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Abstract

It is shown that distributed termination detection algorithms can be trans-
formed into efficient algorithms to approximate the so-called Global Virtual
Time (GVT) of a distributed monotonic computation. Typical instances of
such computations are optimistic distributed simulations based on the time-
warp principle. The transformation is exemplified for two termination detec-
tion algorithms, namely an algorithm by Dijkstra et al. and a new scheme
based on the principle of “sticky flags”. The general idea of the transforma-
tion is that many termination detection algorithms (viz., one for each possible
GVT value) run in parallel. Each algorithm determines a specific lower bound
on the current GVT value. In a straightforward way, the possibly infinite bun-
dle of parallel termination detection algorithms can be combined into a single
distributed algorithm which computes a tight lower bound on the GVT.

*The work of H. Mehl is supported by the German National Science Foundation (Deutsche
Forschungsgemeinschaft) under grant SPP-322671.

1The work of A.A. Schoone and G. Tel is supported by the ESPRIT II Basic Research Actions
Program of the EC under contract no. 3075 (project ALCOM).
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1 Introduction

The purpose of this paper is twofold. First, to present a simple distributed termina-
tion detection scheme based on the paradigm of “sticky flags”, and second to show
how this and other distributed termination detection algorithms can be transformed
into algorithms which determine a lower bound on the so-called Global Virtual Time
(GVT) of distributed monotonic computations. GVT approximation algorithms are
of great practical importance for distributed simulation systems [14], in particular
for those based on the time-warp principle [16]. It was already noted by Jefferson [16]
that GVT approximation algorithms are generalizations of distributed termination
detection algorithms. Therefore, G VT approximation algorithms can be used to de-
tect termination. In this paper we show that the converse is also true, namely that
distributed termination detection algorithms can be transformed to obtain GVT
approximation algorithms.

The paper is structured as follows. Section 2 states the distributed termination
detection problem, presents a simple generic solution based on the “sticky flag”
paradigm, and describes a specific instance of it for a virtual ring topology. In Sec-
tion 3 the GVT problem and its relation with termination detection are explained.
Also a general transformation from a collection of termination detection algorithms
running in parallel to an algorithm for GVT approximation is given. Section 4
presents the GVT approximation algorithm that results if we apply the transforma-
tion to the algorithm from Section 2, together with its correctness proof. Next the
transformation is applied to the termination detection algorithm of Dijkstra et al.
Section 5 contains some further remarks and generalizations.

2 Termination Detection

Distributed termination detection is a “prototype problem” from the area of dis-
tributed computing, which is closely related to other important problems of the
field, such as distributed garbage collection [33] and snapshot computation [6]. It
has gained considerable interest in recent years, see for example {5, 11, 12, 20, 21, 32].



This section introduces the termination detection problem and demonstrates that
straightforward solutions to it can be based on simple ideas whose correctness can
be understood intuitively.

2.1 The Problem

Consider a distributed system that consists of processes Pi,---, P, (n 2 2). With
respect to the so-called basic computation, a process is always in one of two states,
passive or active. The processes communicate solely by messages, which are assumed
to be transmitted instantaneously. Some of these messages (but not necessarily all
of them) are referred to as activation messages, i.e., they may render the receiver
active. The basic computation behaves according to the following rules:

(R1) Only an active process is allowed to send activation messages.
(R2) A passive process becomes active when it receives an activation message.
(R3) At any time, a process may change from active to passive.

It is usually assumed that initially at least one process is active. If at some instant of
time all processes are (simultaneously) passive, the basic computation has reached
a stable state and it is said to be terminated. It is easily seen that when the basic
computation is terminated, no activation messages will be sent any more, and all
processes will remain passive forever.

Formally, we model the basic computation as follows. Each process P; has a
variable state; with values from {active, passive}. To distinguish activation messages
from other messages of the basic computation, we denote messages as (t, - -) where
t takes values from {active, passive}. Thus (active, --) represents an activation
message. We model the behavior of the basic computation by means of atomic
actions such that rules R1, R2, and R3 are obeyed. A process P; can execute three
different atomic actions: I;, X;, and R;. (A process may execute other operations
that affect only variables different from the ones mentioned here. Since this is of no
concern here, such operations are not modeled by actions.) Rule R3 corresponds to
the internal action I;.

I;: state; := passive

The transmission of a message to a process P; is described in action X where we
have to take rule R1 into account.

X;: if state; = passive then t := passive ;
send (t,---) to P;

(Note that an active process is allowed to send (passive,: - -)-messages.) The receipt
action of the basic computation reflects that a process becomes activated by the
receipt of an activation message (rule R2).
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R;: receive {t,---);
if t = active then state; := active

Since we assume instantaneous message transmission, messages can never be in
transit. Therefore, we demand that corresponding send and receive actions are
executed simultaneously. Otherwise, the actions of the computation are executed
sequentially, and they can be executed at any time and in any order.

In this model, termination is equivalent to: Vi state; = passive. The termination
detection problem consists of superimposing on a given basic computation a control
algorithm which detects this global property without interfering with the underlying
computation. The algorithm should satisfy the following two formal properties.

(T1) Safety: The algorithm does not detect termination unless the basic computa-
tion has terminated.

(T2) Liveness: If the basic computation has terminated then the algorithm will
detect termination in finite time.

Since in a distributed system it is in general impossible to inspect the states of all
processes simultaneously, termination detection is a non-trivial problem.

2.2 A Simple Termination Detection Principle

For a first attempt to solve the problem, assume that each process P; has a state
indicator S; reflecting the state of the process (i.e., §; = state;). Then an initiator
may start a control wave which visits all processes and returns the values of the
state indicators. (More efficiently, it could only return the “accumulated” value
passive if all processes were passive, and active otherwise.) To model algorithms
that implement control waves the concept of total algorithms was introduced in [31].
Such algorithms can be implemented in various ways; examples include a control
message circulating on a (virtual) ring connecting all processes (see also Raynal and
Hélary [25]), parallel distributed graph traversal schemes such as the echo algorithm
(8], and (virtual) broadcast schemes on a spanning tree.

Unfortunately, however, the values of the state indicators collected in that way
do not allow the conclusion that the basic computation has terminated. Because of
possible reactivations of processes “behind the back” of the wave, the observation
that all processes were passive when being inspected (by the wave) does not imply
that all processes were passive simultaneously. (Notice that control messages are not
assumed to be transmitted instantaneously; however, even for instantaneous control
messages the complete execution of the control wave algorithm is not instantaneous
because the wave may be delayed at processes it inspects. Therefore, processes
may be reactivated while the wave is in progress.) An algorithm that announces
global termination when it finds that all S; were passive may erroneously detect
termination.



Sticky Flags. Fortunately, the simple scheme sketched above can easily be trans-
formed into a correct algorithm. Assume now that the state indicators S; are “sticky”
in the following sense. If a process P is activated, the value of S; becomes (or re-
mains) active. If a process becomes passive, however, S; “sticks” to active. Before
the start of the termination detection algorithm, the state indicators of all processes
are initialized to the value of state;, thus correctly reflecting the state.

Formally, we need to augment the receipt action R; of the basic computation
with the proper assignment to S;. The receipt action R; becomes:

R;: receive {t,--);
if t = active then begin state; := active; S; := state; end

As S; is not set to passive when the state of the process becomes passive, the internal
action I; is not changed, nor is action X;.

