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Abstract

A Truth Maintenance System (TMS) maintains a consistent state of belief given a set
J of justifications, i.e. arguments for belief. To resolve contradictions dependency-directed
backtracking is performed.

In this paper we introduce Cautious Backtracking as a method that can be used to track
all dependency-directed backtracking methods simultaneously. This has been previously done
by adding the contrapositions of justifications to J. We will show that contrapositions are
not mandatory, namely that the same result can be reached by adding one disjunctive justi-
fication (the consequent is not one atom, but can be a disjunction of atoms). This Cautious
Backtracking is a minimal backtracking in that the revised beliefs are the beliefs agreed upon
by every backtracking method.

The Well-Founded model for disjunctive logic programs, as described by Ross in [Ross 89b],
gives a semantics to Cautious Backtracking.

Furthermore, we will give an alternative proof for the correctness of Witteveen’s method
[Witteveen 90] for computing the Well-Founded model.

1 Introduction

Informally, a TMS is a program that manages a database of nodes and justifications. Each node
stands for a piece of information. Each justification says that one node should be believed if some
others are respectively believed and disbelieved. There are two kinds of truth maintenance systems.
One kind is the justification-based TMS (JTMS), the other is the assumption-based TMS (ATMS).

A JTMS maintains a single context of belief (a model) at a time and supports nonmonotonic
Justifications. In everyday life, conclusions have to be drawn in the absence of complete informa-
tion. This type of common sense reasoning unavoidably depends on default assumptions, so it is
intrinsically nonmonotonic: new information can cause old conclusions to loose their validity.

An ATMS maintains multiple models simultaneously, but does not support nonmonotonicity.
This makes it suitable for applications where several partial solutions are to be considered and com-
pared in the process of developing complete solutions. Contrary to JTMSs in which the switching
of context to compare solutions is possible but inefficient.

In the sequel we focus on the JTMS, the nonmonotonicity supporting system.

A TMS can be seen as a system working together with a problem solver. Whenever the problem
solver performs an inference step, it sends a justification to the TMS. The task of the TMS is to
maintain a consistent state of belief. The TMS determines this state from the statements of belief,
the reasons for belief, and the known inconsistent states of belief (constraints) which have been
given to the TMS by the problem solver.



the reasons for belief, and the known inconsistent states of belief (constraints) which have been
given to the TMS by the problem solver.

Among the normal justifications, constraints may exist. Constraints say that a conflict or con-
tradiction arises, if the nodes of some set are believed and the nodes of another set are disbelieved.

If a conflict occurs, some sort of backtracking must be performed to reach a consistent state
of belief. In the process of backtracking new beliefs are formed by reasoning from the conflict: if
belief in n nodes causes a conflict, then we can reason in the contrapositive direction: Belief in
n — 1 of the nodes indicates that we should disbelieve the last node. This implies that there are n
such contrapositive reasonings possible for this one conflict.

Giving a semantics for belief revision one can produce a consistent state of belief for every
possible contrapositive or one can give one consistent state of belief which satisfies every contra-
position.

The problem is that one has to produce every contraposition, and their number is linear in the
number of beliefs causing the conflict. Furthermore, two kinds of negation get mixed. In TMSs
negation as failure is used, meaning that we only disbelieve a node if there is no reason to believe
it. However, reasoning in the contrapositive direction can tell us to believe in the falsehood of a
node (so to disbelieve it) if others are respectively believed of disbelieved. This belief in falsehood
is by definition not a negation as failure. As only negation as failure is allowed in justifications,
new nodes are created to stand for the negated node. Then extra justifications must be added to
ensure that the new node and the original node get opposite truth-values.

In this paper we propose a way to reason from the contradiction in which no contrapositions
and no extra nodes are needed. Instead, only one, possibly disjunctive, justification is added.
Furthermore, we do not have the problem of new negations.

This new approach to conflict resolution is called Cautious Backtracking (CB), which makes no
choices during backtracking. We show that a consistent model of belief exists for this approach,
which corresponds to the proposal of Witteveen ((Witteveen 91]). This proves that contrapositions
are not necessary to perform dependency-directed backtracking. Simplifying the justification added
in the CB approach creates intrinsic extensions of Witteveen’s proposal.

In the next section preliminaries for the rest of the paper and the terminology used in this paper
will be described.

In section 3 the Stable and Well-Founded semantics for logic programs will be discussed in detail,
because these semantics are directly applicable to TMSs and will be referred to frequently. Here
the alternative proof for the correctness of Witteveen’s method for computing the Well-Founded
model will be given.

Section 4 explains when conflicts arise and how these conflicts depend on the truth-values of
the nodes. Then the use of contrapositions is explained and dependency-directed backtracking is
described in short. The last part of this section describes two semantics for conflict resolution
based on contrapositions.

In section 5 we introduce a new approach to dependency-directed backtracking based on reasoning
from a conflict, but not on contrapositions. Two variations of this approach will be explained in
detail and compared with the semantics of the previous section.

2 Preliminaries

A TMS is a pair D = (N, J), where N is a finite set of propositional atoms, called nodes, and J is
a finite set of directed propositional formulas j, called justifications, of the form a A 8 — ¢, where
c is an atom, called the conclusion or head of j (hd(j) = ¢), @ is the conjunction of positive literals
(i.e. atoms) and g the conjunction of negative literals (i.e. negated atoms). B(j) denotes the
nonmonotonic part of justification j. The body of a justification j = a A B — ¢ is body(j) = a A B.
A justification with an empty body is called a premise. Justifications are called directed because
¢ is distinguished from # in the sense that ~ b — c is not the same as ~ ¢ — b. At(a) (A(B))
denotes the set of atoms in & (8). Lit(¢) is the set of literals used in wif ¢. The intended meaning of
such a justification is the following: “Belief in the elements of A#(c) and disbelief in the elements



of At(B) justify the belief in ¢”. A premise can now be seen as a justification with an empty
antecedent. A constraint is a justification @ A # — L where L is seen as the node indicating a
contradiction if it has truth-value true. If o A f is believed, L gets truth-value true as well.

In this paper we will use 3-valued interpretations. In 3-valued interpretations a third value called
undefined, written u, is used for the nodes with no reason for belief or disbelief. An interpretation
is a tuple I = (I, Ir). It (Ir) is the set of atoms considered true (false) in the interpretation.

In this paper two orderings are used. One to compare truth-values in an interpretation and
one to compare interpretations. These orderings are the orderings of Belnap’s four valued logic,
called FOUR. In FOUR one can think of truth-values as sets of truth values in the ordinary sense,
namely {true}, which we will write as ¢, {false}, written as f, {}, which we will write as u and read
as underdetermined or as undefined; and {true, false}, written as o and read as overdetermined.
The four truth-values can be given a simple natural math-
ematical structure. We give FOUR two partial order-
ings namely the knowledge ordering, denoted <i,, and
the truth ordering, denoted <, as depicted adjacent.
Thus @ <g, b if there is a way up from a to b, where
the intuition is “b gives more information than a” so <;i,
represents an increase in knowledge.

And a <y b if there is a path from left to right from a
to b. The intuition is that <. represents an increase in
“truth” (or decrease in “falseness”).

