. f(%) = ¢i and f(ud) = v;, foralli € V.
2. for alli € V and for all j € {1,...,s}: f(ul) =

3. if d and 7 are even, i.e., if a; = 3, then for all j € {1,2,3}: f(u?*?) = w;, where
wy, w2 and w; are the three nodes from the set U adjacent to v; in G;.

For every 1 € V, 7; and T(i+1)modn are mapped to ¢; and G(i11)modn, respectively.
Note that dg, (¢i $(i+1)modn) = d. Furthermore, dg, (v,J y9i) < dfor everyi € V
and every j € {0,...,(s + a;)}. Hence all the nodes u! are mapped to nodes within
distance d of f(7;) = ¢;. As G is a bipartite graph we know that if ; and j are even,
then (v;,v;) € Eg. Therefore point 3) of the definition of f translates to: for every
u € U there exists exactly one uf such that f (uf) = u. Hence f defines a uniform
d-emulation of T on G;.

[<=] Let f : Vr — Vg, be a uniform d-emulation of T on G;. We claim that there is
a permutation 7 of V such that for all i € V, f(7;) must be equal to Px(i)- f must
map all the (s + a; + 3) neighbors of 7; to different nodes within distance d of f (77)-
G is a cubic graph. It follows that for all v € Vj : | Na,g(v)| < 3(2¢4—1) by the Moore
bound (cf. [B85]). Hence for allw € W = Vz UUU {v! | j € {1,..., |42] —1} and
1 € V}: |Nar(w]| < 3d(29—1), whereas there are (s+a;+3) > 3d(2¢—1) neighbors of
Ui. Therefore it is impossible that f(%;) is an element of W. Now assume that there
exists an 1 € V such that f(%;) € Vg, — W — {¢, | j € V}. Because f is a uniform
d-emulation it follows that |Nyg, [f(7)]| + INd,m [f(m)]l < 6d(2¢—1) +t.
But there are more than 2t > 6d(29 — 1) + ¢ neighbors of 7; and D(i41)modn- Hence
it is impossible to map all these neighbors to the nodes within distance d of f(m)
and f(P(7T)medn). Thus we conclude that f(7;) must be equal to some ¢-node, for
every :. Thus a permutation 7 as claimed must exist. Furthermore, it is clear that if
(vi,75) € Er and f(%;) = ¢;, and f(7;) = ¢i,, then (v;,,v;,) € Eg. Now it is easy to
verify that [(vx(0), Vx(1)); --» (Va(n—1) Un(0))] defines a Hamiltonian circuit in G. D

The entire construction is clearly polynomial-time computable. From Claim 2.3
it follows that UNIFORM d-EMULATION is NP-complete for every fixed d > 2.
O

2.2 The Complexity of UNIFORM d-EMULATIONS OF
RINGS

Theorem 2.4 There is a polynomial transformation from HAMILTONIAN CIR-
CUIT to UNIFORM 1-EMULATION OF RINGS.

Proof. If R is a ring and H a graph such that |Vg| = |Vy|, then the problem of
deciding whether there exists a uniform 1-emulation of R on H is equivalent to the
problem of deciding whether H has a Hamiltonian circuit. o

Chvéatal proved in [C76] that the HAMILTONIAN CIRCUIT problem is NP-
complete for graphs that are the square of a graph. With Lemma 1.4 this implies
that UNIFORM 2-EMULATION OF RINGS is NP-complete. The next theorem

improves this result.

Theorem 2.5 UNIFORM 2-EMULATION OF RINGS is NP-complete for planar
graphs.

