The optimal placement of replicated items

in distributed databases on tree-like
networks

E.M. Bakker, J. van Leeuwen

RUU-CS-91-23
June 1991

Utrecht University

oS
f (2 Department of Computer Science
o
o é’} Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

The optimal placement of replicated items

in distributed databases on tree-like

networks

E.M. Bakker, J. van Leeuwen

Technical Report RUU-CS-91-23
June 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Here the increase of reliability and availability that results from replication is not
taken into account, i.e., is not “weighted” in the cost function. The cost function
that we defined was proposed in [MW87], where it is shown that computing a scheme
that determines the number of copies of each data item and the location of each copy
in a general network such that the cost function is minimized is likely to take too
much time in practice. For networks that have a tree-structure, on the other hand,
we will show that it is possible to determine an optimal allocation scheme in linear
time. This improves the quadratic time-bound given in [MW87].

The paper is organized as follows. In Section 2 some preliminaries are given. In
Section 3 the problem is studied for the case of tree networks. Finally, in Section 4
we state some conclusions and suggestions for future research.

2 Preliminaries

As usual we model a communication network by a graph G = (V,E). We take
G to be undirected and assume that the nodes in G host the files of a distributed
database. Let dg(v,w) be the length of the shortest path between v and win G. KU
is a subset of V, then dg(v,U) is equal to min,eyde(v,w). Consider the placement
of the replicas of a data item in G. We call the set R C V consisting of all nodes
where a copy of a certain data item is located the residence set. If we want to read
the data item, it is obvious that we like to access the nearest copy of it. Clearly,
for a node v € V' the nearest copy is at distance dg(v, R). If we want to update
the data item, the update information is sent to all nodes that contain a copy of
the data item, i.e., to all elements of the residence set R. (In many concurrency
control schemes updates are batched before they are broadcast, but we ignore such
optimizations here.) Another parameter that determines the quality of a residence
set is the ratio of the frequency of the retrieval operations and the frequency of the
update operations. To model the update and retrieval cost of a residence set, we
define a cost function as follows.

Definition 2.1 Let G = (V, E) be a graph and o a positive real number. Let RC V
be a residence set. Letv € V, and P, = RU {v}.

e A write-instance is a weighted directed graph I, = (P,, A,) with the property
that for every w € R there ezists a path from v to w in I,. Furthermore, every
edge e = (v',w') € A, has weight w(e) equal to dg(v',w'). The cost of the
write-instance I, is equal to W(I,) = ¥ e, w(e).

o The write-cost wr(v) for a node v is equal to the minimum of W(I,) taken
over all possible write-instances I,,.

o The read-cost r(v) for a node v is equal to dg(v, R).
e The cost function ¢(R) is defined by c(R) = T ey wr(v) + a. Tyev r(v).

2

Note that each edge in a write-instance I, represents a “channel” for the transfer
of update information between two participants, i.e., nodes that are element of
RU {v}. The cost of an edge is equal to the length of the shortest path between the
two nodes. If in a write-instance I, = (Py, Ay) update information is transfered from
one node, say v’, to two different nodes, say w; and wy, then the cost of this transfer
is equal to the sum of the length of the shortest path from v’ to w; and the length of
the shortest path from v’ to ws, regardless the fact that some common sub-path may
be followed. If there exists a w’ € V such that dg(v', w’) + do(w', w1) + dg(w', w;)
is less than dg(v',w:1) + dg(v', w;), then clearly it would be better to first transfer
the update information from v’ to w’ and from there on transfer it to w; and w,.
However, in the definition of the write-instance it is assumed that update information
is only transfered between nodes that are element of P,. Hence there only exists
an alternative write-instance I/ = (P,, A’) where update information is transfered
from v’ to w’ and from there on to w, and wy, if w' is element of P,. If w’ is not an
element of P,, this optimization will not be taken into account.

Despite the simplicity of the cost function the following problem is N P-complete
MW87] :
Problem: REPLICA RESIDENCE SET
Instance: A graph G = (V, E), and positive n-bit real numbers W and
a (n a positive integer).
Question: Is there a residence set R C V such that ¢(R) =
Yoev wr(v) + a. Coeyr(v) S W ?

This is the main motivation to restrict the problem to the more special class of
trees.

3 The problem restricted to trees

Let us recall the following useful lemma. For the proof of the lemma the reader is
referred to [MW87].

