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Abstract

Superposition refinement enhances an algorithm by superposing one computa-
tion mechanism onto another mechanism, in a way that preserves the behavior of
the original mechanism. Superposition seems to be particularly well suited to the
development of paraliel and distributed programs. An originally simple sequen-
tial algorithm can be extended with mechanisms that distribute control and state
information to many processes, thus permitting efficient parallel execution of the
algorithm. We will in this paper show how superposition of parallel algorithms is
expressed in the refinement calculus. We illustrate the power of this method by a
case study, showing how a distributed broadcasting algorithm is derived through
a sequence of superposition refinements.

-1 Introduction

A common way of constructing programs is to start from an existing program that
achieves part of what is needed, and add code to this program so that additional re-
quirements are satisfied. Often this will require that some changes are done to the
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ogy Development Centre of Finland. The stay of Kaisa Sere at the Utrecht University was supported
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formation Of Programs, STOP). A version of this article will appear in the Proceedings of the 4th
International Conference on Formal Description Techniques (FORTE ’91), Sydney, Australia, Novem-
ber 1991 (invited talk).



original program, so that the extensions fit into it. When the changes in the orig-
inal program are small, in the sense that the underlying computation is essentially
unchanged, we refer to this construction method as superpositioning.

Superposition seems to be useful in most fields of programming, because it permits
us to construct a complicated program by a sequence of successive enhancements, each
of which is reasonably small and usually encodes a single design decision. In other
words, it permits us to tackle one issue at the time, rather than having to make a joint
design decision and settle a number of interrelated design questions all at the same
time.

Superposition as a method for program refinement has come up in a number of
different contexts, e.g. in the works of Dijkstra et al. [12], Back and Kurki-Suonio et
al. [5, 15], Chandy and Misra [10], Francez et al. [9, 13], Katz [14] and others.

In this paper we will study superposition of parallel programs, within the action
system framework for parallel and distributed computations. This was introduced by
Back and Kurki-Suonio in [5], together with one form of superpositioning. Action
systems have similarities with other event-based formalisms like UNITY of Chandy
and Misra [10}, interacting processes of Francez [13] and shared actions of Ramesh and
Mehndiratta [18) among others. The system behavior is in these formalisms described
in terms of the events or actions which processes in the system carry out in co—operating
with each other.

Action systems support the construction of parallel and distributed systems in a
stepwise manner [5, 19]. Stepwise refinement of action systems starts with a specifica-
tion of the intended behavior of the system, given as a sequential statement. The goal
is to construct an action system that satisfies certain criteria and fits into some pre-
defined syntactic category [5, 6] for which an efficient implementation on the assumed
distributed architecture can be given.

Superposition refinements of action systems are done in order to increase the degree
of parallelism of the program, as well as distribute control in the program. For instance,
modifications can be made in order to .

(a) distribute some shared variables among the processes in a distributed system,

(b) add some information gathering mechanism to the system which replaces direct
access to a shared variable,

(c) detect some stable property (such as termination) of an action system or

(d) impose some communication protocol upon the processes executing an action
system.

These changes are done in such a way that the original computation is not disturbed
while new functionality is added to the code.

Superposing one mechanism onto another often constitutes a rather large refinement
step, the correctness of which can be quite difficult to establish using only informal
reasoning. Therefore, a formal treatment of the method is needed. The refinement
calculus provides a general formal framework for carrying out program refinements and



proving the correctness of each refinement step. We will here show how to describe
superposition of action systems within this calculus.

Refinement calculus is a formalization of the stepwise refinement method based on
the weakest precondition calculus of Dijkstra [11]. It was first described by Back[1, 2, 3]
and has later been further elaborated by several researchers [8, 16, 17].

The refinement calculus is based on the assumption that the notion of correctness
we want to preserve is total correctness. Total correctness is an appropriate correctness
notion for parallel algorithms, programs that differ from sequential algorithms only
in that they are executed in parallel, by co—operation of many processes. They are
intended to terminate, and only the final results are of interest. The refinement cal-
culus and the action system formalism together provide an uniform foundation for the
derivation of parallel algorithms by stepwise refinement {7, 19)].