Proof. Clearly the problem is in NP, since a nondeterministic algorithm can guess
a function f : Vg — Vi and check whether it is a uniform 2-emulation in polynomial
time. To prove NP-completeness, we use a transformation from HAMILTONIAN
CIRCUIT for undirected planar graphs with nodes of degree < 3 only. In [IPS82]
this problem is proven to be NP-complete. Let G = (V, Eg) be a connected planar
graph such that for all v € V: degree(v) < 3. We construct a graph G; = (Vg,, Eg,)
by replacing each edge (v,w) € Eg (see Figure 2.7a) by a subgraph as pictured in
Figure 2.7b.

g

a) b)
Figure 2.7)

Clearly G, is planar and the transformation is polynomial-time computable. Now
the following is claimed.

Claim 2.6 G contains a Hamiltonian circuit if and only if there exists a uniform
2-emulation of the ring R = (Vg, ER) on Gy = (Vg,, Eg,), where R is such that
Vel = |Va, |.

Proof. [=] Let H = (Vy, Ey) be a Hamiltonian circuit in G. Let Vi = Vg =
{vo, ..., vn-1}. W.lo.g. we may assume that Ey = {(vo,v1), (v1,2), ey (Un-1,%0)}.
Every v; € Vi has degree 2 or 3 in G. Let the nodes of the ring R be numbered,
say clockwise in n consecutive parts, for i € {0,...,(n — 1)} as follows: v?,...,v}? if
v; has degree 2 in G, and v, ...,v}® if v; has degree 3 in G. A uniform 2-emulation
f : VR — Vg, can be defined as follows. Note that (Vi, Y(i41)modn) € Eg. Define
f(v?) = vi and for all j € {1,...,12}: f(v!) = w;. See Figure 2.8. (The dotted lines
stand for edges in R, whereas the continuous lines represent edges in G;.)

Figure 2.8

If v; has degree 3 in G, then there exists a k € {0,...,(n — 1)} such that
(vi,vx) € Eg but (vi,vk) ¢ Ey. Define for all j € {1,...,6}: f(v!*"*) = z;. See
Figure 2.9.

Figure 2.9

It is straightforward to verify that this defines a uniform 2-emulation of R on
Gi.
[<=] Assume there exists a uniform 2-emulation f of the ring B = (Vg, ER) on
G1 = (Vo,, Eg,) , with |Vg| = |Vg,|. Let uq, ..., tjyg-1 be a numbering of the nodes
of the ring R, say in clockwise order. Consider Figure 2.10.

10

Figure 2.10

If f(u;) = ws, then either f(uic1) = wq and f(ui41) = ws, or f(ui—1) = ws and
f(tiy1) = wy. Something similar holds for wg, Wy and wqg.
Assume that we have a consecutive part u;, ..., u;4; of the ring R such that f(u;) = w,
and f(uiy) = wy, and there exists a ¢ € {(§ 4+ 1),..., (i + I — 1)} such that flu) =
w3, wy or ws. It follows that f(u;y—1) = wy, F(uipi_2) = we and f(uipi-3) = ws.
Let I denote the set {(¢ + 2),...,(i + I — 2)}. It is easy to see that f(uig1) # ws
because this would imply that there does not exist a ¢ € I such that f(ue) = wa.
(In fact it would imply that there does not exist a u € Vi such that f(u) = ws.)
Similarly f(ui41) # ws. It follows that f(uiy1) = ws. Thus it is clear that there
does not exist a ¢ € I such that f(u;) = ws. Because this would imply that u; must
have 3 neighbors in the ring R, say u},u} and u} such that f(u!) = ws, f (uy) = ws
and f(u3) = wyo, which is impossible. Thus, either a consecutive part u;,...,Uiys
is mapped to the nodes wy, ..., ws, where f(u;) = wy and f(ui4s) = wy, in which
case we take (v;,v;) ¢ Ep, or the consecutive part u;,...,u;41; is mapped to the
nodes wy, ..., w12, where f(u;) = w; and f(ui411) = wig, in which case we take
(vi,v;) € Eg. This defines a Hamiltonian circuit in G. 0

From this claim it follows that UNIFORM 2-EMULATION of rings is NP-
complete. O

In [K68] Karaganis proved that the cube of a nontrivial connected graph is Hamil-
tonian connected, and hence Hamiltonian. Here we give an alternative, constructive
proof of this result. The main reason for this alternative proof is that it can be used
as a basis for a Distributed Virtual Ring Construction Algorithm (see Section 3).

