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Abstract

In this paper we study several variants of domination problems. Linear-
time algorithms are given for path-domination, independent efficient domina-
tion and efficient total domination on trees. On the other hand, it is proven
that these problems are N P-complete for general graphs. All domination
problems studied in this paper derive from considerations about distributed
datastructuring and resource allocation in communication networks.

1 Introduction

A major problem in computer networks is the problem of determining optimal loca-
tions of resources. The optimality of a location of a resource may depend on many
different objectives. Often this is formulated as a domination problem of some kind.
In its typical form, a domination problem asks for a set V’ of nodes of size k or less
in the network, such that every node is within a distance of 1 from some node of V".
(Here k is some well-chosen integer.) Different extra restrictions on V' then leads
to different domination problems. Through the years a wide variety of domination
problems has been distinguished. (See [C78], [HHL84] for a survey.) In general there
is little hope for solving these problems efficiently for arbitrary networks, as most of
them are known to be NP-complete.

In this paper we study three particular domination problems: path-domination, in-
dependent efficient domination and efficient total domination. The path-domination
problem is roughly the problem of finding a minimal number of paths such that every
node that does not lie on a path is adjacent to at least one path. The independent
efficient domination problem is the problem of finding a minimal cardinality domi-
nating set V'’ such that no two nodes in V' are adjacent and every node not in V'

*This work was partially supported by the ESPRIT Basic Research Actions of the EC under
contract no. 3075 (project ALCOM).



is dominated by exactly one node in V’. The efficient total domination problem
is the problem of finding a minimal cardinality dominating set V' such that every
node in the network, i.e., also every node in V', is dominated by exactly one node in
V'. The problems have a rather direct motivation from considerations in distributed
datastructuring and resource allocation. We will prove that all these problems are
N P-complete for general graphs. On the other hand, for certain special classes of
graphs they are polynomial-time solvable. With techniques from [B87] one can de-
vise polynomial-time algorithms based on dynamic programming that solve these
problems on graphs with bounded tree-width. (For the definition of tree-width and
a survey on the classes of graphs with bounded tree-width the reader is referred
to [B86].) In particular, for trees these techniques yield linear-time algorithms.
However, these techniques do not yield the most efficient algorithms. Moreover the
generated algorithms do not give much extra insight in the structure of the prob-
lems. Therefore, it is useful to look for linear-time algorithms that are more efficient
and direct (and hopefully give some extra insight in the problems as a by-product).
The paper is organized as follows. In Section 2 path-domination is studied. Inde-
pendent efficient domination, and efficient total domination are studied in Section 3,
and 4, respectively. Finally, in Section 5 some conclusions are given. Throughout
the paper it is assumed that the reader is familiar with the basic concepts from

graph theory and graph algorithms (cf. [H69)], [G85]) and with the theory of NP-
completeness (cf. [GJ79]).

2 Path-Domination

Let G = (V,E) be a network, i.e., a graph. A simple path P in G is a sequence
[v1, ..., vs] of distinct nodes v; € V such that (vi,vi41) € E for everyi € {1, ..., (t—1)}.
v1 and v; are called the end-nodes of P. We say that v € V is adjacent to P if v
does not lie on P and there exists a node w € P such that (v,w) € E. Furthermore,

two paths P, and P; in G are node-disjoint iff there does not exist a v € V such
that v € P, and v € P,.

Notation Let G = (V, E) be a graph and P a set of paths in G. With P(V) we
denote the set of nodes that lie on at least one path that is element of P.

In [HHL84] the notion of path-domination is introduced. This notion is defined
as follows.

Definition 2.1 Let G = (V, E) be a graph and P a set of node-disjoint simple paths

in G. P is a path-dominating set of G iff for every v € V — P(V) there ezists a
P € P such that v is adjacent to P.



Definition 2.2 The path-domination number v,(G) of a graph G is equal to the
cardinality of the smallest path-dominating set of G. (Note that the cardinality of a
path-domination set is equal to the number of paths in that set.)

In this section we will first argue that determining path-domination numbers is
computationally hard in general, in the sense that it is N P-complete for general
graphs. The larger part of this section is devoted to a proof that for trees the path-
domination number can be determined by a linear-time algorithm. The following
simple lemma can be proven.

Lemma 2.3 Let G = (V, E) be a connected graph with |V| > 3. There ezists a

minimum path-dominating set P of G such that no node of degree 1 is element of
P(V).

Proof. Let P be a minimum path-dominating set of G. We will show that if there
exists a node v of degree 1 that is element of P(V), then an alternative minimum
path-dominating set P’ can be constructed such that v ¢ P/(V) without introducing
any new nodes of degree 1 in P/(V).

Assume there exists a node v € P(V) of degree 1. Let P € P be such that v € P
and let w be the neighbor of v in G. As |V| > 3 it follows that the degree of w is
greater than 1. If w € P, we can simply delete v from P. If w ¢ P, then P = [v] and
w & P(V), for otherwise we can delete P from P and still have a path-dominating
set, contradicting the minimality of P. By replacing the path P = [v] by the path
[w] the number of nodes of degree 1 that are element of P(V) decreases by 1. In
both cases we obtain a minimum path-dominating set P’ such that v € P'(V) and
the number of degree 1 nodes in it is reduced. By repeating this procedure one
obtains a minimum path-dominating set as described in the lemma. o

In the next theorem it is shown that the problem of finding the path-dominating
number of an arbitrary graph is NP-hard even when restricted to planar graphs
with no faces with fewer than 5 edges. The following problem is considered.

Problem: PATH-DOMINATING SET
Instance: A graph G = (V, E), and a positive integer k < |V|.
Question: Is there a path-dominating set of size k or less for G?

Theorem 2.4 PATH-DOMINATING SET is NP-complete even when restricted to
planar graphs with no faces with fewer than 5 edges.