The refinement calculus can also be extended to stepwise refinement of reactive
programs, as shown in [4]. The methods for handling superposition described here
carry over to this more general framework without much changes. For brevity, we will
restrict ourselves here to the original version of the refinement calculus, where total
correctness is required to be preserved.

We proceed as follows. In section 2, we give a very brief overview of the basic
notions of the refinement calculus, to the extent needed in this paper. In section 3,
the action systems formalism is presented. In Section 4 the superposition method
is first described informally, and then formally within the refinement calculus. Its
application to an example superposition step is described in detail in Section 5. We
use the derivation of a distributed broadcasting algorithm as a general case study
for illustrating the method. Section 6 gives an overview of the whole derivation of the
distributed broadcasting algorithm. We end with some concluding remarks in section 7.

Besides showing how to carry out superpositions in the refinement calculus, we
will also give special attention to the way program derivations using superposition are
presented. Traditionally, program derivations following the refinement paradigm show
all the intermediate versions in the derivation in full. We will try to compress this
information and remove redundancy, hopefully without sacrificing understandability of
the derivation. We use a tabular description of a superposition derivation, showing
the initial specification of the program and the successive changes carried out on the
program components.



2 Refinement calculus

We consider the language of guarded commands of Dijkstra [11], with some extensions.
We have two syntactic categories, statements and actions. Statement S are defined by

Su= z:= e (assignment statement)
| {Q} (assert statement)
| Si;...;8, (sequential composition)
| if A1 ... Am i  (conditional composition)
| do A1 ...[] A, od (iterative composition)
| begin var z; S end (block with local variables).

Here A;,..., A, are actions, z is a list of variables, e is a list of expressions and Qis
a predicate.

An action (or guarded command) A is of the form
Ai=g— S

where g is a boolean expression (the guard of A, denoted gA) and S is a statement (the
body of A, denoted sA). We will say that an action is enabled in a certain state, if its
guard is true in that state.

The assert statement { Q} acts as skip if the condition @ holds in the initial state. If
the condition @ does not hold in the initial state, the effect is the same as abort. Thus,
skip = {true} and abort = {false}. The other statements have their usual meanings.

The weakest preconditions of the assignment statement, sequential, conditional and
iterative composition are defined as in [11]. The weakest precondition of the assert
statement is wp({Q}, R) = Q A R. The weakest precondition for the block statement
is

wp(begin var z; S end, R) = (Vz : wp(S, R)).

A statement S is said to be (correctly) refined by statement S, denoted S < &', if

(Y @Q: wp($,Q) = wp(5', Q).

This is equivalent to the condition
(VP,Q: P[S]Q = P[S]Q).

Here P[S]Q stands for the total correctness of S w.r.t. precondition P and postcondition
Q. In other words, refinement means that whatever total correctness criteria S satisfies,
S’ will also satisfy this criteria (S’ can satisfy other total correctness criteria also, which
S does not satisfy).

Intuitively, a statement S is refined by a statement S', if (i) whenever S is guaran-
teed to terminate, S’ is also guaranteed to terminate, and (ii) any possible outcome of
S’ for some initial state is also a possible outcome of S for this same initial state. This
means that a refinement may either extend the domain of termination of a statement
or decrease the nondeterminism of the statement, or both.



Two statements S and S’ are refinement equivalent, denoted S = 5', if they refine
each other. This means that they are guaranteed to terminate on the same set of initial
states, and will produce the same set of possible outcomes on these initial states. '

The refinement relation is reflexive and transitive. Hence, if we can prove that

SOSSIS---SSn-ISSm

then
S0 < Sa.

This models the successive refinement steps in a program development: Sp is the initial
high level specification statement and S, is the final executable and efficient program
that we have derived through the intermediate program versions Si,...,S,-1. Each
refinement step preserves the correctness of the previous step, so the final program
must preserve the correctness of the original specification statement.

