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MCSPARSE: A Parallel Sparse Unsymmetric Linear System
Solver*

K. A. Gallivant B. A. Marsolft H. A. G. Wijshofft

Abstract

In this paper, an unsymmetric sparse linear system solver based on the exploita-
tion of multilevel parallelism is proposed. One of the main issues addressed is the
application of tearing techniques to enhance large grain parallelism in a manner that
maintains reasonable stability. This is accomplished by a combination of a novel re-
ordering technique (H*) and pivoting strategy. The large grain parallelism exposed by
the reordering is combined with medium (various parallel row updates strategies) and
fine grain (vectorization) parallelism to allow adaptation to a wide range of multipro-
cessor architectures. Experimertal results are presented which show the effectiveness
of the reordering, as well as the stability and efficiency of the solver.

1 Introduction

Several techniques have been proposed to solve large sparse systems of linear equations on
parallel processors. A key task which determines the effectiveness of these techniques is the
identification and exploitation of the computational granularity appropriate for the target
multiprocessor architecture while maintaining the stability and sparsity of the factoriza-
tion. Many algorithms assume special properties such as symmetric positive definiteness
or exploit knowledge of the application from which the system arises, e.g., finite element
problems. These properties can be exploited in the a priori identification of parallelism,
preservation of sparsity and guaranteeing stability. These decisions can be done stati-
cally before the factorization is performed, e.g., the symbolic factorization techniques and
orderings of many direct solvers for positive definite systems.

In many applications, such as device simulation, computational fluid dynamics, circuit
simulation, and structural mechanics the resulting linear systems are not symmetric. In
other application areas, such as linear programming, optimization problems, directed net-
work problems, and simulation problems the resulting linear systems are even unsymmet-
ric in structure. For these arbitrary unsymmetric systems the exploitation of parallelism
while maintaining stability and sparsity becomes extremely difficult. This is due to the
fact that the requirements are often contradictory and cannot be completely resolved until
information from the actual factorization is available, i.e., some decisions must take place
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dynamically. As a result, for unsymmetric systems on a range of parallel architectures it
is often necessary to carefully mix a priori static and dynamic runtime decisions.

One approach that has been tried for parallel sparse system solvers is the multifrontal
scheme [Duf86, DR83]. A multifrontal scheme constructs an elimination tree to organize
the parallel work. A node in the tree represents a certain computation, which may include
handling the information from the node’s children and performing some pivot eliminations.
All leaf nodes of the tree may be computed in parallel, while internal nodes can only be
computed after their children have completed. A pool of the available work, the nodes
in the tree that can be computed, is maintained in shared memory. When any process
needs work it retrieves a node from the pool. After all the children of a node have
finished, the parent node is then placed in the pool of available work. This approach if
organized correctly can provide large and medium grain parallelism. However, the method
tends to work well on matrices with a near-symmetric structure and the pivot sequence is
constrained.

Another approach to parallel sparse solvers exploits the dynamic identification and
application of parallel pivots [Ala88, Dav89, GSZ91]. At each stage these algorithms
construct a set of pivots that can be applied in parallel and perform the appropriate
updates. These codes typically concentrate on medium and fine grain parallelism and tend
to be most efficient on a moderate number of processors with fairly tight synchronization.
There is also previous work on performance improvements of direct sparse solvers on vector
supercomputers [AGLt87]. The results indicate that vectorization can sometimes be used
to improve the performance. Both of these approaches can be used as part of an algorithm
which exploits multiple levels of parallelism.

An important part of any sparse solver is the algorithm for controlling the amount
of fillin that is generated. Most sequential sparse matrix packages, such as MA28, used
a simple strategy proposed by Markowitz [Mar57]. This strategy involves counting the
number of nonzero elements in each column, c;, and the number of nonzero elements in
each row, r;, and then choosing the pivot node to be the element a; ; where the product
(¢ — 1) * (r; — 1) is the minimum over all possible pivot candidates. Various modified
forms of this strategy that limit the number of elements considered are possible.

The final aspect of pivot selection is the maintenance of stability. Typically, this is done
by choosing a pivot element that is within a specified multiple of the largest element in
the pivot row or pivot column or the active part of the matrix depending on the efficiency
of these tests given the data structures assumed.

The stability and sparsity tests for pivot selection are often contradictory and most
strategies involve some combination of the two, e.g., the generalized Markowitz strategy,
[OZ83]. Parallel solvers add a third constraint to pivot selection. For the medium and
fine grain algorithms mentioned above, these three constraints can be considered in a
reasonably straightforward way potentially with respect to the entire active portion of
the matrix. The exploitation of larger grain parallelism, however, often imposes a static
decomposition on the structure of the matrix which further constrains pivot selection.

The effect of these constraints, for unsymmetric problems, can be seen by considering
tearing techniques. These have been proposed to expose large-grain structure and paral-
lelism by reordering the matrix into a bordered block triangular matrix [EGL+87, HR72].
This effectively partitions the problem into small subproblems (the diagonal blocks) and
then eliminates all connections between the subproblems (the border blocks). Unfortu-
nately, the associated factorization routines are often unable to preserve stability and
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sparsity without destroying this structure. For example, consdering the entire active por-
tion of the matrix during a pivot search can easily destroy the block structure. On the
other hand, limiting the search to a particular block can increase fillin and reduce accuracy
of the solution.

The approach taken in this paper uses a novel ordering technique, H*, to identify a pri-
ori large and medium grain parallelism by creating a bordered upper triangular structure
and a factorization routine which preserves this structure while attempting to maintain
stability and sparsity at acceptable levels. A technique referred to as casting is used to
control the stability of the factorization. The large and medium grain parallelism (parallel
subsystems of various sizes) exposed by H* is combined with medium (various parallel row
updates strategies) and fine grain (vectorization) parallelism to form a multi grain parallel
solver MCSPARSE which allows adaptation to a wide range of multiprocessor architectures.
In [GMW89] initial results with MCSPARSE are presented and more details can be found
in [Mar91).

The paper is organized as follows. In Section 2 a global overview of the procedures in
MCSPARSE is given. The details of the ordering H* are presented in Section 3. Casting
is introduced and discussed from an algebraic point of view in Section 4. The details of
the implementation of the factorization and solve phases of MCSPARSE are described in
Section 5. Experimental results and conclusions are given in Sections 6 and 7.

2 Overview of MCSPARSE

This section presents an overview of the ordering and the solver and the relationship
between the two. Though the two algorithms are independent, they were designed to
complement each other.

2.1 Hybrid Ordering H*

As indicated above, the purpose of the ordering is to expose structure in the matrix that is
not apparent to allow the exploitation of large and medium grain parallelism. H* attempts
to achieve this goal and comprises four distinct phases.

The initial phase of the ordering, HO, attempts to adaptively find a weighted transver-
sal. A transversal is defined by row and column permutations which ensure that all of
the diagonal elements of the permuted matrix are nonzero. If such permutations do not
exist then the matrix is structurally singular [DER86]. When determining this transver-
sal HO attempts to select elements for the diagonal that will enhance the stability of the
factorization.

The second phase of the ordering applies Tarjan’s Algorithm to determine the strongly
connected components of the adjacency graph of the matrix. These strongly connected
components determine the diagonal blocks of a block triangular form of the matrix.

The third phase of the algorithm, H1, uses the depth-first search of Tarjan’s algorithm
and other techniques to find separator sets. This algorithm is applied individually to
the diagonal blocks that result from Tarjan’s algorithm to reduce their size by creating a
border for each block. At the end of the phase the individual border blocks are permuted
to the end of the matrix to form a border for the entire matrix.

The final phase of the algorithm, H2, relies in part on nested dissection but also
contains novel techniques for reducing the separator sets that exploit the unsymmetric



nature of the matrix. H2 is applied individually to the diagonal blocks that result from
the previous phase and are larger than some threshold.

The last three phases of the ordering determine a symmetric permutation of the matrix.
This symmetric permutation when applied to the matrix will not remove any of the nonzero
entries placed on the diagonal by HO. The structure of the matrix after the application of
the permutations is a bordered block upper triangular matrix. Further, the rows of the
border are sorted based on the column index of their leftmost nonzero entry.

A preliminary algorithmic description of the H* ordering can be found in [Wij89].

2.2 Matrix Structure

The structure of the reordered matrix is shown in Figure 1. Note that a block upper
triangular form is assumed without losing generality. The interaction of diagonal blocks D,
through D,, is confined to the off-diagonal blocks Cy through C,,.;. The border diagonal
block, F', comprises all of the separator sets produced by H*. Therefore, F interacts with
all of the diagonal blocks through both the border and the off-diagonal blocks C; through
Cm. The recursive nature of the production of the separator sets induces a block structure
within the border. Specifically, the nonzeros of the rows belonging to a particular separator
set from H1 or H2 are confined to the columns of the diagonal blocks which correspond
to the block that was split by the separator. Note that the final sorting of the rows in
the border does not affect this property and results in the staircase structure indicated in
Figure 1. This induced border structure is exploited during the factorization.

2.3 Factorization of the Matrix

The factorization of the matrix is performed in four stages. The first stage is the factor-
ization of the diagonal blocks. (The issue of a factorization not existing for a diagonal
block is discussed later.) Since this matrix is bordered block upper triangular, there are
no edges from diagonal block D; to diagonal block D; Vi, i < j. Therefore, when a pivot
is selected in diagonal block D; it will not perform any updates on the rows in block D;.
Nor will the pivots in the diagonal block D; update any of the rows in diagonal block D;.
As a result, the LU factorization of the blocks can be performed in parallel. Similarly,
after the diagonal blocks have been factored, the L factors can be used to update the
off-diagonal blocks in parallel.

Next, the border blocks are eliminated using the diagonal blocks and the off-diagonal
blocks. The elimination of a given border row by the pivots in the diagonal blocks must
respect certain dependences. A diagonal block D; cannot update a row in the border until
after the row has been updated by all blocks D;, i < j. However, the update of a row
in the border is independent of the update to the other rows in the border. Therefore, a
diagonal block D; can update the rows of the border in parallel. The staircase structure of
the border can be exploited to produce appropriate granularity for a particular processor.
The staircase structure implies that the number of diagonal blocks involved in the initial
updates is equal to the number of “stairs” in the border. This can be used to enhance

the initial distribution of work and data (diagonal and off-diagonal blocks) across the
PIOCessors.
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Figure 2: A 5 X 5 sparse matrix and its associated digraph.

3 The Hybrid Ordering
3.1 Background

The interpretation of the actions of H* depends upon the notion of a graph associated
with a sparse matrix.

Definition 3.1 Given an unsymmetric (square) sparse matriz A (N x N). The digraph
associated with A is defined to be the graph G(V, E) with V] = N such that (i,j) € E if
and only if a; j is a non-zero entry in A.

In other words A is the adjacency matrix of G(V,E). An example of a 5 x 5 sparse
matrix and its associated digraph are depicted in Figure 2.

The hybrid ordering H* is composed of two different types of orderings: unsymmetric
and symmetric.

Definition 3.2 An ordering of a sparse matriz is called unsymmetric if the ordering can
be represented by

A=PAQT,
with P and Q permutation matrices. If P = Q the ordering is called symmetric.

Note that symmetric orderings have the property that the associated graphs of A and
A are isomorphic, i.e., only the numbering of the nodes differs. Unsymmetric orderings
are obtained by independent row and column interchanges of the matrix, with P repre-
senting the row interchanges and Q representing the column interchanges. So, where the
unsymmetric orderings change certain properties of the sparse matrix, e.g., the eigenval-
ues, symmetric orderings maintain these. Also, if A is a diagonally dominant matrix, then
after a symmetric ordering the resulting matrix will still be diagonally dominant, whereas
an unsymmetric ordering destroys this property. The unsymmetric ordering is used to
enhance the numerical properties of the factorization of the matrix. In H*, the symmetric
orderings are used to obtain a bordered block triangular matrix.

In order to obtain the desired structure H* exploits the concept of a node separator
set and a generalization applicable to directed graphs which are defined as follows.



Definition 3.3 Given a graph G = (V, E) a node separator set S of G is a subset of V
such that there ezists sets B and C with

a) B,C and S disjoint,

b) BuSUC =YV, and

c) there ezist no edges (z,y) € E with

1. ye Bandz € C.
2.z€BandyeC and
If (c.1) is fulfilled but (c.2) is not, the set S is a quasi-separator.