Theorem 2.7 Let R = (Vg, Eg) be a ring and H = (Vy, Ey) a connected graph,
then it is always possible to find a uniform $-emulation of R on H.

Proof. Let T = (Vr, Er) be a rooted spanning tree of H. We will show that it
is always possible to construct a uniform 3-emulation of the ring R on the tree T,
and hence on H. Consider the procedure BuildPath(v, endpath,) given below. The
procedure constructs a path in T3 starting in node v and visiting all the nodes of
T, (the subtree of the tree T with v as root), and ending in a son of v in T or in v
itself if v has no son. This end of the path in T, is kept in the variable endpath,,.

11

procedure BuildPath(v, endpath,)
begin
if v has sons
then for all sons v; of vin T (i € {1, ..., deg(v)})
do
BuildPath(v;, endpath,,) ;
if ¢ < deg(v)
then add (endpath,,, viy1) to Eg
endif
od ;
add (v, endpath,,, .,) to Eg ;
endpath, := v;
else {v has no sons}
endpath, := v
endif
end {BuildPath};

begin {Main}

initialize Eg to ¢ ;

BuildPath(root(T'), endpath,ee(7)) ;

add (root(T'), endpath,em(r)) to Er

{ERr is the set of edges of a virtual ring in T}
end {Main}.

In the figure below an example of a virtual ring constructed by the previous proce-
dure is shown. The continuous lines represent the edges in the given tree, whereas
the dotted lines represent the virtual edges, i.e., edges of the ring.

Figure 2.11

Consider the procedure BuildPath. Observe that once endpath, has gotten a value,
the node it denotes lies in T, and has distance < 1 from v. Thus it is clear that if
this procedure adds (v, w) to ERg, then dy(v,w) < 3. The only thing that remains to
prove is that the graph R that has been constructed is indeed a ring that spans H.
This is done by induction on the number of levels of the tree T. We claim that the
procedure constructs a Hamiltonian path on T that starts in root(T) and ends in a

12

son of root(T'), or in root(T') itself if root(T") has no sons. If the tree consists of one
or two levels it is easy to check that the claim is correct. Now assume it is correct for
trees T with < (L—1) levels. Let T be a tree with L levels with root r. Let T; be the
subtree of T with the son v; of r as root, for every i € {1, ...,deg(v)}. BuildPath(r,
endpath,) first executes BuildPath(v;, endpath,,) for every i. Every tree T has
< (L —1) levels. Thus by induction BuildPath(v;, endpath,,) builds a Hamiltonian
path in T; starting in v; and ending in endpath,,. For every i the Hamiltonian path
of T; is appended to the Hamiltonian path of T;_,. Hence we get a Hamiltonian
path through the subtrees of r starting in v; end ending in endpath, deg(vy: TRUS by
connecting r to endpath,,, «» We obtain a Hamiltonian path of T starting in r, and

ending at r. This proves the claim. The argument also shows that the 3-emulation
is uniform. 0

2.3 Polynomial Algorithms for Constructing Uniform d-
Emulations of Rings (Remarks)

In [F74] it is shown that the square of every 2-connected graph is Hamiltonian.
Hence for every 2-connected graph there exists a uniform 2-emulation of a ring of
the same size. To our knowledge a polynomial-time algorithm that constructs this
uniform 2-emulation is not known.