The refinement relation is monotonic w.r.t. the statement constructors. For any
statement S(7T) that contains T as a substatement, we have that

T<T = S(T)<S(T.

Notation for replication In our examples we will need to use a lot of replicated
structures, so we will adopt a convenient notation for these. A for-clause will state
that the previous declaration or statement is replicated, once for each value of the index
variable. If the operator between the statements is not sequential composition, then it
has to be indicated explicitly. Thus, we have that

. fori€<l,2,....m> = 1T T2 T2} -5 T i Ty
S;forie<1,2,....m> = 851;5; ...;n
| Siforie<1,2,....m> = S [ S2] ... Sm.

In stead of lists, the index may range over sets when the ordering of the elements does
not matter.

Example Let V = {0,1,2,...,m} be a set of indices, and let v.0,v.1,v.2,...,v.m
be a set of variables indexed by V. Then the two programs in Figure 1 are refinement
equivalent. Both will always terminate, and will establish the same final state for a
given initial state: each variable v.:{ will have the value v.0. The proof that program
S’ has this effect is based on loop invariant

(Vi:1<i<m:rec.i= v.i=0.0).

The local variable rec.0 is not really needed, but turns out to be useful in the derivations
to follow.



S:vl,...,o.m:=v0,...,v.0

begin S’
var rec.t € boolfor i € V;
rec.0 := true

rec.i = false for 1 € V — {0},

do

| —rec.i — v.t:=v.0; rec.1 := true
forie V- {0}

od

end

Figure 1: Two refinement equivalent programs, S and S'.

Refinement of actions We also define weakest preconditions for aétions, by
wp(g — S,R) = g=wp(S,R)

Refinement between statements can then be extended to a notion of refinement between
actions. Let A and A’ be two actions. Action A is refined by action A’, A < A', if

(V Q: wp(4, Q) = wp(4', Q).
We have the following result.
LEMMA 1 Let A and A’ be two actions. Then A < A’ if and only if
(i) {9A'}; sA < sA’ and
(i) gA’' = gA.

In other words, action A is refined by action A’ if and only if (i) whenever A’ is enabled,
the body of A is refined by the body of A’ and (ii) 4 is enabled whenever A’ is enabled

3 Action systems formalism
An action system A is a (sequential) statement of the form
A = begin var z; Sp;do 4; ] ... | Anodend:v

on state variables y = r U v. The variables v are the global variables and the variables
z the local variables of A. Each variable is associated with some domain of values. The
set of possible assignments of values to the state variables constitutes the state space.
The initialization statement Sp assigns initial values to the state variables.

The behavior of an action system is that of Dijkstra’s guarded iteration statement
[11] on the state variables: the initialization statement is executed first, thereafter, as

long as there are enabled actions, one action at a time is nondeterministically chosen
and executed.



Let P = {p1,..-,Ps} be a partitioning of the state variables y in action system A.
The tuple (A, P) is called a partitioned action system. We identify each partition p; in
a partitioned action system with a process. The variables in p; are then the variables
belonging to this process. We say that action A involves process p;, if it refers to a
variable in p;.

Let pA be the set of processes involved in action A in a partitioned action system
(A,P),ie, pA = {p € P| Ainvolves p}. Two actions A and B are independent if
pA N pB = 0. An implementation may permit actions that are independent in some
partitioning to be executed in parallel. As two independent actions do not have any
variables in common, their parallel execution is equivalent to executing the actions one
after the other, in either order.

A hierarchy of partitioned action systems was defined in [6]. For every class of action
systems in this hierarchy, there is an efficient implementation of action systems onto
some (centralized or distributed) machine architecture. These classes are, however,
rather restricted, so the task of constructing an action system that fits some specific
class can be quite hard.

A stepwise method for constructing an action system that fits some specific imple-
mentation class was put forward in [7, 19]. The idea is that a more or less sequential
system is transformed into an action system with the required characteristics. The ac-
tion systems in the first steps do not, e.g., have to respect the process boundaries, and
the network topology can be allowed to be arbitrary. In later versions, these restrictions
will then be enforced, by making suitable modifications of the action system.