3.2 HO

HO is a transversal algorithm for permuting nonzero entries onto the diagonal using an
unsymmetric ordering. The transversal algorithm has been modified to permute large
elements to the diagonal in order to enhance the stability of the subsequent factorization.

3.2.1 The Transversal

The transversal ordering is a matching between the columns and the diagonals and could be
found using many different algorithms. Algorithms for finding set representation [MH56]
or solutions to the assignment problem[Kuh55] could be used to find the transversal. An
alternative algorithm involves finding maximal matchings in bipartite graphs[HK73].

The algorithm chosen for the transversal is based on work of Duff and Gustavson
[Duf81b, Duf81a, Gus76]. The algorithm uses a depth first search of the matrix to deter-
mine a series of column interchanges. The algorithm creates a transversal by assigning a
unique diagonal position to each column of the matrix. These assignments determine a
column permutation which places nonzero elements on the diagonal.

At each step j, the algorithm has a transversal for columns 1 through j — 1 and tries
to extend the transversal to include column j. The algorithm first determines if an easy
insertion is possible. An easy insertion occurs when column j has a nonzero element in
row ¢ where diagonal ¢ is currently not assigned to another column. To determine if an
easy insertion is possible a sequential search is made of the nonzero elements in column j.
If the nonzero element in row ¢ is in a row whose index is not one of the currently assigned
diagonal positions then diagonal ¢ is assigned to column j, the search is stopped, and the
algorithm proceeds to column j + 1.

If an easy insertion is not possible then the algorithm must determine if an insertion
can be realized by a suitable permutation of column 1 through j. The nonzero elements in
column j are now searched to determine if there is an element whose row index ¢ has not
been considered as a means of determining a column interchange to extend the transversal.
If such an element is found with a row index of, say, 7, then the column to which ¢ was
assigned as a diagonal position becomes the current column, cur_col. Correspondingly,
diagonal ¢ is assigned to column j. The index 7 is then marked as having been considered
during this step of the algorithm. Column j is saved as the parent column of column
cur_col in a linked list of columns considered for possible interchange.

The algorithm then attempts to extend the transversal using cur_col. It first attempts
to find a easy insertion as described previously. If an easy insertion is possible, the appro-
priate diagonal index is assigned to cur_col and current step of the algorithm terminates.



However, if an easy insertion is not possible, then the algorithm attempts to interchange
cur_col with a column that has not yet been considered on this step. This is done by
considering the elements in cur_col and extending the linked list as described above. If
this extension is not possible the algorithm backtrack by replacing cur_col with its parent
in the linked list of columns and continuing to scan the elements in the new cur_col.

The algorithm continues until either an easy insertion is made, in which case the
algorithm can proceed to the next column, or until it has considered all possible insertions
for column j. If at any stage it is not possible to extend the transversal then the matrix
is structurally singular, there is no permutation to make all the diagonal entries nonzero.

3.2.2 The Bounded Transversal

The transversal algorithm described above was modified to enhance the chances of a stable
factorization of the matrix with pivots selected from the diagonal blocks. The enhanced
version of the algorithm attempts to place large elements along the diagonal. This is
accomplished by only permuting an element a;; to the diagonal if its value is within a
bound, @, of the largest element in the column, i.e.,

| ai; | > o * max(| ax; |) (1)

Only a few changes to the transversal algorithm are required to support the enhance-
ment. An initial step is added to the algorithm to find the maximum absolute value in
each column. Then during the search phase, for both the easy insertion and the replace-
ment insertions, an element will only be selected if it also meets the bound of Equation 1.
Also, instead of taking the first element that is found by the search, the algorithm searches
through all the possible elements and uses the element with the largest absolute value.

The algorithm starts with an initial bound o and tries to find a transversal. If a
transversal cannot be found with the bound a, then the bound is loosened to allow more
candidates and the algorithm is restarted. If after several attempts at loosening the bound
a transversal is still not found, then the bound is eliminated totally and the bounded
transversal algorithm finds any transversal. However, even with the bound removed, the
algorithm still tries the elements with the largest absolute value first.

3.3 Tarjan’s Algorithm

Tarjan’s algorithm finds the strongly connected components of the digraph associated with
the matrix with time complexity linear in the number of nodes and edges. A renumbering
of the nodes of the digraph corresponding to the decomposition of the graph into strongly
connected components yields a symmetric ordering which transforms the matrix into a
block upper triangular form.

The strongly connected components are found with a depth-first search of the nodes
using a stack to maintain the active nodes. The algorithm starts by finding a root node,
root, and setting the current node equal to the root node, (current = root). The current
node is then placed on the stack and marked as being processed. In addition, a pointer is
kept for each node on the stack that indicates the lowest position on the stack reachable
from that node via some path. This pointer is initialized to the node’s position when
initially placing a node on the stack (loweyprent = pos(current)).



Each edge, (current,y), originating from node current is considered in turn. If node
y has already been processed, then it is checked to see if it is still on the stack. If it is,
the low pointer of node current is set to the minimum of the low pointer of node current
and the low pointer of node y (loweyrrent = min(loweyrrent, lowy)). The algorithm now
goes on to the next edge from node current. If node y is not on the stack, then it has
been removed earlier and the algorithm goes on to the next edge from node current.

If the node y has not been processed, then it must be added to the stack initializing
its low pointer to its position on the stack and saving a pointer to its predecessor, node
current. The current node is now set to be the new node, (current = y), and a depth-first
search of its edges begins.

When all of the edges from the current node have been processed, then the algorithm
checks to determine if a strongly connected component has been found by comparing
the position of the current node loweyrrent. If 10Weyrrent equals the node’s position on
the stack then a strongly connected component has been found including the current
node and all the nodes above it on the stack which are then removed from the stack.
If lowcyrrent does not equal the node’s position on the stack, then the low pointer of its
predecessor is set to the minimum of the lowcyprens and the low pointer of the predecessor
(lowpreqa = min(lowpred, [0Weyrrent)). The predecessor is then taken to be the current
node (current = pred) and the search of the predecessor’s edges is resumed.

When all of the nodes that can be reach from the root node have been processed, then
the algorithm starts over looking for a new root node that has not been processed. When
all nodes have been processed, the algorithm terminates.

3.4 H1 Algorithm

A disadvantage of Tarjan’s algorithm is that most sparse matrices do not allow a nice
decomposition into strongly connected components. A typical case is a matrix whose
associated digraph contains a large cycle. The third phase of H*, the H1 algorithm,
addresses this problem. It is based on Tarjan’s algorithm and extracts from the digraph
a small set of nodes such that the remaining graph allows a better decomposition into
strongly connected components. During the H1 phase, the size of each potentially strongly
connected component is monitored during its construction, and, whenever the size grows
too large, an attempt is made to delete a small number of nodes from the graph such that
the strongly connected component will not grow any further. The H1 algorithm is applied
to each diagonal block resulting from Tarjan’s algorithm that is larger than a threshold,
Tiyone- Each diagonal block is separated, when possible, into two or more smaller blocks
and a quasi-separator set. The union of these quasi-separators form a border for the entire
matrix.

The H1 algorithm uses the same depth-first search as Tarjan’s algorithm for placing
nodes on the stack (as described in the previous section). However, for each node, «, on
the stack two additional pointers are required. The first, denoted nlow,, is a pointer to
the position of the node lowest on the stack that can be reached from a by a single edge.
The second, denoted blow,, is a pointer to the position of lowest node on the stack that
can be reached by a single edge from any of the nodes higher on the stack than a. When
a new node is placed on the stack, both of these pointers are initialized to the position of
the new node.

In Tarjan’s algorithm the value of low, for a node a indicates a lower bound for the



size of the strongly connected component being constructed. Whenever, this size is less
than some threshold, T o, the H1 algorithm proceeds identically to Tarjan’s. However,
when this threshold is exceeded the blow pointer is used to define an initial quasi-separator
set consisting of the nodes on the stack from blowcyrrent t0 pos(current) — 1.

Throughout the algorithm, whenever an edge to a node ¥ is encountered such that
P0os(y) — bloweyrrent > Tiong for some threshold value Tiong, the node current is identified
as having a long edge which increases the size of the quasi-separator set to an unacceptable
level. So, in order to minimize the size of the quasi-separator set, the pointer blowcyrrent
is not updated with the position of the node y rather, the node current itself is marked
for consideration later in the algorithm as a node to be moved into the quasi-separator
set. This potentially increases the quasi-separator set by one node as opposed to keeping
the current node in the strongly connected component and including all of the nodes from
min(bloweyrrent, pos(y)) to pos(current)—1 in the quasi-separator set. The pointer nlow,
is maintained for the current node and the nodes above it on the stack, to allow the actual
transfer of the marked nodes into the quasi-separator set. Whenever, the initial quasi-
separator set is constructed, as described above, it is augmented with the nodes which
have been marked as having long edges.

In the implementation of H1, the pointers nlow and blow are updated in a manner
similar to that used to update low, in Tarjan’s algorithm. When an edge that points
to a node y that is lower on the stack than the current node is encountered during the
depth-first search, the pointers are updated as follows:

lowcurrent = mzn(lowcurrent’ Iowy),

oWeyrrent = Min(nloWeyrrent, position(y)),

and the pointer dlow,ysrens is not updated.
When moving down in the stack to resume the examination of the edges of the predeces-
sor of the current node (denoted below with the subscript prev) the updates performed are

lf blowcurrcnt - nlowcurrent < Tlong then

blowcurrent = min(blowcurrent, nlowcurrent)
end if
blowyre, = min(blowp,ey, bloweyrrent)
lowprev = min(lowpreva lowcurrent)

Note that the decision of whether or not a node has a long edge is postponed until all
of the edges of the node have been examined. This implies that only the longest edge of
a node, represented by nlow, is used to decide whether or not the node js moved to the
quasi-separator.

After these updates the decision is made as to whether: no action is required, a
true strongly connected component has been found (loweyrrent = pos(current)), or
the threshold on the size of the strongly connected component has been exceeded. In the
latter case an attempt is made to reduce the size of the strongly connected component.
The nodes are divided into three sets: the new block, a border block, and the remaining
block. The new block includes the current node and the nodes above it on the stack. The
border block contains the nodes starting from blowcyrrens to pos(current) — 1. As noted
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Figure 3: Nonzero Entries in Matrix

above, the border block is augmented with any nodes in the new block that have been
marked as having a long edge. The bordered block is only accepted if:

o The new block is greater than a minimum size, Tininp and smaller than a maximum
size, Tma:rb

® The size of the augmented quasi-separator set relative to the size of the new block
is less than Tinazsep.

If the bordered block is accepted, all three blocks are removed, with the nodes in the
remaining block marked as still to considered. A new starting node is found and the
algorithm restarts on the nodes yet to be completed.

If a true strongly connected component has been found or if the strongly connected
component under construction is still less than its allowed size, the same actions are taken
as in Tarjan’s algorithm.

When all of the nodes that can be reach from the starting node have been processed,
then the algorithm starts over looking for a new root node that has not been processed.
When all of the nodes have been processed, the last block will empty the stack and the
algorithm is finished.

An example of how the H1 algorithm finds a quasi-separator set can be found by the
application of the H1 algorithm to the matrix in Figure 3. The associated directed graph
for this matrix is in Figure 4.

Figure 5 is the current state of the algorithm when it has Jjust completed all the edges
from node 6. The current block of completed nodes contains nodes 6, 7, 8, 9, and 10.
There are three back edges from the nodes in the block, these are the edges {10,1}, {9,5},
and {6,4}. The back edge {10,1} however was determined to be a long edge and it is not
included in determining the size of the quasi-separator set. Therefore, for node 6 the one
edge low pointer for the node points to node 4 (nlows = 4). And the one edge low
pointer for the nodes above node 6 points to node 5 (blows = 5). This would give an
initial bordered block size of 5, a quasi-separator size of 2, and a remaining block size of
3.