In [FH76] characterizations of cacti and vertex-unicyclic graphs of which the squares
are Hamiltonian are given. Therefrom it is easy to obtain polynomial-time al-
gorithms that determine whether a uniform 2-emulation of a ring on a cactus or
a vertex-unicyclic graph exists and, if this is the case, construct this uniform 2-
emulation. In [T56] it is shown that every 4-connected planar graph is Hamilto-
nian. In [G82] a polynomial-time algorithm is given that constructs a Hamiltonian
circuit for every given 4-connected planar graph. For graphs with a given tree-
decomposition with bounded tree-width HAMILTONIAN CIRCUIT is solvable in
linear time [AP89). If a graph with a given tree-decomposition with bounded tree-
width is Hamiltonian, then it is possible to construct the Hamiltonian circuit in
linear time [B91].

3 Distributed Sequential Traversal Algorithms
and Virtual Ring Construction

In this section we focus attention on communication networks and distributed algo-
rithms. Distributed sequential traversal algorithms are very suitable as a basis for
a virtual ring construction algorithm. They define a total ordering on the nodes of
the communication network, which can be used to construct a virtual ring. Thus,
for example, a distributed depth-first search algorithm (DDFS algorithm for short)
[SIM89] can be used as a basis for a distributed virtual ring construction algorithm

13

(DVRC algorithm for short.). This was done in [HR87]. The algorithm presented
in that paper uses 2(|V| — 1) messages of O(|V|) bits, where V is the set of nodes
of the communication network. The virtual ring is established by computing the
appropriate routing information at the nodes of the network. Also an improved ver-
sion of this algorithm was presented that allowed the construction of a virtual ring
whose traversal requires only p messages, where |V| < p < 2(|[V| —1). However, the
virtual ring R constructed by the algorithms in [HR87] is not necessarily a uniform
3-emulation of the graph representing the given network, and a virtual link may
span as many as (|V|— 1) physical links. The purpose of building the virtual ring is
to be able to simulate distributed algorithms that are designed for rings on arbitrary
communication networks. If the DVRC algorithm of [HR87] is used, the simulation
may cost up to (|V| — 1) times as many messages, if the original algorithm concen-
trates message traffic on virtual links which are mapped on (|[V'| — 1) physical links.
In contrast with this, the simulation on a virtual ring that is uniformly 3-emulated
on the network will cost only up to three times as many messages regardless of the
distribution of the messages over the links. Furthermore, it can be noted that it is
not necessary to use an exact DFS traversal. In fact, any enumeration of the nodes
of the network can be used to define the virtual ring. Therefore distributed breadth
first search (DBFS) algorithms [ZC87) and even distributed spanning tree (DST)
algorithms can be used as a bases for the DVRC algorithm as well. In this section
a DVRC algorithm is described that constructs a uniform 3-emulation of a ring R
on the graph G representing the underlying network. It uses a distributed spanning
tree algorithm of Segall [S83] as a basis. Segall’s algorithm is a single-initiator DST
algorithm that does not necessarily construct a DFS or BFS spanning tree. It is as
time-efficient as the DDFS- and DBFS-algorithms but it uses less messages. The
DST algorithm is an optimized version of Chang’s Echo algorithm (see [C82]), which
1s a centralized (i.e., single-initiator) total algorithm for bidirectional networks. A
total algorithm is an algorithm where all nodes of the network are required to partici-
pate before a decision can be taken. (For a more formal definition of total algorithms
the reader is referred to [T91].) In [T91] it is shown that total algorithms are rather
universal, in the sense that by adding extra control information to the messages of a
total algorithm various other network problems can be solved (basically by the same
flow of control). The DVRC algorithm that we develop is another demonstration of
this fact and shows that total algorithms can effectively be used as a building block
in the design of a large number of distributed algorithms (cf. [T91]).