The derivation is done within the refinement calculus. A set of transformation rules
and methods was developed to assist in the derivation procedure. In this paper we
will develop yet another transformation rule, superposition refinement, which was not
considered explicitly in (7, 19].

3.1 Example: A broadcasting algorithm

Let (V, E) be a connected graph with V a finite set of nodes and F a finite set of edges
on V. Let the nodes denote processes and the edges denote communication channels
between the processes. Each process is assumed to know the identities of its direct
neighbors. Node 0 knows additionally the identities of all the nodes in the network.
Communication can only take place between nodes directly connected by an edge, but
may be bidirectional.

Each node i € V has a variable v.i. We are requested to design an action system
that assigns (broadcasts) the value v.0 to each variable v.i,i € V — {0}. The termina-
tion of the broadcast must be detected by node 0, after which this node initiates some
other computation R. We are looking for a wave algorithm, where upon receiving a
value each node broadcasts it to its neighbors.

Program C in Figure 2 is an initial specification of the required effect. Program
C' in Figure 2 shows a first refinement of this specification. We have simply taken
the refinement of Figure 1 and, using monotonicity, replaced the assignment statement
in C by its refinement S’. A second refinement C" moves the statement R inside the



begin C = begin( = begin C"
v.i:=v0, i€V -{0} begin S5’ var rec.i € bool, 1 € V;
R; var rec.t € bool, 1 € V; rec.0 := true;
end:v.i€uval,icV rec.0 := true; rec.i = false, 1 € V — {0};
rec.i ;= false, 1 € V — {0}; do
do | —reci—
| —rec.i — v.i 1= v.0; rec.i 1= {rue
v.i 1= v.0; rec.i == true for i€ V — {0}
for i € V - {0} od;
od R
end end:v.i€val, i€V

R
end:vi€uval, 1€V

Figure 2: Initial specification C, first refinement C’ and second refinement c”.

block. This refinement is correct under the assumption that the variables rec.i do not
appear in R, an assumption that we will make here.

Neither C nor its two refinements €’ and C” are, however, in the form of action
systems, because of the trailing continuation B. An action system refinement of C”
is C;, shown in Figure 3. Here we have made R into a single action. The auxiliary
variable rest has been introduced in order to guarantee that R is executed only when
all the assignments have been carried out, and that it is then executed only once. We
have named the individual actions in this system, for ease of reference.

Using the methods described in [7, 19] the correctness of C < C' < C" <, is easily
established (in fact, these are all equivalences). Hence, by transitivity, C, is a correct
refinement of our initial specification C.

We want to place the auxiliary variables rec.i in the same process as the variables
v.i,i € V. The auxiliary variable rest will be placed in the same process as the variable
v.0. This would give us the partitioning P = {pi|i € V} of the action system Cy, where

po = {v.0,rec.0,rest},
p; = {v.i,reci}, 1€V —{0}.

Figure 4 shows this partitioning graphically. It shows that node 0 has to communi-
cate directly with every other node in the graph, first to communicate the value v.0 and
then later to detect termination. This violates the requirement that communication
only takes place along the edges in the graph as it implicitely assumes that node 0 is
directly connected to every other node. Thus, this action system is not an acceptable
solution to the problem we posed above. In Section 5 we will show how superposition is

used to construct a refinement of action system C; that does satisfy our communication
constraints.



begin C;
var rec.i € bool for i € V;
rest € bool,;

rec.0 := true;

rec.i := false for 1 € V — {0};

rest .= true;

do

[A.1] —~rec.i —
v.1 := v.0; rec.i ;= lrue

for i € V - {0}

[B] (Vi € V.rec.i) A rest —
rest := false; R

od

end:v.i€valfor i€V

Figure 3: An action system refinement C; of specification C

v.0 v.1 v.2 V.

rest

p.0 p.1 p.2 p3

Figure 4: A process graph.