Proof. PATH-DOMINATING SET is clearly in NP, since a nondeterministic algo-
rithm can always guess a set of simple paths in the given graph and check whether

this set is a path-dominating set with the desired cardinality constraint in polyno-
mial time.



To prove the problem N P-complete we use a transformation from HAMILTONIAN
PATH restricted to planar graphs with no faces with fewer than 5 edges, which is
known to be NP-complete (see [GIJT76]). Assume an instance of this problem is
given. Let G = (V, E) be the given planar graph. We transform the graph G to a
new graph G’ by connecting to every node in G a new node of degree 1. The trans-
formation can only increase the number of edges of a face. Hence G’ is also a planar
graph with no face with fewer than 5 edges. This clearly is a polynomial-time com-
putable transformation. Let W’ denote the set of these new nodes. We claim that
G has a Hamiltonian path iff 4,(G’) = 1. Assume v,(G') = 1. Then by Lemma 2.3
there exists a path-dominating set P of cardinality 1 such that W' NnP(V) = ¢. If
there exists a v € V such that v g P(V), then there exists a w’ € W' that is not
dominated by the path in P. We conclude that P(V) = V, and hence the path
P € P is a Hamiltonian path in G. On the other hand, if G has a Hamiltonian
path, then it is clear that 4,(G') = 1. This proves the theorem. a

Note that if C is a class of graphs such that HAMILTONIAN PATH restricted
to C is NP-complete and such that C is closed under the construction used in the
previous theorem, then PATH-DOMINATING SET restricted to C is N P-complete.

2.1 Determining the Path-Domination Number for Trees

With techniques developed in [B87] we can show that there exist polynomial-time
algorithms for determining 4, when we restrict the problem to graphs with bounded
tree-width. However, the algorithms obtained are not the most efficient algorithms
and do not give extra insight in the combinatorics of the problem. Therefore it is
useful to look for explicit algorithms to determine «, for this class of graphs. In the
following we will restrict the problem to ¢rees. An algorithm (Algorithm PDS) is
presented that constructs a minimum path-dominating set for every given tree.

Let T be a tree. Algorithm PDS starts at an arbitrary node v of T (effectively
considering T' rooted at v). It recursively determines a “special” minimum path-
dominating set for all subtrees rooted at the sons of this node. It will always try to
construct a minimum path-dominating set such that a path of this set ends in the
root of the subtree. If there are two subtrees in which a path ends in the root, then
these paths are joined together with v to obtain one new path, thereby decreasing
the number of paths with 1. If there is only one subtree in which a path ends in the
root, then v is added to this path. Thus no new path is introduced. Finally, if there
is not such a subtree and there is no path in one of the subtrees that dominates v,
then a new path starting in v must be introduced. Observe that this path is not
needed to dominate one of v’s sons. In Algorithm PDS v then obtains the status
free-start-node. It is clear that if a node with status free-start-node has a father that
is element of a path, then it is no longer necessary for this node to be element of a
path. Therefore, if v should become element of a path, then all its sons with status
free-start-node obtain a new status dominated (by the path of which v now is an
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element).
Let T = (V, E) be a tree. Every node v € V has a variable status(v) which can take
a value out of the following four possibilities:

o free-start-node, if a path € P starts at v that only dominates sons that are
already dominated by other paths.

e end-node, if v is an end-node of a path € P and does not have the status
free-start-node.

e path-node, if v is element of a path € P and does not have the status end-
node or free-start-node.

¢ dominated, if v is adjacent to a path € P and v & P(V).

P is the set of node-disjoint simple paths which the algorithm builds in the subtree
rooted at v.

Algorithm PDS:

procedure Path-Dominating Set (v :node)
begin

forall sons w of v do
Path-Dominating Set (w)

enddo ;

if v has no sons or all sons of v have status dominated

then
begin a new path at v ;
{the path is not needed to dominate one of the sons of v}
status(v) := free-start-node

elsif there exist two sons of v that have status end-node

then
make one path by joining the paths of which the two sons are end-node with v ;
status(v) := path-node

elsif exactly one son of v has status end-node
{and all the other sons have status free-start-node, path-node or dominated}

then
add v to the path of which the son is end-node ;
{v becomes the new end-node of this path}
status(v) := end-node

elsif one or more sons have status free-start-node

{and all the other sons have status path-node or dominated}
then

begin a new path at v ;
{this path dominates all sons with status free-start-node}

5



status(v) := end-node
elsif one or more sons have status path-node
{and all the other sons have status dominated}

then
status(v) := dominated ;
endif ;
if v belongs to a path, i.e., does not have status dominated
then

all sons of v with status free-start-node get the new status
dominated and the paths they “started” are discarded
endif
end {procedure Path-Dominating Set} ;

begin {Main}
input a tree T ;
let v be a node of T ;
orient T as a tree rooted at v ;
Path-Dominating Set(v)
{the nodes with status free-start-node, path-node and end-node are

the elements of the paths that form the path-dominating set P of T'}
end {Main}

The figure below shows an example of a minimum path-dominating set calculated
by Algorithm PDS. The given tree has a minimum path-dominating set consisting

of four paths. In the figure the different statuses that a node can adopt in Algorithm
PDS are shown.

Note that we have only indicated how to construct the set of paths P. For the sake
of clarity of presentation we did not explicitly maintain the set of paths. But this
can be done in a straightforward manner. In the following we will prove that P is a
minimum path-dominating set of the tree T, i.e., v,(T) = |P|.



2.2 Correctness and Complexity of Algorithm PDS

Let T = (V,E) be a tree and T' = (V’, E’) a subtree of T. Assume P is a path-
dominating set of T. Then by Pr (P restricted to T') we denote the set of paths
in T remaining after deleting all nodes € (V — V") from the paths in P.