Clearly, if at the start of the control wave some process P; was active, the al-
gorithm will not announce global termination because the value of S; is still active
when it is eventually collected by the wave. Or, to put it in another way: If the algo-
rithm reports termination, then no process was active at the start of the wave; hence
the basic computation has actually terminated because it was already terminated
when the wave was started. This shows that the implicit semantics of the sticky
state indicators ensures the safety of the resulting termination detection algorithm.

Unfortunately, however, in the scheme as it stands termination will never be
announced unless all processes were initially passive. To guarantee liveness it is
necessary to repeatedly first reset.the sticky state indicators to the true values of
their processes’ states and then start a new control wave. Then, when the basic
computation terminates, eventually the sticky state indicators will be set to passive
(and never reset to active). Consequently, termination will be announced at the end
of the next wave. In order not to compromise the safety property however, a state
indicator must not be reset to passive between the start of a wave and the collection
of its value.

A concrete instance of the “sticky-flag” scheme using a circulating control mes-
sage will be shown in the next section; a formal proof of the liveness and the safety

property for a generalized variant of the “sticky flag” scheme will be given in Sec-
tion 4.2.

2.3 A Termination Detection Algorithm

We now present a concrete instance of the general scheme described above. For
the superimposed termination detection algorithm we assume that the processes
P,---,P, (n > 2) are arranged to form a logical ring on which a control message
circulates. (Recall that messages of the basic computation can be sent from any
process to any other process.) The termination detection algorithm makes use of
the variable S;, the sticky state indicator, which reflects whether process P; has been



active since the last visit of the control wave. A dedicated process, P,, initiates the
algorithm by sending a control message to the next process (i.e., P,) on the ring:

send (passive) to P,

When receiving the circulating control message, process P; executes action W; atom-

ically.

Wi: (1) receive (M);
(2) if S; = active then M := active;
(3) if : =n and M = passive then signal termination;
(4) if i # n then send (M) to P},
(5) else send (passive) to P;
(6) S; := state;

In line (1) the contents of the received message is assigned to M. In line (2) M
accumulates the value of the state indicator S;. If after a complete round M is still
passive (3), termination can be signaled according to the arguments of Section 2.2. In
any case the control message is propagated; at P,, however, it must be reinitialized
to passive (4, 5). In line (6) the state indicator is reset to the current value of the
system variable state; as described in Section 2.2.

We deliberately dispense with two modifications that would make the algorithm
more efficient. First, instead of stopping the algorithm once termination has been
established, the control message continues to circulate. Second, the control message
is not deferred in active processes (i.e., control messages are propagated in a non-
lazy way). In fact, the decision of a process when to propagate the control message
is independent of its state. This property becomes important when the algorithm is
used for GVT approximation in Section 4.1.

The algorithm we just described is reminiscent of the well-known termination
detection algorithm by Dijkstra et al. [11]. However, whereas in that algorithm a
flag is set when an activation message is sent, our scheme uses a flag (the sticky
state indicator) which is set when an activation message is received. We shall come
back to Dijkstra’s algorithm in Section 4.3.

2.4 Variants

Telepathic Computations. Interestingly, the termination detection principle de-
rived above works independently of the mechanism by which active processes reac-
tivate passive processes. As far as termination detection is concerned, reactivations
may as well be caused by some sort of “telepathy”, rather than by the explicit ex-
change of activation messages. To model telepathic computations, we dispense with

rule R1 (i.e., we do not model the sending of messages) and replace rule R2 by the
following “telepathic reactivation rule”.



R2") A passive process may only become active if there exists another process which
p
is active at that moment.

Of course, due to the lack of global time and common state in distributed systems,
the observance of rule R2' by the basic computation requires some hidden mecha-
nism using messages. The point is, however, that the “activator” is not aware that
it activates another process. Therefore, in contrast to virtually all other known ter-
mination detection algorithms, the “sticky flag” algorithm does not need to consider
the messages and the send actions X; of the underlying basic computation—the only
thing it has to do is to take notice of the fact that a process becomes active.

It should be noted that termination of “telepathic computations” is not a stable
property in the sense of Chandy and Lamport [6] or Lai and Yang [17]'. Neverthe-
less, once an instant of time has been reached where all processes are simultaneously
passive (i.e., the computation has terminated), the processes remain passive. Qur
algorithm can be used to detect this global termination property of “telepathic com-
putations” as the following argument shows. Whenever some process P; becomes
active according to rule R2’, there exists another active process P;. Conceptually,
it can be assumed that P; sent an activation message to P; which reactivated P.
Hence, rules R1 and R2 are observed. Since nothing has to be done when sending
a (conceptual) message, the “sticky flag” algorithm can directly be applied on un-
derlying “telepathic computations”. This is not the case for most other termination
detection algorithms?.

Synchronous Communication. Instantaneous message transmissions are not
realizable in practice, they are merely an idealization of synchronous communication
[9]. Interestingly, however, the “sticky flag” principle can also be used with the more
realistic synchronous communication mode, where the send operation blocks until
the sender knows that the receiver is also blocked and ready to accept the message.
Because the receiver is blocked while the activation message is in transit (which
disables the visit of the receiver by a control wave), one may define the receiver
to be active already at the moment the message is sent (instead of being activated
when the message is actually received). Since by rule R1 the sender is also active
at the moment of sending the message, rule R2' is observed.

Asynchronous Communication. The “sticky flag” scheme can also be adapted
to asynchronous communication. (In that case, the basic computation is considered

1Since messages do not necessarily exist, it is easy to construct a (consistent) cut where all
processes are passive and a later cut where one or more processes are active. This is due to
the fact that interference between processes by another mechanism than message passing is not
considered. Thus one should redefine the concept of “consistent cut” and hence of “stable property”
for telepathic computations.

2For example, the algorithm of Dijkstra et al. [11] requires some control activity whenever a
process sends a message, namely coloring the sending process black. In other schemes, activation
messages must be counted [20] or acknowledged [12].
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to be terminated if all processes are passive and no activation messages are in tran-
sit.) One possibility to detect termination in the asynchronous case is to acknowledge
each activation message and to consider a process to be engaged in a send operation
(and hence to remain active) until the acknowledgement is received. Obviously, this
can be realized by locally counting sent messages and received acknowledgements
and by keeping S; active while there are outstanding acknowledgements for process
P;. Then, again, rule R2' is observed. It is also possible to use indirect acknowl-
edgements and to batch acknowledgements; these techniques are used, for example,
in the vector counter algorithm [20].

3 Global Virtual Time and its Approximation

In this section, a particular distributed computation scheme is considered, which
defines a monotonic function of the global state. A simplifying assumption is made
about the domain of this function, namely, that it is a set of real numbers. The
Global Virtual Time approximation problem consists of computing a suitable ap-
proximation of this function, as to be defined in this section. A treatment of the
generalized problem, in which the domain of the monotonic function is an arbitrary
partially ordered set, is given in [22, 29, 30, 32].

After defining the GVT problem, we show how termination detection and global
virtual time approximation are related. This relation then leads to a general trans-
formation of termination detection algorithms to GV T approximation algorithms.

