Planar Graph Augmentation Problems

Goos Kant en Hans L. Bodlaender

RUU-CS-91-25
July 1991

Utrecht University

Department of Computer Science

Padualaan 14, P.O. Box £80.089,
3508 TB Utrecht, The Netharlands,
Tel. : ... 4+ 31-30-531454

v . ot

T
SN2,
MRS
Usm ™

Planar Graph Augmentation Problems

Goos Kant en Hans L. Bodlaender

Technical Report RUU-CS-91-25
July 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

3o ;
R
. s -
wooow T .
— Se .
* K
w
e W
e . E
o : &
v
Y N
o BN . ; .
P - .

g1

y
1
13

e

[PLANAR BICONNECTIVITY AUGMENTATION] (PBA)

Instance: Connected, planar graph G = (V, E).

Question: Find a planar, biconnected graph H = (V, F) with E C F,
and |F — E| as small as possible.

Eswaran & Tarjan [2] studied this augmentation problem without the require-
ment of planarity. They proved that this problem is NP-complete for weighted
graphs and linear solvable for unweighted graphs (see also Rosenthal & Goldner
[15]). In [3], Frederickson & Ja'Ja give approximation algorithms for the augmen-
tation problem on weighted graphs, working within two times optimal in O(n?)
time. This result is improved by Khuller & Thurimella {11], who obtained the
same performance by a simpler algorithm, running in O(m + nlogn) time. [2] and
(3] include augmentation algorithms to meet edge-connectivity constraints as well,
which formed the base for further research. Recently, Naor et al. [13] describe an
O(6*nm + nF(n)) algorithm to find the smallest set of edges to increase the edge-
connectivity of G by §, where F(n) is the time to perform one maximum flow on
G. Naor’s algorithm finds an optimal sequence of § augmentations, where in each
augmentation-step the edge-connectivity is increased by one, by adding a minimum
number of edges. Also recently, Hsu & Ramachandran [8] described a linear algo-
rithm to augment a graph by a minimum number of edges to admit triconnectivity,
without the requirement of planarity. However, these algorithms cannot easily be
modificated to meet planarity requirements, but some of their techniques will be
useful in our approach.

In this paper we prove that the Planar Biconnectivity Augmentation problem is
NP-complete, even for the unweighted case. Therefore, we present two approxima-
tion algorithms, a fast and relatively easy one, running in O(nlogn) time and has
performance ratio 2, and a more complicated and slower one, running in O(n? log n),
which has approximation ratio 1.5. Hereto we make use of matching techniques and
incremental planarity testing (see [1]), which finds a nice application in this context.
The same algorithms can be used to augment a planar graph such that the graph is
bridge-connected and planar. In some special cases there exist optimal, polynomial
time algorithms. Especially, when the inputgraph is outerplanar, linear algorithms
can be obtained such that the augmented graph is bridge-connected, biconnected or
triconnected and still planar, by adding a minimum number of edges [9)].

We also consider the Planar Triconnectivity Augmentation problem. This is
the problem to find the minimum number of edges, which when added to a planar
graph yields a triconnected planar graph. It is unknown yet whether the Planar
Triconnectivity Augmentation problem is NP-complete. In this paper we describe
an O(n3) approximation algorithm for biconnected graphs, which gives solutions
within 5/4 times optimal.

This paper is organized as follows. In section 2 some definitions and preliminary
results are given and we prove that deciding whether a planar graph can be made
biconnected by adding < K edges is NP-complete. In section 3 we present an

2

O(nlogn) algorithm to make a planar graph biconnected, which works within 2
times optimal. In section 4 we present an O(n?logn) algorithm to make a planar
graph biconnected, which works within 3/2 times optimal. In section 5 we describe
the 1-2-matching problem, and present an approximation algorithm, which we will
use in section 6 to augment a biconnected planar graph such that the resulted
graph is triconnected and planar, which works 5/4 from optimal. In section 7 some
concluding remarks are given.

2 Preliminaries

Let G = (V, E) be an undirected graph. Assume G has at least two biconnected
components, also called dlocks. A block of G is called pendant if it contains exactly
one cutvertex. Let p be the number of pendant blocks of G. For each v € V, let
d(v) denote the number of connected components of G — {v}, the graph obtained
by removing v from G. Each of these components is called a v-block. Let d =
max{d(v)|v € V'}, and let p(v) denote the number of pendants connected at v. Let
g be the number of blocks in G, not connected with the remaining part of the graph.

Now consider the following operation: take two vertices vy, v, (not cutvertices) in
two pendant blocks V4, V, which lie in different v-blocks B;, B; and connect them.
This may destroy planarity. However, the new formed graph G’ has one v-block
less, and the number of pendant blocks is decreased by two, unless the new pendant
containing v, and v; is an entire v-block, in which case the number of pendant blocks
is decreased by one. This observation forms the basis for the following theorem.

Theorem 2.1 ([2]) maz{d—1,q+ [E]} edges are necessary and sufficient to make
G biconnected.

The proof of theorem 2.1 leads to an algorithm for finding a minimum augmenting
set of edges to biconnect a graph, which runs O(m + n) time [15] (without the
requirement of planarity).

When we require that the augmented graph is also planar, then it is not always
possible to connect pairs of pendant blocks. For example, in Figure 2, edges e;, €2, €3
and e4 each form a pendant block. e; and e; can be connected without losing
planarity, but ez and e4 cannot. Essentially, making a graph biconnected with the
minimum number of edges corresponds to connecting as much as possible pairs of
pendant blocks with each other without destroying planarity. The number of added
edges equals the number of edges, that connect pairs of pendant blocks (hereafter
called matching edges), plus the number of pendant blocks, not connected by a
matching edge. Minimizing the number of extra edges is hard, as stated in the
following theorem:

Theorem 2.2 The following problem is NP-complete:

Figure 1: e; and e; can be matched with each other, but e3 and e4 can not.

b, b

Figure 2: Construction of the graph for the NP-completeness proof.

[PLANAR BICONNECTIVITY AUGMENTATION] (PBA)

Instance: Connected, planar graph G = (V| E), and an integer K.

Question: Find a planar, biconnected graph H = (V, F) with E C F,
and |F — E| < K.

Proof: Clearly the problem is in NP: guess L < K edges to be added to G, and
check in polynomial time whether the resulting graph is biconnected and planar.

To prove the NP-hardness, we show that 3-PARTITION (which is well-known
to be NP-complete in the strong sense) is reducible to the planar biconnectivity
augmentation problem. Let an instance of 3-PARTITION be given, i.e., a set A of
3m elements a,,...,a3,,, a bound B € Z* and a size s(a;) € Z* for each g; € A
such that B/4 < s(ai) < B/2 and ¥,,c4 s(a:;) = mB. We construct a planar graph
as follows:

Introduce a vertex s and for each 7,0 < 7 < m, introduce vertices b;,¢;, and

4

the edges (bi, bit1), (bi, z), (bi,¢;) and (bi41,c;) (additions modulo m). Introduce for
each vertex ¢; B additional edges to B new vertices. Introduce 3m new vertices
ai,...,asm, connected at r and each vertex a; has s(a;) additional edges to s(a;)
new vertices (see Figure 2). Let G be the resulting graph.

Clearly G has 2m B pendant blocks, so at least mB edges are needed to make G
biconnected. G can be made biconnected without destroying planarity with exactly
mB edges, if and only if it is possible to have a matching edge from each pendant of
cutvertex a; to an unique pendant of a cutvertex ¢;. This can be done, if and only if
for each c;, the B pendants are matched with pendants of some vertices a;,, a;,, a;,,
i.e., if and only if there exists a partition of A into m disjoint sets A, ..., A,, such
that for all 7,1 < ¢ < m,Y,c4, 8(a) = B. As G can be constructed in time, poly-
nomial in m and B, there is a polynomial time transformation from the strongly
NP-complete 3-partition problem to the planar biconnectivity augmentation prob-
lem, hence the latter is NP-complete. O

In a special case, however, the problem becomes efficiently solvable:

Theorem 2.3 If all cutvertices are part of one triconnected component, then we

can find in O(n?®) time the minimum number of edges, which added to the graph
gives a biconnected planar graph.

Proof: Let G’ be the triconnected component that contains all cutvertices of
the inputgraph G. We construct a new graph H by representing every vertex v € G
by p(v) vertices in H. We add an edge (vq,v;) in H iff v; and v, share a common
face in the unique embedding of G', and v; and v; do not represent the same vertex
in G. The planar biconnectivity augmentation problem is now equal to finding a
maximum cardinality matching M in H. Let P = ¥ g p(v), then it follows that
the number of required edges is equal to P — |M|. Crossings between added edges
in one face can be removed easily. Constructing a maximum cardinality matching
can be done in O(y/|Vy/|.|Eg|) time [12], but since |Eg| can be O(|V5/|?), the total
running time of the algorithm is O(|Vg|*%) = O(n?®).]