Given an interpretation I propositions are evaluated as follows:

o valj(~ a) =~ val;(a), where ~t=fand~f=tand ~u=1u

o val;(¢ A ) = min{val;(8), val;(¥)}

o val(¢ — o) = t if val;(¢) < val; () otherwise f.
Instead of val; we will write I. Note that ¢ — ¥ #~ ¢ V ¢ as it is classically.
Definition 2.1 Let M and M' be interpretations of a JTMS D.

o M is a model of D if it satisfies every justification in D.

o MUM =(M:UM{, My UMp) is called the union of M and M’'.

o M and M' are consistent if M U M'(L) # 1.

e M’ is an extension of M if M and M’ are consistent and M; C M{ and M, C M{.

Notice that with this definition a 3-valued interpretation can be a 3-valued model while not
having a 2-valued extension which is a 2-valued model. An example can be found in example 4.1.

When considering a semantics for a TMS a choice is to be made between a minimal, unique,
model and a maximal, not unique, model. A minimal will in general be 3-valued, some choices
have not been made. A maximal model is 2-valued, but several choices have been made, for which
there is no grounded proof. Which of these models to prefer, depends on the application. But some
nodes can only have one truth-value (Z or f), because the other choice would lead to a contradiction
(14). Such a node has an intrinsic truth-value.

Definition 2.2 A model M of J is intrinsic if M is consistent with every other model of J.

Definition 2.3 A model M of J is maximal intrinsic if M is a intrinsic model of J, which extends
every other inirinsic model of J.

Let M be an intrinsic model of J, then a € M, (a € My) implies that M’ = (M;—{a}, M;U{a})
(M' = (M, U{a}, My — {a})) is not a model of J. For example, let J = {~ ¢ = b,~ b — a,a —
¢, b — c}, then M is a model of J if and only if M = (0,0) or ¢ € M;. But only (,0) and ({c},0)
are intrinsic models of J.



Definition 2.4 [vGRS 88]

e For a set of literals S we denote the set formed by taking the complement of each literal in S
by oS.

o Literal q is inconsistent with S if ¢ € oS.

o Sets of literals R and S are inconsistent if some literal in R is inconsistent with S (or vice
versa), i.e., if RNoS # 0

o A set of literals is inconsistent if it is inconsistent with itself: otherwise it is consistent.

o Sets of literals R and S are disjoint if no literal in R has the same atom as a literal in S (or
vice versa), i.e., if RNS=RNoS =0

Definition 2.5 Let D = (N,J),j € J, we define

o C(5, 1) := {hd(j) | I(body(s)) = t}
e C(D,I):=U{C(,I)|jeJ}uI
o CU(D,I):= (\I'.C(D,I)*(I)

Informally, Cl is the transitive closure of the premises.

3 Stable and Well-Founded Semantics

In this section we will summarize the definition of the Stable and Well-Founded semantics, because
they are key notions in this paper.

The importance of the Stable semantics follows from its relation with the Well-Founded seman-
tics.

The Well-Founded model is the knowledge-minimal 3-valued stable model. Therefore the Well-
Founded model is unique and, like all stable models, it has the useful property of reproducing
itself under a certain operation. This operation will be explained in the following. In the last part
of this section we will prove Witteveen’s method for computing the Well-Founded model correct.
This proof hinges on the fact that Gus(D,I) can be found in an efficient way, using a transitive
closure operation.

3.1 Stable model

The Stable model semantics has been introduced by Gelfond en Lifschitz in [GL 88). The semantics
is 2-valued and is based on Moore’s Autoepistemic Logic. In this semantics every choice made is
grounded, i.e. does not depend on a circular chain of beliefs. Informally a model is a stable model
if it reproduces itself under a certain operation. This operation, is defined as follows:

Definition 3.1 (2-valued stable)} Let D = (N, J) be a TMS. Then M is a stable model of D iff M
is the unique minimal model of D' = (N, J(M)), where M) ={a— c|aAB— c€ J, M |= B}.

The stable model semantics has a few drawbacks as it is not universal and not unique. However
its reproductive property is attractive as is the easy method of checking whether or not a model is
stable. In order to overcome the problem of non-universality, several people proposed (3-valued)
generalizations of stable models.

Giordano and Martelli [GiMar1] proposed generalized stable models to handle conflict resolution
in Truth Maintenance. More details of their proposal are given in section 4.2.

Przymusinska and Przymusinski gave a definition of a 3-valued stable model of Logic Programs
in [PaPi 90b], which Witteveen [Witteveen 90] translated to a definition for JTMSs.



Definition 3.2 (3-valued stable) Let M = (M;, M;) be an interpretation of D = (N,J) and let
JIMy={a—>claAB—oceJand MB)=1t} and I M,u)={a—c|aAf—c€J and
M(B) > u}. M is a 3-valued stable model of D iff

(a) M, is the truth-minimal 2-valued model of D(M,t) = (N, J(M,1)) in short:
M = CI((Na J(Ma t)))

(b) M:U M, is truth-minimal 2-valued model of D(M,u) = (N, J(M,u)) in short:
M. UM, = CI((N,J(M,u))).

3.2 Well-Founded model

In 1988 Van Gelder, Ross and Schlipf [vGRS 88] proposed a new definition of canonical model,
which they called the Well-Founded model. This semantics is unique and universal, in that it
always produces a 3-valued model and exactly one. In this subsection we will only describe their
original formulation for the propositional case and the formulation by Witteveen [Witteveen 90] for
JTMSs. Other general formulations have been proposed in [Van Gelder 89] and [Przymusinski 89).

The key idea in the original formulation by Van Gelder, Ross and Schlipf is the concept of an
“unfounded” set. This concept is used to capture negation by failure.

Definition 3.3 Given a JTMS D = (N, J) and a 3-valued interpretation I. We say that AC N
ts an unfounded set of D with respect to I (denoted unf(A,D,I)) if

{ I(a/\ﬂ):f
Vece AV(aAB—c)eET:{ or
At(a)NA#9

Equivalent with this definition is

Definition 3.4 Let D = (N,J) be a JTMS and I a $-valued interpretation.
e Poss(D,X)={C(J,Y)| X and Y consistent}
o unf(A,D,I) if oA is consistent with I U Poss(D,I U oA)

Informally, the Well-Founded semantics uses the condition above to draw negative conclusions.
Justifications that satisfy /(A B) = f are not usable for further derivations. Condition At(a)NA #
@ is the unfoundedness condition: of all the justifications that still might be usable to derive
something in A, each requires an atom in A to be true. Note that not necessarily AN7T = 0
(however in the following this gives no problems as one starts with I = @). It is immediately clear

that, with respect to any interpretation I, the union of arbitrary unfounded sets is an unfounded
set.

Definition 3.5 The greatest unfounded set with respect to I (Gus(D,I)) is the union of all sets
that are unfounded with respect to I, Gus(D,I) =|J{A | unf(A, D, I)}.
3.2.1 Well-Founded 3-valued Models

The Well-Founded semantics of a JTMS D is defined as the least fixpoint of an operator, called V,
on interpretations.