1



Figure 4: Associated Directed Graph for the Matrix
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1]1
211
3 1
6 1 1 1
7
8

9 1 1

4 1

1 5
1 10

Figure 6: Reordered Matrix

Assuming the block sizes meet the necessary constraints, then the search would be
made for the long back edges. This search would then find the edge {10,1} which would
place node 10 in the quasi-separator set. The bordered block size would become 4, the
quasi-separator set would become 3, and the remaining block would stay at 3. The bor-
dered block would contain nodes 6, 7, 8, and 9. The quasi-separator block would contain
the nodes 4, 5, and 10. The H1 algorithm would be applied to the remaining nodes which
would result in the three independent blocks 1, 2, and 3 The reordered matrix resulting
from the H1 algorithm is in Figure 6.

3.5 H2 Algorithm

The H1 described above approaches the problem of creating quasi-separator sets starting
from an algorithm that is clearly intended for structurally unsymmetric systems (Tarjan’s
algorithm). It is also possible to approach the problem of transforming the matrix to block
upper triangular form starting from the standard techniques used to produce separator
sets for structurally symmetric matrices, e.g., nested dissection [Geo73, GL78].

The ordering H2 starts with the construction of separator sets of the adjacency matrix
of A+ AT asin the standard approaches. For the implementation of H2 we used a straight-
forward implementation of automatic nested dissection [GL81]. However, other initial
orderings could have been used such as one-way dissection [Geo80], more sophisticated
implementations of automatic nested dissection [LRT79], or the graph bisection heuristics
as proposed by [LL87]. In fact, the initial algorithm used for finding these separator sets
does not appear to be very important.

Nested dissection preserves structural symmetry and therefore results in a matrix with
an arrowhead form. However, since the objective of the H2 ordering is to bring the
matrix into bordered upper triangular block form, the use of nested dissection only is too
restrictive and the constraints on the separator set can be relaxed. It is this fact which
is exploited by the H2 ordering. After each stage when a separator set S is constructed
the ordering H2 reduces the number of nodes in the separator set by allowing additional
fill-in to be created in the upper triangular part of the matrix and thereby creating a
quasi-separator set. The H2 algorithm is only applied to diagonal blocks produced by H1
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that are greater than a specified threshold, Tyone.

The algorithm starts with the graph (G = (V, E)) associated with the unscaled sym-
metric part of the diagonal block under consideration M = (A4 A) and then removes the
self-edges generated by the diagonal elements. Before the algorithm starts the dissection,
it first examines the nodes to determine if any of the nodes have a large number of edges.
If the number of edges connected to the node is greater than 3, where 3 is usually 10% of
the rows in the original matrix, then the node is immediately placed into the border. A
limit is placed on the number of nodes that will be placed in the border from any particular
diagonal block by using this test. This limit is usually 7% of the nodes in the diagonal
block.

After a separator set S has been produced by the version automatic nested dissection
mentjoned above has decomposed the graph G into a separator set S and two disjoint sets
B and C the algorithm attempts to reduce the size of S by the following reductions:

1. If there exists no edge (y,z) € E such that y € S and z € B then y may be moved
to C.

2. If there exists no edge (2,y) € E such that y € S and z € C then y may be moved
to B.

An example of the reduction of the separator set can be seen in Figure 7. In this
example eight nodes were initially divided into three sets. The left set B contains the
three nodes, a, b, and ¢. The separator set S has two nodes, d and e. The remaining
three nodes, f, g, and A, are in the right set C. Since there is no edge from any node
in C directed to the node d in S, then d may be moved into B. The node e may not be
removed from S since it does not meet the requirements for either of the reductions.

An optimization to the reduction algorithm involves moving nodes from B to C, or C
to B, so that the first two reductions can be applied to nodes for which the conditions of
the reductions were not met. This is implemented by following the initial reductions with
two enhancement phases.

The first phase consists of moving nodes from B to C together with applying the initial

reduction techniques. A set of nodes D C B is moved to set C if the following conditions
are met:
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1. There are no edges (d,b) € E where d € D and b € B.

2. There exists R C S such that there are edges (y,d) € E where d € D and y € R;
and there are no edges (y,b) € E where y € R and b € (B - D).

3. The size of the remaining part of set B is greater than the minimum size, | B~ D |
> Tremain.

If all of these conditions are met then the set D can be moved from set B to set C and
the initial reduction techniques can be applied to the nodes in separator set.

The second enhancement phase consists of moving a set of nodes from C to B together
with applying the initial reduction techniques. A set of nodes D C C is moved to B if the
following conditions, symmetric with those above, are met:

1. There are no edges (¢,d) € E whered € D and c € C.

2. There exists R C § such that there are edges (d,y) € E where d € D and y € R;
and there are no edges (¢,y) € E where y € R and ¢ € (C - D).

3. The size of the remaining part of set C is greater than the minimum size, | C — D |
> Tremain-

If all of these conditions are met, then the set D can be moved from set C to set B and
the initial reduction techniques can be applied.

An example of this enhancement is provided in Figure 8. In this example none of the
reductions may be applied to the initial separator set. However, the node f may be moved
from set C to set B. After node f is moved to set B then the separator set may be reduced
by moving the node d from set S into set B.

After the separator set has been reduced it is removed from the graph, and the algo-
rithm is applied recursively to the two sets B and C until the resulting blocks are less
than the desired maximum block size, Tyone-

3.6 Results for H*

This section presents the results for the hybrid ordering H* that were collected on an
Alliant FX/80. These results include border size, diagonal block sizes and performance
results which include the ordering time.

8.6.1 Test Matrices

The tests were conducted using matrices from the Harwell-Boeing test collection. All the
matrices chosen were from the real, unsymmetric, assembled (RUA) test set. The RUA
set used has 95 matrices, of which three are structurally singular and are not considered.
Because H* is meant to identify large grain parallelism, results will be presented only
for the matrices which have at least 1,000 rows. Table 1 contains the name of the matrices,
as well as the number of rows and number of nonzeros in each of the matrices. Also included
in the table are the density for each matrix, calculated as the number of nonzero elements
divided by the number of rows squared, and the average number of nonzero elements per
row. The last value in the table is a measure of the symmetry in the structure of the
matrix. The symmetry is calculated as the fraction of the elements of the matrix for
which if a; ; is a nonzero element, then aj; is also a nonzero element in the matrix.
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Matrix Number | Number of | Density | Elements Symmetry
Name of Rows Nonzeros Per Row

gaff1104 1104 16056 0.0131 14.5 1.0000
gematll 4929 33185 0.0013 6.7 0.0017
gemat12 4929 33111 0.0013 6.7 0.0017
gre_1107 1107 5664 0.0046 5.1 0.1954
hwattl 1856 11360 0.0032 6.1 0.9887
hwatt?2 1856 11550 0.0033 6.2 0.9835
Ins3937a 3937 25407 0.0016 6.4 0.8686
Ins_3937 3937 25407 0.0016 6.4 0.8686
mahistlh 1258 7682 | 0.0048 6.1 0.0302
nncl374 1374 8606 0.0045 6.2 0.8355
or678lhs 2529 90158 | 0.0140 35.6 0.0729
orsirr_1 1030 6858 | 0.0064 6.6 1.0000
orsreg_1 2205 14133 0.0029 6.4 1.0000
pores_2 1224 9613 0.0064 7.8 0.6614
saylr4 3564 22316 0.0017 6.2 1.0000
shermanl 1000 3750 | 0.0037 3.7 1.0000
sherman?2 1080 23094 0.0197 21.3 0.6862
sherman3 5005 20033 | 0.0007 4.0 1.0000
sherman4 1104 3786 0.0031 3.4 1.0000
sherman5 3312 20793 0.0018 6.2 0.7803
west1505 1505 5445 0.0024 3.6 0.0020
west2021 2021 7353 0.0018 3.6 0.0039

Table 1: RUA Matrices with at Least 1000 Rows
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Matrix Transversal | Transversal
Name Bound Time
gaff1104 1E+2 0.499
gematll 1E42 0.685
gemat12 1E+3 1.622
gre_1107 1E+1 1.595
hwattl 1E+1 0.099
hwatt2 * 0.823
Ins3937a * 33.021
Ins_3937 * 14.519
mahistlh * 2.870
nncl374 * 7.351
or678lhs 1E+2 1.476
orsirr_1 1E+1 0.058
orsreg.1 1E+1 0.120
pores_2 1E+4 2.516
saylr4 1E+1 0.191
shermanl 1E+1 0.045
sherman2 * 17.945
sherman3 1E+1 0.223
sherman4 1E+1 0.048
sherman5 1E+43 1.672
west1505 1E+6 7.771
west2021 1E+6 13.547

Table 2: HO (Transversal) Statistics for Large RUA Matrices

3.6.2 Transversal Results

Table 2 contains the results for the application of the HO portion of the ordering to
the large matrices. The table contains the user process time in seconds on an Alliant
FX/80, required to find the transversal and the transversal bound. The transversal bound
is a scalar @ such that the maximum value in a column is not more than a times the
corresponding diagonal element,
| @i | %o > 2ax | e | (2)
for 1 < ¢ < n. When the tests were run, the initial value of & was 1E+1 and the maximum
value of @ was 1E+5. If the transversal could not be found for a given value, a was
increased by a factor of ten,
a=axl0

3)
until it became greater than the maximum value. If the maximum value was exceeded
without finding a transversal, the transversal was tried without the bound. For some of
the matrices the transversal bound is given as ‘*’| this indicates that the HO algorithm

could not find a bounded transversal within the given limits and that HO resorted to an
unbounded transversal search.
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3.6.3 Comparison of Orderings

Tests were performed on the large RUA matrices using six different combinations of the
orderings. The combinations are:

H*: This test used the entire H* ordering, including the HO, Tarjan’s, H1, and H2
orderings.

Tarjan: This test only used the HO transversal and then Tarjan’s ordering. This test
was chosen because it represented the ordering used by MA28.

H2: This test only used the HO transversal followed by the H2 ordering. This test was
chosen to show the benefit of using Tarjan’s and the H1 algorithm before applying
the H2 algorithm.

No HO: This test calculated a transversal without a bound, and then applied the other
orderings, Tarjan’s, H1, and H2. This test was chosen to allow the comparison of
the unbounded transversal with the bounded transversal of the HO algorithm.

No H2: This test eliminated the H2 ordering. This test used the HO transversal followed
by Tarjan’s and the H1 orderings. This test was chosen to show the effect of not
having the H2 ordering.

Nored: This test uses the H* ordering with the H2 ordering replaced by a standard
nested dissection algorithm for symmetric matrices applied to A+ AT where A is any
diagonal block. This test was chosen to allow the comparison of nested dissection
with the enhanced dissection of the H2 algorithm.

The HO ordering was run as described above. The threshold parameters used for H1
are Tiong = 5, Tryiny = 05N, Traup = 75N y and Tinazsep = .05newblock_size, where N
is the dimension of the entire matrix. A value of Tremain = .004N was used in H2. The
parameter Tgon. Was set to .1N. These values were obtained empirically with tests on the
Harwell-Boeing matrices and can be easily adapted to other matrices.

The user process times, in seconds on the Alliant FX/80, required by the various
orderings are presented in Table 3.

Table 4 contains the number of border rows for each of the different orderings with
the large RUA matrices. The column labeled ”Rows” indicates the number of rows in the
matrix. When examining this table it is important to realize that having a small border
is important, but that the ordering must also generate small diagonal blocks. Tarjan’s
ordering always produces zero border rows, and therefore is not included in the table, but
the block sizes are often too large and/or nonuniform to be useful in a parallel processing
environment. When looking at the border sizes, one must also examine the largest block
size that resulted from the ordering, see Table 5.

The third table of results for the large matrices contains the size of the largest diagonal
block after the ordering was applied. The block sizes are contained in Table 5. The column
labeled "Rows” indicates the number of rows in the matrix. These blocks sizes can be
combined with the border sizes from Table 4 to determine the effectiveness of the ordering
in producing a bordered block upper triangular form.