3 Approximation within 2 times optimal

Since the planar biconnectivity augmentation problem is NP-complete, we restrict -
our attention to approximation algorithms. In this section we present an O(nlogn)
algorithm, whose number of added edges is within 2 times optimal. Therefore, we
first recognize the cutvertices of the graph by constructing the block-cutpoint graph
bc(G) of G as follows (cf. Harary [7]): every block and cutvertex of G is represented
by a vertex of bc(G) and two vertices vy, v, of be(G) are adjacent if and only if the
corresponding cutvertex of v; in G is contained in the corresponding block of v,

in G or vice versa. bc(G) can be constructed in linear time, and it can easily be
shown that bc(G) is always a forest; it will be known as the bc-tree of G when G
is connected. Let p and g be the number of leaves and isolated vertices of be(G),
respectively. If G is not connected, then we apply the following algorithm (see also
[2]): let ¢ be the number of trees in be(G). Let v(z), 1 < ¢ < 2¢, be a set of vertices
of be(G) such that

1. v(2¢ — 1) and v(2¢) are each a pendant or an isolated vertex in the ith tree of
be(G), for each 1 < i < ¢.

2. v(2i — 1) = v(2:) if and only if the ith tree of bc(G) is an isolated vertex.

It now easily follows that bc(G) U {(v(2¢),v(2i + 1))|]1 < ¢ < t} is a tree having
p' = p+2q — 2(t — 1) pendants and no isolated vertices [2]. Hence we may assume
further that G is connected and let T be its bc-tree. Let one arbitrary blockvertex
b be the root of T and let for each block B; in G, b; denote the corresponding
blockvertex in T'. Assume we have pointers from the children to their parent in T and
assume that the children of every vertex are stored in a doubly linked list. Finally,
we want to test whether adding an edge (v1,v2) to G, denoted by PLANAR(vy,v;)
preserves the planarity. Hereto we construct the PQRS-datastructure of Di Battista
& Tamassia [1] to store the planar graph G such that we can test in O(nlogn) time
amortized whether adding an edge (v, v;) to G preserves the planarity. The PQRS-
datastructure can be built in O(nlog n) time. Let an outside vertex of a block be an
arbitrary vertex on the outerface of that block. When an edge is added between two
blocks, these blocks and the blocks in between have to be coalesced into one block.
For this we introduce an union-find structure (see Tarjan [17]), which means that
finding father(v,) for a cutvertex v, implies a find-call on the underlying union-find
structure in the following algorithm:

PBA_20PT
while T is not a single vertex b do
let ¢ be a cutvertex with only leaves as sons in T';
if c has > 1 sons b;,by,...,b; in T then
add edges between outside vertices of B; and B;4;,1 <:1 < k;
v := outside vertex of By; ¢ := ¢ := ¢;
while PLANAR(v, ¢;) and father(c,) # b do
C2 1= (,
¢) :=father(father(c;)); {take next cutvertex towards b}
od

if PLANAR(v, ¢;) then c; := ¢y;
b, := father(c;);
add an edge between v and an outside vertex of B, neighbour of c;;
for all cutvertices w on path between v and b, do
if degr(w) > 2 then father(w) := b, and update degrees

6

for all blockvertices b, between b; and b, do union(b;, b,);
od

Theorem 3.1 This algorithm can be implemented to run in O(nlogn) time

Proof: Wefirst construct the block-cutpoint graph and connect it to a tree, requir-
ing O(n) time. Building the PQRS-datastructure requires O(log n) time amortized
per edge, so total O(nlogn) time, since m = O(n) for G. In every step we take a
cutvertex c in T'. We first count the total number of iterations in these two while-
loops and the for-loop. For this, notice that every time that PLANAR(v, ¢;) is true,
then the number of blocks is decreased by one, hence this will occur at most n times.
Since also PLANAR(v, ¢;) is false at most n times, this leads to at most 2n iterations
of the while- and for-loops.

The PLANAR(v, ¢;) test requires O(logn) time amortized each [1]. Finding the
father of a cutvertex requires O(a(m,n)) = O(log n) time amortized each [17], with
a(m,n) the functional inverse of Ackermann’s function, by using the union-find
structure, including path compression and union by rank. Unioning two blocks into
one also requires O(a(m,n)) time [17]. All other statements in the algorithm can
be implied in O(1) time, which implies an O(nlogn) time algorithm. o

Theorem 3.2 This algorithm works within 2 times optimal.

Proof: By theorem 2.1, the number of required edges is at least [2]. In
PBA_20PT, every pendant gets one additional edge. Furthermore, one non-pendant
block B; gets an additional edge, if and only if PLANAR(v, father(};)) is false for all
cutvertices v, descendants of b; in T. This means that no descendant pendant of
B; can be matched outside B;. But now also in the optimal solution B; must get
an additional edge to preserve the biconnectivity and planarity. Say this occurs r
times, then now p + r edges are added, but it easily follows that also in the optimal
solution [£] + [£] edges are required, to preserve the planarity. o

4 Approximation within 3/2 times optimal

In section 3 a relative easy algorithm is described, working within two times opti-
mal. Our approach is now to lower the constant 2 to a significantly lower constant.
Therefore, in this section we present a more complicated algorithm, for which we
prove that it works within 1.5 times optimal, which is tight as well.

When G has a pendant V}, that is connected to exactly one other block V3,
and V; is connected to exactly one other block V3, then we call V;,V;,-- a chain
of blocks. The first step in PBA_1.50PT is to reduce chains of blocks. When we
add an edge from V; to a block outside the chain, then all blocks V3, V3, --- in the

7

g«

(a) We can delete block V2 for simplicity. ®) Vl lies inside A\

Figure 3: Reduce Chains.

chain are in the same block as V;. Hence we can discard the blocks V3, V3, - - -, for
simplicity (see Figure 3(a)). On the other hand, if V] lies inside V; then V] can only
be connected with V; and we can union them into one pendant immediately (see
Figure 3(b)). Inside means that no other cutvertex of V; shares a common face with
the cutvertex of V;. We can check this by testing whether the graph plus the edge
between the two cutvertices is not planar, by using the function PLANAR of section
3. These observations can be described formally by the following algorithm:

REDUCE_CHAINS
while not all pendants visited do
let V1 be an unvisited pendant; 7 := 1;
let v; be the cutvertex between V; and V,;
while d(v;) =2 and V4, contains at most two cutvertices v;,v;4; do
if PLANAR(v1,vi41) do
delete V4, and connect Vj at v;yq;
else
merge V) and V4, into one pendant V;;; by adding an edge between
two outside vertices of V; and Vj,;
Wi = Vg0 =0
t:=t1+1
od
od

When two pendants V; and V; in a face F are matched by an edge, then all
pendants left from this edge in F' cannot be matched with pendants right from this
edge in F' without destroying the planarity (see e.g. Figure 4). However, when such
a crossing between added edges (v1, v3), (vs,v4) occurs in a face, then we can always
remove it: change (v, v2), (vs, v4) into (v1,v3), (ve,v4) or into (v1,v4), (v2,vs). So,
we allow this type of crossings. To model the situation and to facilitate planarity
tests, we introduce face vertices.

Figure 4: If we match e; and e; with each other, then e3 and e4 can not be matched.
If we match e; with ez, then e; can be matched with e4.

Instead of adding an edge between two outside vertices v, and v, of pendants V;
and V3, respectively, we add an edge from v, and v, to the face vertex of F. This
means that two pendants V] and V; can be matched with each other if PLANAR(vy, F)
and PLANAR(F,v) for a certain face vertex F holds, or if PLANAR(vy,v;) holds.
Initially there are no face vertices. We now give the main step of PBA_1.50PT.
Recall that p(v) denotes the number of pendants connected at v.

MATCH_PENDANTS

while there is a matching between pendants possible do
choose vy, vz, such that PLANAR(vy,v;) or there exists a face F with
(PLANAR(vy, F) and PLANAR(F, v;)) with p(v;)
maximal, and for this choice of vy, p(v;) maximal;
if there is no F' with (PLANAR(v;, F) and PLANAR(F,v;)) then

introduce a new face vertex F';

add an edge between a vertex from a v;-pendant and from a vertex
from a v,-pendant to F;
decrease p(v;) and p(v;) by 1

od

If there are several cutvertices v, with the required property in MATCH_PENDANTS,
then we take this vertex v,, for which the coalesced pendant is as large as possible,
hence for which v; and v; have the highest common ancestor in bc(G). Otherwise,
suppose we have a planar graph for which the bc-tree forms a binary tree with 2*
leaves (see section 3 for the definition of a bc-tree). Since every pendant can be
matched with another pendant and all cutvertices have p(v) = 1, we can match
in every step two arbitrary pendants with each other. This leads to a worst-case
solution of 2F — 1 edges, while if we match in every step two pendants with highest
common ancestor with each other, we obtain the optimal solution of 2¥-! edges (see
Figure 5).