3.1 The Global Virtual Time Problem

Distributed Monotonic Computations. Consider a system of n processes
Py,-++,P, (n > 2). Each process P, maintains a real-valued variable C;, referred
to as the clock of P;. The processes interact by exchanging timestamped messages.
(Again, message transmission is assumed to be instantaneous; basically the same
arguments hold for synchronous communication, however. Asynchronous communi-
cation will be discussed in Section 5.1.)

The timestamps of the messages and the modification of the clocks satisfy the
following rules.

(S1) The timestamp of a message is at least the clock value of the sender (at the
moment the message is sent).

(82) On receipt of a message with timestamp ¢ the receiver’s clock is set to C; :=
min(C;, t).

(83) At any time, a process can increase its clock.



Computations that behave according to these rules are called distributed monotonic
computations [22] because the global minimum of all clocks C; increases monoton-
ically during the computation. This global minimum is referred to as the Global
Virtual Time (GVT) of the computation, see Jefferson® [16]. Typical instances of
distributed monotonic computations are parallel discrete event simulation systems
[14] where local simulator processes cooperate by scheduling so-called remote events
using timestamped messages.

Rules S1-S3 translate to the following three atomic actions to model the behav-
ior of a distributed monotonic computation. According to rule §3, a process can
increase its clock by an internal action L;:

I;: choosed > 0;
C;:=C;+d

The transmission of a message is governed by rule S1:

X;: chooset > C;;
send (t, ---) to P;

The receipt of a message can cause a process P; to set back its clock. This is modeled
by executing C; := min(C;, t) after receipt of a message with timestamp ¢ (rule §2).

Ri: receive (¢, - -);
C; := min(C;, 1)

The Global Virtual Time is defined for each global state of the system by the relation
GVT = min; C;. It will first be shown that GV T is indeed a non-decreasing function.

Theorem 3.1 GVT is monotonically non—decreasing, that is, if it is changed, it is
increased.

Proof. Computations of the system are modeled as sequences of atomic actions, so
it suffices to show that GVT does not decrease as the result of an atomic action.

An internal action I; increases C;, possibly increasing, but never decreasing GVT'.
As message transmission is instantaneous, a receipt action R; always corresponds to
a send action X; for some j (process P; sends a message to P;). For the timestamp ¢
of the message sent t > C; holds, and min(Cj, t) is assigned to C;. Thus min(C;, Cj)
is not decreased, and neither is GVT. O

3Jefferson’s original definition allows in-transit messages, see also Section 5.1.



GVT Approximation. The GVT approximation problem consists of superim-
posing on the distributed monotonic computation a control algorithm which main-
tains a suitable approximation of GV T without interfering with the basic computa-
tion. The approximation should satisfy the following two formal properties.

(G1) Safety: The approximation never exceeds GVT.

(G2) Liveness: If GVT reaches a value € IR then within finite time the approxi-
mation, say, G satisfies and continues to satisfy G > .

GVT is a function of the global state of the system, and since the global state is
not directly observable by a process, GVT approximation is a non-trivial problem.

The determination of a tight lower bound on the current GV'T value is of great
importance for distributed simulation systems, see, e.g., Fujimoto [14] and Jefferson
[16]. Since in optimistic distributed simulations a simulator process has to roll back
to an earlier state when a message with an earlier timestamp than its current clock
value arrives, it must save its state regularly. The GVT is the earliest virtual time to
which any simulator process can ever roll back. Therefore, all checkpoints (possibly
except the most recent one) older than the GVT approximation can be removed to
save memory. The liveness of the approximation ensures that eventually all oblivious
states (possibly except the last one) are discarded. A lower bound on G VT is also
necessary to know when irrevocable actions (e.g., simulation animation or display
of statistical results) can be committed.

3.2 The Relation between GVT and Termination

Termination Expressed as Global Virtual Time. It has already been ob-
served by Jefferson and others [16, 29, 32| that distributed termination detection is
a special case of GVT approximation. To see this, model an arbitrary distributed
computation (cf. the rules in Subsection 2.1) as a monotonic computation, where
the values of the clocks are restricted to two arbitrary values, denoted by active
and passive, ordered as active < passive. Activation messages are timestamped with
active, other messages with passive.

As the processes originally satisfy rules R1-R3, under this transformation they
observe rules S1-83: A process whose clock value is passive only sends messages
with timestamp passive. A process sets back its clock to active when a message
with timestamp active is received. When a process becomes passive, it advances
its clock from active to passive. It is now the case that GVT = passive means
that all processes are passive—hence, the computation has terminated. Thus, any
GVT approximation algorithm can be used as a distributed termination detection

algorithm—when the approximated GVT reaches the value passive, termination can
be concluded.
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Termination and a Lower Bound for GVT. Conversely, however, it is also
possible to check for a general distributed monotonic computation whether GV'T has
reached some threshold value ¢ by using a termination detection algorithm [29, 32].
For that purpose, fix t € IR and divide IR in two intervals [—oc,t) and [t, 00}, and
call the first t-active and the second t-passive. Then, as above, we can consider
a distributed monotonic computation as a basic computation for (t)-termination,
whereby t-termination is equivalent to GVT € [t, o0]. Formally, we have the follow-
ing correspondence.

Theorem 3.2 Let t € IR. Define the pseudo-variable state!®) to have the value
t-passive if C; > t and t-active if C; < t. Define the timestamp z of a message
(z,---) to be t-passive if z >t and t-active if ¢ < t. Define t-terminated as stategt)
= t-passive for all 1.

Then a distributed monotonic computation (modeled by I;, X;, and R;) can be
considered as a basic computation for t-termination (modeled by I;, X;, and R;).

Proof. We show that for every ¢ € IR rules R1-R3 are observed. Consider atomic
action I;. As the value of d with which C; is increased is positive, the value of statest)
can change from t-active to t-passive, namely if C; < t < C; + d for the old value of
C;. In all other cases state!’) remains the same. (R3)

Consider action X;. For the timestamp z of the message transmitted we have
z > C;. Thus it is a t-activation message for those ¢t with ¢ > z. Since t > C;
for those t, t-activation messages are only sent by processes for which statef') =
t-active. (R1)

Consider action R;. Upon receipt of a message with timestamp z, C; is set to
min(C;,z). For those values of ¢ for which z is t-active (i.e., t > z), C; is set to a

value < t, hence state!” is set to t-active. (R2) O

Notice that if a computation (a process) is t-terminated (t-passive), then it is
also t'-terminated (t'-passive) for all ¢’ < t. As a distributed monotonic computa-
tion behaves according to rules R1-R3, t-termination is a stable property (i.e., once
a computation is t-terminated it remains t-terminated) and a termination detec-
tion algorithm can be applied to detect t-termination. The crucial point for GVT
approximation is stated in the following theorem.

Theorem 3.3 A distributed monotonic computation is t—terminated if and only if
GVT > t.

Proof. Consider the following equivalences. t-terminated <& Vi statel!)
= t-passive & ViC; 2t min;C; 2t & GVT >t. O

The safety and liveness properties of the (¢t-)termination detection algorithm
imply the following.

1. The algorithm does not detect t-termination unless GVT > t.
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2. If GVT >t then t-termination will be detected in finite time.

The basic idea of our GVT approximation scheme is to run many ¢-termination
detection algorithms for different values of ¢ in parallel. The approximation is cho-
sen to be the largest value for which ¢-termination is detected. The two properties
listed above ensure the safety and progress of the resulting approximation, provided
that t-termination detection algorithms for an appropriate set of t—values are used.
Fortunately, it is possible to simulate the parallel execution of many termination
detection algorithms by a single algorithm. In the combined algorithm a control
message (of finite length) represents the control messages of a possibly infinite num-
ber of virtual termination detection algorithms. This idea will be worked out in
more detail in the next section.