3.1 The Network Model

We consider communication networks consisting of n nodes. It is assumed that the
nodes are interconnected via bidirectional communication links. Every two nodes
connected by a link will be able to communicate directly in a fault-free manner,
+ i.e., messages will arrive unaltered after an arbitrary but finite delay. It is not
necessary in our model that links obey the FIFO rule. It is assumed that each node

14

of a communication network can only distinguish its incident communication links
and does not know, at the start of the DVRC algorithm for sure, the identities of
its neighboring nodes. Furthermore it is assumed that there exists a leader of the
network. The communication network is modeled by the graph G = (V, E) where
V models the set of nodes and E the set of communication links.

The complexity of a distributed algorithm is measured by its communication
complexity and its time complexity. The communication complezity of a distributed
algorithm is the total number of messages sent during the execution of the algo-
rithm. The time complezity is the maximum time elapsed from the beginning to the
termination of the algorithm, assuming that delivering a message over a link requires
at most one unit of time and that receiving a message, local processing, and sending

it over a link require negligible time. Without this assumption the algorithm must
still operate correctly.

3.2 A Distributed Virtual Ring Construction Algorithm

In this section we will describe a Distributed Virtual Ring Construction Algorithm.
The algorithm consists of two phases. In the first phase a spanning tree is built
such that each node in the tree knows the parity of its level in the tree. In fact
this is Segall’s DST algorithm [S83], with some minor extensions. In the second
phase the parity information is used to establish the necessary routing information
at each node of the network to implement the virtual ring. We now present the
DVRC algorithm, called Algorithm VR (the first and second phase of Algorithm
VR are called Algorithm VR, and Algorithm VR,, respectively). We first describe
the messages used by Algorithm VR, and the variables kept at every node of the
network before we give routines for the nodes. Algorithm VR is message-driven, i.e.,
the actions at the various nodes are initiated by received messages.

Messages used by Algorithm VR;:

o <flip>,<flop>: messages sent by a node to a possible son conveying informa-
tion to establish the routing information that implements the virtual ring.

e <ack>: message sent to acknowledge a received <flip> or <flop> message,
thereby claiming the sender of this <flip>/<flop> message as the receiver’s
father in the spanning tree.

Variables kept at every node v:

e adj(v): the set of links adjacent to v. (In the special node v, that initiates the
algorithm a special internal link e;,;; to itself is added too.)

e status(v,e): the status of the adjacent link e. Status values belong to the set
{nil, father, son, reject, sentf} and are initially nil for all e € adj(v).

15

o lfather(v): the adjacent link leading to the father of v in the spanning tree,
initially nil.

o level(v): gives the parity of the level of v in the spanning tree. Level values
belong to the set {odd, even}.

Initialization of Algorithm VR,;:

A special node vy triggers the algorithm by sending a <flip> message to itself
over an internal link e;,;;.

Atomic actions at node v:

Upon receipt of <flip> or <flop> over link e
do
if lfather(v) = nil
then status(v, e) := father ;
lfather(v) := e ;
if <flip> received
then level(v) := odd ;
for all links ¢’ with status(v,e’) = nil
do
send <flop> over link ¢ ;
status(v, ¢’) := sentf
od
else level(v) := even ;
for all links e’ with status(v, ') = nil
do
send <flip> over link ¢’ ;
status(v, ¢’) := sentf
od
endif ;
elif status(v, e) = sentf
then status(v,e) := reject
endif ;
if for every e € adj(v): status(v,e) € {reject, father,son}
then send <ack> over link lfather(v)
endif
od

Upon receipt of <ack> over link e
do
status(v, e) := son ;

16

if for every e € adj(v): status(v,e) € {reject, father, son}
then if e # €;nis
then send <ack> over link father(v)
else finished
endif
endif
od

Description of Algorithm VR,:

Initially every node of the network is inactive. A node v becomes active when it
receives a <flip> or <flop> message for the first time. As father(v) is nil, the link
over which the message is received will be marked as father link. An <ack> message
is sent over this link if v has received a message of all its neighbors. Furthermore, v
determines the parity of its level in the spanning tree and sends a <flip> or <flop>
message to all its other neighbors if its level is even or odd, respectively. These
other neighbors are potential sons in the spanning tree. The status of the links to
these neighbors is set to sentf. If v receives another <flip> or <flop> message of
a neighbor, then it knows this neighbor cannot be a son in the spanning tree. The
status is suitably adapted, i.e., set to reject. If v receives an <ack> message of
a neighbor, then this neighbor can be marked as son. If v has received a message
from all its neighbors and has sent an <ack> message to its father, it can resume
the second phase of Algorithm VR,.