® =blockvertex

O =cutvertex
--------- = worst-case solution
........ = optimal solution

Figure 5: Optimal and worst-case solution when matching cutvertices, not with
highest common ancestor.

Note that by matching two pendants in one face, the embedding of G is also
restricted in a certain way. This may mean that several other pendants of the two
corresponding cutvertices can only be matched with each other. Hence, in general,
the p(v) pendants of cutvertex v will be matched with pendants of less than p(v)
other cutvertices.

After completing MATCH_PENDANTS, we change the matching edges (v, F), (F, v,)
of a matching between the blocks V; and V; into one edge (v;,v;). We delete the
face vertices and remove crossings between the additional edges as described above.

At this point in the algorithm, there may still exist some labels p(v) > 0 in the
graph, which correspond with pendants which cannot be matched anymore with
another pendant. For each of these pendants, we have to add an additional edge,
that only resolves the biconnectivity of that pendant. In the remainder of this
section, we will call this type of edges ertra edges. Hence, if M is the sum of the
unmatched labels then M extra edges are required. We distinguish two types of
extra edges:

cheap edges = extra edges, which are also required in the optimal solution.

expensive edges = extra edges, which are not required in the optimal solution.

If £ < p(v) pendants, connected at cutvertex v, are matched with other pendants
in a common face F or can only be embedded in a face F without destroying
planarity, then we say that label k belongs to face F. To count the number of
expensive edges, the following lemma is useful.

Lemma 4.1 Let the labels B;,. .., Bx belong to a face F, with ¥, B; = B. If
maz;{B;} < I'{i,—?] then all pendants can be matched by L%J matching edges, and if B

10

is odd one eztra edge, otherwise B— maz;{ B;} matching edges and 2-maz;{B;} — B
ertra edges are required.

Proof: If B; = max;{B;} > [-g—] then edges go from label B; to all other
labels and By — (B — B;) pendants remain unmatched. If B; < [£] then it is not
possible that > 2 pendants remain unmatched. For suppose that k¥ > 2 pendants in
face F remain unmatched, then they must necessarily be connected with the same
cutvertex v;,. Inspect the last matching between two pendants in F', connected with
cutvertices v; and v3 (v2 # v; and v3 # v;). But at that moment p(v;) = p(vs) =1
and p(v;) = k > 1 holds, hence a matching between a v;-pendant and a vo-pendant
(or v3-pendant) was made by the algorithm. Hence all pendants can be matched
with each other by [£] matching edges.]

Since we are counting the expensive edges in worst-case situation and in the case
max;{B;} < [E] no extra edges are required, we assume in our analysis w.l.o.g. that

max;{B;} > [2] holds.
Lemma 4.2 |ezpensive edges| < 2|matching edges|.

Proof: Every matching edge has to pay for two expensive edges and initially
no matching edge pays. Consider an optimal solution and our approximate solution
of PBA_1.50PT. Let p(v) = A be a biggest label in MATCH_PENDANTS, matched
with another label B (or some labels with total sum B), whereas in the optimal
solution A is matched with labels By, ..., Bi. It follows by MATCH_PENDANTS that
max;{B;} < B. For suppose that B; = ma.x.{B } > B, and A is not matched with
B, then B, is matched before A, say with label A’. Then B; > A or A’ > A holds
and, hence, A was not the biggest label matched with another label, which yields a
contradiction.

Notice that by the approximate matching B’ < B pendants remain unmatched,
which are matched with B in the optimal solution. This leads to B’ expensive
edges, to be paid by the B matching edges (between labels B and A). In the
optimal solution all A pendants are matched, so assume w.l.o.g. that 3%, B; > A.
If in MATCH_PENDANTS the B;-pendants are matched in a common face F, then we
change the matching edges in F such that they appear between two B.--pendants or
between two other pendants. Since max;{B;} < B this means that at least 2,_1
B matchmg edges between B;-pendants are possible, hence at most 2B — E,_l
expensive edges. This leads to a total number of B'+(A— B)+2B—-Y%_ B; < 2B
expensive edges and at least B matching edges. So assume further that labels
By,...,B, (p < k) are matched in other faces and labels Bpy,, ..., Bx are matched
in F.

First suppose that labels B,..., B, are matched with labels Ci,...,Cp, with
Ci > B; (1 £ ¢ £ p). Thus B; matching edges can be made and C; — B; pendants
remain unmatched for 1 < ¢ < p. Since the B matching edges have to pay for the

11

B' expensive edges, also the B; matching edges have to pay for B! < B; expensive
edges of pendants, which remained unmatched now, but are matched with B in the
optimal solution. Hence we assign to each B; a number of B; expensive edges and
we still have to pay for the following number of expensive edges: B’ + (A — B) +
2-ma,x,-{B.~} - (Bp+1 +...+ Bk) - (Bl +...4+ Bp) < A+2-rna.x.-{B.-} - Zf-;l B; <2B.
These can be assigned to the B matching edges.

We now may further assume that all B;-pendants (1 < ¢ < p) are matched with
Ci-pendants with C; < B; (1 < ¢ < p). This means that only C; matching edges
between the B;- and C;-pendants can occur, yielding B; — C; expensive edges. Since
C; is matched with B;, C! (C! < C;) other pendants remain unmatched, which are
matched with label C; in an optimal solution. Assume further w.l.o.g. that by the
approximation algorithm first B, is matched with C;, then B; with C,, ..., then
Bp with Cp. Then Bl Z C] Z B2 2 cee _>_ Cp_l Z Bp 2 Cp 2 ma.x{Bp.H,...,Bk}
holds. This leads to

B + Bp+1 +...+ Bk— ma.xp.'.ls.'sk{B,'} + Cl +...+ Cp
2 ma.xp...ls.‘sk{B;} + Bl +...+ Bp

matching edges and

B' + (A - B) + 2.ma.xp+1s,'sk{B.'} - (Bp+1 +...+ Bk)

+(B1—C)+...4+(B,—Cp)+ Ci+...+ C,
A-Y5 Bi+2-(Bi+...+ Bp) + 2:maxp41<ick{Bi}
< 2 (maxppici<k{Bi} + Bi1+...+ B,)

expensive edges.

By this it follows that although the matching of A and B may not lead to an
optimal matching, all involved expensive edges can be paid by the involved matching
edges, and some expensive edges are assigned at some matching edges, which are
treated later. We can further ignore all those treated matching and expensive edges:
delete these edges from the graph G, obtaining a reduced graph G’. Apply the same
argument to G’: find in G’ the biggest label A, matched with another label B,
whereas in the optimal solution A was matched with the labels By, ..., Bi. Suppose
that some B; > B and B; is now matched with A’. Then B; > Aor A’ > A
holds, which means that we have already treated the labels B; and A’, so they are
already removed from the graph. Hence max;{B;} < B holds, and we can apply our
argument to G'.

Since each time at least one edge is deleted from the graph, this certainly stops
and every matching edge pays for at most two expensive edges, which proves the
lemma. a

IA

Our approximate solution consists of three types of edges: the matching edges
(M), the cheap edges (M) and the expensive edges (M,). The optimal solution
consists of matching edges (M,y) and cheap edges (M,;). Note that M, < 2M,, by
lemma 4.2 and M, > M, by definition.

12

Theorem 4.3 PBA_1.50PT gives solutions that use as most 8/2 times the optimal
number of edges.

Proof: Let p be the total number of pendants when starting PBA_1.50PT.
Then p = 2-Mype + M2 = 2:-Myn + M, + M,,. Hence M,, < M,y and My =
(2- My + M. + Mg — M2)/2 > M, + M. — 1M,,. The approximate solution is
Mm + Mcl + Me S Mm + %Mm + %Me + %M& - %Mc2 S %(Mopt + Mc2)- Hence
PBA_1.50PT works within 1.5 times the optimal solution. 0

In REDUCE_CHAINS we use the block-cutpoint graph bc(G), to find the blocks
and cutvertices. In the internal while-loop every time a block is visited, a block is
deleted or two blocks are coalesced into one, i.e., the number of blocks decreases by
one in each pass. Furthermore, every pendant and block will be visited at most once,
hence the test PLANAR(v,¢;) will be executed at most n times, requiring O(logn)
time amortized each. All other statements of the algorithm requires only O(1) time,
hence the algorithm REDUCE_CHAINS requires O(nlogn) time.