Lemma 2.5 Let T = (V, E) be a tree and v,w € V such that (v,w) € E. Let T,
and T, be the two components of T — (v, w) rooted at v and w, respectively. Then
Yo(To) + 7p(Tw) = 1 < %(T) < 7p(To) + 1p(Tw)-

Proof. Let P, P, and P, be minimum path-dominating sets of T, T, and T,
respectively. It is clear that P, U P, forms a path-dominating set of T. Hence
Ye(T) < (To) + 1p(Tw)-

Consider Pr, and Pr,. If (v, w) belongs to a path in P or if v,w & P(V), then these
sets are clearly path-dominating sets of T, and T, respectively. Thus |Pr, |+|Pr, | <
Yp(T") + 1 must hold. In the other case we may assume, w.l.o.g., that w g P(V) and
v € P(V). Clearly Pr, is a path-dominating set of T, and Pr, U {[w]} is a path-
dominating set of T,,. It follows that |P,|+|Pu| < |Pr,|+|Pr, U {[w]}| = 7(T) +1.
Thus the lemma holds. !

Lemma 2.6 Let T = (V,E) be a tree and v,w € V such that (v,w) € E. Let T,
and Ty, be the two components of T — (v, w) rooted at v and w, respectively. If every
minimum path-dominating set P, of T,, is such that w is dominated by one of its
sons and w & Pu(V), then 15(T) = 15(To) + 1p(Tw)-

Proof. From the previous lemma we know that v,(T,) + 7,(Tw) — 1 < 7,(T) <
Yp(Tv) + ¥p(Tw). Suppose that v,(T) = 7,(T,) + Vp(Tw) — 1. Let P be a minimum
path-dominating set of T. It is clear that |Pr,| < 7,(Ty). If w € P(V), then Py,
is a minimum path-dominating set of T, such that w € P,(V), a contradiction.
If w ¢ P(V), then Pr, is a minimum path-dominating set of T,. It follows that
|Pr.| = 7p(Tw) — 1. Hence Pr, U {[w]} is a minimum path-dominating set, which
again is a contradiction. O

Assume a tree is given with a certain path-dominating set. If we consider the
tree as a rooted tree, then every node can be given a status according to the rules
used in Algorithm PDS, i.e., the status of a node depends only on the role of its

sons with respect to the given path-dominating set. In the following this status is
intended when the notion “status of a node” is used.

Theorem 2.7 Let T = (V, E) be a tree and v € V. Path-Dominating Set(v) con-
structs a minimum path-dominating set such that

1. if the status of v is equal to dominated, then there exists no alternative mini-
mum path-dominating set such that v has another status.



2. if the status of v is equal to path-node, then there ezists no alternative mini-
mum path-dominating set such that the status of v is equal to free-start-node
or end-node.

3. if the status of v is equal to end-node, then there exists no alternative minimum
path-dominating set such that v has status free-start-node.

Proof. By induction on the number of nodes of T'. It can easily be verified that the
theorem holds for trees with < 3 nodes. Assume that the theorem holds for all trees
with less than k nodes. Let T' = (V| E) be a tree with k nodes, and v € V. Consider
T as a rooted tree with root v. Let wy,...,wq € V be the sons of v. With Tw; we
denote the subtree of T rooted at w;. Consider Path-Dominating Set(v) (PDS(v)
for short). First, we will prove that the obtained set of paths is a path-dominating
set. Secondly, we will prove that the cardinality of this set is equal to 4,(T) and
that the claims made concerning the status of v as stated in the theorem hold.

By induction PDS(w;) constructs a path-dominating set of T,,. If v obtains the
status dominated, then there are no further changes (i.e., all sons of v keep their
original status) and v is clearly adjacent to a path. If v obtains the status free-start-
node, then there are also no further changes and v is element of a path. If v gets the
status path-node or end-node, then v itself is element of a path and only sons that
had the status free-start-node obtain a new status dominated. This proves that in
all cases the newly constructed set of paths P is a path-dominating set of 7.

Now we will prove that the cardinality of P is equal to v,(T) and that the claims
made concerning the status of v as stated in the theorem hold. Assume that v has
status free-start-node, in which case all sons have status dominated. By induction the
constructed path-dominating sets of T, are minimum. Then by Lemma 2.6 it follows
that P must be minimum. Assume that v has a status other than free-start-node.
Then suppose, to the contrary, that there exists a path-dominating set P’ of T such
that |P’| < |P| and status(v) conflicts with the claims as stated in the theorem, or
such that [P’| < |P|. We will show that neither of both holds. Let v, = %, 7,(To;)-
As v has a status other than free-start-node it is clear that |P| < v,. If P/ is a path-
dominating set such that [P’| < |P| < 1 and v has status free-start-node in P’, then
by the previous lemma this would contradict the minimality of ;. Furthermore, if v
has status dominated in P’, then P’ is a path-dominating set of the subtrees rooted
by v’s sons. If |P'| < v, this is contradicting the minimality of ;. Thus in the
following we only have to consider a path-dominating set P’ in which v has a status
equal to end-node or path-node.

Assume that v has status dominated in P. Hence |P| = v, and every son has
status path-node or dominated. Consider P’. By induction, if a subtree has a path-
dominating set such that its root has status free-start-node or end-node, then this
set cannot be minimum. It follows that if v has status end-node or path-node in P,

then |P’| > v, i.e., there cannot exist a minimum path dominating set in which v
has another status. Hence claim 1) holds.