4 Superposition refinement of action systems

Let

A = begin var z; Sp;do 41 ] ... Am odend:vand
A = begin var z,2;Sydo A1 | ... [ AL [ B ...] Brodend:v

be two action systems with the same global variables v. The action system A’ has some
new local variables z, in addition to the local variables z that A also has. For each old
action A; in A there is a corresponding new action A} in A'. The auziliary actions B;
in A’ do not correspond to any actions in A.

The action system .A is correctly refined by A’, A < A, if the following conditions
are satisfied, for some assertion I(v,z, z) on the state variables:

(1) Initialization:
(a) The new initialization Sj has the same effect on the old variables v,z as Sp,

and
(b) it will establish I(v,z, 2).

(2) Old actions:

(a) The body of each new action A/ has the same effect on the old variables v, z
as the corresponding old action A; when I(v, z, z) holds,

b) each new action A’ will preserve I(v,z,z), and
13

(c) the guard of each new action A; implies the guard of the corresponding old
action A;, when I(v, z, z) holds.

(3) Auziliary actions:

(a) None of the auxiliary actions B; has any effect on the old variables v,z when

I(v,z, z) holds, and

(b) each auxiliary action B; will preserve I(v,z, z).

(4) Termination of auziliary actions: Executing only auxiliary actions in an initial
state where I(v,z, z) holds will necessarily terminate.

(5) Erit condition: The exit condition of the new action system implies the exit
condition of the old action system when I(v,z, z) holds.

Often a new action A’ that is to replace an old action is constructed by simply
strengthening the guard and adding some assignments to the new variables z, i.e.,
Al = gA;AgCi — sA;; sC;. In this case, we only need to check case (b) in condition (2),
because the other conditions will be trivially satisfied. Similarly for the initialization
statement: if S} = So; To, where Ty only assigns values to the new variables z, then
we only need to check case (b) of condition (1). The other conditions, (3) - (5), have
to be checked as before. This special case corresponds to the usual notion of syntactic
superposition, which thus simplifies the proof obligations.

10



4.1 Formalization of the rule

The superposition method is more formally expressed by the following theorem.
THEOREM 1 (Superposition for action systems) Let

A = begin var z; Sp;do A1 [ ... | A,, od end: v and
A’ = begin var z,2;S5;do A1 | ... ] AR ] Bi ... ] Bxodend:v.

Let gA be the disjunction of the guards of the A; actions, gA' the disjunctions of the
guards of the A actions and gB the disjunction of the guards of the B; actions. Then
A < A’ if the following conditions hold, for some invariant I (vyz,2):

(1) So < begin var z; S§; {I} end.

(2) A; < begin var z; I — Aj;{I} end, fori=1,...,m.
(3) skip < begin var z; I — Bj; {I}end, forj=1,...,n.
(4) I'[do By ] ... ] Ba. od]true.

(5) INgA= (gA Vv ¢gB).

The action I — A’; {I} in condition (2) can equivalently be written as a single
action I A gA: — sAl; {I}. A similar rewriting can be done for condition (3). In
condition (3), skip denotes a skip action, i.e. an action of the form true — skip.

We will not use the superposition proof method on this level of formality in the
sequel, but will be content with using the informal description of the method first
given in the case study below. Most of the actual refinements we will consider are
actually rather simple, with all statements being deterministic and always terminating.

4.2 Describing superpositions

We will describe a superposition as shown in Figure 5. The symbol e is either + or
empty. We use the following conventions in describing a superposition:

1. If an action on the right hand is preceded by a +, then only the additions to the
corresponding left hand action is shown. We define

var z +var z = var I,z
S+ 5 s; 8’
A+ A = gAAgA — sA;sA’
{I}+{r}y = {IA1}

2. We leave the right hand side position empty if the action is unchanged in the
refinement.

3. If there is no left hand action, then the right hand action is a new auxiliary action.

11



begin N begin N’

var z; var 2

So S0

do do

[ 941 — sA | g4} — sA}

| 9Anm — sAnm I g4, — sA},
[] gBl — 331
u an - SBn

od od

{1} {1'}

end: v end

Figure 5: Describing a superposition

4. In all other cases, the right hand side action is to replace the corresponding left
hand side action in the action system. '

5. The invariant used in the superposition rule is shown after the loop.

We only permit additions to the list of local variables in superposition. We may
also chain a number of successive superpositions, each new superposition providing a
new column in the tabular representation of a program derivation.