Lemma 3.1 [MW87] Let G = (V,E) be a connected graph and let R C V be a

residence set. If R induces a connected subgraph of G, then wr(v) = d(v, R)+|R| -1
for everyv e V.,

We will denote the cost function as defined in Definition 2.1 by ¢. The problem
of finding a residence set on a.tree that minimizes ¢, is efficiently solvable. The
following lemmas and theorems help us to devise a linear-time algorithm that solves
the REPLICA RESIDENCE SET problem for trees. The first lemma we need is
another result from [MW87].

Lemma 3.2 [MW8T7] Let T = (V,E) be a tree. If R C V is a residence set such

that ¢(R) is minimal, then R induces a connected subgraph of T (thus a subtree of
T).

Observe that from Lemma 3.2 it follows that Lemma 3.1 applies to every residence

set that minimizes c on a tree. Now recall some notions concerning central structures
in trees.

Definition 3.3 Let T = (V,E) be a tree and let v € V. The branch-weight of v,
denoted by bw(v), is equal to the largest number of vertices in a component of T —v.

The branch-weight centroid of T is the collection of vertices of T with minimum
branch-weight.

Definition 3.4 Let G = (V, E) be a graph. The median of G is equal to the collec-
tion of vertices v' with minimal distance sum = Yvev da(v,v’).

The following two theorems are due to B. Zelinka [Z68] and C. Jordan [J69],
respectively.

Theorem 3.5 [Z68] For any tree T the median of T equals the branch weight cen-
troid of T.

Theorem 3.6 [J69] Let T = (V,E) be a tree. If C C V is equal to the median of
T, then |C| < 2.

The branch-weight centroid of a tree and a residence set that minimizes the cost
function c are closely related, as shown in the following theorem.

Theorem 3.7 Let T = (V,E) be a tree. Let R C V be a residence set of T such
that ¢(R) is minimal. If C C V is the branch-weight centroid of T, then C C R.

Proof. If |R| = 1, then it is easy to verify that R is equal to the median of T and
the theorem easily follows from Theorem 3.6. Assume that |R| > 1. Suppose, to the
contrary, that the theorem does not hold, i.e., there exists a node v, € C such that
vc ¢ R. Remark that by Lemma 3.2 R induces a connected subgraph, i.e., a subtree
Tr. Hence there exists a unique path P from v to R. Let v be the node on P that
is adjacent to a node € R. By applying Zelinka’s and Jordan’s theorem it follows
that |C| < 2. Furthermore, |R| > 1. It follows that there exists a node w € R such
that w is a leaf of Tg, and w is not adjacent to v. As v, € C, it is clear that the
branch-weight of v, and hence the size of every component of T' — v, is less than or
equal to |V| /2 (Jordan’s lemma, see [K36]). w is a leaf of Tk hence w has exactly one
neighbor w’ € R. Let T, be equal to the component of T — (w, w') that contains w.
T,, is strictly contained in a component of T'—v,. It follows that the number of nodes
in T, must be strictly smaller than |V| /2. Assume v' € R is the neighbor of v. Let
T, be the component of T — (v, v’) that contains v.. It follows that T}, must contain
> |V|/2 nodes. By Lemma 3.1 ¢(R) = ¥,ev(d(v, R) + |R| — 1) +a ey d(v, R).
Let R’ = (R — {w}) U {v}. Then by Lemma 3.1 ¢(R') = ¥,ev(d(v, R') + |R| — 1)

taXeev (v, BY) = ¢(R) + (1 + a)(|Va,| - |]) < c(R). This clearly contradicts
the minimality of ¢(R). Hence the theorem is true. o

Assume that we have a residence set R C V of a tree T = (V, E) that induces
a connected subgraph of T'. Let {v;,v,, ---»v1} be the set of neighbors of R in T.
Denote by T;,¢ € {1,...,1}, the subgraph of T consisting of all the components of

T — v; that do not contain R/, respectively. If we let R = R’ U {v;}, for a certain
7 €{1,...,1}, then

o(R") = Loev(dr(v, R") + |R"| = 1) + a. T,y dr(v, R)
= Lvev-(vr,uun(dr(v, R') + |R|)+ Loevruiv}(dr(v, R) + |R| — 1)+
a. Toev d(v, R) — a.(|Vg,| + 1)
= o(R)) + V| = (a + 1).(| V| + 1).