3.3 GVT Approximation with Termination Detection

In this section it is shown that a GV T approximation algorithm can be obtained from
a termination detection algorithm. The resulting transformation will be exemplified

further down in Section 4 by applying it to the “sticky flag” algorithm presented
earlier.

The General Transformation. The GVT approximation algorithm consists of
parallel invocations of a termination detection algorithm A, where the invocation
A® is responsible for the detection of t~termination. The collection of invocations of
A is referred to as a bundle of termination detection algorithms. An approximation
of GVT is held in a variable G such that the safety property (G1) GVT > G is
maintained.

As was noted in Section 3.2, the detection of t—termination implies that GVT > t.
Hence, the assignment G := t can safely be executed when t-termination is detected.
It is possible, however, that at a later time t'-termination is detected, for ¢’ < t.
In that case this assignment would set G back, and the liveness requirement (G2)
would not be satisfied. In order to obtain a monotonic approximation and avoid
the problem with the liveness sketched, we will use the assignment G := max(G,t)
instead of G :=t.

The approximation algorithm is obtained by transforming a termination detec-
tion algorithm A as follows.

o Consider an invocation A(*) of A for every k € IR, responsible for detecting
k-termination.

o Replace the detection of termination in A) by the statement G := max(G, k).
e Execute all invocations in parallel with the basic computation.

Note that the approximation algorithm is composed of an infinite number of parallel
algorithm invocations. It must be assumed for a while that it is possible to execute

12



all these invocations in parallel in such a way that progress is made in each of them.
It will be shown later how the combined algorithm can be transformed to a finite
algorithm.

Theorem 3.4 The resulting GVT approzimation algorithm satisfies safety and live-
ness.

Proof. To show the safety, consider the value of GVT in some system state. By
Theorem 3.3, k-termination holds for all k < GVT, but for no £ > GVT. Hence,
by the safety of each A%¥), k-termination could only be detected for ¥ < GVT and
thus by our transformation G := max(G, k) was only executed for values ¥ < GVT.
Consequently, G < GV'T holds.

To show the liveness, assume that at some time GVT = k. This implies that
k-termination holds, and hence, as the bundle includes an invocation A%), k-
termination will be detected in finite time and the assignment G := max(G, k)
will be executed. After the assignment, G > k will continue to hold. O

We shall now discuss briefly whether the liveness can also be obtained using a
bundle which does not contain an invocation A¥) for each value of k.

Assume that the bundle does not include A®), and neither does it include an
A®) for k — e < k' < k, for some € > 0. Furthermore, assume that GVT = k at
some time, but GV T does not grow beyond k. In this case, t-termination holds for
all ¢t < k, but for no t > k. As a result of the liveness of A, G := max(G,t) will be
executed for all ¢ < k for which an invocation A(®) is present, and as a result of its
safety it will not be executed for any t > k. Because of the “e interval gap” in the
bundle, it follows that G := max(G,t) will not be executed for any ¢ > k — ¢, hence
G < k — € continues to hold. In this case the liveness requirement is not satisfied.

It remains to study the case where the bundle does not include A®*), but does
include an A% for k — e < k' < k, for every € > 0. Again assume that GVT = k at
some time and GV T does not grow beyond this value. For every ¢ > 0 there is a k'
with k — ¢ < k¥’ < k for which G := max(G, k') will be executed in finite time, and
hence for every € > 0, G > k — € will hold in finite time. This, however, does not
imply that G > k holds within finite time, because, for example, G > k — 1/n may
hold only after n time units.

The conclusion of this discussion is that the liveness of the resulting algorithm
cannot be guaranteed if the bundle does not include A(*) for every k € IR which is a
possible value of the GVT. In the general case this implies that an invocation A
must be included for every k € IR.

Practicability. Although the derived algorithm satisfies the formal correctness
requirements of a GVT approximation algorithm, its implementation still faces a
problem. In practice it is not possible to execute an infinite (and even uncountable)
number of separate algorithm invocations concurrently.
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There may be special applications where it is not necessary to execute all invo-
cations. For example, in computations where it is known that the GVT only takes
values of a finite set {k;,---,k,} it suffices to execute A1) ... A(m)  Another
example includes situations where a A-approzimation (A > 0) suffices; the liveness
requirement is replaced by the weaker requirement that if the GVT is at least k,
then the approximation is at least k — A in finite time. Under this requirement it
suffices to execute the invocations related to multiples of A; if it is known in addition
that the GVT will take values only from a finite length interval, it again suffices to
execute a finite number of invocations.

The feasibility of the scheme for the general case, however, depends largely on
our ability to combine the steps of an infinite bundle into a finite number of steps.
Fortunately, this is indeed possible for the termination detection algorithms consid-
ered here.

A first concern to manage the computational complexity is to prevent the send-
ing of an infinite number of messages. A bundle of algorithms is called coherent if
each of its invocations exhibits the same pattern of message exchanges. That is,
although the message contents may be different, the decision whether a message is
sent should be independent of the state of a process. Obviously, the non-lazy control
message propagation principle (see Section 2.3) is the key property for obtaining a
coherent bundle of termination detection algorithms. For such a bundle it is then
(at least theoretically) possible to assume that the messages of the different invo-
cations are combined into one single message (possibly of infinite length which will
subsequently be reduced to finite length), carrying the information of the messages
of all invocations.

Upon receipt of such a combined message by a process P;, all invocations become
simultaneously activated in P;. (A next concern will indeed be to combine this local
activity in a similar manner.) Because of the coherence of the bundle, all invocations
will generate the same pattern of messages in response to the receipt. Consequently,
these messages can also be combined into a single message. Thus the total number
of messages sent by the combined algorithm is the same as the number of messages
sent by a single execution of A.

The next concern will be to bound the storage used in a process. Consider the
pseudo-variable state{") used by A®) in process P,. Because statel*) = passive for
all £ < Cj, and active else (see Theorem 3.2) the infinite collection of variables

state,(-k) is succinctly represented by the “boundary value” C;. It turns out that
the same can be done for all variables of the termination detection algorithm of
Section 2.3, and also for the information transmitted in the control message. This
will be demonstrated in the next section, where the transformation is carried out in
detail.

Not only for the algorithm of Section 2.3, but for arbitrary termination detection
algorithms a transformation of the infinite bundle to a finite algorithm can be carried
out. For example, in Section 4.3 we do it for the algorithm of Dijkstra et al. [11],
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and it is done in [29] for the case of the vector counting algorithm (20}. In the
general case, for each variable v; of the termination detection algorithm, the real
line is always partitioned into a finite number of intervals, such that v,(k) is constant
for all k of an interval. (The boundaries of these intervals are determined by the
timestamps which actually occur in the computation.) In that case, the infinite
collection of variables v{*) can be finitely represented by maintaining the intervals
and the value of v; for each interval, as is also proposed in [29].