5 A first superposition refinement: Cy

We will exemplify superposition refinement by showing how to change the way in which
the value v.0 is passed among the nodes in program C;. In C, process 0 is assumed to
communicate with every other process in the network. It was, however, required that
only the edges of the graph should be used for communication. We therefore add a
mechanism that only uses the permitted connections to broadcast the value v.0. Each
process, upon receiving the value v.0, forwards it to all other processes that it is directly
connected to.

The mechanism is implemented by adding a queue g.i for each i € V. This queue
will hold the values node i has received from other nodes to which it is directly connected
in the graph. The queue g¢.i will thus contain one or more copies of the value v.0. When
node i finds its queue non-empty, it extracts the first value from it, assigns this value
to its own variable v.i and then forwards it to all nodes directly connected to itself.
The rest of queue g.i is ignored. The set H.i will hold the indices of those nodes that

are directly connected to node i and that have not yet been sent the value v.0 from
node i.

12



begin C; + beginC;

var rec.i € bool for i € V; var ¢.i € value list for 1 € V;
rest € bool,; H.i€ index set for i € V;
rec.0 := true; + qi:=<> forieV;
rec.i := false for i € V — {0}; H.i:=E(i)foriec V;
rest := irue;
do do
[A.i) —~rec.i — [A.i] —rec.i A g.i #<>—
v.1 := v.0; rec.1 := true v.1,q.i ;= ¢.1; rec.t ;= irue
for i€ V - {0} for i € V — {0}
[B] (Vi € V.rec.i) A rest — [B]

rest := false; R
[C.k.i] reckni€ H.k —

g.i:= q.i,v.k;
H.k:= H.k - {i}
for (k,i)€ E
od od
{Inv.1} + {Inv.2}
end : v € val end

Figure 6: Superposition of forwarding mechanism

It is easy to check that the following is an invariant of action system Ci:

Inv.1: (rest = Inv.11: (Vi € V : rec.i = v.i = v.0))
A (—rest = (Vi € V : rec.i)).

The following additions to the loop invariant Inv.1 describes the way in which the
new variables are to be used:

Inv.2: rest= Inv.21: (Vi € V : q.i contains only values v.0)
A Inv.22: (Vi€ V.H.i C E(i))
A Inv.23:(V(k,i)e E:i¢g H.k = q.i #<> Vrec.i)

We will use the multiple assignment statement as a convenient notation for working
with lists (as queues will be represented). If z is a variable of type value and ¢ is a
variable of type valuelist, then z,q := g will assign the first element of ¢ to z and
remove it from ¢. Similarly, ¢ := ¢,z will add z as last element to g.

This superposition turns the action system into a wave algorithm. The refinement
is shown in Figure 6. The new action system that we get is called Cs.

5.1 Proof of correctness of superposition

Let us now show that C; < C; holds, using the superposition rule. The invariant of the
rule will be Inv.1 A Inv.2,

13



(1) Initialization:

(a) The new initialization has the same effect on the old variables as the old
initialization, because only assignments to the new variables ¢.i and H.i
were added.

(b) The new initialization will establish Inv.1 A Inv.2. The fact that Inv.1 is
established follows already from the fact that Inv.1 is an invariant of the
old action system and from (a). The fact that also Inv.2 is established
is easily seen: Inv.21 holds because all queues g.i are initialized to empty,
Inv.22 holds because each H.i is initialized to E(i) and Inv.23 holds initially,
because i ¢ H.k holds for no (i, k) € E.