Next, we construct for each cutvertex v a binary balanced tree CV(v), containing
those cutvertices w, for which in the original graph G, PLANAR(v, w) holds. Further-
more we introduce for each cutvertex v another binary balanced tree FV(v). FV(v)
contains these face vertices F, for which PLANAR(F,v) holds during the augmenta-
tion of G. So initially FV(v) is empty for all cutvertices v of G. With bucketsort
we sort the labels p(v) in non-increasing order. In every step we take the biggest

label p(v1) and search for the biggest label p(v;). Checking whether pendants vy, v,
can be matched is done as follows:

1. Check if v; € CV(v;). If not then PLANAR(v;,v;) did not hold initially, so
find another pair.

2. Check if there is some F, with F € FV(v;) and F € FV(v).

3. If not, then check whether PLANAR(vy, v2) holds.

If there is some face vertex F with F € FV(v,) and F € FV(v;), then this
means that there is a face vertex F, such that PLANAR(v;, F) and PLANAR(F,v;)
holds. If there is no such F, but PLANAR(v;,v;) holds, then a new face vertex
F must be created. After adding the edges (vy, F) and (F,v;), the trees FV are
updated as follows: if F' is new, then F is added to F'V(w) for every cutvertex w
with v;,v; € CV(w). If F is not new, then F is deleted from every F'V(w) for every
cutvertex w with F € FV(w) and v; € CV(w) or v, € CV(w). Updating the trees
FV requires O(nlog n) time, but notice that this will happen at most O(n) times,
since at most O(n) edges will be added.

Using the algorithm of [1}, it is possible to carry out all PLANAR(v;,v;) tests in
O(log n) time per call, amortized. Analysis of the time complexity of our algorithm
leads to the following result:

13

Theorem 4.4 There exists an approzimation algorithm for the Planar Biconnectiv-
ity Augmentation Problem with performance ratio 1.5 and time complezity O(n? logn).

5 1-2-Matching

5.1 The algorithm

In this section we consider a problem on triconnected planar graphs, and give an
approximation algorithm for this problem. The algorithm will be used as a ‘tool’ in
section 6. Consider triconnected planar graphs G’ = (V, E), in which every edge e
has a set of one or more characteristics associated with it, denoted by C(e), where
each characteristic is one of the following: 0 ~ 0,1 ~ 0,1~ 1,2~ 0,2~ 1o0r2~ 2.
If |C(e)] >2thenforalli ~j€C(e),i+jisevenorforalli~ j € Cle),i+]is
odd. A 1-2-matching is a ‘matching’, that is obtained as follows:

1. We fix one characteristic : ~ § € C(e) for each edge e, and we assign ¢ to one
of the adjacent faces, and j to the other adjacent face.

2. In a face, it is possible to match a 1 with a 1 or with a 2, a 2 with a 2 or with
two 1’s, or three 2’s with each other. (Every number may be matched at most
once.)

In our application, every edge (a,b) represents a connected surbgraph V' of G,
connected with a and b with G — V’. A characteristic ¢ ~ j of (a,b) represents
the number of augmentation edges at both sides of V', which has to go from V' to
G — V' to make V' triconnected. If two numbers between two edges are matched,
then one or more matching edges are added between the subgraphs in G that are
represented by the edges in G’. In some cases, some extra edges are needed. These
edges are added in the following way: if a 1 is matched with a 1, then one matching
edge is taken; if a 2 is matched with a 2, then two matching edges are taken between
the two subgraphs; if a 1 is matched with a 2, then one matching edge is taken, and
one extra edge, which goes from the component with a 2; if a 2 is matched with
two ones, then two matching edges are taken, each between the component with
number 2, and to one of the components with number 1; if three 2’s are matched
with each other, then three matching edge are taken, between each of the three
pairs of subgraphs one. Finally, for each number ¢ that is not yet matched, ¢ extra
edges are taken, going to the corresponding subgraphs. The problem is to fix the
characteristics, and to find an assignment of numbers to faces, and a matching, such
that the total number of matching edges plus extra edges is as small as possible. We
call this problem the 1-2-matching problem. An interesting, but still open question
is whether this problem can be solved in polynomial time. In Figure 6 an inputgraph
and a corresponding minimum 1-2-matching are given.

In this section we present an approximation algorithm APPROX_1-2-M, that
yields a solution that uses at most 5/4 times the optimal number of edges.

14

Figure 6: Example of an inputgraph and a 1-2-matching.

Definition 5.1 An edge e is a 2-edge if there is a characteristic 2 ~ i € C(e),
otherwise it is a 1-edge.

Note that if we can match a 2-edge with two 1-edges, then instead of it we
could also match the two 1-edges with each other. Therefore, we first attempt to
match a maximum number of 2-edges with each other, and then we try to match
the remaining 2-edges with the present 1-edges and a maximum number of 1-edges
with each other. This forms the basis for our approximation algorithm APPROX_1-
2-M, which consists of constructing two maximum matchings, called the 2-matching
and the 1-matching, on two to be constructed matching graphs, H, and H;. H, is
defined as follows:

If for a 2-edge e, 2 ~ 2 € C(e), then e is represented by two vertices v; and v, in
H,, otherwise e is represented by one vertex in Hj. If two 2-edges e; and e, share a
common face in G’, then an edge between the two corresponding vertices v; and v,
in H, is added. Notice that a triconnected planar graph has an unique embedding.

Every vertex v; in H; receives an a(v;)-value as follows: if the corresponding
2-edge ¢; in G’ has |C(e)| > 2 or if e; shares a common face with a 1-edge then
a(v;) = 0, otherwise a(v;) = 1. We are now looking for a subgraph H} = (V, E') of
H; such that we first maximize the number of vertices v; with a(v;) < degp;(v;) < 1
and then for this number of vertices, also maximize |E’| (this is called the degree
constrained subgraph problem, e.g. see [16]). In other words, if a(v;) = 1, then v;
must be matched if possible, i.e., if there are no 1-edges to match v; with and the
corresponding 2-edge e; contains no other characteristics.

For every unmatched vertex v in H; we test if there is a path v = vy,... v
(k odd) in H; such that (vy;,v2i41) € E’, and vi has two neighbours w,, w,, with -
(w1, w2) € E'. If so, then we change this matching as follows: delete matching edges
(v2i, v2i41) and (w1, wy), add the matching edges (vzi—1,vi), 1 <& < |_§_| and match
the three vertices wy, wy and v; with each other. Notice that no two unmatched
vertices can have a path to a common pair w;, w;, otherwise the matching E’ was
not maximal. The resulting matching is called a 2-matching.

15

1~0: =30 F, 2-1: F=0<gE, z~2or1~1:1=1>0—0<p2
>00= >0 o<

~1: F| =00 F, ~2: . SO0

1~1: "1 2 2~2: F, p2 2~10r1~o:F1>°< F,
>00< S0—o<

(2~20r)2~00r1~1:F1E : EFZ
0=

Figure 7: Matching components for the characteristics.

We change in the characteristics the 2 into 0 of those 2-edges in G’, whose
corresponding vertices are matched in H). Edges in G’, that have a characteristic
0 ~ 0 are ignored, but for the remaining 2- and 1-edges, we construct a second
matching graph H;. The edges e in G’ are represented in H; according to C(e) by
one of the matching components (assume e belongs to faces F; and F3), as shown in
Figure 7. This means that if C(e) = {1 ~ 1} then e is represented by two vertices
vy and v, in H;. There is an edge from v, (v;) to those vertices in H;, whose
corresponding edge in G’ belongs to face Fy (F;). All other characteristics are dealt
with in a similar way. If e has except characteristic 2 ~ 2 also characteristic 2 ~ 0,
then we can ignore characteristic 2 ~ 2 for simplicity.

The matching components are chosen in such a way that there is a directed
correspondence between the 1-2-matching in G’ (except when these involve 2 ~ 0
characteristics) and (ordinary) matchings in H;. If e has characteristics 2 ~ 2,1 ~ 1
and 2 ~ 0 associated with it, then we ignore the characteristic 2 ~ 2, because if
we can match a 2 ~ 2 characteristic with two times two 1-edges, then instead of it
we can match two 1-edges with each other and match the other two 1-edges with a
2 ~ 0 characteristic. It easily follows that a 1 ~ 1 or 2 ~ 0 characteristic correspond
exactly with two 1 ~ 0 characteristics.

Note that for characteristic 2 ~ 0 no corresponding matching component in H,
is constructed. Consider an edge with characteristic 2 ~ 0, that is adjacent to
faces Fy and F;. The problem here is that both matching edges must belong to
the same face. We are not able to represent this by a matching component. We
deal with the situation in the following way. First note that the faces Fy and F;,
can not contain other matched or unmatched 2-edges, because then the 2-matching
would not have been maximal. If £ > 2 1-edges belong to face Fy (or F), then
we give every edge between the corresponding vertices in Hy weight 1 + . If there
is only one l-edge in F; (or F3), then we introduce a new vertex in Hy, with an
edge of weight 3 to the corresponding vertex. We now apply an algorithm to find a
maximum weighted matching in H, [6]. The weights 1+ makes that these edges are
preferred in the maximum weighted matching. (The meaning of the values of these
weights will become clear in the analysis.) The matching edges in H; correspond in

16

>
)
>
]
)

1~0 1~0 1~0

----- e i S 1
Hy .. SR SSI S U S

..... S ST W SR W

..... 9..............?... P S

..... &heee. 43 & &..