Assume that v has status path-node in P. Hence there are at least two sons with
status end-node. Assume that there are k sons with status free-start-node. Then
|P| = 1 — k— 1. Consider P'. By induction, every subtree rooted by a node
with status end-node, path-node or dominated in P cannot have a minimum path-
dominating set in which the status of the root is equal to free-start-node. Hence it
is not possible to introduce new free-start-nodes without extra costs. Therefore it is
now easy to verify that |P'| > y; — k — 1, if v has status path-node in P’. If v has
status end-node in P, then the number of paths is equal to the number of paths in
the subtrees minus the number of free-start-nodes. By induction it is not possible
to introduce new free-start-nodes without extra costs. Hence |[P'| > 43 — k—1. This
proves that there cannot exist an alternative minimum path dominating set in which
v has status end-node. Hence claim 2) holds.

Similarly, it can be proven that if v has status end-node in P, then |P'| > |P| if v
has status path-node or end-node in P’. Hence claim 3) holds. 0

The algorithm clearly requires only O(|V]) steps.

3 Independent Efficient Domination

Definition 3.1 Let G = (V, E) be a graph, and D a subset of V. D is a dominating
set of G iff for every v € V — D there ezists a w € D such that (v,w) € E.

Dominating sets are well studied. An overview of complexity results for dom-
inating set problems can be found in [J85]. An interesting extra restriction on
dominating sets is efficiency.

Definition 3.2 A dominating set D of a graph G = (V,E) is efficient iff
|IN(v) N D| =1 for every v € V — D. (Where N(v) is equal to the set of neighbours
ofvinG.)

In [YL90] the problem of finding a minimum efficient dominating set is called

PERFECT DOMINATION. In that paper it is shown that PERFECT DOMINA-
TION is N P-complete for bipartite and chordal graphs. Furthermore, a linear-time
algorithm is given for a weighted version of the problem for trees.
A trivial efficient dominating set of an arbitrary graph G = (V, E) is always at hand,
namely D = V. It is not true however that there always exists an independent ef-
ficient dominating set of G. Recall that an independent set of G is a subset of V
such that no two nodes of this subset are adjacent. For example, the tree depicted
in Figure 3.1 obviously has no independent efficient dominating set.

Figure 3.1
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In the next theorem we will prove that the following problem is N P-complete.

Problem: INDEPENDENT EFFICIENT DOMINATING SET
Instance: A graph G = (V, E).
Question: Does G have an independent efficient dominating set?

Theorem 3.3 INDEPENDENT EFFICIENT DOMINATING SET is NP-
complete.

Proof. INDEPENDENT EFFICIENT DOMINATING SET (IEDS, for short) is
clearly in NP, since a nondeterministic algorithm can always guess a subset of the
nodes of the given graph and check whether this subset is an independent efficient
dominating set in polynomial time. To prove the problem N P-complete we use a
transformation from 3-SAT.

Problem: 3-SAT.

Instance: A set X = {z,,...,2z,} of variables. A collection C =
{c1,...,cm} of clauses over X such that each clause ¢ € C has |¢| = 3.
Question: Is there a satisfying truth assignment for C ?

Assume an instance of 3-SAT is given. We show that the instance of 3-SAT can
be transformed to a graph G = (V, E) such that: G has an independent efficient
dominating set iff there is a satisfying truth assignment for the set of clauses of the
given instance of 3-SAT. The transformation is easily seen to be polynomial-time
computable.

%o
D

Q
Q@

62620

a) b) c)
Figure 3.2

First, we discuss the transformation. Every variable z; of the instance of 3-SAT cor-
responds to a subgraph as depicted in Figure 3.2a. These subgraphs are connected
with edges incident to nodes c; and ¢; to the rest of the graph. Every clause C; also
corresponds to a subgraph, say G¢. (We will discuss this later.) c; is connected to
Gc if z; € Cj, and ¢; is connected to G¢ if 757 € C;. It is clear that if G has an
independent efficient dominating set D, then node uz cannot be an element of D
because, if not, then u; cannot be element of D and cannot be dominated by one
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of its neighbors. Similarly, u4 cannot be an element of D. It follows that either u,
or us is element of D. If u; € D this corresponds with z; true and if u; € D this
corresponds with z; false. See Figure 3.2b and 3.2c, respectively. The shaded nodes
in these pictures represent the nodes that must be element of D.

)]
0,

%)
Figure 3.3

Every clause C; = (z,,;,,%;,) corresponds to a subgraph G¢ as given in Fig-
ure 3.3a. Nodes I, I; and I3 are connected to the c; nodes of the subgraphs asso-
ciated with z; ,z;, and z;,, respectively. Nodes I, I; or I5 in G¢ are connected to
a cz-node instead, if the negotiation of the corresponding variable is element of the
clause. G¢ consists of two “or-structures” (see Figure 3.3b). An “or-structure” will
take two inputs (the v-nodes) and produce one output (the last two y-nodes). From
the preceding argument it is clear that either v, or v, must be element of D as these
nodes represent the nodes u; and ¢; or ug and ¢; in the subgraph associated with
a variable that is element of the clause. The same holds for v3 and vy. If v; € D,
then the input value is equal to false. If v; € D, then the input value is equal to
true. In the following we will show that the “or-structure” indeed acts as an or-gate,
i.e. on “logical” input values yi,y; it produces an output value y, V y,. There are
four cases to consider. 1) If vs,v4 € D, i.e., both input values are equal to true,
then of all z-nodes only z4 can be element of D. It folows that 2, necessarily must
be element of D as none of the y-nodes is able to dominate z5 and 2. Now it is
easy to verify that y¢ must be element of D also. Hence the output value is equal
to true. 2) If v),v3 € D, i.e., both input values are equal to false, then z, and z,
must be dominated by one of their neighbors. Either z; or z5 or z¢ can be element
of D. It follows that 2; must be element of D. Now it is easy to verify that ys must
be element of D. Hence the output value is equal to false. 3) If vy,v4 € D, i.e.,
the input values are equal to false, true, respectively, then of all z-nodes only z4 or
zs can be element of D. It folows that z5 necessarily must be element of D as 2
must be dominated by one of the z-nodes. Now it is easy to verify that ys must be
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element of D also. Hence the output value is equal to true. 4) If v;,v3 € D, the
proof is similar to 3).