Define a(R',v;) = V| - (e + 1).(|VTj| + 1). We conclude that if there exists a
vj,J € {1,...,1}, such that a(R',v;) <0, then R’ cannot be a minimal residence set
of T.

Observe that if a(R’,v;) < 0, then for every v; (1 #7,i€{1,..,1}) a(RU{v},v;) <
0 holds, i.e., the fact that a neighbor v; is added to the residence set does mnot
influence the necessity of adding v; to the residence set in order to obtain smaller
costs. It follows that if R is a residence set that minimizes ¢, then for every node v
that is a neighbor of R, a(R,v) > 0 must hold. Furthermore, let R’ be a subset of R
and v € R~ R’ a neighbor of R’. Assume that a(R',v) > 0. Let v/ € R be adjacent
to v. Then it is clear that for all nodes u of the component T, of T — (v,v’) that
contains v, a(R”,u) > 0 holds, where R" is any set of nodes that contains R’ and is
adjacent to u. Thus ¢(R—Vr,) < ¢(R), which is a contradiction. Hence a(R',v) <0
must hold. This enables us to prove the following theorem.

Theorem 3.8 Let T = (V,E) be a tree and a a positive n-bit real (n a positive
integer). There exists a linear-time algorithm that computes a residence set R of T
that minimizes the cost function ¢ as defined in Definition 2.1.

Proof. Let T = (V,E) be a tree. By Theorem 3.7 the median of T is always a
subset of the residence set that minimizes the cost function ¢. The median C of
T can be computed in linear time [G71]. Initialize the residence set R to C. Let
ve € C. Orient T as a tree rooted at v.. By doing a breadth-first search on T one
can determine for every node v the number of nodes in the subtree rooted at v. This
can be done in linear time. This enables us to compute a(R,v) efficiently, i.e., in
constant time. From the previous analysis we know that if there exists a node v
such that it is a neighbor of R and a(R,v) < 0, then v must belong to the residence
set that minimizes the cost function c. We keep adding these kind of neighbors until
there are no more left, to obtain the desired residence set. This method is the basis

(3]}

for the following Algorithm RS.

Algorithm RS.

begin
let T = (V, E) be a tree and a a positive n-bit real (n a positive integer) ;
determine the median C C V of T ;
R:=C;
let v; € R and orient T as a tree rooted at v, ;
calculate for every v € V by a breadth-first search starting at v,
the number of nodes in the subtree rooted at v ;
let Vg be the set of neighbors of Rin T ;
while there exists a node v € Vg with a(R,v) <0

do

R:=RU{v};

Vg := (Vr — {v})U {all neighbors of v that are not an element of R}
od

end {Algorithm RS}

It is easy to verify that the algorithm computes an optimal residence set for T
using O(|V|) steps. 0

4 Conclusions

In this paper we showed that the problem of finding a residence set that minimizes
the proposed cost function ¢ can be solved in linear time for trees. The problem of
determining the complexity of the problem restricted to other classes of graphs re-
mains an interesting object for further research. Further, although the cost function
in itself is fairly realistic, many alternative cost functions may be defined. Related

research on this matter can be found in [DF82). Many interesting problems remain
open here.

References

[BHGS87] P.A. Bernstein, V. Hadzilacos, N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Publ. Comp., Reading,
Mass., 1987.

[CP84] S. Ceri, G. Pelagatti. Distributed Databases - Principles and Systems. Mc
Graw-Hill Book Comp., New York, N.Y., 1984.

[DF82] L.W. Dowdey, D.V. Foster. Comparative Models of the File Assignment
Problem. ACM Computing Surveys, Vol. 14, 1982, pp. 287-313.

6

[GT1]
[J69]
[K36]

[MW87]

[Z68)]

A.J. Goldman. Optimal Center Location in Simple Networks. Transporta-
tion Science, Vol. 5, 1971, pp. 212-221.

C. Jordan. Sur les Assemblages de Lignes. J. Reine Angew. Math., Vol.
70, 1869, pp. 185-190.

D. Konig. Theorie der Endlichen und Unendlichen Graphen. Leipzig,
1936, Reprinted Chelsea, New York, 1950.

A. Milo, O. Wolfson. Placement of Replicated Items in Distributed
Databases (Preliminary Version). Technical Report 473, TECHNION-

Israel Institute of Technology, Computer Science Department, November
1987,

B. Zelinka. Medians and Peripherians of Trees. Arch. Math. Brno, 1968,
pp. 87-95.