When comparing the orderings by examining the size of the border and the size of the
largest diagonal block, it can also be useful to look at the ratio between the two. Table 6
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Matrix H* | Tarjan H2 | No HO | No H2 | Nored
gaff1104 2.668 1.076 | 2.319 2.441 1.242 2.640
gematll 6.647 2.101 6.718 4.344 2.645 6.680
gemat12 6.619 3.025 | 7.449 5.054 4.013 6.524
gre_1107 3.473 1.830 | 3.193 3.145 1.913 3.264
hwatt1 3.411 0.568 | 3.218 3.321 0.837 3.199
hwatt2 3.605 1.289 | 3.780 2.768 1.600 3.483
Ins3937a | 39.359 | 33.860 | 40.629 | 10.176 34.444 | 39.389
Ins_3937 | 22.352 | 15.595 | 22.482 9.881 | 16.121 | 22.278
mahistlh 4.054 3.212 | 4.373 1.617 3.243 3.883
nncl374 9.650 7.714 | 9.439 2.920 7.803 9.510
or678lhs 12.036 4.468 | 13.526 | 10.007 5.110 | 10.466
orsirr_1 1.706 0.332 1.499 1.726 0.481 1.616
orsreg_1 4.381 0.692 | 4.060 4.304 0.938 4.110
pores_2 4.992 2.874 1 4.775 2.577 3.003 4.799
saylrd 6.902 1.121 | 6.061 6.691 1.803 6.664
sherman1 0.979 0.234 1 0.865 0.980 0.318 0.941
sherman2 | 21.054 | 18.783 | 21.367 4.051 | 18.871 | 20.633
sherman3 | 4.926 1.260 | 4.284 4.929 1.824 4.830
sherman4 | 0.803 0.254 | 0.720 0.815 0.315 0.776
sherman5 | 5.063 2.618 | 4.706 4.159 2.904 5.072
west1505 8.874 8.030 | 9.629 1.368 8.036 8.927
west2021 | 14.771 14.031 | 15.619 1.914 | 14.043 | 14.911

Table 3: Ordering Times for Large RUA Matrices
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Matrix Rows | H* | H2| No HO| No H2 [ Nored
gaff1104 1104 | 232 | 232 250 0 308
gematll 4929 | 409 | 544 301 0 651
gematl2 4929 | 354 | 557 336 187 447
gre_1107 1107 | 337 | 337 320 0 545
hwattl 1856 | 403 | 401 368 0 369
hwatt2 1856 | 405 | 435 476 75 417
Ins3937a 3937 | 582 | 529 487 158 867
Ins_3937 3937 | 494 | 525 499 0 794
mahistlh 1258 | 136 | 185 191 0 317
nncl374 1374 1 226 | 226 219 0 449
or678lhs 2529 | 398 | 253 307 0 571
orsirr_1 1030 | 322 | 322 322 0 342
orsreg_1 2205 | 458 | 458 438 0 444
pores_2 1224 | 300 | 300 276 0 539
saylr4 3564 | 634 | 634 634 0 636
shermanl | 1000 | 147 | 147 147 0 152
sherman2 | 1080 | 332 [ 390 366 0 438
sherman3 | 5005 | 423 | 423 423 0 452
shermand4 | 1104 | 103 | 103 103 0 103
sherman5 | 3312 | 280 | 280 287 0 337
west1505 1505 95 | 117 104 0 400
west2021 2021 | 131 | 179 133 63 385

Table 4: Border Rows for Large RUA Matrices

21




Matrix Rows | H* | Tarjan | H2 | No HO | No H2 | Nored
gaff1104 1104 | 94 460 | 110 88 460 79
gematll 4929 | 488 4578 | 492 460 4578 444
gemat12 4929 | 476 4553 | 482 486 2496 474
gre_ 1107 1107 | 104 1107 | 104 109 1107 96
hwattl 1856 | 101 1728 | 153 124 1728 124
hwatt2 1856 | 181 1792 | 128 128 1300 177
Ins3937a 3937 | 364 3558 | 360 373 2477 264
Ins_3937 3937 | 328 3558 | 338 319 3558 369
mahistlh 1258 | 115 589 | 125 124 589 100
nncl374 1374 | 135 1318 | 136 134 1318 109
or678lhs 2529 | 252 1830 | 252 252 1830 252
orsirr.1 1030 | 101 1030 | 101 101 1030 100
orsreg.1 2205 | 196 2205 | 196 160 2205 160
pores.2 1224 | 106 1224 | 106 111 1224 100
saylr4 3564 | 333 3564 | 333 333 3564 333
shermanl | 1000 | 65 681 | 100 65 681 63
sherman2 | 1080 | 102 870 | 101 95 870 90
sherman3 | 5005 | 394 2830 | 500 394 2830 394
sherman4 | 1104 | 87 546 | 110 87 546 87
sherman5 | 3312 | 254 1638 | 331 303 1638 260
west1505 1505 | 144 1099 | 147 144 1099 133
west2021 2021 | 187 1500 | 193 174 665 161

Table 5: Largest Diagonal Block for Large RUA Matrices
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Matrix Rows H* H2 | NoHO| No H2 | Nored
gaff1104 1104 | 2.468 | 2.109 2.841 0.000 3.899
gematll 4929 | 0.838 | 1.106 0.654 0.000 1.466
gematl2 4929 ] 0.744 | 1.156 0.691 0.075 0.943
gre 1107 1107 | 3.240 | 3.240 2.936 0.000 5.677
hwattl 1856 | 3.990 | 2.621 2.968 0.000 2.976
hwatt2 1856 | 2.238 | 3.398 3.719 0.058 2.356
Ins3937a 3937 | 1.599 | 1.469 1.306 0.064 3.284
Ins_3937 3937 | 1.506 | 1.553 1.564 0.000 2.152
mahistlh 1258 | 1.183 | 1.480 1.540 0.000 3.170
nncl374 1374 | 1.674 | 1.662 1.634 0.000 4.119
or678lhs 2529 | 1.579 | 1.004 1.218 0.000 2.266
orsirr_1 1030 | 3.188 | 3.188 3.188 0.000 3.420
orsreg_l 2205 § 2.337 | 2.337 2.737 0.000 2.775
pores_2 1224 | 2.830 | 2.830 2.486 0.000 5.390
saylr4 3564 | 1.904 | 1.904 1.904 0.000 1.910
shermanl | 1000 | 2.262 | 1.470 2.262 0.000 2.413
sherman2 | 1080 | 3.255 | 3.861 3.853 0.000 4.867
sherman3 | 5005 | 1.074 | 0.846 1.074 0.000 1.147
shermand | 1104 | 1.184 | 0.936 1.184 0.000 1.184
sherman5 | 3312 | 1.102 | 0.846 0.947 0.000 1.296
west1505 1505 | 0.660 | 0.796 0.722 0.000 3.008
west2021 2021 | 0.701 | 0.927 0.764 0.095 2.391

Table 6: Ratio of the Border Rows to the Largest Diagonal Block

contains the ratio of the number of rows in the border to the number of rows in the largest
diagonal block.

Since the ordering attempts to provide the smallest diagonal blocks with the fewest
number of rows in the border, it is useful to look at the sum .of the number of rows in
largest diagonal block and the border. Table 7 contains the fraction of rows that are in
the largest diagonal block and in the border for each of the matrices,

border rows + largest diagonal block rows
total rows )

;= (4)
The last row in the table contains the averages for each of the orderings. As can be seen
from this table, the two best ordering strategies for producing the smallest diagonal blocks
with the fewest number of rows in the border are the H* ordering and the No HO ordering.
For both of these ordering, on the average, approximately one-fourth of the rows in the
matrix are in either the largest diagonal block or the border. By comparison, the Tarjan
ordering has four-fifths of the rows in the largest diagonal block, on average (there is no
border for the Tarjan ordering so all rows in this table for the Tarjan ordering are in the
largest diagonal block).

Instead of just adding the border rows and diagonal block rows, the values could have
been weighted by some a to place a greater significance on either the border or the largest
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Matrix H* | Tarjan H2 | No HO| No H2 | Nored
gaff1104 0.295 0.417 | 0.310 0.306 0.417 0.351
gematll | 0.182 0.929 | 0.210 0.154 0.929 0.222
gemat12 0.168 0.924 | 0.211 0.167 0.544 0.187
gre_1107 | 0.398 1.000 | 0.398 0.388 1.000 0.579
hwattl 0.272 0.931 | 0.298 0.265 0.931 0.266
hwatt2 0.316 0.966 | 0.303 0.325 0.741 0.320
Ins3937a | 0.240 0.904 | 0.226 0.218 0.669 0.287
Ins_3937 0.209 0.904 | 0.219 0.208 0.904 0.295
mahistlh | 0.200 0.468 | 0.246 0.250 0.468 0.331
nncl374 0.263 0.959 | 0.263 0.257 0.959 0.406
or678lhs 0.257 0.724 | 0.200 0.221 0.724 0.325
orsirr.1 0.411 1.000 | 0.411 0.411 1.000 0.429
orsreg_1 0.297 1.000 | 0.297 0.271 1.000 0.274
pores_2 0.332 1.000 | 0.332 0.316 1.000 0.522
saylr4 0.271 1.000 | 0.271 0.271 1.000 0.272
shermanl | 0.212 0.681 { 0.247 0.212 0.681 0.215
sherman?2 | 0.402 0.806 | 0.455 0.427 0.806 0.489
sherman3 | 0.163 0.565 | 0.184 0.163 0.565 0.169
sherman4 | 0.172 0.495 { 0.193 0.172 0.495 0.172
sherman5 | 0.161 0.495 | 0.184 0.178 0.495 0.180
west1505 | 0.159 0.730 | 0.175 0.165 0.730 0.354
west2021 | 0.157 0.742 | 0.184 0.152 0.360 0.270
Average 0.252 0.802 | 0.264 0.250 0.746 0.314

Table 7: Fraction of Rows in the Largest Diagonal Block and the Border
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Matrix Rows | H*| Tarjan| H2 | No HO| No H2 [ Nored
gaff1104 1104 | 192 184 83 192 184 192
gematll 4929 | 372 352 20 372 352 377
gematl2 4929 | 416 377 31 402 392 416
gre 1107 1107 16 1 16 13 1 13
hwattl 1856 146 129 24 146 129 148
hwatt2 1856 87 65 19 79 73 88
Ins3937a 3937 | 383 351 36 371 361 385
Ins_3937 3937 | 371 351 30 371 351 371
mahistlh 1258 | 681 670 [ 106 678 670 681
nncl374 1374 73 57 17 71 57 69
or678lhs 2529 | 1187 700 | 103 1100 700 1202
orsirr_1 1030 13 1 13 13 1 11
orsreg_l 2205 16 1 16 15 1 15
pores.2 1224 14 1 14 12 1 11
saylr4 3564 22 1 22 22 1 23
shermanl | 1000 | 333 318 | 236 333 318 334
sherman2 | 1080 | 221 211 12 222 211 218
sherman3 | 5005 | 2119 2111 | 1620 2119 2111 2119
sherman4 | 1104 | 566 559 | 457 566 559 566
sherman5 | 3312 | 1681 1675 | 1351 1682 1675 1681
west1505 1505 | 426 405 27 424 405 441
west2021 2021 | 589 522 48 552 575 588

Table 8: Number of Diagonal Blocks for Large RUA Matrices

diagonal block,

(1 — @) x border rows + o x largest diagonal block rows

P total rows

(5)
Such a weighting could be used to represent the difference in the work done to the border
rows and the diagonal block rows. The difference in work being the border rows will be
used in a sequential updates and the factorization of a single block, where as the largest
diagonal block will be factored in parallel with the other diagonal blocks.

The size of the border and the largest diagonal block are not enough to provide a
complete understanding of how well an ordering is working. Other important factors are
the uniformity and number of the diagonal blocks. Table 8 contains the number of diagonal
blocks generated by each of the orderings.