Gc¢ consists of two “or-structures”. From the preceding argument it is clear that
either O; or O, must be element of D, representing either false or true, respectively.
In G the O, node of the subgraph associated with C; is connected to the O; node
of the subgraph associated with Cj,,, where j € {1,...,(m — 1)}. In each subgraph
either O, or O; must be element of D, if an independent efficient dominating set of
G exists. As the O;-nodes are connected to each other, it follows that all O;-nodes
must be element of D. Thus all outputs of the “or-structures” must be equal to
true. Hence G has an independent efficient dominating set iff there is a satisfying
truth assignment for the given set of clauses C. o

3.1 Determining an Efficient Independent Dominating Set
for Trees

Again with the techniques developed in [B87] it can be shown that the IEDS problem
is solvable in polynomial time for graphs with bounded tree-width. In this section
we will present and prove an explicit linear time algorithm that solves the problem
for trees. This solves one of the open problems stated in [HHL84].

Let T = (V, E) be a tree and D C V an independent efficient dominating set of T
Let v € V. Orient T as a tree rooted at v. Every node is either element of D or
dominated by exactly one neighbor € D. If a node is dominated, then it is either
dominated by its father or it is dominated by exactly one son. In the next algorithm
each of the previous three cases will correspond to status info kept at each node of the
tree. The algorithm starts at a node v and recursively computes all possible statuses
that the sons of v can adopt in an independent efficient dominating set of T, if such
a set exists. With this information either all possible statuses that v can adopt are
determined or it is noticed that the sons can only adopt incompatible statuses, for
instance if two sons are bound to be element of the dominating set. In the later case
it is concluded that T' does not have an independent efficient dominating set.

Let T = (V, E) be a tree. In the algorithm below every node v € V has a variable
status(v) which can take a value out of the following five possibilities:

e dominator, if v is an element of the independent efficient dominating set.
e to-be-dominated, if v must be dominated by its father.

o dominated, if v is dominated by exactly one son.

e a pair (statusl, status2), if it is possible to give either statusl or status2
to v without getting conflicts with the statuses of its sons. (In the following
we say that “v can adopt statusl (status2)”.)

o conflict, if it is not possible to construct an independent efficient dominating
set for this tree.

12



Algorithm IEDS

procedure Independent Efficient Dominating Set(v :node)
forall sons w of v do
Independent Efficient Dominating Set(w)
enddo ;
if {condition 0}
v has no sons
then {v is a leaf, i.e., either v is dominated by its father or
it is element of the independent efficient dominating set}
status(v) := (to-be-dominated , dominator)
elsif there exists a son of v with status conflict
then status(v) := conflict
elsif {condition 1}
(one or more sons have status to-be-dominated and
all the other sons can adopt the status to-be-dominated) or
(more than one son has status (to-be-dominated, dominator) and
all the other sons can adopt the status to-be-dominated)
then status(v) := dominator
elsif {condition 2}
(exactly one son has status dominator and
all the other sons can adopt the status dominated) or
(one or more sons have status dominated and
one son has status (to-be-dominated, dominator) and
all the other sons can adopt the status dominated) or
(one son has status (to-be-dominated, dominator) and
one or more sons have status (dominated, dominator) and
all the other sons can adopt the status dominated )
then status(v) := dominated
elsif {condition 3}
one or more sons have status dominated and
all the other sons have status (to-be-dominated, dominated)
then status(v) := to-be-dominated
elsif {condition 4}
all sons have status (dominated, to-be-dominated)
then status(v) := (to-be-dominated, dominator)
elsif {condition 5}
exactly one son has status (to-be-dominated, dominator) and
all the other sons have status (to-be-dominated, dominated)
then status(v) := (dominated, dominator)
elsif {condition 6}
one or more sons have status (dominated, dominator) and
all the other sons can adopt the status dominated
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then status(v) := (to-be-dominated, dominated)
else status(v) := conflict

endif
end {procedure Independent Efficient Dominating Set} ;

begin {Main}
input a tree T ;
let v be a node of T ;
orient T as a tree rooted at v ;
Independent Efficient Dominating Set(v) ;
if status(v) is equal to conflict or to-be-dominated
then there does not exist an independent efficient dominating set of T
else T' has an independent efficient dominating set
endif
end {Main}

Note that all possible status pairs occur in Algorithm IEDS. It is easy to prove (by
induction) that the statuses which occur in Algorithm IEDS are the only possible
statuses.

If the algorithm concludes that an independent efficient dominating set of T exists,
then it is possible that some nodes have a status pair. By traversing the tree T
starting at v and choosing one status of each status pair, every node obtains a
status that is either dominated, to-be-dominated or dominator. Note that
such a choice may have implications on the status of a son that has a status pair.
The set of nodes with status dominator forms an independent efficient dominating
set. It is possible to obtain all possible different independent efficient dominating
sets of T in this way. We will not study this further.

3.2 Correctness and Complexity of Algorithm IEDS

Theorem 3.4 LetT = (V,E) be a tree and v € V. Independent Efficient Dominat-
ing Set (v) determines all possible statuses of v in an independent efficient dominat-
ing set of T. If status(v) is equal to conflict, then T has no efficient dominating set
and if status(v) is equal to to-be-dominated, then TU{(v,w)} has an independent
set, where w is a new node that must be element of the dominating set.