The number of messages needed in the first phase of Algorithm VR, is equal
to 2|E|. The number of time units used by Algorithm VR; is less or equal than
2.depth(constructed spanning tree) < 2(|V| —1).

3.3 Routing Information

In the first phase of Algorithm VR, a spanning tree is constructed in which every
node knows the parity of its level. We will show that this information suffices to
route messages in one direction of the virtual ring, provided that every message
contains a bit that indicates the direction in which the message should travel. After
a node finishes its role in the Algorithm VRj, i.e., has received a message of all
its neighbours and sent an <ack> message to its father, it executes the following

algorithm (Algorithm VR;) to determine its predecessor and successor in the virtual
ring.

The variables used by Algorithm VR,:

Every node v € V holds the following variables:

17

e succ: will contain the name of the link over which a message is sent to [received
from the successor of v in R.

e pred: will contain the link over which a message is sent to /received from the
predecessor of v in R.

o predlink(e): the link over which a message will be forwarded if it was received
over link e and travels the ring in reverse-order.

o succlink(e): the link over which a message will be forwarded if it was received
over link e and travels the ring in-order.

Algorithm VR, at node v:

order all links e of node v 3 lfather(v) with status(v,e) = son ;
let ey, ey, ..., ex be these links in order.
if level(v) = odd
then if lfather(v) = v {v is root}
then succ := ¢; ; pred := ¢ ;
else succ := e, ; pred := lfather(v) ;
succlink(e;) := Ifather(v) ;
predlink(Ifather(v)) := e
endif
else succ := lfather(v) ; pred := ¢ ;
succlink(Ifather(v)) := e, ;
predlink(e;) := Hather(v)
endif ;
forall : € {1,..,k — 1}
do
succlink(e;) := €;41 ;
predlink(e;41) := ¢;
od

Description of Algorithm VR,:

Note that after a node v finishes its role in Algorithm VR, it knows the parity of
its level in the constructed spanning tree. This information is used to create an
oriented virtual ring in the network. The parity of its level determines over which
links it can reach its successor and predecessor in the virtual ring, this information
will be stored in the variables succ and pred, respectively. Also it determines when
to forward messages not addressed to it. This information will be stored in the
variables predlink() and succlink(). If a message not addressed to v, is received over
link e, then predlink(e) and succlink(e) are equal to the links over which the message
must be forwarded in order to reach its destination if the message travels the ring
in reverse-order and in-order, respectively.

18

If level(v) is odd, then the part of the virtual ring that is created in the subtree 7,
rooted by v starts in v, proceeds via link e, through the various subtrees rooted by
the sons of v and ends in the son of v incident to link e;. If level(v) is even, then
the part of the virtual ring that is created in T, starts in the son of v incident to
link e;, proceeds through the various subtrees rooted by the sons of v and ends in
v. It is easy to verify that the variables kept at a node are set to the appropriate
values. At the root of the tree T the virtual ring is closed, i.e., SUCCroo(T) = €1 and
pred, ooy) = €.

Many distributed algorithms on a ring network demand a sequential traversal
of all the nodes by a token. To implement a ring traversal every node executes the
following “routing” algorithm. A message is routed over the virtual ring through
physical links. It is assumed that the message which traverses the virtual ring holds
an extra bit direction that indicates in which direction the ring is traversed. If
direction is equal to in-order, then the virtual ring is traversed in, say, clockwise

order. If direction is equal to reverse-order, then the virtual ring is traversed in
counterclockwise order.