Definition 3.6 [vGRS 88]
o U(D,I) is defined by: U(D,I)=oGus(D,I).
o V(D,I)=C(D,I)u U(D,I).
Lemma 3.7 (vGRS 88] C(D,I), U(D,I) and V(D,I) are monotonic transformations.



Definition 3.8 [vGRS 88] For all countable ordinals k the set V*, whose elements are literals in
N Uo(N), is defined recursively by:

1. For limit ordinalk, V* = U, V¥
2. For successor ordinal k + 1, V=t = V(D, V*)
Note that 0 is a limit ordinal, and V° = .

Lemma 3.9 [vGRS 88] (V")x>0 as defined in definition 3.8 is a monotonic sequence of 3-valued
interpretations (i.e, I, is consistent for all k).

The set N is countable, so the sequence of definition 3.8 reaches a fixed point V* after some
countable ordinal. Now the Well-Founded semantics can be defined:

Definition 3.10 The Well-Founded semantics of a JTMS D is the “meaning” represented by the
limit V* described above.

Examples can be found in section 4. The complexity of this semantics is obviously very high, so Van
Gelder [Van Gelder 89] and (independently) Przymusinski [Przymusinski 89] have proposed faster
construction methods for this semantics, but with these the complexity of computing the Well-
Founded model is still very high. Fortunately Witteveen proved a faster method when the program
is restricted to the propositional case (as in JTMSs) based on work by Goodwin ([Goodwin 82]
and [Goodwin 87]).

3.2.2 A faster method for finding the Well-Founded model for a JTMS.

In [Witteveen 90] a faster method for computing the Well-Founded model is described. This
method seems not use the notion of unfounded sets, as it is computed solely using transitive
closure operations.

Definition 3.11 Let I and I’ be 3-valued interpretations for JTMS D = (N, J).
o Ker(I) =L UI.
o I'—-I=(I!- LI - I).
o Un(a,I) (Un(B,1)) is the conjunction of atoms in o (3) evaluating to u under I.
e N-T = N — Ker(I)
o J I ={Un()AUn(B) > c|aAB— ce J&c¢ Ker(D&I(aAB) >u f}.
e D1 =(N-1 J-1).
e CI*(D,I):= C(D~T),,0)
e Jy={a—claAf—ceJ}
* Dy=(N,Jy)
o W(D,I)=IU(CID,I), N~ - CI*(D, I)).
Theorem 3.12 [Witteveen 90] The least fizpoint W* of W is the Well-Founded model of D.

A proof of this theorem is given in [Witteveen 90], but in the next section we give an alternative
proof, which shows that this method does use the notion of the Greatest Unfounded Set.

The time-complexity of W* is O(| N | x | D |), because Dowling and Gallier [DG 84] and Minoux
[Minoux 88] gave linear-time algorithms to find a least truth-assignment for a set of Horn clauses.
Notice that a set of justifications without negation is a set of Horn clauses.



3.2.3 Some new facts and new proofs of old facts about the Well-Founded semantics.

In this section we will prove that N~/ — CI*(D,I) is equal to Gus(D,I), i.e. that there is a
constructive way to find Gus(D, I). In the following, we will think of an interpretation I as a set
of literals I U ol.

Lemma 3.13 Gus(D,I) C N — (Cl*(D,I)UI).

Proof: Cl+(D,I)U (Iﬂ N) = CI((D'I)+,0)U (In N) = (AX.C((D-I).,.,X))“’(@) UUINN) =
Uiew i U (I N N) where I = § and

Inpr= C((D')4,In) =
={plar—pe(J)y,h Ea}
™ ={pl({Lit(aAB)—I)ANC I,,aAB— p€ J,p ¢I,consistent(l, Lit(a A B))}
which implies that ~3A(p € A A unf(A, D, I)).

Suppose p € A and unf(A, D,I), then oA is consistent with I U Poss(D,I UoA). This can be
reformulated to ANJT = 0 and AN Poss(D,I UoA) =0. AN Poss(D,IUoA) =0 is the same as
ANU{C(D,X) | IUoA and X consistent} = §. So ~3X(p € C(D, X) and consistent (I UoA, X))
which is VX (consistent(] UoA, X) - WY —p)e J: Y € X))).

() VI(IUoA)Nol £0VY(I' > p)eJ: ' ¢T)

But from (*): (e A B — p) € J, where I and Lit(a A B) are consistent, i.e. I NoLit(a AB) =9
(Litla AB) —I)N N C I, (Ind. hyp.: I, N Gus(D,I) = 9).

From (**) with X := Lit(a A B) and I' := Lit(a A B) we can derive
(TUoA)NoLit(aAB)#0.

To summarize:

1. INnoLit(aAB)=0& oINLit(aAB) =0
2. (JUoA)NoLit(a AB)# B &> (cJUA)N Lit(a AB) #0
3. (Lit(aAB)—-I)NNNA=0

From (2) we get (oINLit(aAB))U(ANLit(aAB)) # B, we combine this with (1) to ANLit(aAB) # 0.
Furthermore, from (3) combined with A C N we can conclude AN Lit(a A B) — I = . We already
had ANI=0,s0 AN Lit(a AB) — I = AN Lit(a A B) =, contradiction.

O

Lemma 3.14 N — (CI*(D,I)UI) C Gus(D,I).

Proof: Let X = N — (CI*(D,I)U I). We have to show that X is an unfounded set of D with
respect to I, i.e. unf(X,D,I). This is true if and only if oX is consistent with I U Poss(D, T U
0X). So unf(X,D,I) if and only if (X NI = @ and X N Poss(D,I UoX) = @). If and only if
X N Poss(D,IUoX) =0. If and only if

© Poss(D,JUoX)C N-X

Now p € Poss(D,IUoX) iff 3Y3a A B — p € J such that Y is consistent with I U oX) and
Y(eAB)=1t. Sop € Poss(D,I UoX) iff (3a AP — p € J such that Lit(a AB)N (oI U X) =)
iff (3(a AB — p) € J such that Lit(a A B)Uol =@ and Lit(a AB)N X = @)

iff

® (aAf—p)€ Jand Lit(a AB)Nol =0 and Lit(a AB)C N - X =(NNI)U CH(D,I)

We have to prove that p € (N N)U CI*(D, I) in order to prove ®. So we have to show p € I or
p € CI*(D,I). If p € I, we are done, so assume p ¢ I. p € CI*(D,I) if 3j € J with hd(j) = p



and p ¢ I and I consistent with Lit(body(j)), such that (Lit(body(j)) — I)NN C CI*(D,I). Take
j=aAB —p, then (Lit(a A B) — I)N N C CI*(D, I) because of ®.
]

Corollary 3.15 N-! — CI*(D,I) = Gus(D,I).

Theorem 3.16 Let K and L be monotonic operators on sets. Let A(X) = K(X)U L(X) and
B(X) = K“(X)U L(X) for any set X. If K is increasing and continuous, then A¥(X) = B¥(X).

Proof: Note that
1. K¥(B“(X)) = B¥(X)
2. L(B(X)) C B¥(X)
3. K(A¥(X)) = A¥(X)
4. L(4*(X)) ¢ A“(X)
5. K¥(A¥(X)) = A¥(X).
6. K(B¥(X)) = B¥(X)

Properties (1), (3), (5) and (6) hold because A“(X) and B¥(X) are fixpoints of K (and therefore
of K*“). Properties (2) and (4) hold because of B(B“(X)) = K“(B¥(X))U L(B¥(X)) = B¥(X)
and A(A“(X)) = K(A“(X)) U L(A“(X)) = A¥(X).