Proof. By induction on the number of nodes of T. It can easily be verified that
the theorem holds for trees with < 3 nodes. Assume the theorem holds for trees
with < k nodes. Let T = (V, E) be a tree with k nodes, and v € V. Consider T
as a rooted tree with root v. Let w;,...,wg € V be the sons of v. With Tw; we
denote the subtree of T' rooted by w;. Consider Independent Efficient Dominating
Set(v) (IEDS(v) for short). By induction IEDS(w;) determines all possible statuses

14



of w;. Observe that if one son of v has status to-be-dominated, then necessarily
all sons must have status to-be-dominated and v must be assigned the status
dominator. If one of the sons cannot adopt the status to-be-dominated, then it
is not possible to construct an independent efficient dominating set of T and v gets
the status conflict. It is straightforward to verify that condition 1 (see procedure
IEDS) describes all the cases in which the previous is fullfilled. Furthermore, if
one son has status dominator, then all other sons must have status dominated
and v must be assigned the status dominated. Condition 2 describes all the cases
in which one son indeed must have status dominator while the other sons do not
have a conflicting status. Finally, if all sons have status dominated, then v must be
assigned the status to-be-dominated. Condition 3 describes this case. The three
previous cases also indicate the conditions to be met for the following three cases.
If a node v has no sons, i.e., it is a leaf, then the node is either an element of the
dominating set or it is dominated by its father. Thus the status (to-be-dominated,
dominator) must be assigned to the leaves of the tree. Furthermore, this status
can only be assigned if all sons of v can adopt the status dominated and to-be-
dominated. Hence condition 0 and condition 1 precisely cover these cases. A node
will be assigned the status (dominated, dominator) if all sons can adopt the
status to-be-dominated and there exists exactly one son that can also adopt the
status dominator while all the other sons can also adopt the status dominated.
This is reflected in condition 5. Finally, a node will be assigned the status (to-be-
dominated, dominated) if all sons can adopt the status dominated while there

also exists a son that can adopt the status dominator. It is easy to verify that this
is formulated in condition 6. O

The algorithm clearly requires only O(|V|) steps.

4 Efficient Total Domination

Definition 4.1 Let G = (V,E) be a graph, D C V. D is a total dominating set of
G iff for every v € V there ezists a w € D such that (v,w) € E.

Note that the nodes of a dominating set do not have to be dominated, whereas
every node of a total dominating set has to be dominated by some other node in
the set. Total domination was first studied in [CDH80)]. In [LPHH84] a linear-time
algorithm is presented that computes the minimum cardinality of a total dominating
set for trees. The problem becomes N P-complete for bipartite and chordal graphs

(see [B84], [CN84], [LPHH84]). In [HHLS84] it is remarked that a notion of efficiency
can also be introduced for total dominating sets.

Definition 4.2 A total dominating set D of a graph G is efficient if|IN(v)ND| =1
holds for everyv € V.
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Let G = (V, E) be a graph with an efficient total dominating set D C V. Then,
by definition, for every v € D there exists exactly one neighbor w € V that is also
element of D. Furthermore, all neighbors (# w) of v and all neighbors (# v) of w
must be element of V — D. Hence G can be partitioned in components as depicted
in Figure 4.1 by deleting all edges between nodes in V — D.

Figure 4.1

Observe that these components can easily be used to construct a graph for which an
efficient total dominating set exists. We will not study this any further. However,
these observations are very helpful in the rest of this section.

In the next theorem we will prove that the following problem is N P-complete.

Problem: EFFICIENT TOTAL DOMINATING SET
Instance: A graph G = (V| E).
Question: Has G an efficient total dominating set?

Theorem 4.3 EFFICIENT TOTAL DOMINATING SET is N P-complete.
Proof. EFFICIENT TOTAL DOMINATING SET (ETDS, for short) is clearly in

NP, since a nondeterministic algorithm can always guess a subset of the nodes of
the given graph and check whether this subset is an efficient total dominating set
in polynomial time. To prove the problem N P-complete we use a transformation
from 3-SAT. Assume an instance of 3-SAT is given. Let X = {zy,...,2,} be the
set of variables and C = {Cj,...,C\y} the collection of clauses over X. We show
that the instance of 3-SAT can be transformed to a graph G = (V, E) such that: G
has an efficient total dominating set iff there is a satisfying truth assignment for the

set of clauses of the given instance of 3-SAT. The transformation will be seen to be
polynomial-time computable.

Figure 4.2
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First, we discuss the transformation. Every variable z; of the instance of 3-SAT cor-
responds to a subgraph as depicted in Figure 4.2a. These subgraphs are connected
with edges incident to nodes ¢; and c; to the rest of the graph. Every clause C; also
corresponds to a subgraph, say G¢. (We will discuss this later.) ¢; is connected to
G if z; € G¢, and c; is connected to G¢ if Z; € G¢. Assume that D is an efficient
total dominating set of G. If u; and u4 are element of D then uz cannot be element
of of D and cannot be dominated by one of its neighbors. Hence u; and u4 cannot
be element of D at the same time. Similarly, this must hold for uz and us. It follows
that either u;,u; € D or ug,u3z € D. If uy,uy € D, this corresponds with z; true and
if ug,u3 € D, this corresponds with z; false. See Figure 4.2b and 4.2c, respectively.

a)