Figure 8: An inputgraph G’, and the two matching graph H, and H;. Here 7 edges
are required, in the optimal solution 6.

a straightforward way to matchings made between numbers in G'.

The final steps of the algorithm are the following. For each unmatched edge e
in G, with 2 ~ 0 € C(e), we remove — if possible — one matched (1 + })-edge
in one of the two shared faces, and connect the two endpoints to two new vertices,
representing e. Such an (1 + })-edge is then marked. In every face at most one
(1 + })-edge is marked. If there is no such matched (1 + })-edge in Hy, then if
the edge of weight % is matched in H; (this occurs when Fj or F;, has only one 1-
edge), then e is matched with the I-edge, otherwise the 2-edge e remains unmatched,
and we call the corresponding faces unmatched. Call the resulting matching in H;
the 1-matching. The required matching in G’ is obtained by taking together the
2-matching and the 1-matching. We call the resulting algorithm APPROX_1-2-M.

5.2 Analysis of APPROX_1-2-M

Due to the lack of a 2 ~ 0 matching component it easily follows that APPROX_1-
2-M does not always compute solutions, which leads to a minimum number of match-
ing and extra edges (see figure 8 for an example). But since the other matching
components correspond exactly with the characteristics, there is always a matching
in H, and a matching in H) that corresponds with an optimal solution. In this sec-
tion we count the number of matching and extra edges in APPROX_1-2-M and the
number of matching and extra edges in an optimal solution of the 1-2-matching. We
show that the number of (matching plus extra) edges computed by APPROX_1-2-M
is at most 5/4 times the optimal number of (matching plus extra) edges.

17

The non-optimal solution arises from the edges with only characteristic 2 ~
0 in G', and therefore we assume w.lo.g. that all 2-edges in G’ are edges with
characteristic 2 ~ 0. We will call unmatched 2-edges in the 2-matching u2-edges.
These u2-edges, which remain unmatched in the 1-matching, are called ul-edges. To
count the number of involved matching and extra edges for the u2-edges and the yl-
edges in APPROX_1-2-M and in the optimal solution, we inspect all the possibilities
of paths P in H, and H; of alternating matched and unmatched edges, with the
different weights. We test whether changing the matched and unmatched edges
leads to a better solution. If so, then we assign the extra edges to the matched
edges of P and count the edges in the new solution. Since the optimal solution also
corresponds with a matching in H; and Hj, this technique ensures us that we reach
the optimum. The different cases will be proved by lemma’s. We prove for these
cases that the following property Prop holds:
Prop: The number of involved matching and extra edges, implied by a
path P of alternatingly matched and unmatched edges in H, or H,
is < 5/4 times the number of involved matching and extra edges in
the optimal solution.

Lemma 5.1 If an ul-edge is matched with a 2-edge in the optimal solution, then
Prop holds.

Proof: Let e; be an ul-edge, which is matched with a 2-edge e; in the optimal
solution. Then there must be a 2-edge e, which is matched in H, by APPROX_1-
2-M, but ex is not matched with a 2-edge in the optimal solution, otherwise our
Hj-matching was not maximum. If a(ex) = 0, then two extra edges are required
for e; in the optimal solution, so assume w.l.o.g. that a(ex) = 1, hence a(e;) = 1.
Hence if S; is the set of ul-edges e;,a(e;) = 1, matched with a 2-edge in the optimal
solution, and S, is the set of 2-edges e;,a(e;) = 1, matched in H; but not in
the optimal solution, then |S;| < |S;|. Otherwise again our H;-matching was not
maximum.

So for each 2-edge e; € S; we can assign an unique 2-edge ¢; € S;. Inspect such
a pair e;, e;, with a(e;) = a(e;) = 1. Assume e; is matched with 1-edges ¢;, and e;,
in the optimal solution. In our 1-matching, e; and e;, are matched with each other,
or with two other vertices. Since e;, and ej, are matched with ¢; in the optimal
solution, we assign the half of the matching edges of e;, and e;, to this matching.

Inspect in H; all |S;| paths P between the pairs e; € S; and e; € S,, which
can have several matching edges in common. Such a path P is of even length k,
and implies k¥ matching edges. Furthermore e; implies two extra edges, leading to
k+2+4+ 3+ 3 =k+3 edges. In the optimal solution k + 2 edges are required (k
edges on P and two for et). Since k > 2, Prop holds for every pair e;, €. a

2-edges, which are matched with a 1-edge in APPROX_1-2-M, but with a 2-edge
in the optimal solution are also covered by Lemma 5.1, because this matching edge

18

o/o/o/o kg 1+
1 1
3 s
4
(a) (b)

Figure 9: The two different paths, ending in an unmatched edge of weight 3.

between the 1-edge and the 2-edge implies one more matching edge in APPROX_1-2-
M and a half more assigned edge in the optimal solution in Lemma 5.1, hence then
also Prop holds.

Hence we may now further assume that all ul-edges are matched with 1-edges
in the optimal solution. In the analysis it is already sufficient to inspect only paths
P in the 1-matching. This means that though the 2-matching may not be equal
to the matchings between the 2-edges in the optimal solution, these edges will not
imply a difference in the number of involved matching and extra edges. Therefore
we assume that our 2-matching is equal to the matching between the 2-edges in the
optimal solution and we ignore these matched 2-edges and matching edges. The
analysis is now completed by the following two lemma’s:

Lemma 5.2 If an ul-edge is matched with one 1-edge in the optimal solution, then
Prop holds.

Proof: If in APPROX_1-2-M the 2-edge is not matched with the 1-edge, then
there is an unmatched edge of weight % in H;, which should be matched. Inspect a
path P in Hi, ending in an unmatched 3-edge, containing no unmatched (1 + %)-
edges (because we inpect this case in lemma 5.3). In worst-case the length of P,
denoted by p, is odd, because then both begin- and endpoint are unmatched by
APPROX_1-2-M, while they are matched in an optimal solution, so assume p is odd.

If the last edge e is of weight 2, then P must contain matched (1 + ;)-edges
with extra weight > 1/2 (see Figure 9(a)). In worst-case these (1 + 1)-edges are
unmarked, and the corresponding 2-edge of e is not matched. This implies two
extra edges for both unmatched 2-edges of the 3-edges and 25! matching edges on
P. In the optimal solution the matched and unmatched edges are changed, yielding
2+ P;—a + 2 edges, hence Prop holds, since p > 3.

If e is of weight 1 (see Figure 9(b)), then p > 5 holds, and by a similar counting
argument it follows that the number of involved edges is now at most %g times
optimal, hence then also Prop holds. O

Lemma 5.3 If an ul-edge is matched with two 1-edges in the optimal solution, then
Prop holds.

19

(a) (b) (©

Figure 10: The three different paths, in which the (1 + })-edges are not matched.

Proof: The 2-edge is not matched in the 1-matching, hence the corresponding
(1 + 1)-edges are not matched. There are three possibilities (or combinations of it)
in which the (1 + })-edges are not matched, as given in Figure 10.

1. p is of length 2h,h > 2, and contains A matched edges of weight 1, one
unmatched 3-edge and A — 1 unmatched edges of weight 1+ L %> With Shl1+
1) < h — 1 + l

2. pisof length 2h+1,h > 1, and conta.ins h +1 matched edges of weight 1 and
h unmatched edges of welght 1+ g, with 25014+ 2 <h+ 1.

3. pis of length 2h + 1,k > 1, and contains h; matched (1 + E)-edges and hs
unmatched (1 + {) -edges, with Y"1, 1 + L - >yl kl—,

In the unmatched faces of APPROX_1-2-M two extra edges are required for the 2-edge,
while in the optimal solution this 2-edge is matched with two 1-edges in worst-case.
We assign the cost of these extra edges to the k matched 1-edges of this face, hence
every matching edge with one endpoint in an unmatched face has to pay for % extra
edges. Similar in the optimal solution one matched (1 + ;)-edge is changed into two
edges to the 2- edge We assign this matching edge to the k 1-edges in this face.

In case 1 it L 5 S 1% holds. There are already % extra edges assigned to the
2(h—1) endpoints. Also for the ul-edge correspondlng to the 3-edge two extra edges
are required leading to a total of h—1+2+ 3! £ edges. In the optimal solution
the (1 + z-)-edges are matched, and 2 ~ edges are assigned to each matching edge.
Since for the first 3-edge two edges are required and for the last vertex one extra
edge is required, it follows that Prop holds, because h > 2.