Routing algorithm at node v:
{In order to route a message over the virtual link through physical links. }

Upon receipt of a message <direction,“other info”> over link e
do

if direction = in-order
then
if e = pred
then {v is end-node of the virtual link over which the message is sent }
message is addressed to v ;
process the message and continue with further actions
{the message can be sent to the succesor of v over link succ}

else {v is an intermediate node of the virtual link over which the message is sent }

send message over link succlink(e)

endif

else {direction = reverse-order}

if e = succ

then {v is end-node of the virtual link over which the message is sent}
message is addressed to v ;
process the message and continue with further actions
{the message can be sent to the succesor of v over link pred}

else {v is an intermediate node of the virtual link over which the message is sent }

send message over link predlink(e)
endif
endif
od

19

Description of the routing algorithm:
In Algorithm VR, the links over which v can reach its successor and predecessor in
the virtual ring are determined and stored in the variables succ and pred, respec-
tively. If a message is received over the link equal to succ and the message travels
the ring in-order, then v knows the message is addressed to it. Similarly, messages
traveling the ring in reverse-order received over the link equal to pred are addressed
to v. In all other cases the received message is not addressed to v and must be
forwarded. If a message is received over link e that is not addressed to v, then the

message is forwarded over predlink(e) and succlink(e) if the message travels the ring
in reverse-order and in-order, respectively.

3.4 Correctness of the DVRC Algorithm

As mentioned before, Algorithm VR is an adapted version of Segall’s centralized
DST-Algorithm. With some minor changes to Segall’s correctness proof, a correct-
ness proof can be obtained for the first phase of the DVRC Algorithm (Algorithm
VR;). With the proof of Theorem 2.7 it can easily be verified that the routing in-

formation obtained in the second phase of the algorithm (Algorithm VRj) is correct
as well.

3.5 Results

With the previous results the next theorem should be clear.

Theorem 3.1 Given a communication network modelled by a graph G = (V, E)
with properties as described in Subsection 8.1, we can construct a virtual ring on
G and determine the appropriate routing information per node by a distributed
single-initiator algorithm that uses O(depth(constructed spanning tree)) time-units
and 2 |E| messages of O(1) bits.

Corollary 3.2 Every distributed algorithm on a ring network with properties as
described in Subsection 3.1 can be simulated on an arbitrary communication network
with the same properties and the same number of nodes at the expense of three
times as many messages, and 2|E| messages of O(1) bits and O(depth(constructed
spanning tree)) time for preprocessing to construct the virtual ring.

Finally, we remark that in [RFH72] a VRCA is formulated as a network of finite
automata. Here the constructed virtual ring is also a uniform 3-emulation. However,
the algorithm works sequentially and requires O(E) time.

20

4 Acknowledgements

We thank Hans Bodlaender and Gerard Tel for useful comments.

References

[A85]

[APS89)

[BS6]

[B91]

[BLS6]

[C82]

[CT76]
[FF82]

[F74]

[FH76]

[GI79]

[GIT76]

S.A. Andreasson. Minimizing a Virtual Control Token Ring. In: E. Gafni,
N. Santoro (Eds.), Distributed Algorithms on Graphs, Proc. 1st Interna-
tional Workshop on Distributed Algorithms on graphs (1985), Carleton
University Press, Ottawa, 1986.

S. Arnborg, A. Proskurowski. Linear Time Algorithms for N P-Hard Prob-
lems on Graphs Embedded in k-Trees. Discrete Applied Math., Vol. 23,
1989, pp. 11-24.

H.L. Bodlaender. Distributed Computing-Structure and Complezity. Ph.D.
Thesis, Dept. of Computer Science, Utrecht University, November 1986.

H.L. Bodlaender. Private communication, 1991.

H.L. Bodlaender, J. van Leeuwen. Simulation of Large Networks on
Smaller Networks. Information and Control, Vol. 71, December 1986, pp.
143-180.