Figure 4.3

Every clause C; = (z;,,i,,Zi,) corresponds to a subgraph G¢ as given in Fig-
ure 4.3a. Nodes I, I; and I3 are connected to the ¢; nodes of the subgraphs associ-
ated with r; , z;, and z;,), respectively. Nodes I, I, or I3 in G¢ are connected to c;
if the negotiation of the corresponding variable is element of the clause. G¢ consists
of two “or-structures” (see Figure 4.3b). An “or-structure” will take two inputs
(the v-nodes) and produce one output (the last three y-nodes). From the preceding
argument it is clear that either v, and v, or v; and vz must be element of D as
these nodes represent the nodes us, us,c; or ur,ug,c; in the subgraph associated
with a variable that is element of the clause. The same holds for vy, vs and vs, ve. If
v1,v2 € D, then the input value is equal to false. If vy, v3 € D, then the input value
is equal to ¢rue. In the following we will show that the “or-structure” indeed acts as
an or-gate, i.e., on “logical” input values y;,y, it produces an output value 3, V y,.
There are four cases to consider. 1) If vy, v3,vs,v¢ € D, i.e., both input values are
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equal to true, then of all z-nodes only z4 and zg can be element of D. It follows
that z4 and 2z¢ necessarily must be element of D as none of the y-nodes is able to
dominate z5 and z7. Now it is easy to verify that y7 and ys must be element of D
also. Hence the output value is equal to true. 2) If vy, vq,v4,v5 € D, i.e., both input
values are equal to false, then z; and z3 must be dominated by one of their neighbors
23,25 or 27. It is easy to verify that 25 and z; cannot be elements of D. Thus 2,
must be element of D. As z; and zg must be dominated as well, it follows that z,
must be element of D. Now it is easy to verify that y¢ and y7 must be element of
D. Hence the output value is equal to false. 3) If vy, v,,vs,v6 € D, i.e., the input
values are equal to false, true, respectively, then of all z-nodes only 24, z5 or zg can
be element of D. It folows that zg necessarily must be element of D as z4 and z;
must be dominated by one of the z-nodes. Furthermore, z5 must be element of D
as z; must be dominated. Now it is easy to verify that y; and ys must be element
of D also. Hence the output value is equal to true. 4) If vy, v, v4,v5 € D, the proof
is similar to 3).

Gc consists of two “or-structures”. From the previous it is clear that either Oy, O,
or 03,03 must be element of D, representing the “logical” value of the associated
clause, i.e., either false or true, respectively. In G the O;-node of the subgraph asso-
ciated with C; is connected to the O-node of the subgraph associated with Cj41),
where (j € {1,...,(m — 1)}. From the preceding argument it is clear that in each
subgraph either O,, 0, or O,, 03 must be element of D, if an efficient total dominat-
ing set of G exists. As the O;-nodes are connected to each other, it follows that all
O2-, O3-nodes must be elements of D. Thus all outputs of the “or-structures” must
be equal to true. Now it is easy to verify that G has an efficient total dominating
set iff there is a satisfying truth assignment for the given set of clauses C. a

4.1 Determining an Efficient Total Dominating Set for
Trees

However, for trees the situation is much better. Let T = (V, E) be a rooted tree
with root v. Assume that T has an efficient total dominating set D. Then for every
node w € V four cases can be distinguished. 1) w ¢ D is dominated by exactly one
son. It follows that all the other neighbors of w are element of V — D. In the next
algorithm (Algorithm ETDS) w will have status dominated. 2) w ¢ D is dominated
by its father. It follows that all sons of w must have status dominated. In Algorithm
ETDS w will have status to-be-dominated. 3) w is element of D and no son of w
is element of D. It follows that all sons of w must have status to-be-dominated and
w’s father is an element of D. In Algorithm ETDS w will have status dominator. 4)
w € D is dominated by exactly one son. It follows that all neighbors of w and this
son are element of V — D. In Algorithm ETDS w will have status d-dominator.

Algorithm ETDS is very similar to the algorithm described in the previous section.
It starts at a node v and recursively computes all statuses that its sons can adopt
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in an efficient total dominating set of T. These statuses determine which statuses
v can adopt. Again it is possible that the statuses of the sons are incompatible in
which case T does not have an efficient total dominating set.

Let T = (V, E) be a tree. In the algorithm below every node v € V has a variable
status(v) which can take a value out of the following six possibilities:

e dominator, if v is an element of the efficient total dominating set but is not
dominated by a son.

e d-dominator, if v is an element of the efficient total dominating set and is
dominated by exactly one son.

e to-be-dominated, if v is not an element of the efficient total dominating set
and is not dominated by any son.

¢ dominated, if v is not element of the efficient total dominating set and is
dominated by exactly one son.

e a pair (statusl, status2) if it is possible to give either statusl or status2
to v without getting a conflict with the statuses of its sons. (In the following
we say that “v can adopt statusl (status2)”.)

e conflict, if it is not possible to construct an efficient total dominating set for
this tree.

Algorithm ETDS

procedure Efficient Total Dominating Set (v :node) ;
begin
forall sons w of v do
Efficient Total Dominating Set (w)
enddo ;
if {condition 0}
v has no sons
then status(v) := (to-be-dominated, dominator)
elsif one son of v has status conflict
then status(v) := conflict
elsif {condition 1}
one or more sons have status to-be-dominated and
all the other sons have status (to-be-dominated, dominated)
then status(v) := dominator
elsif {condition 2}
(exactly one son has status dominator and
all the other sons can adopt the status to-be-dominated) or
(exactly one son has status (dominator, d-dominator) and
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one or more sons have status (to-be-dominated, dominator) or
to-be-dominated and all the other sons can adopt the status
to-be-dominated)
then status(v) := d-dominator
elsif {condition 3}
one or more sons have status dominated and
all the other sons have status (to-be-dominated, dominated)
then status(v) := to-be-dominated
elsif {condition 4}
(exactly one son has status d-dominator and
all the other sons can adopt the status dominated) or
(exactly one son has status (dominator, d-dominator) and
one or more sons have status (dominated, d-dominator) and
all the other sons can adopt the status dominated)
then status(v) := dominated
elsif {condition 5}
all the sons have status (to-be-dominated, dominated)
then status(v) := (to-be-dominated, dominator)
elsif {condition 6}
one or more sons have status (to-be-dominated, dominator) and
all the other sons can adopt the status to-be-dominated
then status(v) := (dominator, d-dominator)
elsif {condition 7}
one or more sons have status (dominated, d-dominator) and
all the other sons can adopt status dominated
then status(v) := (to-be-dominated, dominated)
elsif {condition 8}
exactly one son has status (dominator, d-dominator) and
all other sons have status (to-be-dominated, dominated)
then status(v) := (d-dominator, dominated)
else status(v) := conflict
endif
end {procedure Efficient Total Dominating Set} ;

begin {Main}
input a tree T ;
let v be anode of T ;
orient T as a tree rooted at v ;
Efficient Total Dominating Set(v) ;
if status(v) is equal to conflict, dominator or to-be-dominated
then there does not exist an efficient total dominating set of T

else T has an efficient total dominating set
endif
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end {Main}