(2) Old actions A.i and B:

(a) The body of each new action A.i has the same effect on the old variables
as the corresponding old action A.i when Inv.1A Inv.2 holds. This follows
from Inv.21, by which the assignment v.i := v.0 is equivalent to assigning
to v.i the first element of queue g.i. For the B action, the condition holds
trivially, because the new B action is the same as the old B action.

(b) Each new action A} will preserve Inv.1 A Inv.2. The fact that Inv.1 is
preserved again follows from (a) above. That Inv.2 is also preserved is easily
seen: Inv.21is clearly preserved, as values are only removed from g¢.1, Inv.22
is preserved because H.i is unchanged and Inv.23 is preserved, because at
the same time as ¢.i may become empty, rec.t is set to true. The B action
does not change any variables that are constrained by the new invariant, so
the condition holds trivially in this case.

(c) The guard of each new action Aj implies the guard of the corresponding old
action A;, when Inv.1 A Inv.2 holds, because the new quard has an added
conjunct. For the B action, the condition holds trivially.

(3) Auziliary actions C.k.i:

(a) None of the auxiliary actions C.k.i has any effect on the old variables when

Inv.1 A Inv.2 holds, because these actions do not assign to any of the old
variables.

(b) Each auxiliary action C.k.i will preserve Inv.1A Inv.2. The fact that Inv.1
is preserved follows again from (a). Inv.21 is preserved, because by Inv.11,
v.k = v.0, so the new value added to g.i is v.0. Inv.22 is preserved, because
we are only removing elements from H.k in this action. Finally, Inv.23 is
preserved, because g¢.i is made non-empty by the action.

(4) Termination of auziliary actions C.k.i: Executing only auxiliary actions in an
initial state where Inv.1A Inv.2 holds will necessarily terminate. This follows from
the fact that there can be only finitely many elements in all sets H.k altogether,
and each auxiliary action will remove one element from one of these sets.
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(5) Ezit condition: The exit condition of the new action system implies the exit
condition of the old action system, whenever Inv.1 A Inv.2 holds. This is really
the only nontrivial proof obligation in this superposition. We will prove the
counterpositive of the statement, which means that we have to show that

(Ji € V:-rec.i)V((Vi € V :rec.i)A rest)

- ‘
(Bie V:i-recingi#<>)V((VieV: rec.i) A rest) V
(3(k,i) € E : rec.k Ai € H.k).

If (Vi € V : rec.i) A rest holds, then this implication hold trivially. Assume
therefore that it does not hold, i.e. that —rec.i holds for some i € V. Assume
that Vi € V.rec.iV q.i =<>. As the graph is connected, there must exist a path
from O to i. We have that rec.0 is true and rec.i is false. Hence, on this path
there must exist a node k such that rec.k is true, but for successor j of node k on
this path, rec.j is false. By assumption, this means that ¢.j =<>. By invariant
Inv.23, this again means that j must be in E(k). Hence, there does exist a pair
(k,7) € E such that rec.k and j € H.k.

6 Additional superposition steps

We continue here the derivation of our broadcasting algorithm. Figure 7 shows the
whole derivation in tabular form, as a sequence of successive superpositions. The initial
version C; has already been derived above, as well as the first superposition C,. Here
we will describe two more successive superpositions of this action system, C3 and Cy.

A requirement we had was that the termination of the broadcast should be detected
by node’0. Hence, we must make all the nodes report to node 0 when they have received
their value. This will be done in two superposition steps, first adding a mechanism that
constructs a dynamic spanning tree rooted at node 0 at the same time as the values are
being forwarded, giving C3. Then, we add a mechanism that sends acknowledgments
back to the root whenever a value has been received by a node, resulting in C4. We do
not show the correctness proofs of these steps here, for brevity.