4 Two Simple GVT Approximation Algorithms

In this section the transformation described in Section 3.3 will be applied to the
“sticky flag” termination detection algorithm of Section 2.3. The resulting finite and
elegant GV T approximation algorithm turns out to be an already known algorithm—
it was originally proposed by Tel [30] and was recently reinvented by Baldwin et al.
[2]. We will rigorously prove its correctness, thereby also obtaining a correctness
proof for the “sticky flag” termination detection algorithm as a special case. We

conclude the section with the transformation of the DFG-algorithm by Dijkstra et
al. [11].

4.1 Transformation of the Sticky Flag Algorithm

For convenience, the text of the termination detection algorithm presented in Sec-
tion 2.3 is first repeated here. Process P, initiates the algorithm by sending a
control message (passive) to the next process (i.e., P) on the ring. When receiving
the circulating control message, process P; executes action W; atomically.

Wi (1) receive (M);
(2) 1if S; = active then M := active;
(3) ifi=n and M = passive then signal termination;
(4) if ¢ # n then send (M) to P,
(5) else send (passive) to Pi;
(6) Si:= state;

Forming the Infinite Bundle. In a first transformation step an invocation A®)
of this algorithm is formed for each ¥ € IR. This invocation is responsible for
detecting k-termination. Each algorithm A(*) has its own instances of local variables
M®), S,( ), and conceptually, state,(k). Instead of reporting k—termination, a shared
variable G is set to max(G, k) in process P,, as explained in Section 3.3. Since
C; = k represents the boundary between k-active and k-passive, the statement
“S®) .= state™” in line (6) can be replaced by “if C; > k then S .= passive else
S,-(k) := active”. The atomic action executed by P; of the resulting algorithm A®)
upon a visit of the control message is shown below. As described in Section 3.3, this
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is already a GVT approximation algorithm if the bundle of invocations {A®},
is run in parallel (and terminates within finite time).

(1) receive (M®);

(2) if S*) = active then M*) := active ;

(3) ifi=n and M® = passive then G := max(G, k);
(4) if i # n then send (M®) to Py,

(5) else send (passive) to Py;

(6) if C; > k then S®) .= passive else S® .= active

Merge to a Single Algorithm. In the second transformation step, a single algo-
rithm is obtained which simulates the whole bundle. This transformation employs
the non-laziness of the termination detection algorithms thereby enabling a coherent
execution of the bundle. The basic idea is to combine the infinite number of con-
trol messages to a single (infinitely long) control message ({M®)}ier). Process P,
initiates the algorithm which simulates the entire bundle by sending ({passive}reRr)
(i.e., a control message that contains the value passive for each k € IR) to P,. When
receiving the circulating control message, P; executes the following action atomically.

(1) receive ({M®}icr);
forall ke IR do

(2) if 5 = active then M® := active ;

(3) if i = n and M®*) = passive then G := max(G, k)
enddo;

(4) if : 7& n then send ({M(k)}kem) to P,'+1

(3) else send ({passive}rer) to Pp;
forall ke IR do

(6) if C; > k then S&) := passive else S* := active
enddo

The statements in the forall loops can be thought of as being executed for each
k in parallel.

Confining to Finite Resources. For the next step in the derivation (the combi-
nation of the infinite number of two—valued variables into one real-valued variable)
we need the following theorem. It states that for each variable of the algorithm the
infinite bundle of boolean variables can be represented by a single real-valued vari-
able (which may include the values co and —o0). The proof of the theorem implies
how these real-valued variables must be updated under the operations of the bundle
of algorithms.

In proofs of theorems about distributed algorithms we use the method of
“system-wide invariants” [28]. The idea is to express the desired (safety) prop-
erty of an algorithm as an assertion about values of program variables and to prove
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its correctness by means of invariants. An invariant is an assertion with the fol-
lowing properties: (1) The assertion holds initially (i.e., for the initial values of the
program variables before any action is executed), and (2) for every atomic action
we have the following: Assuming the assertion holds before, it also holds after the
execution of the action. It is clear from this definition that an assertion which is an
invariant is always true during any execution of the system. Hence this is an orderly
way to formally prove properties of distributed algorithms.

Theorem 4.1 (a) At any time for each process P; there ezxists a real number s; such
that for each k, S,(k) = active for k > s; and S,(k) = passive for k < s;.

(b) For each transmission of the control message ({M® }icRr) there exists a real
number m such that M*) = active for k > m and M® = passive for k < m.

Proof. (a) According to the initialization of the “sticky flag” termination detection
algorithm, S*) is initialized to active for those k for which P, is initially k—active,
and to passive otherwise. Thus, initially S®) is active for k > C; and passive for
k < C;, hence (a) is satisfied with s; = C;.
The variable S is assigned to only in line (6) of the algorithm and in action R;
of the underlying basic computation when P; becomes k-active (see Section 3.1 and
the modification to action R; in Section 2.2). Immediately after an execution of line
(6), S,-(k) = active for k > C; and S,(k) = passive for k < C;, hence the value of C;
satisfies the requirement for s;.
Now assume (a) is satisfied for some value s; before action R; and P; becomes k-
active for some k. This happens when C; decreases (upon receipt of a basic message).
After this decrease the statement S{*) := active must be executed for all k¥ > C;
(see action R; in Section 2.2 and the definition in Theorem 3.2). Thus, after this
execution S',-(k) = active holds if and only if ¥ > s; or £ > C;. (In the former case
S,(k) = active held already before the execution, in the latter case it became true as
a result of the execution.) But k£ > s; V k£ > C; is equivalent to k£ > min(s;, C;),
hence (a) is now true if the value min(s;, C;) is substituted for the original value of
S;.

(b) When the control message is sent out by P,, M) = passive for all k, hence
(b) is satisfied for m = oo.
The value of the M%) is changed only in line (2) of the algorithm. We can assume
that prior to the execution there exist values m and s; such that S,-(k) = active iff
k > s;, and M®*) = active iff £ > m. Hence after the execution M®* = qctive iff
k > m or k > s;. (In the former case M%) was active already, in the latter case
it became true as a result of the execution.) But ¥ > m V k > s; is equivalent to

k > min(m, s;), so after the execution (b) is true if min(m, s;) is substituted for the
original value of m. O
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The Sticky Flag GVT Approximation Algorithm. Theorem 4.1 is the key for
obtaining a practicable and efficient GVT approximation algorithm. It shows that it
is sufficient for each process to maintain the “boundary value” s; as indicated in the
theorem instead of a possibly infinite number of passive, active values. For a control
message transmission it suffices to transmit the value m. The proof of the theorem
describes directly how variables s; and m change as the result of the combined action
of the bundle given above. The resulting GVT approximation algorithm is rather
simple. It is initiated by P,, sending (co) to P;. When receiving the circulating
control message, P; executes the following action W; atomically.

Wi (1) receive (m);
(2) m :=min(m,s;);
(3) if i =n then G := max(G,m);
(4) if i # n then send (m) to Py,
(5) else send (o0) to P;
(6) 8§ = C,’

The following two remarks can be made about the initialization and modification
of the approximation G. (1) In order to satisfy the safety requirement, G must be
initialized satisfying G < k for all possible GVT values k. Thus G should be
initialized to —oo, or to zero if negative values do not appear. (2) It is a property
of the algorithm that the statement G := max(G,m), which is called after each
control round, is executed with non—decreasing values of m. As a result of this
property, we can replace the statement G := max(G, m) by G := m. That G is still
non-decreasing follows from Theorem 4.3 which is proved below.