One final set of values for comparing the different orderings is the average size of the
diagonal blocks. This can be combined with the size of the largest diagonal block to
determine if the ordering results in blocks near the maximum size or if a large number of
blocks over a wide range of sizes are generated. The large number of blocks of size one,
however, greatly influences the average size of the blocks. (These blocks of size one are
generated by Tarjan’s algorithm and appear in any of the orderings which include Tarjan’s
algorithm.) Therefore, the average block size will only be calculated for the blocks greater
than a size of one. Table 9 contains the average block sizes.
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Matrix Rows | H* | Tarjan | H2| No HO | No H2 | Nored
gaff1104 1104 57 231 61 56 231 51
gematll 4929 | 245 4578 | 230 213 4578 206
gemat12 4929 | 149 4553 | 141 233 544 146
gre_1107 1107 54 1107 54 65 1107 46
hwatt1 1856 77 1728 80 96 1728 96
hwatt2 1856 91 1792 83 93 855 91
Ins3937a 3937 67 120 { 125 65 104 55
Ins_3937 3937 66 120 | 126 67 120 61
mabhistlh 1258 41 589 17 49 589 33
nncl374 1374 68 1318 71 73 1318 86
or678lhs 2529 79 1830 26 31 1830 152
orsirr_1 1030 54 1030 54 54 1030 62
orsreg.1 2205 | 109 2205 | 109 117 2205 117
pores.2 1224 71 1224 71 86 1224 62
saylr4 3564 | 172 3564 | 172 172 3564 171
shermanl | 1000 | 38 228 | 48 38 228 37
sherman2 | 1080 | 48 870 | 57 45 870 71
sherman3 | 5005 | 247 1448 | 270 247 1448 244
shermand | 1104 | 55 546 | 61 55 546 55
sherman5 | 3312 | 194 1638 | 211 192 1638 185
west1505 1505 43 551 55 47 551 34
west2021 2021 77 1500 70 64 346 75

Table 9: Average Size of the Diagonal Blocks with Size Greater than 1

26



3.7 Observations

By examining the results presented in the previous section, several observations can be
made about the effectiveness of the different orderings.

One problem with Tarjan’s ordering is that many sparse matrices do not decompose
into a large number of equal-sized strongly connected components. As a result, this
ordering can result in large diagonal blocks. For the test matrices used, the largest diagonal
block contained over half of the rows in the matrices for all but three of the twenty-two
matrices. In five cases, the entire matrix was contained in one diagonal block.

In addition, Tarjan’s ordering can result in a large number of diagonal blocks. Com-
bining the size of the largest diagonal block with the number of diagonal blocks means
that the ordering tends to generate a single large block and a large number of very small
blocks. This disparity in block sizes can cause load balancing trouble for parallel proces-
sors, and indicates why Tarjan’s ordering, by itself, produces orderings that are ill-suited
for large-grain parallel processing by diagonal blocks.

The No H2 ordering attempts to enhance Tarjan’s ordering by the addition of the H1
algorithm. The H1 ordering, however, only partially succeeded on four of the twenty-two
matrices. During the four successes the size of the largest diagonal block was reduced
between 28% and 44%. The No H2 ordering suffers from the same problems Tarjan’s
ordering, the large disparity in block sizes. Therefore, the conclusion about this ordering
is the same as for Tarjan’s ordering, that, by itself, it produces orderings that are ill-suited
for large-grain parallel processing by diagonal blocks. Further work in this area has already
shown that the effectiveness H1 ordering can be improved by removing rows which are
above a specified density threshold as is done in the H2 ordering [Wan91].

The H2 ordering is applied recursively until the diagonal block size is reduced to a
specified level. As a result, the size of the largest diagonal block for the H2 ordering may
be selected when the test is run. Since the block size can be adjusted, the more important
feature of the ordering is the size of the border. By comparison with the H* ordering, the
H2 ordering results in a larger border for seven of the twenty-two matrices and a smaller
border for only three of the matrices. A further comparison of the H2 and H* orderings
show that the H2 ordering is slower for eleven of the matrices and faster for the other
eleven. Therefore, since the H2 ordering produces the same or larger borders in roughly
the equivalent amount of time as the H* ordering, the H* ordering would be considered
better than the H2 ordering.

The Nored ordering eliminated the enhancements to the nested dissection within the
H2 ordering. When comparing the size of the border from the Nored ordering to the H*
ordering, the Nored ordering has a larger border for 19 of the matrices and a smaller border
for only 2 of the matrices. This indicates that the enhancements to nested dissection within
the H2 ordering do result in a smaller border.

The No HO ordering used an unbounded transversal instead of the bounded transversal
of the H* ordering. This resulted in the No HO ordering being significantly faster than the
H* ordering for eleven of the matrices, and being roughly the same or slightly faster for
the other eleven. When comparing border rows, the No HO ordering had a smaller border
for nine of the matrices and a larger border for nine of the matrices. The comparison of
the No HO ordering and the H* ordering would seem to indicate that the No HO ordering
is better for its ability to produce similar results in less time. However, the main benefit
of the HO ordering is the stability of the ordering which can only be measured with the
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help of a solver. Therefore, the final comparison between the H* ordering and the No HO
ordering will be delayed until after the solver has been discussed.

As presented here, the H* ordering can do at least as good as the orderings that were
combined to form the H* ordering when looking at the resulting border and diagonal
blocks.

One factor that can cause difficulty for the H* ordering is the amount of the symmetry
within the matrix. For the 6 matrices which have a symmetry < 0.1000, the average border
size is 9.0%. However, for the other 16 matrices, with the symmetry > 0.1000, the average
border size is 19.0%, with a maximum of 31%.

Another factor that appears to result in large borders is the density of the matrix. For
the 3 matrices that have more than 10 elements per row the average border size is 22.6%.
This appears to be true whether the matrix has symmetric structure or not.

The hybrid ordering H* succeeds in ordering matrices into bordered block upper trian-
gular form with smaller diagonal blocks and a smaller border than the separate orderings
that were combined to form the hybrid ordering. The difficulty within the ordering, how-
ever, is the handling of matrices with symmetric structure or those that are less sparse.

4 Stability Issues

4.1 General considerations

The major problem with a large grain parallel solver is maintaining the stability of the
entire system while only working with pivot selection constrained to a particular subsys-
tem, i.e., a diagonal block or border block of the reordered system. Typically, when using
tearing techniques, codes apply Gaussian elimination to each of the diagonal blocks to cal-
culate a local LU factorization. These factorizations are then used without further pivoting
to eliminate the border nonzero elements. Even when such a factorization exists and is
accurately computed, the pivot choices may cause substantial error growth when applied
to the border rows. Additionally, there is no guarantee that the diagonal blocks are well-
conditioned or even nonsingular. The difficulties in addressing these issues have prevented
tearing techniques from being employed in general matrix factorization packages.

In order to maintain stability it is necessary to apply a global pivoting strategy. This
conflicts with the restrictions mentioned above, that are usually imposed in order to main-
tain the large grain structure of the matrix during the factorization. In general factor-
ization routines, the global pivoting strategy usually involves making sure that a pivot
element is within some factor of the maximum absolute value within the pivot row. In
the case of border block upper triangular matrices such a strategy could lead to pivot
choices which destroy the structure, e.g., the exchange with a column in the rightmost
part of the matrix can result in the introduction of nonzero elements in the portion of the
lower block triangular part of the matrix where zeros are desired. When stability control
is combined with fill-in control, the pivot selection is done on the entire active portion of
the matrix. Whenever a pivot is chosen outside the diagonal block being factored but not
in the border, i.e., in one of the other diagonal blocks in the block upper triangular part, a
row permutation is needed along with a column permutation. This row permutation also
destroys the structure of the matrix.

Row permutations with the border, at the appropriate point in the factorization, do
in fact preserve the bordered block upper triangular structure. For example, pairwise
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pivoting could be used to eliminate the rows of the border in parallel [Dav89]. This
preserves not only the general structure but the number of rows in each of the diagonal
blocks and the border as well. (This is, of course, not true for structurally symmetric
matrices where the bordered block upper triangular form is in fact an arrowhead form
and any unsymmetric permutation can potentially destroy structure.) There are some
drawbacks, however. Pairwise pivoting can permute the relatively dense rows that tend
to appear in the border into the diagonal blocks. This can increase fill-in during the
factorization phase depending on exactly when the border is eliminated relative to the
factorization of the rest of the diagonal block. The fact that, potentially, all of the border
rows eliminated by a diagonal block will require interchanges implies that the overall bound
on the growth factor of the elimination is larger than that for strategies that have only one
or two comparisons per pivot column or row. Finally, the complexity of the synchronization
during the factorization and the application of the factorization to subsequent right-hand
side vectors is nontrivial compared to other ways of handling the problem.

We would like to develop a strategy that preserves the overall structure of the matrix
while allowing the implementation of a global pivoting strategy which yields a factorization
with stability similar to more conventional unsymmetric solvers. We will, however, allow
the size of the border to increase during the factorization. In doing so we would also like
to restrict any unsymmetric permutations (cf. definition 3.2) to the diagonal blocks of the
block upper triangular part of the matrix and the diagonal block of the border.

4.2 Casting

The strategy used in MCSPARSE is based on a technique which combines standard un-
symmetric permutations for pivot selection within the diagonal blocks and symmetric
permutations to facilitate the required global pivoting.

Definition 4.1 A pivot p;; is said to be cast if the system is permuted by the column
permutation (1,2,---,i—1,i,i+1,---,n) — (1,2,-+-,4—1,i+ 1,---,n,1) followed by an
identical row permutation.

Note that by definition casting a pivot is a symmetric permutation. Also note that
in case of solving a bordered block upper triangular system whenever a pivot is cast the
border size increases by one.

This casting can be incorporated into a factorization as follows:

i=1
castnumb = 0
fork=1to N

foreach a;i,j > i
if p;; is stable for aji
then eliminate aj;
else cast p;; (A — perm(A))
castnumb = castnumb +1
goto end
endif

endforeach
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t=1+4+1
end:

endfor

for ¢ = N— castnumb +1 to N
find a stable pivot p;;
foreach aji,j > i

eliminate aj;

endforeach

endfor

The last set of nested loops in this procedure factors the diagonal block which relates
the pivots which were cast during the initial part of the factorization. This portion of
the procedure has been left vague intentionally since there is a certain amount of freedom
as to how to finish the factorization. In general, unsymmetric pivoting within this block
may be needed to guarantee the existence and stability of the factorization. Encountering
0 pivot elements in the initial part of the procedure does not cause problem since they
will be cast and eliminated in the second phase of the factorization. The initial phase
may cause some inefficiency since only diagonal elements are considered as pivots. For
example, if all of the diagonal elements are 0 all of the pivots are cast and the entire
factorization is performed by the second phase of the procedure. This can be improved by
allowing some unsymmetric (local) permutations to place a stable pivot on the diagonal
and thereby reduce casting. This approach is particularly appropriate for bordered block
upper triangular matrices and will be discussed in more detail later.

Applying the procedure above to a matrix A can be characterized algebraically as

L7'P. (SwLy' - S1L7 AST .. -sh) QT =1,
where
e U is an upper triangular matrix.

) L;l is the elementary lower triangular matrix which performs the stable eliminations
on the k-th iteration of the initial phase of the procedure.

¢ Si is either I or the shift permutation needed when casting is done on the k-th
iteration.

® P, Qc, and L. are the row interchanges, column interchanges and lower triangular
factor produced in the second phase of the algorithm which are required for stability
and existence of the factorization. Note that they have the following structure

I 0 I 0 I 0
(13 ar(18) (0 )

where the order of P,Q, and L is the number of pivots cast.
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If we let,

E;' = Sy---SpL'ST...sT
1

P = HSk

k=N

N
E = HEk

k=1
Q = QP
T = EPT

[

then the decomposition can be written
PAQT =TL.U.

In general, T' is not a unit lower triangular matrix so the algorithm does not necessarily
produce a standard triangular factorization of a reordered version of A. More of the
structure of the factorization can be seen by considering a reorganization of the procedure
which is mathematically equivalent.

accastnumb = 0
begin:

i=1

castnumb = 0

for k = 1 to N—accastnumb

foreach aji,j > i and j < N—castnumb
if p;; is stable for aji
then eliminate aji
else cast p;; (A — perm(A))
castnumb = castnumb +1

goto end
endif
endforeach
1=:41
end:
endfor

if castnumb > 0 then
accastnumb = accastnumb + castnumb
go to begin
endif
for i = N— accastnumb +1 to N
find a stable pivot p;
foreach aj;,j > ¢
eliminate aj;
endforeach
endfor
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As before, the last set of nested loops corresponds to the factorization of the diagonal
block relating all of the cast pivots (possibly requiring an unsymmetric permutation).
The algorithm completes the first phase when all columns have either completed their
eliminations or have cast the pivot element used for the column in the first phase.