First we prove that A“(X) C B¥(X), then we prove that B“(X) C A¥(X).

o A“(X) C B¥(X):

We prove this by induction. The basis A%(X) = X = B%(X) C B“(X) follows from the fact
that ¥ C K(Y) for any set Y. For the induction step suppose that Y C B“(X) for a set Y.
Then K(Y) C K(B“(X)) because of the monotonicity of K. And K(B*(X)) C B¥(X) because
of property (6). Property (2) and the monotonicity of L prove that L(Y) C B“(X). So we can
conclude that A(Y) € B“(X), which concludes this proof by induction.

e BY(X) C A¥(X):

We prove this by induction. The basis B%(X) = X = A% X) C A¥(X) follows from the fact that
Y C K(Y) for any set Y. For the induction step suppose that ¥ C A“(X) for a set Y. Then
K“(Y) C K“(A“(X)) because of the monotonicity of K, which implies that K“ is monotonic.
And K“(A“(X)) C A“(X) because of property (5). Property (4) and the monotonicity of L prove
that L(Y) C A“(X). So we can conclude that B(Y) C A“(X), which concludes this proof by

induction.
a

Corollary 3.17 Witteveen’s method for constructing the Well-Founded model is correct;
t.e. W* = V™, conform theorem 3.12.

Proof: Recall W* = (AI.CI(D,I)UoGus(D,I))*(). And V* = (AI.C(J,I)UoGus(D,I))*(0).
Theorem 3.16 is applicable, when taking K := C (and K = Cl) and L := Gus, A¥ := V* and
B¥ := W*. C and Gus are monotonic, continuous operators, and C is increasing.
a

Comparing Well-Founded models with intrinsic models, the following holds:
The Well-Founded model need not be intrinsic, for example, let D = ({a, b, c,d}, J), where J =
{~a—b~c—d~c— a,bAd— L}, then the Well-Founded model is ({a,d},{b, c}), but
({b, ¢}, {a, d}) is also a model of J and these two models are not consistent.

Note that CI(D, @) is always an intrinsic model of J, and it is the least (i.e. knowledge-minimal)
intrinsic model of D.



4 Conflict resolution using contrapositions

In this section, we will discuss several methods to resolve conflicts. All of these methods are based
on the use of justifications in their contrapositive directions. To solve a conflict, some choices need
to be revised, i.e. a form of belief revision must be performed. When creating a model, a path of
choices will be followed, leading to a contradiction if one or more choices are wrong.

The method attempts to resolve this contradiction by backtracking along our path of choices and
revising some. As we want to revise our model as little as possible, we don’t want to revise choices
that didn’t cause the contradiction; the choices to be revised are defined by the dependencies of
the contradiction on these choices. Therefore, the backtracking performed is dependency-directed.
Also, we only want to perform backtracking when it is mandatory, i.e. if there is no (3-valued)
stable model for D. As the Well-Founded model is the knowledge-minimal 3-valued stable model,
backtracking is necessary only if the Well-Founded model is inconsistent. That is why we concen-
trate on the Well-Founded semantics.

In section 4.1, we will first show how conflicts can arise. Subsequently, we will show the
relation between belief revision and reasoning from the contradiction using justifications in their
contrapositive direction. The idea of using contrapositions can be found in Dependency-directed
backtracking, which will be described in short.

In sections 4.2 and 4.3, we will discuss the semantics for DDB in Justification-based Truth
Maintenance Systems, which were presented by [GiMarl] and [Witteveen 91]. These different
semantics depend strongly on the use of contrapositions.

4.1 Introduction

Now remember that the task of a JTMS is to maintain a model. Given a set of justifications J, we
let the JTMS calculate the Well-Founded model. One of the problems arising in the presence of
constraints is that it is possible that no 2-valued extension of the Well-Founded model is a 2-valued
model. For example:

Example 4.1

Let D = (N,J) with N = {a} and let J be:

~a -—a
~a — L
a -1

For D the Well-Founded model is (8, 8), but D is inconsistent and therefore has no 2-valued model
at all. Then one can question the JTMS, for example “WF = p?”, or “does a model exist for D
such that p (or ~ p) evaluates to true?”. In most of these cases an alternative model must be
found for D to satisfy the user, or a negative answer was provided. In most cases the question will
not be trivial; the Well-Founded model will not be the required model. This implies that the set
of justifications does not give enough information to render the model sought after by the user (or
problem solver). On the other hand, if the Well-Founded model contains a contradiction, then it
could be the case that the set of justifications gives too much information. This is shown in the
following.



Example 4.2

Let Dy = (Ny, 1) with Ny = {a, b} and let J; be:

—a
— b

aAb — L

For D; the Well-Founded model is ({a, b, 1},0), which contains a contradiction. In this case
J1 contains too much information. The problem solver (or user) will have to retract one of the
justifications before a 3-valued model can be found.

Example 4.3
Let Dy = (Ng, Jz), with N, = {a} and Jo = {~ a — .L}.

The Well-Founded model is ({ L}, {a}) in which disbelief in a leads to belief in L. The JTMS has
to perform backtracking to find a model for Dy, adding justification — a and calculating the Well-
Founded model now gives ({a},{L}). So a model does exist for J;, but J; contains not enough
information to find it without backtracking.

In the next example we will try to illustrate the dependencies between several 3-valued inter-
pretations when constructing the Well-Founded model.

Example 4.4
Consider D = (N, J) with N = {a, b, c,d} and let J be:

~a — b
~c —d
bAd — L
~c —a

WF = (0,0) U (0,{c})u ({a,d},0)L (@, {d,L}) U (0,0). Here the truth of a and d depends only
on the falseness of ¢, and the falseness of b and L depends only on the truth of a.

The idea to use the contrapositives of the justifications requires some remarks. The justification
aA ~ b — c allows c to be concluded, given that a is believed (that is, provable) and b is disbelieved
(that is, not provable). Contrapositioning gives two new clauses: a A-~c — b and ~ b A —=¢ — —a.
where - is the classical negation and ~ a negation by default. The first new clause says that b can be
concluded when a is provable and —c is provable, while the second new clause says that it is possible
to conclude —a when & is not provable (disbelieved) and —c is provable. Accordingly, when one
wants to use a justification in its contrapositive direction, it is not sufficient to have its consequent
disbelieved, instead the negation of the consequent must be provable (or the consequent cannot be
consistently assumed). As this is only possible in the presence of constraints, contrapositives can
only be used if constraints occur in the set of justifications.

A form of contraposition is used in dependency-directed backtracking (DDB).

Dependency-directed backtracking has been explained more elaborately by Doyle in [Doyle 79],
here we only give a glossary of his work.

We need some extra definitions. Informally, an assumption is a node which truth-value relies
on one or several nodes, which are false as a result of negation as failure.