This completes the derivation of the GVT approximation scheme. We continue
this section with the superimposition that must be made on the three actions I;, X;,
and R; which model the behavior of a general distributed monotonic computation
in order to approximate GV'T.

The termination detection algorithm does not require any superimpositions on
the actions I; and X;, hence no modification of the corresponding actions I; and
X; for GVT approximation is necessary. For the termination detection algorithm
the statement S; := state; was added to action R; (see Section 2.2). Thus for the
case of GVT approximation the state indicators S,(k) must be updated (if ¢ < C;
holds when the message with timestamp ¢ is received) in action R, in order to reflect
the transition from k-passive to k-active for all k € (¢,C;]. This is easily done for

all relevant k in a single assignment to the variable s; as indicated in the proof of
Theorem 4.1.

R;: receive (¢, ---);
C; := min(C;, t);
$; := min(s;, C;)

Analogously to the original termination detection algorithm where the sticky
state indicator is initialized to the current state, s; should initially be set to the
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value of the local clock C;.

4.2 Correctness of the Sticky Flag Algorithm

We will now prove the correctness of the algorithm presented above.

Lemma 4.2 (a) s; < C; is invariant in each process P;.

(b) Let GVT, denote the GVT at the start of the current control wave (i.e., at W),
and let P, be the next process to be visited by the control wave. Then the following
inequality holds invariantly:

i-1
GVT, < mifx sj
J:

Proof. (a) Obvious from the actions and the initialization of the s;.

(b) Initially the inequality holds vacuously as min_,s; is defined as co. Actions I,
and X do not change any variables involved. Action R may decrease s;. Hence, if
k<i-1, min;';l1 s; may be decreased. However, if s is indeed changed, it is set to
the current value of Ck, and hence to a value > GVT. As GVT is non—decreasing,
GVT > GVT,. Thus minif__l1 s; cannot be decreased to a value < GVTp by Ri.
Consider action W;, for 7 # n. As process P; is visited here, “the next process
to be visited” becomes P,.; after execution of W;, and we have to prove that the
inequality holds for ¢ increased by 1. In W, s; is set to C; > GVT > GVT, hence
the inequality holds for the new value of ;. Consider action W,. Here GVTj is
increased to GVT as a new control wave is started, and 7 is set to 1. For this new
value of i the inequality holds vacuously. O

Theorem 4.3 Let GV T, denote the GVT at the start of the current control wave
(i.e., at W1), GVT_, the GVT at the start of the previous control wave (defined as
—o0 if there is no previous one), GVT_, the GVT at the start of the control wave
before that (defined as —oo if there is none), and let P; be the next process to be
visited by the control wave. Then the following inequalities hold invariantly:

(a) (¥ () . n (4 n () n (f)
GVT-, < G < GVT-; < min(m,mins;) < min(GVTp, mins;) < min s; < GVT
)= )=t IJ=

Proof. Initially GVT_, = G = GVT-; = —00, m = 00, 1 = 1, sx = Cj (for all
k), and GVT, = min}_, s; = GVT. Hence the inequalities hold. Notice that by
Lemma 4.2(a) and the definition of GVT, inequality (f) is always true.

Consider action I,. There Ci is increased, and of the variables in the in-
equalities, only GVT might be increased as a result (recall that by definition
GVT = min},, C;), thus all inequalities remain true.

Action X; does not change any of the variables involved.

Consider action Rj. Variable G is not changed, hence (a) and (b) remain true.
Variable s is set to min(sg, Cx). Consider the following two possibilities. First, sk
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remains the same. Then all inequalities remain unchanged and true. Second, s is set
to Ci, whereby it is decreased. As C > GVT by definition, s > GVT still holds.
As GVT is monotonically increasing, we also have sy > GVTo > GVT_;. Hence
(c) remains true and the value of min(GV T, min}_; s;) is not changed. Because
min(m, min}_; s;) can only decrease, (d) continues to hold. Property sx 2 GVTo
also guarantees that (e) remains true.

Consider action W; for i # n. Here process P, is visited by the wave, and “the
next process to be visited by the wave” becomes Py;. Thus we have to prove that
the inequalities hold for a value of ¢ that is increased by 1. Since line (3) does not
apply, G is not changed and (a), (b) remain true. In line (2) m is assigned the value
min(m, s;). Hence the value of min(m, min}_; s;) before the execution of line (2) is
the same as min(m, min}_,,, s;) after line (2). Note that line (6) does not affect the
inequality GVT_; < min(m, min}_,,; s;). Hence (c) is kept invariant. Inequality
(d) remains true because the value of the right-hand side can only increase when
substituting ¢ by i+1, whereas then the value of the left-hand side does not change as
shown above. For (e) we observe that by Lemma 4.2(b) we have GVT, < min;C_.l1 LY
and hence min(GV T, min}_;,, s;) < min}_, s;. (Note that in line (6) s; is set to a
value C; > GVT > GVT,.) Hence inequality (e) does also hold if we set 2 to ¢ + 1.

Consider action W,,. Here process P, is visited and P; becomes the next process
to be visited. We denote the value of a variable v before the execution of W,, by v'.
Because a new control wave is started by W,,, GVT_,, GVT_;, and GVT, attain
the values of the old GVT",, GVT}, and GVT'. As we had GVT’, < min(m/,s],)
before the action, the new value of m = min(m’,s]) (after line (2)) and hence
the new value of G = m (line (3)) are > GVT', = GVT_,. Hence (a) is true.
As before W, min(m/,s)) < min(GVT{,s,) < GVI;, we now have G = m =
min(m/',s,) < GVT) = GVT_,. Hence (b) is true. From Lemma 4.2(b) we have
GVTy < minj__Tl1 3;. As s, is set to C,, and C,, > GVT > GV, now GVT; <
min}_, s;. Hence GVT_, = GVT; < min},, s; = min(co, min}_, s;) which proves
that (c) holds for ¢ = 1 and m = oco. For the start of the new wave we set ¢ := 1,
m =00, GVT_3 := GVT',, GVT_; := GVTg, and GVT, := GVT'. Asminj_, s; <
min}_, Cj = GVT = GVT' = GVT, (observe that GVT = GVT' because the clock
values C; do not change in action W,), we have min(m, min}_, s;) = min}_, s; =
min(GV Ty, min}_,; ;). Thus inequalities (d) and (e) do also hold. O

Corollary 4.4 The presented algorithm is a correct GVT approzimation algorithm.

Proof. For the safety (property G1, see Section 3.1) we note that G < GV'T follows
directly from Theorem 4.3. To prove liveness (property G2), consider the leftmost
inequality GVT_; < G of Theorem 4.3. It implies that when GVT reaches some
value, the approximation G will have reached this value after two rounds have been
completed. From this and the monotonicity of G and GVT follows liveness. O

This correctness proof also applies to the “sticky flag” termination detection al-
gorithm presented in Section 2.3 since termination detection is a particular instance
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of GVT approximation.

4.3 The DFG-Algorithm

Termination Detection. In [11] Dijkstra, Feijen, and van Gasteren presented a
ring-based termination detection algorithm for distributed computations with in-
stantaneously transmitted activation messages. Their algorithm is similar to the
ring-based “sticky flag” algorithm developed in Section 2.3. The basic idea? of the
DFG-algorithm is that a process P; sets a flag S; to active whenever it might re-
activate a process that the wave has already visited. This is the case whenever it
sends a message to some process P; such that j < :. S; is reset to passive when the
circulating control message which collects the states and the flags of all processes
is propagated from P; to P mod n)41- 1f after a complete round the accumulated
value of the control message is passive, then all processes were visited when they
were passive and no process has been reactivated after the wave, hence termination
can be concluded.