Let us consider k-th pass (from begin to end label) through the unresolved columns.
If we assume that there are ¢ unresolved columns considered, the action of this pass can
be expressed as the application to the current updated form of A of the matrix

-1 -1
Sty - S16Ery,

where the S, are the shift permutation matrices and the E: kl are elementary lower tri-
angular matrices that perform the stable eliminations for the columns. This matrix can

be rewritten as
Ly By
( 0 Iy )St,k" S1.k

with L a unit lower triangular matrix and L a unit lower triangular matrix of dimension
castnumb. The zero entries in the lower left block arise because the elimination of the
elements in the rows of cast pivots is delayed to the next pass. This fact enables us to define
a permutation matrix Py for this pass, representing the row permutation (1,2,3,--+, N —
castnumb+1,-++,N) - (N - castnumb + 1,---, N — 1,N,1,2,3,--+, N — castnumb) such

that
Li By \ ;v _ 34
Pk( 0 _i,k)Pk_Lk

with Iz a unit lower triangular matrix. Note that the first algorithm does not delay these
eliminations and the structure cannot be exploited. Let Sk = Tl Six then the action of
the k-th pass is to apply the matrix

PkT.ZZIPkgk

Let m be the number of passes through the unresolved columns needed to complete
the first phase. Then the procedure can be characterized algebraically as follows.

LR (PRLRICR LG -+ CT LT Py ACT - .CT) QF = 1,
where
e U is an upper triangular matrix.
. i;l is as described above.

® Cy is either I or the permutation that casts all of the pivots marked for casting in
the k-th pass, i.e., C}, = M., Sik, where the S; ;. are defined above for the k-th pass.

° é{ = Pk+1§k+1Pg for k > 1.

® P, Qc, and L, are the row interchanges, column interchanges and lower triangular
factor produced in the second phase of the algorithm which are required for the
stability and existence of the factorization. They have the same structure as those
produced for the first procedure but are not necessarily the same matrices.
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Let QT = ct-. CTQT C,. = PnPT and P = P, S; then the factorization produced
by this form of the algorithm is

PAQT = 1,61+ LuiCra s LG L U.

It can be seen from this form that although a standard LU factorization is not produced
the resulting decomposition can be expressed as a series of m matrix pairs each comprising
a unit lower triangular matrix and a permutation matrix, followed by a single unit lower
triangular matrix and finally an upper triangular matrix. The number of these pairs, m,
could be as large as the dimension of the original matrix A. However, as is seen below,
the amount of casting and, therefore, the number of passes required, can be considerably
reduced when a suitable implementation is used.

Since casting is not allowed in the second phase of both algorithms above, the following
observation can be made,

Proposition 4.1 For every column in the resulting factorization at most two pivot ele-
ments are used to eliminate all of the nonzero elements.

The first pivot is the diagonal element that is compared against all of the elements
that it is used to eliminate. The second pivot choice is made during factorization of
the diagonal block relating the cast pivots. The use of an unsymmetric permutation to
factor the block allows the consideration of the size of any other elements in the column
which must be eliminated when selecting the pivot element. There are two main benefits
from this approach. We avoid the common problem in tearing techniques of using a
pivot to eliminate elements whose relative size has not been examined (and therefore not
controlling the size of the elements in the factors). Also, we avoid having to make a
number of comparisons and possible interchanges per column that is proportional to the
number of elements to be eliminated (which can improve the efficiency of implementation).
In comparison, pairwise pivoting can make up to n/2 comparisons to eliminate the first
column of a dense matrix.

Given Proposition 4.1, if, in both phases, the condition for a pivot to be considered a
stable pivot is taken to be that of partial pivoting, i.e., the pivot is larger in magnitude than
the elements eliminated, then the growth factor in the error analysis of the factorization
is easily derived.

Proposition 4.2 The growth factor for the factorization algorithms above applied to a
dense matriz A € RV is bounded by 2 x 2V-1 = 9N,

The extra factor of 2 is due to the two pivots per column. In the case of sparse
matrices, the growth factor bound can be reduced significantly and depends upon the
sparsity of the matrix [Bun74, Gea75). When the partial pivoting conditions are relaxed
or another pivoting strategy is combined with casting, the bound on the growth factor is
easily deduced from modifications to the standard analysis.

5 MCSPARSE Factorization/Solve Description
5.1 Stability control

In this section, the techniques used to control the stability of the factorization are discussed
as well as the incorporation of the casting into MCSPARSE.
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5.1.1 Global considerations

Wkhen factoring a bordered block upper triangular matrix, a pivot may be cast during
the parallel factorization of the diagonal blocks or during the elimination of the border.
In both cases, the completion of the elimination of the pivot column is delayed until
the factorization of the diagonal border block. For example, if for column ¢ all of the
subdiagonal elements in the diagonal block were eliminated and the pivot is cast during
the elimination of the elements in the border in column i then the nonzero elements in
the border are permuted to the upper triangular part of the border diagonal block. Note
that these elements do not then require elimination unless further casting or unsymmetric
pivoting during the factorization of the border diagonal block move them back into the
lower triangular part of the matrix. During the diagonal border block factorization no
casting is allowed. This deviates from the description above. There casting is prohibited
for pivots selected in a row or column that contains another element that was selected
as a pivot and cast earlier in the factorization. In MCSPARSE this prohibition is extended
to include rows and columns which are placed in the border by H*. This modification
does not affect the conclusions of the previous sections. In order to differentiate between
casting performed during the elimination of elements in the diagonal blocks and casting
performed during the elimination of elements of the border or elements of rows placed
in the border due to casting an earlier pivot, the former will be referred to as diagonal
casting and the latter border casting.

In the remainder of this section we discuss the local pivoting strategy and the tests
used to determine whether or not a pivot is to be cast to the border.

5.1.2 Local pivoting

As mentioned above, it is possible to use local unsymmetric pivoting to reduce the amount
of casting required in the first phase of the algorithm. Furthermore, it is necessary to
use unsymmetric pivoting in the factorization of the border diagonal block to ensure the
existence and stability of the overall factorization. MCSPARSE exploits the bordered block
upper triangular structure and performs unsymmetric permutations in each of the diagonal
blocks to select locally stable pivots and reduce the amount of casting required. A locally
stable pivot is one which is within a specified factor of the maximum magnitude of elements
of the diagonal block in the pivot row or column. MCSPARSE uses the test within the pivot
column, i.e., for some y < 1,

laij 27+ max (] ak,|). (6)
The global stability of the factorization is then ensured by the border casting and the
unsymmetric pivoting in the border diagonal block factorization. These unsymmetric
permutations are also used to control fill-in in the diagonal blocks. A modified version
of the Markowitz count is used to assess the fill-in potential of an element. The stability
and sparsity constraints are combined by choosing the element with the smallest modified
Markowitz count that is also a locally stable pivot. (See Section 5.3 for implementation
details.)
The border diagonal block can be treated as a dense or sparse matrix as its size
warrants. When it is treated as dense partial pivoting is used and when it is treated as
sparse a pivot search similar to the diagonal blocks is used.
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5.1.3 Diagonal casting

Since a local unsymmetric permutation is used within each of the diagonal blocks during
the elimination of their subdiagonal it is always possible, with one exception, to determine
a locally stable pivot element. The one exception is when a row or column of all 0’
is created in the portion of the matrix being eliminated. In this case, the pivot must
be cast and the elimination of the column is completed in a stable manner during the
border diagonal block factorization. (As a result, the singularity of the diagonal blocks is
irrelevant when casting is used.) Even though casting is not required when a nontrivial row
or column is present, there are some situations that it is very likely that the locally stable
pivot will be cast during the elimination of the border. It is more efficient to anticipate
this border casting and mark the pivots during the elimination of the diagonal blocks.
Two tests are used for the anticipatory diagonal casting.

If the locally stable pivot selected is small it is cast to the border since it is very likely
that it will not satisfy the stability requirements needed to use it to eliminate the elements
in the column that are in the border. Specifically, if the test

laij| < a (7)

is true where a; ; is the selected pivot, then column J and row 7 are permuted to the border.
Recall that the potential pivot element has already been chosen to be within a certain
factor of the largest element in the column so this test assesses the overall magnitude
of the potential pivot column. Of course, the threshold value used is dependent upon
the matrix. The threshold could be calculated as a fraction of a matrix norm such as
l|Alleo or [|Difloo- For matrices where the size of the largest elements are 102 or 103 the
experiments discussed later show a threshold of 10~5 to be reasonable. The effects of
different thresholds are in the parameter study in Section 6.1.

Even though the pivot passes the first test it still may be possible to anticipate border
casting. If the border elements in the column were already updated with all appropriate
previous pivots the border casting decision could be made. Of course, this is impossible
since the border elimination takes place after the factorization of the diagonal blocks. The
original elements of the border are available, however, and the second test for diagonal
casting compares the absolute value of the selected pivot with the maximum norm of the
original border elements in the pivot column. If the test

laij| < Bx kgnboagger(l ak,j 1), (8)

where a; ; is the selected pivot, is true column J and row i are permuted to the border.
Of course, border casting may still result due to updates to the original border elements
and fill-in in the border.

5.1.4 Border Casting

Border casting involves casting a pivot element during the elimination of the border be-
cause the relative difference between the magnitude of the border element and pivot ele-
ment is too large. The test

laj;l < ex|ap;| (9)

35



is checked before pivot a;; is used to eliminate border element ag,j. If the test is true,
then pivot aj; is cast to the border.

A major difference between diagonal and border casting is that in the former, the pivot
element is cast before being used to eliminate any elements, in the latter this is not the
case. In border casting, the cast pivot element has already been used to eliminate elements
within the diagonal block and it may have been used to eliminate elements within other
border rows. It is this casting of a pivot that has already been used to eliminate some
elements that prevents the production of an LU factorization of A. For example, consider
rows ¢ and mm within the same diagonal block. Suppose row ¢ is used to eliminate an
element in row m within the diagonal block, and then is permuted to the border during
the border elimination. Now suppose that after row i is cast, row m must be used to
eliminate one of the new border elements in row i. As a result, row ¢ has a multiplier from
row m and row m has a multiplier from row i which precludes an LU factorization. This
situation is similar to that encountered when using pairwise pivoting to maintain stability
and parallelism.

5.2 Fill-in control

In the present implementation of MCSPARSE, during the first stage of the solver a processor
has access only to the information for the particular diagonal block that it is factoring at
the time, i.e., the application to the off-diagonal block C; of the transformations which
eliminate subdiagonal elements in D; are delayed. Therefore, a method to control fill-in
had to be developed which when applied within the diagonal blocks would also effectively
control the fill elements in the entire matrix. This involves the use of estimates of the effect
of local decisions on the global amount of fill-in similar to that used in a priori methods.

MCSPARSE relies on a modification to the Markowitz count to control fill-in. The
Markowitz count for an element a; ; is the product of the number of elements in the row
and the column, each minus one.

tij = |row;—1]x|column;—1| (10)

These counts must be updated throughout the course of the factorization. In the case
of MCSPARSE, such information can be maintained within the diagonal blocks but not
across the entire matrix. A modified version of the Markowitz count, which exploits some
information on the matrix outside the diagonal block, was derived to control fill-in when
eliminating the diagonal blocks . When calculating the Markowitz count for an element,
the row count is modified to include estimates of the number of elements within the part of
the row that are in the off-diagonal blocks and similar estimates of the number of elements
in the border of a column are used to modify the column count.

The first modification to the Markowitz count was to include the number of elements
in the off-diagonal portion of the row. However, to control the effect of the off-diagonal
elements a scaling factor is applied to the off-diagonal row count before it is added to the
diagonal row count.

rowlen; = row_diag; + row_mult * row_off .diag; (11)

This scaling factor allows the off-diagonal elements to be weighted to provide a smaller or
greater influence in the pivot selection.
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A problem with the addition of the count of the off-diagonal elements is that the update
of the elements in the off-diagonal portion of the row is not being performed. Therefore,
the count of elements cannot being updated to exactly account for the application of the
previous pivots. An enhancement to the off-diagonal count was to increase the off-diagonal
count for a row each time the row was modified. The off-diagonal count is increased by
the off-diagonal count for the pivot row, scaled by some factor.

row_off .diag; = row_off _diag; + ofactor x row_-off diag ;. (12)

The most pessimistic estimate of fill is to use an ofactor of 1 which assumes that all of the
elements in the pivot row form new fill elements in the target row. If an ofactor value of
0 is used then this assumes that the pivot row generates no new fill elements in the target
row. The value of the off-diagonal count was also constrained to prevent it from becoming
larger than the maximum possible off-diagonal count for the row. This constraint was
used to prevent the off-diagonal count from overshadowing the diagonal block row count
within the modified Markowitz count.