Definition 4.5 Let D be a JTMS.
o Atom a is a fact if a € CI(D,0).

e Literal a i3 an assumption if a is not a fact.
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o The maximal foundations of a node ¢ are the literals of the bodies of any justification having
¢ as its conclusion.

When the TMS makes L in (truth-value: true), it invokes DDB (dependency-directed backtracking)
to find and remove at least one of the current assumptions in order to make the contradiction node

out (truth-value: false). Suppose L is in because of justification j, we show this relation by writing
1;.

DDB consists of several steps:

1. Find the mazimal assumptions

Let S be the set of maximal assumptions underlying L. Node a € S iff a € Lit(body(j))
and a is an assumption and no node b exists such that b € Lit(body(j)) with a an element
of the maximal foundations of b. Let § = {a1,...,a,}.

2. Summarize the cause of the inconsistency.

If no previous backtracking attempt on j discovered S to be the set of maximal assumptions,
then create a new justification: A Aes — L, otherwise this justification would already have
been created.

3. Select and reject a culprit.

Select some a;, the culprit, from S. Let a A § — a; be a,’s supporting justification. Select
d € At(B), d is called the denial, and justify it with a;A.. .Ag;_1Agi41A. . Aa, A1~ 4.
If the backtracker erred in choosing the culprit or denial, presumably a future contradiction
will involve d and the remaining assumptions in 8. However, if 8~{~4} £ @, d will be an
assumption, of higher level than the remaining assumptions, and so will be the first to be
denied.

4. Repeat if necessary.

If the TMS finds other arguments so that L; remains in after the addition of the new
Jjustification for d, repeat DDB. (Presumably a; will no longer be an assumption.)

Finally, if .L; becomes out then halt, or if no assumptions can be found in 1;’s maximal
foundations, notify the problem solver of an unanalyzable contradiction, then halt.

Note that in step (3) no selection criteria have been given. Several criteria are possible and
give rise to the different DDB-strategies.

4.2 Multiple states of belief for constraint satisfaction

Giordano and Martelli present a logical semantics for justification-based truth maintenance systems
which is able to capture the idea of dependency-directed backtracking. This semantics is based
on a generalization of the Stable model semantics and an active use of constraints. Of overall
importance is the use of contrapositions of justifications.

In the presence of constraints, conflicts can arise. The conflict resolution process is shown
mainly to rely on the intuitive idea of a contrapositive use of justifications to resolve inconsisten-
cies. To provide a logic characterization of this contradiction resolution process, they propose a
generalization of stable models.

They claim that it is reasonable to require a unique canonical model when dealing with the
problem of defining a semantics for negation as failure in logic programs. But they say: “On the
contrary, when reasoning on the possible states of beliefs supported by a given set of justifications,
multiple states of beliefs make perfectly sense and, thus, also sets of justifications with multiple
stable models.”

We do agree with their opinion in part, but not when dealing with justification-based truth
maintenance, which has to deal with frequent non-monotonic reasoning. Then as said before it is
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too costly to maintain several possible states of beliefs (models). Giordano and Martelli note that
it is possible to adapt the use of stable models to the situation when constraints are present in the
set of justifications, by simply computing the stable models of the set of general clauses in the set
of justifications, those that are no constraint, and then, later on, eliminating the stable models that
do not satisfy the constraints (that is, the inconsistent stable models). In this way, constraints are
simply used to cut out some inconsistent labelings and no belief revision is performed. Problems
arise when for a set of justifications J no stable model exists which satisfies all constraints, then
backtracking must be performed. However, since the Well-Founded model of the set of justifications
J is the least 3-valued stable model of J, computing the Well-Founded model, directly tells whether
or not backtracking is required.

In order to give a logical characterization for the TMS performing dependency-directed back-
tracking, Giordano and Martelli define a generalization of the notion of stable model, with this
generalization they want to use constraints actively to perform belief revision. In this definition
they take care of the fact that they need to use justifications also in their contrapositive form.

Let M be an interpretation in the classical propositional calculus. M can be regarded as a
subset of the propositions occurring in J, those true in the interpretation. Let J}, be the set of
Jjustifications obtained from J by deleting from the body of each justification all the literals ~ &
for which b ¢ M,ie. Iy ={aABr—oc|laAB—oc€Jand = ABrand M |= B2}. Now
write each justification @ A ... A aaA ~ by A...A ~ by — cin J}, as the disjunction of literals
S61 V... ."aa Vb V...V by Ve Let Ju be the set justifications in Jj, having one and only one
literal true in M.

Definition 4.6 [GiMarl] Let M be a set of propositions occurring in J. M is a generalized stable
model of J if M is a model of J and M = {a | a proposition in J and Ty = a}.

Notice that, while negation in the initial set J, ~, is a default negation, negation occurring in
Ju is the classical one and = is the logical consequence in classical logic.

As the clauses in J)s have only one literal true in M, each of these clauses can be regarded as
an implication having as its consequent that single literal which is true in model M. Accordingly,
all the literals occurring in its body will also be true in M. This implies that J)s will not contain
constraints, since each constraint containing a unique literal true in M occurs in Jps as an impli-
cation with that literal as its head, while other constraints are deleted. Thus negation in the head
or body of the clauses of Jys is always interpreted as classical negation.

Notice that a set J of justifications can have several generalized stable models. On the other
hand in the case that J is inconsistent there should not be a generalized stable model. J can be
inconsistent if J contains constraints, however, since Jys is always consistent, it can happen that
there is an interpretation M satisfying M = {a | a is a proposition in J and Jp = a}, even if J
is inconsistent. This is the reason that M is also required to be a model of J.

If there is a unique generalized stable model of J, then it precisely corresponds to the labeling
computed by the TMS on backtracking. However sets of justifications can be found for which
several generalized stable models exist, examples can be found in {GiMarl], so using this method,
the TMS seems to lose its merit of finding only the preferred solution. However Doyle, in his original
paper [Doyle 79], describes the behavior of the TMS incrementally, this incremental process can
obtain solutions different from those expected in the static approach. This is due to the different
methods for backtracking, the generalized stable models correspond to all situations which can be
obtained by giving to the TMS the justifications in any order.

4.3 Single state of Belief for all possible belief revisions

Using contrapositions, classical negation appears in the head and in the body of justifications. Both
occurrences are troublesome, as classical negation must be proved and negation is not allowed in
the head of justifications. Therefore, the classical negation must be circumvented by adding a new
atom a~ to stand for ~a. To preserve the meaning of such negated atoms, some justifications and
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constraints must be added:
aAa” — L

This ensures that not both ¢ and a— can be true. But we also have to ensure that not both a and
a~ can be false. This can be done by adding:

~a—a" and ~a~ —a
Now define the set Back(J) of backward justifications as follows:
Definition 4.7 Let D be a JTMS.

e E(a)={aAa~ > L,~a—a",~a" —a}.

e Back(j,a)={Ac"ABA~a—a" |d' = a1} aga}.

o Back(j,B)={aAc ABA~b = b|p =g~ be A1(B)}.

e N-(j) ={a~ | a= € At(Back(j,a) U Back(j,B))}.

o Let Anc(c) be the set of direct ancestors of c € N: Anc(c) ={a|3j € J : a € body(j) and

hd(j) = c}.

e Let Anc*(c) be the transitive closure of Anc(c).

o N-={N~(j) | j € J and hd(j) € Anc*(L)}

e Back=(j) =U{F(a")|a" € N"}.

e Back(j) = Back(j,a)U Back(j, ) U Back=(j).

e B(J) =J{Back(j) | j € J and hd(j) € Anc*(L1)}.