The main difference with the “sticky flag” algorithm is that the DFG-algorithm
uses send-flags S;, whereas our algorithm uses receive-flags S;. It is easy to see that
if S; is active, then S; would be active too. The converse, however, is not true;
Figure 1 depicts a scenario in which, at the second wave, all S; are active and all
S; are passive. In this example, the DFG-algorithm detects termination already at
the end of the second wave whereas the “sticky flag” algorithm detects termination
only at the end of the third wave.

P3 A .
active
P, -
passive
message
P, _
._P
time
first wave second wave

Figure 1: Termination detection based on control waves.

GVT Approximation. Inthe same way as the “sticky flag” algorithm, the DFG-
algorithm can be transformed into a GVT approximation algorithm. The internal

4We sketch the algorithm in a slightly different way than it was originally presented in [11}.
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action I; remains unchanged. The update of 3; now no longer takes place in the
receive action R;, but in the send action X;.

R;: receive (t, ---);
C; := min(C;, t)
X;: chooset>C;;
send (t, ---) to Pj;
if j < i then §; := min(§;, 1)

According to the DFG-algorithm, the wave reflects both the value of the state and
the flag S;, and as §; < C; does not necessarily hold for this algorithm, the state
of a process (i.e., C;) has to be considered in addition to 3; when accumulating the
minimum in action W;:

-~

W;: (1) receive (m);
(2) 7 :=min(m, ;, Ci);
(3) if : =n then G := max(G,™m);

(4) send (oo) to P,
5y - else send () to Pii;
(6) 3i:=o00

Setting S; to passive in the DFG-algorithm transforms into §; := oo in the last line
of action W;.

Correctness. It is interesting to note that a direct transformation of the invariant
given in [11] for the correctness of the termination detection algorithm leads to an
invariant implying the correctness of the GVT approximation version given above.

Theorem 4.5 Let GVT, denote the GVT at the start of the current control wave
(i.e., at Wy ), GVT_, the GVT at the start of the previous control wave (defined as
—oo if there is none), GVT_, the GVT at the start of the control wave before that

(defined as —oo if there is none), and let P; be the next process to be visited by the
control wave. Then the following inequalities hold invariantly:

N i—-1
GVT_; < G < GVT < min§;
J=
GVT., < min(h, min3;) < minC;
J= =
Proof. Initially,i =1, GVT_, = GVT_; =G = —00, GVTy = GVT, i = §; = 00

for all j, while min}_, is defined as oo for all arguments.
Action ik = I, increases Cy which leaves the inequalities true.
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As message transmission is instantaneous, we only consider send actions together
with the corresponding receive action. Hence, consider action X;R), where a message
is sent from P: to P,. In R, Ch might be decreased which could have an effect on
min_ ! C; if h < i. We distinguish two cases.

Case (1) h < k. Then 3 is set to mln(sk, ), but if it is changed, it cannot be
decreased beyond GVT, as t > Ci. If minj_; ! C; is actually decreased because Cj
is set to ¢, then we have that h < ¢ < k and (because of the last line in action X)
min(ri, minj_; §;) < t. (Note that minj_} C; is not decreased if k < i because then
the timestamp ¢ sent by X; and recelved by Ry, is > Ci).

Case (2): h > k. Only Cj, might be decreased, but not miniZ} C; for the same
reason as mentioned above (¢ > h > k).

Hence the inequalities continue to hold.

Consider action W; for 7 # n. Here process P; is visited by the control wave
and “the next process to be visited” becomes P, hence we have to prove that
the inequalities hold for i increased by 1. Since G is not changed, the first and
the second inequality continue to hold. In line (2) i may be decreased, but 3; was
a.lready included in mm(m min}_; §;) before the action, and C; is added to both

rh (line (2)) and min}Z} C; when i is increased by 1 in line (5). Hence the fifth
mequa.hty continues to hold If min(rn, man_, ;) is actually decreased that can
only be due to the inclusion of C; in the minimum, hence it cannot be decreased
beyond GV T, and the fourth inequality remains true. As §; is set to oo, the third
inequality also holds for i increased by 1.

Consider action W,. Here process P, is visited and a new control wave is
started. Hence we have to prove that the inequalities hold for ¢ = 1 and the
new values for GVT.,, GVT_,, GVT,, and G. The value of a variable v be-
fore W,, will be denoted by v’. From the second invariant we have GVT’; <
min(m/, §'y) < mm;‘jl1 C before line (2). Because C, > GVT’,, this yields
GVT’, < v = min(m/, s ,,,C ) < min}_, C; = GVT = GVT' after line (2). As
GVT-,, GVT-1, GVT,, and G attain the values of GVTLI, GVT§, GVT', and m,
now the first invariant GVT_, < é’ < GVT, < min)_, §; holds. From the third in-
equality we have GV T < min’Z; s';. As 3, and 7 are set to co and GVT_, = GVTj,

this yields GVT_-; < min(/n, minj_, s,) < min?_, C; = oo. Hence action W, pre-
serves all inequalities. O

The safety and liveness now follow from GVT_, < G < GVTy < GVT for the
same reasons as for the “sticky flag” algorithm.

Corollary 4.6 The presented algorithm is a correct GVT approzimation algorithm.
For the same reason why the DFG-algorithm might detect termination earlier

than the algorithm of Section 2.3, this variant might yield a better approximation of
the current GVT value (G < GV Tp) than the algorithm of Section 4.1 (G < GVT.,).
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Unfortunately, however, it does not generalize as easily to the asynchronous case as
the “sticky flag” based scheme. We come back to this problem in the next section.

5 Discussion

In this section directions to extend the results of this paper are discussed, as well as
the relation with some other work.

5.1 Extensions

Asynchronous Communication. For the GVT approximation algorithms de-
scribed so far it is required that activation messages be transmitted instantaneously.
However, the algorithms are also applicable to synchronous communication and so-
called causally ordered communication (2, 9], and they can also be adapted to the
asynchronous case where messages may be in transit. In the asynchronous case,
GVT is the minimum of all clocks C; and of all timestamps of messages which are
in transit. Hence, if all processes are t-passive and no t-activation messages are in
transit then GVT > t. Whether t-activation messages are in transit can be checked
using acknowledgements: Define a process P; to be t-engaged if it is t-active or the
receipt of a t-activation message sent by P, is not yet acknowledged. Then GVT >t
holds if no process is t-engaged. Let UNACK; denote P;’s multiset of timestamps of
unacknowledged messages. Then P, is z-engaged for all z > min({C;} U UNACK;),
and not z-engaged for all z < min({C;} U UNACK;).

For the “sticky flag” algorithm, approximation of GVT in the asynchronous
case can be done in the same way as before, basically by substituting “t-engaged”
for “t-active”. Observe that a process which is not t-engaged can only become
t-engaged if at that moment there exists another ¢-engaged process. Therefore, rule
R2' (Section 2.4) is observed and hence the “sticky flag” algorithm can be applied
to check whether GVT > ¢. For that purpose, only the last line in action W; has
to be changed into

si :=min({C;} U UNACK;)

in order to reflect the new interpretation of the local state.