Furthermore all other matching edges, not on this path P, but having an end-
point on these unmatched faces, have to pay for 2 & extra edges. In the optimal
solution %; edges are assigned to these matching edges Let K be the size of this
set, then K > 13" M(k; —2). If ki < 5, then h < 2, and it easily follows by
counting all edges in APPROX_1-2-M and in the optimal solution, that always a
performance guarantee of at least 5/4 holds, hence we assume that k; > 6 holds.

20

The cost for these matching edges is now YA} 2(ki —2) + K and in the optimal

solution T2} £-(ki—2)+ K, hence this is now (T35 2(ki—2)+ K) /(T £ (ki—2)

+K) =1+ (Th} %(k,- —2))/(Tht kl‘(k.‘ —2) + K). But since k; > 6 was assumed
and K > 1 3371 (ki — 2) holds, it follows that

i & (ki-2) LY P (g 2)
s < [] =]
L ST ot s 1 = - 1 TS T hent) 3T h)

= 1/6
_1+16+12—5/4’

hence here also the number of involved matching and extra edges in APPROX_1-2-M
is at most 5/4 times the number of involved matching and extra edges in the optimal
solution.

Proving case 2 goes analog to the proof of case 1.

In case 3 path P contains matched (1+ ;)-edges, which are unmarked, and P con-
tains unmatched (1 + ;)-edges, belonging to unmatched faces in worst-case. In the
optimal solution the matched and unmatched (1 + ;)-edges are changed. If K such
matched (1 + })-edges can be changed with K unmatched (1 + ;)-edges, then this
leads to K less unmatched faces. The K matched (1 + ;)-edges come from K’ < K
matched faces. In each of these faces at least one (1+ })-edge must remain matched
(otherwise here extra edges are required). Hence in the optimal solution the 2-edges
in K + K’ faces are matched, each with two 1-edges, thus 2(K + K') matching edges.
In APPROX_1-2-M the 2-edges in the K’ faces are matched, each with two 1-edges.
Furthermore in these K’ faces there are K > K’ unmarked matched (1 + %)-edges,
and there are K unmatched faces, requiring two extra edges each. Hence this leads to
a total of 2K + K'+2K"' edges in APPROX_1-2-M, thus Prop holds, since K' < K. O

Theorem 5.4 APPROX_1-2-M works within 5/4 times optimal in O(n?) time.

Proof: It is shown in Lemma 5.1, 5.2 and 5.3, that in the three different
possibilities for the extra edges of ul-edges in APPROX_1-2-M, the number of involved
matching and extra edges in APPROX_1-2-M is at most 5/4 times the number of
involved matching and extra edges in the optimal solution. In APPROX_1-2-M we
may count edges twice in the paths P, but then we have counted them also twice in
the optimal solution. Hence APPROX_1-2-M works within 5/4 times optimal.

For the time complexity we note that the the matching graphs can be constructed
in O(n?) time. We can rewrite the degree constrained subgraph problem to finding
a maximum cardinality matching [16], which can be solved in O(y/|V,| - |Em,|)
time [12]. The 2-matching is equal to finding a maximum weighted matching, which
can be implemented to run in O(|Vy,| - |Eg,| + |Va,|? - log |Va,|) time [6]. Since
Ve | = O(VED), Vil = O(IVED), |Em | = O(IVEI?) and |Ex,| = O(|Vg[?) worst-
case, this yields an O(n®) running time for the algorithm APPROX_1-2-M. O

21

6 Planar Triconnectivity Augmentation

In this section we deal with the question how to augment a biconnected graph such
that the augmented graph is triconnected and still planar. Triconnected planar
graphs have nice characteristics, e.g., they have only one embedding in the plane
and they can be drawn with convex faces [19]. Drawing biconnected graphs with as
much as possible convex faces is rather difficult, as stated in the following theorem.

Theorem 6.1 Deciding whether a biconnected planar graph can be drawn with > K
convez faces is NP-complete.

Proof: (i) The problem is in NP: assume G has F > K faces and pick L <
F — K faces, triangulate these faces by adding additional edges and then check in
polynomial time if the resulting graph admits the constraints of theorem 5.1 of [18],
which is a characterization of the planar graphs, that can be drawn with convex
faces. If this is the case then G can be drawn with > F — L convex faces.

(i1) We use a transformation from the vertex cover problem on triconnected pla-
nar graphs (which is easily shown to be NP-complete, using the reduction in [5}).
Let a triconnected graph G = (Vg, Eg) be given. Inspect the dual graph H of G.!
Note that H is also triconnected and hence has exactly one planar embedding, which
can be drawn with convex faces [18]. We construct a new graph H’ by changing
every edge (a,b) in H by (a,ab,), (aby,b), (a,ab;) and (aby,b) in H', by introducing
two new vertices ab, and ab,. We now claim that H’ has an embedding with > K
convex faces, if and only if G has a vertex cover of size < K. Suppose that (a,d)
in H belongs to the faces Fj and F;, then F; or F; cannot be drawn convex in H'.
So we have to find in H the smallest possible set S of faces such that for each edge
(a,b) in H, belonging to the faces F} and F3, F; or F, belongs to S. Then those
faces are drawn non-convex in H'.- Notice that the number of faces in H is equal to
the number of vertices in G and every set S of faces in H corresponds to a vertex
cover of G. Hence there is a vertex cover in G of size < K if and only if there is
set S of faces of size < K in H if and only if there is a set of non-convex faces of
size < K in H'. The construction is easily computable in polynomial time, so the
problem whether there exist a drawing such that the biconnected planar graph can
be drawn with < K non-convex faces is NP-complete.]

For this and theoretical reasons we consider the Planar Triconnectivity Aug-
mentation Problem for biconnected planar graphs. In this section we present an
approximation algorithm, in which we will use the approximation algorithm AP-
PROX_1-2-M in section 5 for the 1-2-matching problem. In the remainder of this
section, suppose that G is a biconnected, planar graph. We may assume that G con-
tains at least two triconnected components (or, shortly tricomps). We consider the

1The vertices of the dual graph H of a planar graph G are the faces of G, and there is an edge
between two vertices Fy and F; in H if and only if the faces F} and F> have a common edge in G.

22

problem to add a (close to) minimum number of edges to G, such that the resulting
graph is planar and triconnected.

A pair of tricomps that have an added edge between them in the resulting graph
is said to be matched by a matching edge. We identify a maximal number of the
added edges as matching edges, such that no tricomp is adjacent to more than one
matching edge. All other added edges are called ertra edges. Note that we need
exactly one extra edge per component that is not matched by a matching edge.
Every tricomp V] is connected at two cutvertices, say a and b, with the remaining
part of the graph, G — ¥}, and belongs to two faces of G — V;. It is possible that
other tricomps are also connected at both @ and b with the remaining part of the
graph. We call this situation a parallel chain of tricomps. Another possibility is
that a second tricomp V; is connected at b and ¢ with G — V4, a third tricomp V3 at
c and d, etc. We call this a serial chain of tricomps. Notice that a serial chain can
be part of a parallel chain, which again can be part of a serial chain, etc.

To abstract the tricomps in a correct way, we introduce typical characteristics.
We represent the original graph G, and also partly augmented graphs of G later by
a graph G’ that is obtained by taking an edge for every tricomp. Each edge e in G
gets associated with it a set of typical characteristics, denoted by C(e).

Initially every tricomp V'’ in G is represented by an edge e in G’ between the
corresponding two cutvertices a and b, with the characteristic 1 ~ 0 associated with
it, C(e) = C((a,b)) = {1 ~ 0} (see Figure 11). 1 ~ 0 means that this tricomp V’
(possibly one vertex v with deg(v) = 2) must get one additional outgoing edge to
become triconnected. All other added edges e in G are represented by an edge in G’
with C(e) = {0 ~ 0}. In general, a characteristic ~ j in the set of characteristics
means that i augmentation edges must go from the component to one face, and j
edges must go to the other face.

Let a 2-subgraph in this reduced graph G’ be a serial or parallel chain or a
tricomp. For a 2-subgraph V'’ we want to add matching edges between the edges
with characteristics, representing the number of outgoing edges at both sides of the
corresponding tricomps. V' must also be triconnected with G — V' and, hence, must
also get typical characteristics associated with it. We try to add as few as possible
(outgoing) edges between tricomps in V' such that V' is triconnected except some
unmatched tricomps, which must get outgoing edges to G — V’. Notice that V’ may
contain several typical characteristics. Instead of characteristic 2 ~ 1 one could have
1 ~ 0 (see Figure 11), and similarly instead of 2 ~ 2 one could have 2 ~ 0,1 ~ 1, or
both.

The following lemma is crucial for our algorithm.

Lemma 8.2 Every typical characteristic i ~ j for a 2-subgraph V' can be changed
such that 1 < 2 and j < 2, without increasing the number of extra edges.