Note that backward justifications will be created in B(J) only for those justifications whose
(in)direct consequences are L. Remarkable is that in Back(j, «) and analogously in Back(j, ) the
contrapositioned atom a (which appears as a~ as the head of the new justification) still appears
(though negatively) in the body of the new justification. This ensures that in the Well-Founded

model of B(J)U J, a (and a~) will get truth-value u. The Revision-strategies defined below are
therefore not equivalent to DDB-strategies as described in the introduction of this section.

Definition 4.8 R is a Revision-strategy if it adds to J a subset of B(J).

As Witteveen shows in [Witteveen 91}, B(J) might enlarge the complexity of a JTMS D to O(|D|x
|N|) and because computing the Well-Founded model takes O(|N’|x|D’|) for a JTMS D’ = (N', J'),
here |N'| < 2|N| and |D’| < |D| x |N], the overall complexity of his algorithm is O(|N|? x |D|).

Theorem 4.9 [Witteveen 91] WF(B(J) U J) is the knowledge-minimal 3-valued stable model for
the class of all Revision-strategies.

5 Conflict Resolution using one disjunctive justification
(Cautious Backtracking)

We present two new backtracking methods which avoid the use of contrapositions. The first gives
the same model as proposed by [Witteveen 91] in a more efficient and natural way. The second is
an extension of the first in which more information is obtained from the contradiction.

The techniques used are variations of a method that will be called Cautious Backtracking (CB).
In the following we will use WFp to denote the Well-Founded model for JTMS D.
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5.1 Introduction

There is another way to make use of the dependencies among beliefs. Given a model, some of the
justifications denote the actual dependencies between truth values of propositions. These are the
justifications whose body is evaluated true under the given model. In the Well-Founded model,
these dependencies can be seen in the layered structure of the model.

Consider a JTMS D with constraints, for D we calculate the Well-Founded model according to
Witteveen. But now we are not only interested in the resulting 3-valued model, but also in the
several 3-valued interpretations from which this model has been comprised. These interpretations
contain some of the information regarding the dependencies between the elements of N.

Definition 5.1 Let IS = (0,0), I5™ = W(D,I}) and let k be such that If is the least fizpoint of
w.

So the Well-founded model is given by:
WFp = ( U Ih ., U Ihs)

0<i<k 0<i<k

From now on we will discard the subscript D, unless there can be doubt about which TMS is
considered.

Definition 5.2 Let [; = J;¢; I' for all i > 0.

Note that I} is the least fixpoint of the immediate consequence operator applied on the positive
part of D, ie. the justifications without negations. I} contains the atoms from the greatest

unfounded set (Gus) with respect to I°. Analogously, I} I}+1 is the least fixpoint of the immediate

consequence operator applied on the positive part of D~ -1 and I;‘H contains the atoms from the
Gus with respect to I*. Given the nature of the immediate consequence operator, each of the
elements of I} ‘+1 were justified by a justification a A @ — ¢ which had this element as its head
and for whlch at least one literal in B was justified. In the same way the elements of I; i+1 depend

directly on I} and If and maybe indirectly on several other I'* (k < 1).
Lemma 5.3 If If‘ =0 then I}*! = 0.

Proof: Let J' = J~*i. Suppose If' = 0 but ¢ € I}*1. Without loss of generality assume that c is a
fact in J'. Known is that ¢ ¢ I}, which implies that the body of all justifications with conclusion
cin J' (of which there is at least one) are evaluated to u under interpretation I* (I*(a A B) = u)
while the positive part of this body () is evaluated to ¢ under this interpretation (I* (@) = 1).
(Remember that A#(8) # 0 otherwise ¢ € I} and that If = 0.) But — ¢ € J' implies that
At(B) € I}.

(m}
How can the knowledge of these dependencies be used to efficiently compute a new Well-Founded
model for an altered J? Suppose that an atom p € N is in WFy for a certain set of justifications J
and the problem solver would rather have p € WF,, it can add a justification to J like — p, then
the JTMS will have to adjust the Well-Founded model to encompass this new justification. The
only way p can be made false is by negation by failure, unless a constraint is present in J with p
in its body. So in most cases adding — p will help. Suppose the JTMS knows (by keeping track
of the list of interpretations I*) that p € I;, then the only nodes that could be affected by p’s
change of truth-value are those not in T;_1. So we can recompute the Well-Founded model starting
at I*. The only problem that could occur is that one of the constraints could be violated by this
Well-Founded model, then the JTMS must perform backtracking. This will be possible unless the
body of this constraint consists entirely of facts (positive literals all of which are element of I}!).
More will be said about backtracking later on.
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On the other hand suppose that p € N is in WF; and the problem solver would rather have
p € WFy, then it is not allowed to add — —p to J, but it can add a constraint p — L. However
there are other possibilities, by looking at the interdependencies of the atoms, it is sometimes
possible to recalculate a part of the Well-Founded model. First the JTMS has to check whether
or not p € WF; would contradict p € I}, if this is not the case, then (if no constraints are
present) it is possible to recalculate the Well-Founded model from I*, i, where p € I i+ Because
p directly depends on the atoms in If' The JTMS acts as if one of the elements of I} occurring
in a justification with head p were added as fact to J and continues calculating the Well-Founded
model at I*. Picking only on of the elements of If‘ as a fact to be added, corresponds with a specific
dependency-directed backtracking method.

Making no selection corresponds to the CB methods.

5.2 Cautious Backtracking

We can avoid using contrapositions by noting that only assumptions can be responsible for the
contradiction (otherwise D would not have any model). Assumptions are created by the use of
negation as failure and apparently a number of atoms was not correctly considered false, leading
to the contradiction. This set of atoms can be characterized as follows:

Definition 5.4 Atom b belongs to the foundations of ¢ in interpretation M (b € Gr(c,M)) if
Ja AP — c € J such that M(a A B) =t and at least one of the following holds:

1. ~ b € Lit(B).
2. a € Lit(a) and b € Gr(a, M).

Instead of reasoning in the contrapositive direction, one can also search for those negative atoms,
that belong to the foundations of L, i.e. Gr(L, M). Note that in the Well-Founded interpretation
the following holds: if L € I'* then Gr(L, M) C (li—1)s. Therefore Gr(L, M) can be easily found
in WF, by comparing (ji_l)f to J.

The approach described below actually comprises two different methods, CB; and CB2. For (B,
we prove that it corresponds with B(J) as defined in section 4.3. In CB; the added justification
can be a fact, leading to a more intrinsic model. In every step of the method described below we
will denote how the proposed methods differ.

CB-method
Suppose WF is an inconsistent interpretation for D and suppose L is not a fact (there exists

a model for D). Let constraint § (consequence of § is L) be the justification which caused WF to
be inconsistent.