The DFG-algorithm has already been adapted so as to detect termination of
computations using asynchronous communication [5]. In those variants, however,
the control wave is “lazy” in the sense that a process does not propagate the con-
trol message as long as it is active or engaged. As the process is engaged all the
time between the sending of a message and the receipt of the acknowledgement, it
obviously does not matter at what moment the state indicator is assigned. A lazy

execution of the control wave, however, makes the algorithm less suitable for our
transformation.
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The reason why a non-lazy variant of the DFG-algorithm does not generalize
as easily to the asynchronous case as the “sticky flag” scheme is that in the DFG-
algorithm the sender is responsible for setting the state indicator. It is not aware
of the moment at which the message is received. Thus is is not obvious at what
moment (between the sending of the message and the receipt of the acknowledge-
ment) the state indicator $; must be set if instantaneous message transmission is to
be simulated. However, a possibility to cope with asynchronous communication in
non-lazy versions of the DFG-algorithm is to reset the state indicator §; to the cur-
rent value of min (UNACK;) (rather than oo) after each visit of the control wave.
In this way, the state indicator is logically assigned all times between the sending
and the receipt of the acknowledgement, and thus in particular at the moment when
the message is received. This essentially yields a GVT approximation scheme which
was presented (without proof) by Bellenot in (3].

Another approach to adapt GVT approximation algorithms to the asynchronous
case was used by Schoone and Tel in {29]. Instead of sending acknowledgements for
messages, the timestamps of messages to be acknowledged are accumulated in multi-
sets AC K;[j] (a process needs an entry for each originator). At a visit of the control
message, these multisets are then transferred to the control message, thus sending
all acknowledgements at once. Likewise, the multiset UN AC K; is transferred to the
control message upon a visit, whereby acknowledged and unacknowledged messages
can cancel each other. For more details we refer to [29].

Lazy Algorithms. In this paper we have applied our transformation to two par-
ticular non-lazy algorithms where the control message is propagated independently
of the state of the process. Most termination detection algorithms known to date can
be made non-lazy by a simple modification, but there are inherently lazy algorithms
with favorable properties, such as the algorithm by Dijkstra and Scholten [12]. Al-
though the results of Section 3.3 are in principle applicable to lazy algorithms, the
reduction to a finite algorithm is not so easy in this case. The application of the
transformation to the algorithm of Dijkstra and Scholten is currently under investi-
gation.

Distributed Infimum Approximation. The notion of a monotonic distributed
computation can be generalized by replacing the domain IR of the clocks and time-
stamps by an arbitrary partially ordered set. The resulting problem, of which termi-
nation detection and GVT approximation are instances, is called distributed infimum
approzimation. This problem was defined by Tel [30] and algorithms to approximate
a distributed infimum were given in [30, 32].

It was already noted in [29] that a termination detection algorithm can be trans-
formed to yield an algorithm for distributed infimum approximation. There, how-
ever, only the transformation for a particular algorithm (the so-called vector counter
algorithm [20]) is shown, and that transformation yields a rather complicated algo-
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rithm for the general case of arbitrary posets and asynchronous communication. In
the current paper we have demonstrated that the transformation is general enough
so as to be applicable to any termination detection algorithm, and have exemplified
it with a transformation yielding a simple, practical algorithm.

The generalization of our current work to distributed infima is straightforward as
far as non-lazy termination detection algorithms are considered. The construction
of a distributed infimum approximation algorithm from a lazy termination detection
algorithm is left as a subject for further research.

5.2 Further Remarks

Related Work. A large number of termination detection algorithms have been
published in recent years, and many of those published before 1987 are listed in the
bibliography in [20]. As we showed in Section 4.3, our “sticky flag” algorithm (which
was also derived in [33] when applying to Ben-Ari’s garbage collection algorithm [4] a
scheme that systematically transforms garbage collection algorithms into distributed
termination detection algorithms) is similar to the termination detection algorithm
by Dijkstra, Feijen, and van Gasteren [11]. Because of its simplicity (messages need
not be considered; a single flag is used which is only set when a process actually
becomes active) our algorithm compares favorably with this and other termination
detection algorithms based on synchronous communication.

Some of the ideas that are developed in this paper were already used, often
implicitly, in earlier papers. The idea of using a bundle of termination detection
algorithms to approximate GVT did already appear in a distributed garbage collec-
tion algorithm by Hughes [15]. This algorithm, however, which is based on Rana’s
termination detection scheme [24}, requires a global clock. The idea has also been
sketched by Chandy and Sherman [7] although their resulting algorithm is not used
for GVT approximation. Connections between termination detection and GVT ap-
proximation were made by Jefferson [16] and Tel [30, 32] and, as mentioned above,
by Schoone and Tel [29].

The idea of using acknowledgements to catch the timestamps of in-transit mes-
sages in G VT approximation schemes was already used by Samadi et al. [27]. Other
solutions to the GVT approximation problem were given by Bauer et al. [1], Con-
ception and Kelly [10], Lin and Lazowska [18], Preiss [23], and, as already mentioned
above, by Bellenot [3] and Baldwin et al. [2]. Most of these solutions, however, are
either rather involved or not proved to be correct. Because of the importance of a
fast and efficient GVT approximation for distributed simulation, hardware solutions
have also been proposed ([13, 19, 26]).

Since GVT is a monotonic function of the global state, it is also possible to
use distributed snapshot algorithms (as given by Chandy and Lamport [6] or Lai
and Yang [17]) in order to approximate GVT. In [22] a snapshot based solution
for asynchronous communications is proposed which does not rely on acknowledge-
ments. The results of Lai and Yang [17] indicate that for the detection of termination
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it is not necessary to compute a so—called consistent snapshot. As is shown in [22],
inconsistent snapshots are also sufficient for GVT approximation.

Conclusions. In this paper algorithms for termination detection and GVT ap-
proximation were studied; their correctness was proved using an assertional ver-
ification technique. It was first shown that distributed termination detection is,
although non-trivial, not a complicated problem; the “sticky flag” paradigm was
introduced, which allows to design termination detection algorithms that are eas-
ily understood from an intuitive point of view. We also showed how algorithms
for instantaneous (or synchronous) message transmission can be transformed into
algorithms for asynchronous communications.

Computing a lower bound on the GVT of a distributed monotonic computation
is a generalization of the distributed termination detection problem. In principle,
any termination detection algorithm can be used to check whether some “guessed”
value k is a lower bound on the GVT by determining whether all processes are k-
passive (or no process is k-engaged). It is then possible to run detection algorithms
for many different values of k in parallel and to take the best approximation.

We demonstrated that the synchronized execution of termination detection algo-
rithms based on the “sticky flag” paradigm or a similar principle can be simulated
in a practicable way yielding efficient GVT approximation algorithms. The princi-
ple of our GVT approximation scheme is rather simple: Each process remembers
the smallest value its clock has assumed since the last visit of the wave. The wave
collects the minimum of all those values which is then taken as a new approximation
of the current GVT. This simple and provably correct scheme compares favorably
with other known GVT approximation algorithms. It is left for further investiga-
tion whether termination detection schemes based on other principles, such as the
diffusing computation paradigm [12] or the credit recovery paradigm [21], do also
yield interesting GVT approximation algorithms.
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