The second modification to the Markowitz count was the addition of the number of
elements in the column within the border rows. These elements were included in an
attempt to limit the number of fill elements generated during the border update. As with
the row counts, a scaling factor is applied to the border column count when it is added to
the diagonal block column count.

col_len; = col_diag ; + col_mult x border_col_diag 5 (13)

This scaling factor allows the border column elements to be weighted to provide a smaller
or greater influence in the pivot selection.

The addition of the border column elements has the same problem as the addition
of the off-diagonal column elements, the count is not being updated during the diagonal
block factorization. This is handled in a manner similar to the row counts. The border
column count is increased by the border column count for the pivot column, scaled by
some factor.

border_col; = border_col j + bfactor * border_colp;yo (14)

As above, the most pessimistic estimate of fill is to use an bfactor of 1 which assumes that
all of the elements in the pivot column form new fill elements in the target column. If an
bfactor value of 0 is used then this assumes that the pivot column generates no new fill
elements in the target column. The value of the border column count is also constrained
to prevent the count from becoming larger than the number of rows in the border.

5.3 Implementation

In this section, we discuss the present implementation of MCSPARSE for the Cedar multipro-
cessor [Sta91, KDLS86, YewS86]. It is assumed that both the matrix A and the right-hand
side vector b of the system to be solved are available. The solver is composed of two
phases. The first phase calculates the factorization of the reordered system A; and the
second phase calculates the solution of Az = b based on the factorization. Though these
are two separate phases logically, the implementation of the solver discussed exploits the
fact that they can be overlapped.
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Figure 9: Cedar Architecture

The factorization of the matrix is performed by first eliminating all of the subdiagonal
elements in the diagonal blocks D;. Due to casting, the sizes of the diagonal blocks
may change from those produced by H*. For simplicity, we will refer, incorrectly, to the
elimination of subdiagonal elements and attendant casting as the calculation of an LU
factorization of the diagonal blocks. Each off-diagonal block, C;, is then updated with the
transformations that eliminated the subdiagonal elements of the associated diagonal block
D;. The forward solve for the diagonal blocks is performed next. The next stage is the
update of the border rows by the diagonal blocks. This stage requires synchronization as
each border row (or block of border rows) must be passed sequentially through the diagonal
blocks to be updated. When the border rows have all been updated, the factorization of
the border diagonal block is calculated using one or more clusters depending on the size
of the system. The forward and backward solve for the border rows are then performed.
The final step is the backward solve which implies some synchronization.

5.3.1 Cedar

The Cedar architecture is a cluster-based multivector processor. It comprises a small
number of clusters, presently four, connected to a shared global memory via a two stage
Omega network. A diagram of the architecture is in Figure 9.

Each cluster has a small number of vector processors (£ 8) which share an hierarchical
cluster memory. The clusters are Alliant FX/8’s modified to allow access to Cedar’s shared
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global memory. The processors within a cluster are connected by a concurrency control
bus that allows fast synchronization and is used for medium and fine grain parallelism.
The first level of the cluster memory system is a 4-way interleaved, hardware-managed
cache shared by the processors within a cluster. The cache is connected to the larger
cluster memory via a high-speed bus. '

Each processor is connected to the global interconnection network via a private port
and has a prefetch unit which allows block fetches from global memory to offset the
latency of the network. The interconnection network between the processors and the
global memory consists of two unidirectional Omega networks (one network to memory
the other from memory). All data communication between clusters is through the global
memory.

Efficient use of this architecture requires the exploitation of large grain parallelism
across clusters as well as medium and fine grain parallelism within each cluster. Due to
the hierarchical nature of the memory system, careful consideration must be given to data
placement and the exploitation of data prefetch and data locality are crucial performance
considerations.

5.3.2 Description of Factorization Phase

The factorization algorithm is presented in Figure 10.

Concurrent loop over diagonal blocks

Factor diagonal block
Concurrent loop over off-diagonal blocks

Update off-diagonal block
Loop over border blocks

Loop over diagonal blocks

Update border block with diagonal block

Factor border diagonal block

Figure 10: Factorization Algorithm

Due to the structure of the matrix the factorizations of the diagonal blocks are inde-
pendent and may proceed in parallel. An outline of the algorithm for a single diagonal
block factorization is provided in Figure 11.

The first step in the algorithm is the initialization of the data structures for the fac-
torization. When the ordering is successful the diagonal blocks are relatively small and
they can be stored in a dense array during their factorization. Of course, the factorization
still exploits the fact that the matrices are sparse to reduce the amount of work. It is
straightforward to replace the factorization routine with one that also uses a more con-
ventional sparse storage scheme when the diagonal blocks are large enough to warrant
it. The size of the diagonal blocks is also used to classify each as to whether or not an
entire cluster should be used to produce its factorization. During the factorization of the
diagonal blocks, a particular cluster processes the blocks assigned to it in two passes. The
first pass processes in parallel all of the diagonal blocks that are classified as needing only
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Initialize the data structures

Loop over the number of rows
Find best pivot element
If pivot bad then

Cast pivot
FElse
Remove pivot from data structures
Loop over remaining rows
Apply pivot to row
End if

Eztract factorization

Figure 11: Diagonal Block Factorization Algorithm

a single processor. The second pass handles in turn each of the blocks that were classified
as requiring the entire cluster.

The nonzero elements are placed in the dense array according to the row and column
number for each element. In addition, the column indices of all the nonzero elements
within a row are saved and the row indices of all the nonzero elements within a column
are saved. These indices for the rows (or columns) will allow the nonzero elements within
a row (column) to accessed without scanning the row (column) searching for the nonzero
elements.

After all the elements are placed in the diagonal block, the lists of the active columns
and the active rows are initialized to include all the columns and rows in the diagonal
block respectively. Also, an array of linked lists is created such that each row (column) is
placed in the list that contains rows (columns) of the same length. Included in the length
of the column are the elements within the diagonal block and the number of elements in
the border that were in the column at the start of the solver. Similarly, the length of
the row is the sum of the number of elements in the row in the diagonal block and the
number of elements that are in the off-diagonal portion of the row. (More details on the
calculation of the row lengths and the column lengths are provided in Section 5.2.)

After the initialization, the algorithm enters a loop where in each iteration of the loop
it attempts to find a pivot element and apply the pivot element to the remaining portion
of the block. The search is made to find a pivot that will preserves the stability and the
sparsity of the factorization. In order to preserve the sparsity of the system, the pivot
search calculates Markowitz counts using the modified row and column counts discussed
earlier. The search looks for the element with the smallest Markowitz count that also
satisfies a stability bound. The stability bound requires that the absolute value of the
pivot element, a; ;, be within some v < 1 times the maximum absolute value within the
column, cf. Equation (6).

To speed up the search for the smallest Markowitz count, the rows and columns are
examined in increasing order by length. First the elements in all rows of length one will
be examined. Next the elements in all columns of length one will be examined. This
will be followed by all rows of length two and then all columns of length two. This will
continue until it is known that all elements that have not been examined must have a
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larger Markowitz count. The minimum Markowitz count for the unexamined elements in
rows or columns of length j is (j — 1) * (j — 1) (since the search is in increasing order of
length). Therefore, if (j — 1) * (j — 1) is greater than the minimum Markowitz count that
was already found there is no need to continue the search. This pivot search strategy is
modeled after MA2S.

In the case that two possible pivot elements are found to have the smallest Markowitz
count and both meet the stability bound, then the element with the absolute value closest
to the maximum absolute value within the column is chosen as the pivot element.

If the search fails to find a pivot element then the columns that remain in the active
list of columns are cast to the border (as well as the rows remaining in the active list of
rows.) During the diagonal block factorization the row and column are only marked to
be cast. The actual transfer of the elements to the border will occur during the update of
the border blocks.

If a pivot element is found, the diagonal casting checks are applied. If the pivot element
fails these checks then the row and column containing the pivot element are marked for
casting to the border and they are removed from the active lists. The border column count
for each of the columns where there is an element must be updated. The linked lists that
group together rows and columns with the same number of elements are also updated.

When a pivot element is accepted, the row permutation and column permutation are
updated to save the order of the pivots and the linked lists and active row and column
lists are altered. Before the pivot row is applied, the number of fill-in elements in the
diagonal block portion of each target row is calculated and an estimate of the number of
fill-in elements in the off-diagonal portion of the row is made as discussed in Section 5.2.
The row is then moved to the correct linked list for its new element count. After the pivot
row has been applied to all the target rows, the column counts of the columns that have
been updated are recalculated and the columns moved to the correct linked lists.

As with the diagonal blocks, the updates of the off-diagonal blocks, C;, are indepen-
dent and can be performed in parallel. A loop is made, in the appropriately permuted
order, over all the rows in the block, updating them with nonzero portion of L for the
corresponding row in the diagonal block and the appropriate off-diagonal rows, that have
already been processed. The algorithm for this update is presented in Figure 12.

Loop over all rows
Loop over all previous rows
Update row with previous row

Figure 12: Off-diagonal Block Update Algorithm

At step ¢ in the algorithm, the i*? pivot row is found, row I. For all the nonzero L
elements in the diagonal portion of row [, the off-diagonal portion of row [ is updated by
the L element and the corresponding row. If the nonzero L element is in column 7, then
row ! is updated as follows,

Vk € offdiag ;
offdiag;; = offdiag;; — (Ly; offdiag ;). (15)
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Each row within the border must be updated using the diagonal and off-diagonal blocks
to eliminate the elements in the row corresponding to the pivot elements in the diagonal
blocks. A border block consists of several rows within the border grouped together for the
sake of efficiency. The updates to the border blocks are independent and can proceed in
parallel.

The border updates eliminate the elements in the border blocks corresponding to the
pivot elements in the diagonal blocks. These updates by the diagonal blocks must be
performed in the order of the diagonal blocks to correctly eliminate the elements in the
border blocks. This means that before a border block can be updated by D; it must have
already been updated by all D;, 1 < j < i — 1 such that the present updated form of the
row has a nonzero element in at least one of the columns in D;. If the minimum column
number for all the rows in border block 7 is column 7, and if column Jj is in diagonal
block k, then the first diagonal block that needs to update border block i is diagonal
block k. Diagonal blocks 1 through k& — 1 do not need to eliminate any of the elements
in the border block. This allows the minimum column indices for the border blocks to be
used to determine the set of border blocks whose updates can be started in parallel. The
algorithm for the update of the border block is provided in Figure 13

Retrieve border block to be updated
While diagonal block on this cluster
or in global memory
Retrieve diagonal block for update
Retrieve off-diagonal block for update
Concurrent loop over rows in border block
Update border elements with diagonal block
Update border elements with off-diagonal block
Cast all necessary rows/columns into border block
Send border block to next cluster

Figure 13: Border Block Update Algorithm

In order to update border block B; by diagonal block Dy, a loop is made over all the
rows in border block B;. For each row i in block B; the following actions are performed.
The row i is separated into two parts, the diagonal portion corresponding to the elements
in the columns in diagonal block Dy, and the off-diagonal portion consisting of the elements
in the remaining columns. A loop is then made over the pivot columns in diagonal block
Dk, in the order in which the pivots were applied in the diagonal block. The first pivot is
applied, if necessary, followed by the second pivot, and so forth. The pivot is applied only
if there is a nonzero element in the border row in the same column as the pivot element.
If the k** pivot is column j and there is a nonzero element in row i in column j, then the
element a;; must be eliminated by the k** pivot row, row m,

Bij = @ijfam;
VneUn#j
Gin = Qip — Mij * Qmn. (16)
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The values of the multipliers y;,; are also saved. During these updates the border casting
checks are made. Once a diagonal block row is marked for border casting it is no longer
used for updates. After the entire diagonal block portion of the border row is eliminated,
the off-diagonal portion of the row is updated using the values of the saved multipliers.

Once all of the rows in the border block have been eliminated, all rows within the
diagonal block that were marked for casting are actually cast to the border block. The rows
cast to the border block may contain elements that must be eliminated by the remaining
rows in the diagonal block. Therefore, the border block is sent through the border update
algorithm a second time with the same diagonal block.