1. Determine Gr(Ls, WF).
This set can easily be found in WF', by looking at the dependencies.

2. For CB; add to J the following (disjunctive) justification j:
/\oGr(Ls, WF) - \/ Gr(Ls, WF)
3. For CB; add to J the following (disjunctive) justification j:

—\/ Gr(Ls, WF)
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The more intrinsic method (CB;) renders a set of justifications for which the Disjunctive Well-
Founded model, as defined by Ross [Ross 89b], can be computed, which extends the skeptical
model for CB;. De difference between (1) and (2) is that A oGr(Ls, WF) ensures that all atoms
in the head of the negation will neither become false as a result of negation as failure, nor true.
As can easily be seen, the complexity of D will never be enlarged by more the complexity of the
added justification.

5.2.1 Skeptical model of disjunctive logic programs

Here we define a model for disjunctive logic programs which contains less information than the
Well-Founded models (Weak and Strong) for disjunctive logic programs as defined by Ross in
[Ross 89b]. This skeptical model is related to the Well-Founded model for normal logic programs.
The reason we define such a skeptical model (Sk) is that we can prove that for all elements a € N
Sk(CB1(J))(a) = WF(B(J)U J)(a), where B(J) is the set of justifications defined in 4.3.

Definition 5.5

o A disjunctive justification has the format: a A B — 6, where a A B is as before and & is a
disjunction of atoms.

o Let DITMS stand for a JTMS containing disjunctive justifications.

Definition 5.6 Let I be an interpretation and let D be a DJTMS.
o Normal(D) is the part of D not containing disjunctive justifications.

o The Transitive Closure DCl of D is the transitive closure of Normal(D), i.e. DCI(D,I) =
Cl(Normal(D),I).

Note that if 6§ contains more than one atom, then I(§) = ¢ will not be used to derive extra
information, since § does not occur in the body of any justification. In the Well-Founded semantics
as defined by Ross extra information can sometimes be derived. The definition of an unfounded
set is only slightly adjusted:

Definition 5.7 Given a JTMS D with disjunctive justifications and a S-valued interpretation I.
Then we say that A C N is an unfounded set of D with respect to I (denoted unf(A,D,I)) if
for each atom ¢ € A the following holds: For each justification j € J in whose head p occurs
(p € Al(8)), at least one of the following holds: I(a A B) = f or At(a) NA#0.

Definition 5.8 The Skeptical model Sk(D) of a DITMS D is the least fizpoint of AI.(DCI(D,I)U
oDGus(D, I)).

The time-complexity of Sk equals the complexity of the Well-Founded model, namely O(|N| x | D|).

Corollary 5.9 The time-complezity of backiracking and finding a new model (i.e. Sk(CBy(J)))
equals O(|N| x | D).

We extend the Skeptical model to an interpretation for all atoms in B(J) and prove the exten-
sion to be a stable model for B(J)U J.

Definition 5.10 Let M be the interpretation defined by:

[ SK(CBi(I))(z) fz € N
M(z)= { ~ SE(CBL(M))(y) if 2 = 4~ € N-

Lemma 5.11 M is a model of B(J)U J.
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Proof: Let z € N U N~ and suppose there is a justification j € B(J) U J with head z such that
M(z) <¢ M(body(s)). As M is a model of J, j ¢ J. Hence At(5)N N~ # 0. For z we have two
possibilities: z€ Norz € N™.
ez € N~ then z = y~, y € N, this implies that ~ y € Lit(body(s)). So M(body(j)) < M(~
y) =~ M(y) = M(y~) = M(z). And M satisfies j.
e z € N. Remember j ¢ J so there is a y~ € A#(j). Apparently j € Back(a A BA — y, ). This
implies that ~ z~ € Lit(body(j)). We have to check each of the three possible truth-values for
z in M. If M(z) = t, then always M(body(j)) <ir M(z), so M satisfies j. If M(z) = u, then
M(~ z7) = u. As M(body(j)) = min,{M(I) | | € Lit(body(s))}, M(body(j)) <er M(~ z~) = u.
So m satisfies j. If M(z) = f, then M(~ z~) = f as well. Therefore, M(body(j)) = f and M
satisfies j.

a

Lemma 5.12 M is a S-valued stable model of B(J)U J.

Proof: Let Ming be the truth-minimal 2-valued model of (N U N~, B(J)U J)(M,t). Let Min,
be the truth-minimal 2-valued model of (N U N=, B(J) U J)(M,u). We have to prove that (see
definition 3.2)

(a) M; = Min, and
(b) M, UM, = Min,.

a: Suppose M; # Min,, then there is a z € N U N~ such that

i. £ € M; but z ¢ Min, or
ii. z € Min, but z ¢ M;.

it
o If z € N, then M(z) = t implies that z ¢ Anc*(L), therefore B(J) contains no justification with
conclusion z. So Ming(z) =1 as well.

o If z = y~, then M(z) = t implies that M(y) = f. Therefore no subset § of N exists such
that y € § and such that § = hd(j) with j € CB,(J) — J. Apparently y ¢ Anc*(L), but this
contradicts z = y~.

i

e Suppose z € N, then z € Min, implies that there exists a justification j' in (N UN~, B(J)U
J)(M,t) such that Min,(body(j')) = t and such that Hd(j') = z. Associated with ;' must be a
justification j € B(J)U J. This justification j is a backward justification or j € E(z~) or j € J.
In the first two cases ~ z~ occurs in the body of j. As j' € (NUN~,B(J)U J)(M,1), we know
that M(~ z~) = t. This implies that M(z~) = f, but then M(z) must be t.

So j € J and At(a(j)) C Min,. So Va € At(a(j)) a monotonic proof for a exists in (N U
N-,B(J) U J)(M,t), which begins with facts — c. This implies that Va € A#(a(j)) a non-
monotonic proof exists in J, which begins with justifications 3 — ¢, for which M (B) = t. This
implies that M (body(j)) = ¢ and M(z) = t.

e Suppose z € N, then there must be a justification j = a A § — z € B(J) such that M(8) =t
and Min,(a) = t. Now j ¢ J, so ~ y € Lit(8). Therefore M(~ y) = t and M(y~) = t. Conclu-
sion M(z) = t.

So M; = Min, cannot be contradicted.

b: Suppose M; U M, # Min,, then there is a £ € N U N~ such that

iLzeMs&zeMny&zeN,or
l.zeMf&zeMing&zeN",or
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.z ¢Mp&zgMing&zeN,or
iv.zgMp&zgMing&zeN".

i: £ € Min, implies that there is a justification j = a A § — z € B(J) U J such that M(B) # f
and Miny(e) = t. If j ¢ J, then ~ 2z~ € Lit(8), so M(~ z~) # f. Therefore M(z~) # t and
M(z) # f. Contradiction, so j € J. Then M(a) = f and M(B) > f. Miny(a) = t if and only if
Ya € At(a) a monotonic proof for a exists, which begins with facts — c. If and only if Va € At(a)
a non-monotonic proof for a exists, beginning with justifications 8’ — c, such that M B) > f
(and so M(c) > f. Therefore M(a A B) >¢ f and M(z) > f.

ii: As in i £ € Min, implies that there is a justification j = a A8 — z € B(J)U J such
that M(B) # f and Miny(a) = t. But now j ¢ J. Let z = y~, then ~ y € Lit(B). So M(~ y) # f,
implying that M(y~) # f.

iii: The only case not properly treated eatlier is: z € My & z € Anc*. This means that Vj =
aAB — z € B(J)UJ holds that if M(B) # f then Miny(a) = f. Consider ~ z~ — z, this justifi-
cation is in B(J)UJ and M(~ z~) =~ M(z~) = M(z) = u. So — z € (NUN~, B(J)UJ)(M, u).
Therefore Miny(z) = t, contradiction.

iv.: Let z = y—. In this case y € Anc*(L). Consider ~ y — y~ which is in B(J). As
M(y~) # f, M(~ y) # f as well. Therefore — y~ € (NUN~,B(J)U J)(M,u). Conclu-
sion: Miny(y~) = Mins(z) = ¢.