E.J.H. Chang. Echo Algorithms: Depth Parallel Operations on General
Graphs. IEEE Trans. Software Eng., SE-8, 1982, pp. 391-401.

V. Chvatal, private communication, cited in [GJ79], 1976.

J.P. Fishburn, R.A. Finkel. Quotient Networks. IEEE Transactions on
Computers, C-31, 1982, pp. 288-295.

H. Fleischner. The Square of Every Two-Connected Graph is Hamiltonian.
Journal of Combinatorial Theory (B), Vol. 16, 1974, pp. 29-34.

H. Fleischner, A.M. Hobbs. Hamiltonian Cycles in Squares of Vertesz-
Unicyclic Graphs. Canadian Math. Bull., Vol. 19, 1976, pp. 169-172.

M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, San Francisco, California,
1979.

M.R. Garey, D.S. Johnson, R.E. Tarjan. The Planar Hamiltonian Circuit
Problem is NP-Complete. SIAM J. Comput., Vol. 5, 1976, pp. 704-714.

21

[G82]

[H69]

[HR87]

[HRsg]

[IPS82]

[K68]

[M89]

[P79]

[RFHT72|

[583]

[SIM89]

[SK87]

[T91]

[T56]

D. Gouyou-Beauchamps. The Hamiltonian Circuit Problem is Polynomial
for 4-Connected Planar Graphs. SIAM J. Comput., Vol. 11, August 1982,
Pp- 529-539.

F. Harary. Graph Theory. Addison-Wesley Publ. Comp., Reading, Mass.,
1969.

J. Helary, M. Raynal. Depth-First Traversal and Virtual Ring Construc-

tion in Distributed Systems. Technical Report No. 396, IRISA, Rennes,
June 1987.

J. Helary, M. Raynal. Virtual Ring Construction in Parallel Distributed
Systems. Proceedings of the IFIP WG 10.3 Working Conference on Par-
allel Processing, Pisa, Italy, 25-27 April 1988, pp. 333-345.

A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter. Hamiltonian Paths in Grid
Graphs. SIAM J. Comput., Vol. 11, November 1982, pp. 676-686.

J.J. Karaganis. On the Cube of a Graph. Canad. Math. Bull, Vol. 11, 1968,
pPp.- 295-296.

F. Mattern. Verteilte Basisalgorithmen. Informatik-Fachberichte, Vol.
226, Springer-Verlag, Berlin, 1989.

J. Plesnik. The NP-Completeness of the Hamiltonian Cycle Problem in

Planar Digraphs with Degree Bound Two. Information Processing Letters,
Vol. 8, 1979, pp. 199-201.

P. Rosenstiehl, J.R. Fiksel, A. Holloger. Intelligent Graphs: Networks of
Finite Automata Capable of Solving Graph Problems. In: R.C. Read (Ed.),
Graph Theory and Computing, Academic Press, New York, 1972.

A. Segall. Distributed Network Protocols. IEEE Trans. Information The-
ory, IT-29, 1983, pp. 23-35.

M.B. Sharma, S.S. Iyengar, N.K. Mandyam. An Efficient Distributed
Depth-First Search Algorithm. Information Processing Letters, Vol. 32,
1989, pp. 183-186.

M. Sloman, J. Kramer. Distributed Systems and Computer Networks.
Prentice-Hall Inc., Englewood Cliffs, N.J., 1987.

G. Tel. Topics in Distributed Algorithms. Cambridge University Press,
1991.

W.T. Tutte. A Theorem on Planar Graphs. Trans. Amer. Math. Soc., Vol.
82, 1956, pp. 99-116.

22

[ZC87] Y. Zhu, T. Cheung. A New Distributed Breadth-First-Search Algorithm.
Information Processing letters, Vol. 25, 1987, pp. 329-333.

23