Proof: Suppose there is an optimal solution in which parallel chain V; has
k > 3 outgoing edges to another parallel chain W; (a similar argument can be

23

2~0 ~
‘ 1"“0 or 1“'0 20r1

Figure 11: Example of typical characteristics for serial and parallel chains.

applied when Vi has k > 3 edges to several parallel chains Wy,..., Wi, k' < k).
Assume first that k is odd. We will show that instead of adding k edges between
V1 and W;, we can connect k — 1 tricomps of V) with each other by "—;—1 edges, the
same in W; and one edge from V; to W) in such a way that the resulting graph is
triconnected again.

Let T,..., T be the tricomps of V; having an extra edge to a tricomp of Wi,
hence they share one face, F. Let Ty, ..., T} further belong to faces F, ..., F, | < k,
in which tricomps T;;....,T;;,, -1 belong to face Fj, 1 < j < I, with T;, = T} and
Tiy,-1 = Tk. hence tricomps T}, . .. s Ti;,, -1 share two common faces, F and Fj, and
hence they form a serial chain of tricomps. We can add a matching edge between
Ti; and Tj;,, -1, between T;,,, and T, _3,..., until one or two tricomps are left
unmatched. After applying this for all j, ¢ < j < | we renumber the unmatched
tricomps to T1,. .., Tp, with p < k and p odd. For every pair of consecutive tricomps
T;,Tiy1, 1 £t < p—1, we add an edge between T} and T}y, if T; and T;;, share
the same face F;. We again renumber the unmatched tricomps to Ty, ..., Ty, with
P’ < p odd. We now add edges between Ty; and Ti4q, for 1 < i < 1"2;1 T: remains
unmatched. We apply the similar argument to W;, leaving there one tricomp 77
unmatched, and we add an edge from T} in V; to T} in W;.

Every serial chain T.,,...,Ti;,, -1 has one outgoing edge to another serial chain
T,y Ty, -1, J' # 3, but since they belong to different faces Fj and Fj, they
are now triconnected. This holds for every serial chain of V;, and similar for the
tricomps of W;. Adding an edge between the two unmatched tricomps leads to a
triconnected graph.

A similar argument can be applied when k is even. a

The main idea of the algorithm is the following: we take either a serial chain, a
parallel chain, or a tricomp in the reduced graph G’, compute an (approximation of)
the optimal way of adding augmenting edges, and reduce the chain or tricomp to a
single edge, with the typical characteristic associated with it. In case of parallel or
serial chains, we can find the optimal way of adding edges, and is described below. In

24

case of tricomps, we use the approximation algorithm for the 1-2-matching problem
as described in section 5. The problem, to find a minimum number of edges to add
to this tricomp of G’ such that this entire part becomes triconnected, corresponds
exactly to the 1-2-matching problem. Note however, that in case the tricomp is not
the only tricomp in G’, then this tricomp must made triconnected to the remainder
of the graph, so some augmenting edges should go outside the tricomp. However,
this extra requirement can be taken care of by a small modification of algorithm
APPROX_1-2-M. We omit the details. Below, the main loop of the algorithm is
described more formally.

TRICONNECT
G :=G;
replace every tricomp V'’ by an edge e between the cutvertices,
with C(e) := {1 ~ 0}; for the other edges e € G,C(e) := {0 ~ 0};
done := false;
while not done do
if G’ contains a serial chain V' then SERIAL(V") else
if G’ contains a parallel chain V' then PARALLEL(V") else
do APPROX_1-2-M(V"), with V"’ a tricomp of G;
if G’ = V' then done := true else
replace V' by an edge (a,) with C((a,b)) := the set of typical
characteristics of V'
od
choose one typical characteristic for G’ and from this,
the unique typical characteristics follow for all tricomps in G;
add corresponding edges between tricomps.

We remark, that an invariant of our algorithm is, that for every edge e with
i ~j € C(e), and ¢’ ~ j' € C(e), then either both i + j and i’ + j’ are even or both
are odd. Next, we describe the algorithms SERIAL(V’) and PARALLEL(V"), which
compute the typical characteristics for V', when V' is a serial or parallel chain.
Every edge ¢; = (a,b) in V' corresponds with a subgraph V; in G, connected with a
and b with G — V;. These subgraphs V; may contain several tricomps and must get
outgoing edges to G — V; to become triconnected. Therefore we will talk about the
subgraph V; in G that is represented by an edge e; in G'.

SERIAL(V") replaces a path of vertices v,..., v of degree 2 in G’ by one edge
(a,b) with the set of typical characteristics associated with it. If two consecutive _
edges (vi-1, v;), (vi, viy1) both have characteristics 0 ~ 0, then deg(v;) = 2 in G and,
hence, v; must get an ougoing edge. To accomplish this, we put C((v;,vi41)) = {1 ~
0}. If there remain some edges (a, b) with C((a, b)) = {0 ~ 0} after this operation,
then we contract these edges (a,b), i.e., we identify a and b and delete the edge
(a,b). Note that this does not affect the triconnectivity of any vertex. Now there
are no edges with characteristic 0 ~ 0, hence we may assume that every subgraph
must get at least one outgoing edge.

25

Next we assign to every edge e € V' the typical characteristic i ~ j € C(e)
for which ¢ + j is maximal. If C(e) = {1 ~ 1,2 ~ 0}, then we take an arbitrary
one. To ensure that we obtain all possible typical characteristics for V’, we apply
the algorithm twice, with one characteristic 2 ~ 1 changed into 1 ~ 0 for one edge
e € V', if C(e) = {2 ~ 1,1 ~ 0} (or 2 ~ 0 changed into 1 ~ 1 or 2 ~ 2 changed
into 1 ~ 1, if there are edges in V', containing both characteristics). We say that
when we assign an edge e € V' to the leftside (rightside), then we assign i to the
leftside and j to the other side of V' such that i ~ j is associated with e, with
¢ 2 j. The left- and rightside of V' are chosen arbitrary at the beginning. Left and
right elements are vertices of the subgraph corresponding with e € V’, which must
get one left or right outgoing edge by the corresponding characteristic to become
triconnected. The idea is to flip the edges such that there are alternatingly left
and right outgoing edges from the corresponding subgraphs. This can be described
formally as follows:

SERIAL(V")
let eq,...,ex be the edges of V7’
1:i=1;7:=2;

Assign e; to the leftside;
while j < k do
assign e; to the rightside;
match left elements of V; with left elements of V;,...,V;_;;
let p; be the number of remaining left elements of V;,...,V};
p2:=0;72 1= j3;
while p; < p; do
Jj2:=J2+1;
assign e;, to the leftside;
P2 := pa+ left element of V,;
od;
match p; left elements with the p, left elements;
1= 357 =gy
swap(left, right);
od;

match left elements of V; with left elements of V;,...,V;_;;

Finally, if there remain i elements at one side and j at the other side, then this
gives a ¢ ~ j characteristic. If j = 0 then by deleting one matching edge we obtain a
¢ ~ 2 characteristic. By applying the algorithm twice with a small modification (as
explained above), we can get instead of a 1 ~ 1 characteristic a 2 ~ 0 characteristic.
Let C(V") be the complete set of all characteristics of e € V’, and let S(V’) be the
sum of the elements of the assigned characteristics of e € V”, then the following rules
are obtained for the typical characteristic set C((a, b)) of a serial chain V":

If S(V') =1 then C((a,d)) := {1 ~ 0}, if S(V') =2 then if 1 ~ 0 € C(V)
then C((a,b)) := {1 ~ 1,2 ~ 0}, else C((a,d)) := C(V'), if S(V') > 3, then

26

a9

2~0,1~1) | ¢,
o]
(1~1}) €,
0
{1~0} 03
o
2~0,1~1) | €,
0
(1~13| s
bO
C((a,h)) :={1~0,2~1}
G’ G

Figure 12: Example of algorithm SERIAL(V’). Elements are given by black dots.

if §(V’) is odd, then C((a,d)) := {2 ~ 1,1 ~ 0}, else if 1 ~ ¢ € C(V’) then
C((a,d)) :={2~2,2~0,1~ 1}, else C((a,d)) := {2 ~ 2,2 ~ 0}

Theorem 6.3 SERIAL (V') computes the set of typical characteristics in linear time
for a serial chain V'.

Proof: We only have to show that the matching edges in SERIAL(V’) makes V'
triconnected, except these tricomps of V', which must get outgoing edges to G — V".
For this we note that every time we start the first while-loop e; is assigned to the
left and e; is assigned to the right, with j > i. Then we add left matching edges
between V;,...,Vj_; and V},...,V},,j2 > j. There goes a right matching edge be-
tween V; and V,, with p > j;,. This means that if we delete three cutvertices in
Vis...,V;, then we can always still reach the remaining part of the graph via V,, V;
or V;,. This holds for all ¢, j, j2, hence the augmented graph of V" is triconnected. O

In figure 12 an example of applying the algorithm SERIAL(V”) is given.