Conclusion: M;U M, = Min, cannot be contradicted. Therefore M is a stable model of B(J)U J.
(m]

Corollary 5.13 Va € N Sk(CB(J))(a) >xn WF(B(J)U J)(a).
Lemma 5.14 WF(B(J)U J) is a model for CBy(J).

Proof: Suppose not, then there is a 6 C N and a justification j € CB;(J) such that kd(j) = § and
WF(B(J)JJ)(6) <tr WF(B(J)UJ)(body(j)). As WF(B(J)UJ)isamodelof J,j ¢ J. If § consists
of one atom ¢, then ¢ € Anc*(L), so WF(B(J)U J)(c) # f. Therefore WF(B(J) U J)(~ c) # 1,
contradiction.

So § is a disjunction of atoms and j = §. WF(B(J)U J) is not a model of CB;(J) implies that
WF(B(J)UJ)(8) <¢r u. WF(B(J)UJ)(6) <ir u if and only if Vz € AL(6) : WF(B(J)UJ)(z)=f.
If and only if WF(B(J)U J)(1) = t, contradiction.

a

Lemma 5.15 Ya € N Sk(CBj)(a) <xn WF(B(J)U J)(a).

Proof: Here it is essential that — d was replaced by ~ d — d. Suppose the lemma is not true, then
an a € N exists such that WF(B(J)U J)(a) <zn Sk(CB1(J))(a). The only cases to be considered
are, Sk(CBy(J))(a) = t and Sk(CB1(J))(a) = f, while in both cases WF(B(J)U J)(a) = u.

e WF(B(J)U J)(a) = u and Sk(CB1(J))(a) = t.

WF(B(J)U J)(a) = u iff 3j € B(J)U J with hd(j) = a and WF(B(J) U J)(body(s)) = u, while
Vj € B(J)U J holds that hd(j) = a implies WF(B(J)U J)(body(s)) <er t. Consider Sk(CBy(J)):
Sk(CB(J))(a) = t iff 3j € CBy(J) : hd(j) = a and Sk(CBy(J))(body(j)) = t. For this j there is
only one possibility: j € J, for CBy(J) — J is not fact. Furthermore a must be an assumption,
otherwise WF(B(J)U J)(a) =t as well.

Apparently 3 ~ b € Anc*(a) such that Sk(CBy(J))(b) = f and WF(B(J)U J)(b) >+ f. Iff
35" € B(J) with hd(j') = b such that WF(B(J) U J)(body(j')) >¢r f. HE ~ b € Anc*(L). This
implies that b € Gr(L, M), therefore 3j =— 6§ € CB1(J) — J with b € At(8). This implies that
Sk(CBy(J))(b) = u, contradiction.

e WF(B(J)U J)(a) = u and Sk(CBy(J))(a) = f.
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Sk(CB1(J))(a) = f implies there is no j € CBy(J) — J with a € At(hd(j)), but on the other hand
a € Anc*(L) (otherwise WF(B(J)U J)(a) = Sk(CB1(J))(a)). Furthermore Vj € J holds that if
hd(j) = a then Sk(CB1(J))(body(j)) = f. So there must exist at least one ¢ € At(hd(j)), with
j € CBy(J) — J, such that ~ ¢ € Anc*(a) and such that Sk(CB1(J))(c) = t. But Vc € At(hd(j))
with j € CB;(J) — J holds that Sk(CB1(J))(¢) = u, contradiction.

0

Theorem 5.16 Sk(CBy(D)) is the knowledge minimal 3-valued Stable model for the class of all
Revision-strategies.

Proof: As can be seen from theorem 4.9, it is sufficient to prove: For all ¢ € N Sk(CBy(J))(a) =
WF(B(J)U J)(a). Then the proof is direct from corollary 5.13 and lemma 5.15.
a

5.2.2 On the Semantics of CB,

In the CB approach, we had to add ~ ¢ — c instead of — ¢ to the set of justifications, otherwise
the Skeptical model would have contained more information than WF(B(J)U J).

In CB, we add — ¢ and not ~ ¢ — ¢, because disbelief in ¢ was the only cause of the contradiction.
Apparently the intrinsic value of ¢ is ¢. This implies that the Skeptical model for CB; extends the
Skeptical model for CB;.

Furthermore we propose to use the Well-Founded model for disjunctive logic programs ([Ross 89b])
as the semantics of CBy. The Well-Founded model for disjunctive logic programs is capable of
making additional intrinsic choices.

Here we will give an example of the difference between CB; and CBj, which concerns the inconsis-
tency of D.

Example 5.17

Let D = (N, J) with N = {a, b, c} and let J be:

~c —b
~c —a
~b —a

a — L

For D the Well-Founded model is (@, {c})U({?, a, L}, ®), the contradiction seems to depend on
the falsity of ¢. So in the CB; method — ¢ is add to J. Recomputing the Well-Founded model
gives ({c},9) u (8, {b}) u({a, L},0). Again the contradiction can be traced to c, so J is inconsis-
tent. The CB; method would add ~ ¢ — ¢ to J, for which the Well-Founded model is (,0). This
is a 3-valued model, so the inconsistency of J will not be noticed.

In the previous section was mentioned that a Revision-strategy was not the same as a DDB-
strategy. In general a DDB-strategy leads to more informative models than the corresponding
Revision-strategy, because the truth-values will not always be shifted to u. Though we are still
trying to prove it, we believe in the following:

Conjecture 5.18
Let DWF be the Disjunctive Well-Founded model. We conjecture that DWF(CBz(D)) is the
knowledge-minimal 3-valued Stable model for the class of all DDB-strategies.

6 Conclusion

We presented a method for backtracking which avoids the use of contrapositions, but adds one
(possibly disjunctive) justification to the JTMS. This method is called Cautious because, contrary
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to standard backtracking methods, it does not select a culprit, but leaves this choice open. Not only
does the avoidance of contrapositions yield a more comprehensive method, but also the complexity
of the algorithm is reduced by an order of magnitude. Finally, Cautious Backtracking avoids
interchanging two different types of negation.

Two variants of Cautious Backtracking were described, the first (CB;) has especially been
designed to maintain all properties of Witteveen’s proposal.

The second variant (CB;) is an extension of the first in that more informative models can be
produced, although the added justification is even less complex.

In some situations CB, is able to detect that no 2-valued model exists, whereas CB; renders
a less informative 3-valued model. The choice between CB; and CB; therefore depends on the
application. '
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