Note that the status pairs (to-be-dominated, d-dominator) and (domi-
nated, dominator) do not occur in the algorithm. By induction it can be proven
that these statuses do not occur in an algorithm that computes all possible sta-
tuses of a node in an efficient total dominating set. For trees with one node this
is true. Assume that it is true for trees with < k nodes. A node can only obtain
a status pair (to-be-dominated, d-dominator) if all sons can adopt the status
dominated and there is exactly one son that can also adopt the status dominator
(while the other sons can also adopt the status to-be-dominated). By induction
this is impossible. A node can only obtain a status pair (dominated, dominator)
if all sons can adopt the status to-be-dominated and there is exactly one son that
can also adopt the status d-dominator (while the other sons can also adopt the
status dominated). Again, by induction this is impossible.

4.2 Correctness and Complexity of the Algorithm

Theorem 4.4 Let T = (V,E) be a tree and v € V. Efficient Total Dominating
Set (v) determines all possible statuses of v in an efficient total dominating sets
of T. If status(v) is equal to conflict, then T has no efficient total dominating
set. If status(v) is equal to dominator, or to-be-dominated, then T itself has no
efficient total dominating set, but T U {(v,w)}, TU{(v,w), (w,z)}, respectively, has
(w and z are new nodes).

Proof. Parts of this proof are very similar to the proof of Theorem 3.4. Again
we prove the theorem by induction on the number of nodes of T. It can easily
be verified that the theorem holds for trees with < 3 nodes. Assume the theorem
holds for trees with < k nodes. Let T = (V,E) be a tree with k nodes, and
v € V. Consider T as a rooted tree with root v. Let wy,...,wq € V be the sons
of v. With T,, we denote the subtree of T rooted by w;. Consider Efficient Total
Dominating Set(v) (ETDS(v) for short). By induction ETDS(w;) determines all
possible statuses of w;. By the last remark in the previous section it is clear that
we do not have to consider the status pairs (to-be-dominated, d-dominator)
and (dominated, dominator). Furthermore, note that if one son of v has status
to-be-dominated, then necessarily all sons must have status to-be-dominated,
and v must be assigned the status dominator. In condition 1 all occurences of this
case are stated. If one son has status dominator, then all the other sons must be
able to adopt the status to-be-dominated. The first part of condition 2 is clear.
Consider the second part. If one son has status (dominator, d-dominator) while
a second son has status (to-be-dominated, dominator), then the first son must
adopt the status dominator because the status d-dominator is conflicting with
the possible statuses of the second son. All the other sons must be able to adopt the
status to-be-dominated. Condition 3 and condition 4 are similar to condition 1
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and condition 2, respectively. Here the status dominated, and d-dominator play
the role of to-be-dominated, and dominator, respectively. Again these four cases
indicate the conditions to be met in the following four cases. If a node v has no
sons, i.e., it is a leaf, then the node is either an element of the dominating set or it is
dominated by its father. As the procedure starts assigning the possible statuses at
the leaves of the tree it must assign the status (to-be-dominated, dominator) to
v. Furthermore this status can only be assigned if all sons of v can adopt the status
dominated and to-be-dominated. Hence condition 0 and condition 5 precisely
cover these cases. A node will be assigned the status (dominator, d-dominator)
if all sons can adopt the status to-be-dominated and there exists exactly one son
that can also adopt the status dominator. This is reflected in condition 6. A
node will be assigned the status (to-be-dominated, dominated) if all sons can
adopt the status dominated while there also exists a son that can adopt the status
d-dominator. It is easy to verify that this is formulated in condition 7. Finally,
a node will be assigned the status (d-dominator, dominated) if it has exactly
one son that has status (dominator, d-dominator) and all other sons have status
(to-bedominated, dominated). It is straightforward to verify the other claims
made in the theorem. ' 0

Clearly the algorithm only requires O(]V]) steps. Note that the information
computed by the algorithm can be used to determine all possible different efficient

total dominating sets of the given tree, if such sets exist. We will not study this
further.

5 Conclusions

We have shown that there exists an efficient linear-time algorithm that computes
a minimum path-dominating set for any given tree. Furthermore, we devised effi-
cient linear-time algorithms that determine whether a given tree has an independent
efficient dominating set or an efficient total dominating set. As expected the algo-
rithms are more direct and efficient than the algorithms obtained by more general
techniques as described in [B87]. Furthermore extra insight in the combinatorics of
the problems is obtained. Another useful by-product of the last two algorithms is
that the information produced by the algorithms can be used to determine all pos-
sible independent efficient dominating sets or all possible efficient total dominating
sets, if such sets exist. This justifies our search for these explicit algorithms that
solve the three problems described above.

PATH-DOMINATING SET is NP-complete even when restricted to planar
graphs with no faces with fewer than 5 edges. INDEPENDENT EFFICIENT DOM-
INATING SET and EFFICIENT TOTAL DOMINATING SET are N P-complete.

The complexity of the problems restricted to many other classes of graphs remains
open.
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