27

Let now V' be a parallel chain, which essentially is a set of parallel edges
€1,...,€ek, With characteristics associated to them. We may permute these edges
in any order and we have to find an order such that adding a minimum number of
matching edges between the corresponding subgraph in G makes V' triconnected. If
€1,..., ¢k is the optimal order then we have to add augmenting edges between the
corresponding subgraphs V; and V;4,, 1 < ¢ < k. If both V; and Vi have outgoing
edges, then for exactly one j, 1 < j < k, no augmenting edges to V;,; are required.
This place is called a gap and if V; (Vi) has no outgoing edges to a component
outside the chain, then the gap is said to be at V; (V;).

We now put every subgraph Vj,:--, V4 in one of the sets K, K, K3, K,, and
K3, such that V; is placed in Kj, if the edge e; representing V; fulfills 1 ~ 1 € C (&)
(G=1),2~2€C(e) (j=2),2~1€C(es) (j =3), 1 ~0€ Cles) (j =4),
2~ 0 € C(e) (j = 5), and every subgraph is placed in the set K, with smallest
possible index j. The algorithm PARALLEL is based on the following observations:

If at some place in the optimal order 7 one matching edge e is added between
two consecutive tricomps Vy(;) and Vi(i41), then we can delete e and add the set
K, of 1 ~ 1 tricomps between Vz(i) and Vi(i41), with matching edges between every
pair of consecutive tricomps. Similar can be done for Kj, if there are added two
matching edges between V,(;) and Vi(iy1). If K4 + |Ks| > 2 then extra edges are
required, because otherwise there occurs more than one gap. Therefore, as long as
|Ka| > 2 holds, we can add an extra edge between two 1 ~ 0 edges, and treat this
united tricomps as a 1 ~ 1 tricomp, hence adding it to K;. We can do similarly for
Ky, adding the united tricomp to K3, so we assume w.l.o.g. that |K,|,|Ks| < 2. If
|K4| +|Ks| > 2 then we union a 1 ~ 0 tricomp and a 2 ~ 0 tricomp by an extra edge
to a 2 ~ 1 tricomp, thereby increasing the set K. If |K3| is even then we can union
it optimally by matching edges to one 2 ~ 2 or 1 ~ 1 tricomp (adding it to K; or
K3), otherwise we can union it optimally to one 2 ~ 1 tricomp. If |K,| + |Ks| = 2
then one gap occurs inside the optimal order; if |K4| = 1 or |Ks| = 1 then the gap
occurs at V; or W, (i.e., the resulting characteristic will be of the form 0 ~ i, for
i € {1,2}.)

Except for this we also inspect the edges e with |C(e)| > 2 to get the complete set
of typical characteristics without increasing the extra edges. This plus a tedious case
analysis of the different sizes of the sets K; leads to the algorithm PARALLEL(V"),
for which the following theorem holds.

Theorem 6.4 PARALLEL (V') computes the optimal order of the tricomps and the
set of typical characteristics for a parallel chain V' in linear time.

The total time of the algorithm is dominated by the time for the 1-2-matching
problem, as the latter costs us O(n3) time, and executings of SERIAL and PARALLEL
both cost linear time. The performance ratio is also dominated by the 1-2-matching
problem, as we solve the problem for parallel and serial chains optimally, and have
a performance ratio 5/4 for the 1-2-matching problem.

28

Theorem 8.5 There exists an approzimation algorithm for Planar Triconnectivity

Augmentation for biconnected planar graphs that has performance ratio 5/4 and uses
O(n3) time.

7 Final Remarks

In this paper we considered the problem of adding a minimum number of edges to a
planar graph, such that the augmented graph is biconnected or triconnected and still
planar. For both problems approximation algorithms are given, but the approxima-
tion algorithm for admitting triconnectivity requires the graph to be biconnected.
For this, we can apply the algorithm APPROX_1-2-M, but as already noticed by
Naor et al. [13], it is not true that every optimal set of edges which increases the
connectivity by one can be extended to an optimal solution to increase the connec-
tivity by k > 1. Hence the performance ratios of 3/2 and 5/4 do not guarantee a
performance ratio of 15/8 to make an arbitrary planar graph triconnected without
losing planarity. This interesting open problem becomes efficiently solvable, when
the inputgraph G is outerplanar. In this case, an elegant linear algorithm can be
obtained to augment G by a minimum number of edges such that the resulted graph
is planar and triconnected ([9]).

When the number of added edges is not that important, then it becomes in-
teresting to search for simple, linear algorithms to make a graph biconnected or
triconnected and planar, working within a constant from optimal. When the num-
ber of added edges is irrelevant, we can simple triangulate the planar graph in linear
time (see e.g. [10]), and the triangulated planar graph has 3n — 6 edges.

Instead of considering the planarity constraint for the augmentation problems,
we can ask similar questions in which the augmented graph must satisfy some other
specified properties, e.g., belonging to a class of outerplanar graphs, perfect graphs
or partial k-trees. These open problems are an interesting field for further study
and research, to come to a general technique for augmentation algorithms.

Acknowledgements

The authors wish to thank Marinus Veldhorst for some useful suggestions for ap-
proximating the 1-2-Matching.

References
[1] Di Battista, G., and R. Tamassia, Incremental planarity testing, Proc. 30th

Annual IEEE Symp. on Found. on Comp. Science, North Carolina, 1989, pp.
436—441.

29

[2] Eswaran, K.P., and R.E. TarJan, Augmentation problems, STAM J. Comput. 5
(1976), pp. 653-665.

[3] Frederickson, G.N., and J. Ja’Ja, Approximation algorithms for several graph
augmentation problems, SIAM J. Comput. 10 (1981), pp. 270-283.

[4] Frank, A., Augmenting graphs to meet edge-connectivity requirements, Proc.
31th Annual IEEE Symp. on Found. on Comp. Science, St. Louis, 1990, pp.
708-718.

[5] Garey, M.R., D.S. Johnson and L. Stockmeyer, Some simplified NP-complete
graph problems, Theoret. Comput. Science 1 (1976), pp. 237-267.

[6] Gabow, H.N., Data structures for weighted matching and nearest common an-
cestors with linking, in: Proc. 1st Annual ACM-SIAM Symp. on Discrete Al-
gorithms, San Fransisco, 1990, pp. 434-443.

(7] Harary, F., Graph. Theory, Addison-Wesley Publ. Comp., Reading, Mass., 1969.

[8] Hsu, T., and V. Ramachandran, A linear time algorithm for triconnectivity
augmentation, to appear in: Proc. 32th Annnual IEEE Symp. on Found. on
Comp. Science, Porto Rico, 1991.

[9] Kant, G., Optimal linear planar augmentation algorithms for outerplanar
graphs, Techn. Rep., Dept. of Computer Science, Utrecht University, 1991 (to
appear).

[10] Kant, G., On drawing planar graphs with wide angles, in preparation.

[11] Khuller, S., and R. Thurimella, Faster approzimation algorithms for graph aug-
mentation, The University of Maryland at College Park, manuscript, 1991.

[12] Micali, S., and V.V. Vazirani, An O(\/V - E) algorithm for finding maximum
matching in general graphs, in: Proc. 21st Annual IEEE Symp. Foundations of
Computer Science, Syracuse, 1980, pp. 17-27.

[13] Naor, D., D. Gusfield and C. Martel, A fast algorithm for optimally increasing
the edge-connectivity, Proc. 81st Annual IEEE Symp. on Found. of Comp.
Science, St. Louis, 1990, pp. 698-707.

[14] Read, R.C., A new method for drawing a graph given the cyclic order of the °
edges at each vertex, Congr. Numer. 56 (1987), pp. 31-44.

[15] Rosenthal, A., and A. Goldner, Smallest augmentations to biconnect a graph,
SIAM J. Comput. 6 (1977), pp. 55-66.

[16] Shiloach, Y., Another look at the degree constrained subgraph problem, Inf.
Proc. Lett. 12 (1981), pp. 89-92.

30

[17] Tarjan, R.E., A class of algorithms which require nonlinear time to maintain
disjoint sets, J. Comp. Syst. Sci. 18 (1979), pp. 110-127.

[18] Thomassen, C., Planarity and duality of finite and infinite planar graphs, J.
Combin. Theory, Series B 29 (1980), pp. 244-271.

[19] Tutte, W.T., Convex representations of graphs, Proc. London Math. Soc. 10
(1960), pp. 304-320.

[20] Woods, D., Drawing Planar Graphs, Ph.D. Dissertation, Computer Science
Dept., Stanford University, CA, Tech. Rep. STAN-CS-82-943, 1982.

31