6.1 Adding a dynamic spanning tree construction: Cs

We construct a spanning tree among the nodes in the graph in the following way. Each
node i considers as its father the node from where it received the value v.0. Variable
f.i holds the index of the father for node i. The queue fq.i holds for each node i the
indices of the nodes that have sent values to node i through queue g.i. In addition to
the previous invariants, we also maintain the invariance of

Inv.3: rest= Inv.31: (Vi € V — {0}.rec.i = (f.i,i) € E)
A Inv.32:(Vk € VNie V - {0}.Vj.fg.i.j = k = rec.kA(k,i) € E)
A Inv.33:(Vk € V — {0}.rec.k = fpath(0,k))
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where fpath is the least relation that satisfies the condition

fpath(i,j) = fj= inpath(i,f.j)

for any two nodes 4,j in V.

Checking the correctness of the superposition is in this case quite simple, as no new
auxiliary actions are introduced, and the guards of the old actions are unchanged. The
fact that the new conjuncts of the invariant are preserved is relatively straightforward
to check.

6.2 Adding backward acknowledgements: Cq

Having added a spanning tree construction, we may use the spanning tree to forward
acknowledgements towards node 0.

Each node i holds a queue ack.i of received acknowledgements. When node i
receives value v.0 it acknowledges this by placing an acknowledgement message into
ack.(f.i), i-e., into the acknowledgement queue of its father. Whenever its ack—queue
is non—empty, node i forwards the acknowledgements to its father. Node 0 keeps track
of the nodes whose acknowledgements it has not yet received, in the set VS.

The superposition will preserve the invariance of

Invd4: rest= Inv4l: (Vie VVje V- {0}.
Yk :ack.i.k=j = recjAnj €V —{0})
A Invd2: VS={j|-recj}u{il|(3i,k:ack.ik=j}

The correctness of this superposition refinement can again be checked by our rule.
This superposition is less trivial than the preceding one. The main difficulty this time
is to show that the auxiliary actions necessarily terminate, if executed alone. This will
follow from the fact that the father links established in the previous step form a tree
that is rooted at 0.

6.3 Final program

Let us finally put all the superposition steps together. In Figure 8 we show the complete
action system C4 that results from the refinement steps we have described. It is a
wave algorithm, as required. The final process network is generated with the variable
partitioning P = {pi | i € V'}, where

P = {v.0, rec.0, rest, q.0, H.0, {.0, fq.0, ack.0, VS},
pi = {v.i,rec.i,q.i,H.i,f.i,fq.i,ack.i}, i€ vV —{0}.

In this partitioning, all the communication takes place between nodes directly con-
nected to each other. None of the actions involve more than two adjacent processes.
Furthermore, termination is detected by node 0 as was originally requested.

By transitivity of refinement, the final action system C4 will be a correct refinement
of the initial specification C.
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begin C4
var rec.i € bool for i € V; rest € bool;
g.i € value list for i€ V;
H.i € indez setfor i€ V;
f.i € indez for i € V — {0};
fq.i € indez list for i € V — {0};
ack.i € indez list for i € V; VS € indez set;

rec.0 := true; rec.i := false for i € V — {0}; rest := true;
gi:=<> forie V;

Hi=E(i)forieV;

fg.i:=<> for i € V —{0};

ack.i :=<> for i€ V; VS:=V - {0};

do
[A.5] ~rec.iA g.i #<>—

v, g.8 1= ¢.8; rec.s 1= lrue;

f.i,fq.4 = fq.i; ack.(f.3) := ack.(f.1),1
for i € V — {0}

[B] VS = B A rest — rest := false; R

[C.k.d) rec.kAi € H.k—
g.i:= q.5,v.k; H.k:= H.k—{i}; fo.i := fa.i, k;
for (k,i) € E

[D.k] ack.k #<>—
begin var a € indez;
a, ack.k := ack.k; ack.(f.k) := ack.(f.k),a
end

for k€ V - {0}

[E] ack.0 #<>—
begin var a € indez;
a, ack.0 := ack.0; VS := VS — {a}
end

od

{Inv.1 A Inv.2 A Inv.3 A Inv.4}

end: v.i€value forie V

Figure 8: Resulting action system.
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