After a border block has been updated with no rows being cast during the update, the
diagonal block is checked to see if any rows cast during the diagonal block factorization have
not been moved to a border block. The cast rows will now be added to the border block
and the rows will be marked as having been moved so that no other border updates will
try to move the rows into a border block (requiring synchronization). Since the diagonal
block factorization correctly eliminated all the elements in the cast rows corresponding to
the diagonal block, it is not necessary to send the border block back to be updated again
after these rows have been cast to the border block. The border block is now ready to be
updated by the next diagonal block.

After all of the border blocks have been updated by the appropriate diagonal blocks, the
factorization of the border diagonal block may be performed. When the border diagonal
block is treated as dense, this factorization is a BLAS3-based block LU decomposition with
partial pivoting. Multiple clusters, and therefore global memory, may be used depending
on the size of the block. The algorithm for this factorization is in Figure 14.

Loop over rows in border diagonal block
Factor nert w columns with partial pivoting
Update remaining portion of the w rows
Update remaining portion of border diagonal block
using the w columns and w rows

Figure 14: Border Diagonal Block Factorization Algorithm

5.3.8 Description of Solution Phase

The method for calculating the solution of the system is in part determined by the struc-
ture of the matrix, in a similar manner as the structure determined the factorization.
With the independent diagonal blocks, the forward solves for the diagonal blocks can be
done concurrently. After the forward solves for the diagonal blocks, the forward solve for
the border rows is performed, followed by the backward solve for the border rows. The
subsequent backward solve of the diagonal blocks must be performed sequentially, starting
from the last diagonal block and working towards the first diagonal block. (This portion

of the implementation can be improved by exploiting some of the finer grain structure of
the matrix U.)

The algorithm for the solution of the matrix is in Figure 15.
The algorithm for the forward solve is in Figure 16.
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Concurrent loop over all diagonal blocks
Forward solve with diagonal block

Forward solve with border

Backward solve with border

Loop over all diagonal blocks in reverse order
Backward solve with diagonal block

Figure 15: Solution Algorithm

Loop over all rows
Update rhs with diagonal block elements
Update rhs with off-diagonal block elements

Figure 16: Forward Solve Algorithm

Since it is possible for a diagonal block row that was used as a pivot row during
the diagonal block factorization to be cast during the border block updates, the present
version of the solver opts for simplicity and performs the forward solve of the row before
the row is cast. As a result, in the present implementation, the diagonal block forward
solve algorithm is applied before the border block update algorithm.

After the forward solves have been calculated for all the diagonal blocks, and the
factorization of the diagonal blocks is complete, the forward solve for the border rows may
be performed. The backward solve for the border and for the diagonal blocks follow using
similar algorithms.

5.4 Load balancing

The efficiency of the parallel factorization and solver is directly related to the effectiveness
of obtaining a well balanced load for the different processors. The first part of the problem
is to distribute the diagonal blocks for an even distribution of work during the diagonal
block factorization and the off-diagonal updates. The second part of the problem is to
keep all of the clusters busy during the update of the border blocks.

The first part of the problem can be solved with an even distribution of work to the
clusters. However, as fill-in is controlled by heuristics, the amount of work to be performed
for the elimination of a diagonal block is not exactly predictable. In practice a reasonable
work estimation for the diagonal block factorization can be realized, because the amount
of work does not depend on the position of the diagonal block in the system and most of
the diagonal blocks will exhibit a banded structure confining fill-in within each band. This
latter property is caused by the H2 phase of the ordering H*, which relies on levelization
of the associated graph thereby creating banded subsystems (see Section 3.5).

A suitable load balance during the border update is much more difficult to realize.
First, contrary to the diagonal block factorizations, the tasks to be performed are depen-
dent upon each other, see previous section. Second, because of the distribution of data,
the distribution of the parallel tasks for the diagonal block factorizations will automati-
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cally induce a distribution of work for the border update. This is caused by the fact that,
whenever a cluster (processor) finishes its task of factoring a particular diagonal block,
keeping the L and U factors in cluster memory of this cluster will prevent unnecessary
data movement. However, a block of the border can only be updated by its corresponding
diagonal block. So, in order to minimize data movement between the different clusters
a border block has to be updated by the cluster which holds the corresponding diagonal
block factors. Another problem related to the minimization of data movement is caused
by the fact that when a diagonal block finishes the update of a border block the border
block must then be updated by the next consecutive diagonal block. If the next diagonal
block is on the same cluster, then the border block can be left in cluster memory and
updated again. However, when the next diagonal block is assigned to another cluster, the
border block must by moved into global memory so that the other cluster can copy it into
its cluster memory. So, it is preferable to have adjacent diagonal blocks assigned to the
same cluster. Thirdly, the amount of work involved for the update of a particular block
of the border is dependent on the position of that block in the border. For instance, for
the rightmost columns of a border block the fill-in generated during the elimination of all
previous row elements will be substantial, while for the initial columns in the block this is
not the case. Further, the staircase form of the border causes the position of the diagonal
block within the matrix to determine the number of border rows the diagonal block will
update. A diagonal block will not update the border rows where the minimum column
element within the border row is greater than the highest column within the diagonal
block. Therefore, the first diagonal blocks may not update all the border blocks where as
the last diagonal blocks are almost guaranteed to update all the border blocks.
In this section we describe how the above mentioned constraints were dealt with.

5.4.1 Block Size

The diagonal blocks and the border blocks from the H* ordering (which are called ordered
blocks) vary in size, from small blocks of one row to large blocks containing up to 10%
of the rows in the matrix. The disparity of block sizes of the ordered diagonal blocks
and the ordered border blocks have a major impact on the load balance. The presence
of both large and small diagonal blocks has advantages as well as disadvantages. Small
diagonal blocks provide more fine grained tasks making it easier to maintain a reasonable
load balance. However, small sized diagonal blocks increase the number of these blocks
and the number of times a block of border rows is updated.

Large diagonal blocks provide the advantage of reducing the number of border block
updates. However, large diagonal blocks reduce the number of blocks and therefore reduce
the number of possible distributions. With large diagonal blocks it may not be possible
to achieve a reasonable load balance, and the imbalance caused by one or two blocks will
be much greater than with the small diagonal blocks.

The different sizes, meaning the number of rows, of the border blocks provide similar
tradeoffs during the border update. Large border blocks reduce the number of border
block updates by increasing the number of border rows that will be updated at a time.
However, the large border blocks reduce the amount of work that can be distributed
among the clusters. Small border blocks increase the number of border block updates to
be performed, but at the same time increase the amount of work that cluster can share.

The disparity in block sizes from the ordering results in problems for the solver as
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it attempts to find a load balance for good performance. To improve the performance,
the solver regroups the ordered diagonal blocks and the border rows to form new blocks
which are called partitioned blocks. The solver combines small ordered diagonal blocks
into larger partitioned diagonal blocks (or small ordered diagonal blocks may be combined
with other large ordered diagonal blocks to form partitioned diagonal blocks). This allows
the solver to eliminate the smaller, ordered diagonal blocks and results in a new, smaller
set of partitioned diagonal blocks that are larger and closer to the same size.

The differences in the size of the ordered border blocks results in the solver having
trouble achieving a good load balance within a cluster during the border update. To
handle this imbalance the solver eliminates the ordered border blocks and combines the
border rows to create partitioned border blocks that are equivalent in size. This allows
the solver to create border blocks that will keep all the CE’s on a cluster busy during the
update.

The solver repartitions the ordered diagonal blocks and the ordered border blocks into
the partitioned diagonal blocks and the partitioned border blocks before doing anything
else with the blocks. As a result, the remainder of the solver only deals with the partitioned
diagonal blocks and the partitioned border blocks. Therefore, in the discussion of the
operations of the solver the references to diagonal blocks refer to the partitioned diagonal
blocks and the references to the border blocks refer to the partitioned border blocks.

The results for changing the partitioned block sizes are in Section 6.3.1.

5.4.2 Interleaved

The first static load balance scheme that was tried was to interleave the diagonal blocks
that could perform border updates among the clusters. Each border block is checked to
determine which diagonal block can perform the first update on the border block. The
diagonal blocks that are able to perform a first update are distributed in an interleaved
fashion among the clusters. The remaining diagonal blocks are distributed to the clusters
in an attempt to even the amount of work to be done be each cluster.

To estimate the amount of work required for each diagonal block during the border
updates, a work count is calculated as the summation of the border rows to be updated
by the diagonal block times the number of rows in the diagonal block. The amount of
work assigned to each cluster is calculated as the summation of the work counts for the
diagonal blocks assigned to the cluster. Each of the remaining diagonal blocks is assigned
to the same cluster as the diagonal block preceding it as long as the even work distribution
is not violated. When the work count for the cluster exceeds its limit, the diagonal block
is assigned to the next cluster which does not exceed its work count.

This distribution scheme attempts to create a pipeline of border updates to prevent
one cluster from doing all of the work at the end of the border update phase. However, its
major problem is that the number of times a border block must be copied between clusters
is at least as large as the number of diagonal blocks with parallel work. The amount of
overhead required when there are a large number of diagonal blocks with parallel work
made this scheme impractical.

See Section 6.3.2 for the results of testing the interleaved scheme.

46



5.4.3 Even Division of Parallel Work

The second static load balance scheme consists of evenly dividing the parallel work into sets
such that there is one set for each cluster. Each set contains the same number of diagonal
blocks, and the diagonal blocks within each set are adjacent. The remaining diagonal
blocks are assigned to the clusters in the same fashion as the interleaved distribution so
that each cluster had about the same work count.

This scheme attempted to reduce the number of times a border block would be copied
between clusters. However, with the even distribution of the work, some extra copies could
be required, but not as many as were required for the interleaved scheme. The problem
with this scheme is that the cluster that received the last diagonal blocks would usually
take a lot longer to finish than the other clusters, however, it provided much better results
than the interleaved scheme.

See Section 6.3.2 for the results of testing this scheme.

5.4.4 Evenly Divide Work

The final attempt at a static load balance scheme is to ignore the parallel work and evenly
divide the work count among the clusters. Each cluster is assigned one set of consecutive
diagonal blocks, with each set of diagonal blocks having about the same work count.

This method tries to even out the work assigned to each cluster and also guarantees
that the number of times each border block is copied between clusters is at most C — 1
where C is the number of clusters. However, as expected, the amount of parallelism in the
border update is too constrained to achieve an efficient parallel execution. Also, the work
count tends to underestimate the amount of work that is required by the later diagonal
blocks relative to the initial diagonal blocks since the work count does not account for the
increasing density in the rows processed by the last diagonal blocks.

This scheme did not do as well as the scheme for evenly dividing the parallel work.
The actual test results for this scheme are in Section 6.3.2.

5.4.5 Dynamic Load Balancing - S Blocks

This section discusses the dynamic load balancing scheme that was added to the solver
to enhance the efficacy of the static schemes. The main result of studying the static load
balancing schemes is that a static method is unable to determine where to distribute the
diagonal blocks so that an efficient parallel computation is obtained for the border update
and at the same time to minimize the number of times a border block is copied between
clusters.

A dynamic scheme was designed to redistribute the work at the end of the border
update, where the largest load imbalance was observed. In this strategy, the last s diagonal
blocks in the matrix, referred to as the S blocks, are placed in global memory after their
diagonal block factorization and the off-diagonal updates are completed. With the S
blocks in global memory, any cluster that has a border block to be updated by an S block
can retrieve the § block and perform the update. A global work queue is used within the
border update to hold the border blocks that need to be updated by the S blocks. After
a cluster has finished the work assigned to its loca]l work queue, the cluster can retrieve
border blocks from the global work queue and perform the border updates using the S
blocks. Instead of having one cluster responsible for performing the last updates on all of
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the border blocks, this strategy allows any of the clusters to perform the last updates on
the border blocks.

During the border update phase a cluster waits for border blocks to be placed in its
local work queue. (This queue is in global memory and the border block is placed there by
the cluster that performed the preceding update.) When the cluster finds a border block
in its local work queue it retrieves the border block and performs the update using the
appropriate diagonal block. After performing one update, the cluster checks to see if the
next update to be performed is by a diagonal block assigned to it. If the next diagonal
block is assigned to it, the cluster performs the next update. The cluster keeps the border
block until the next diagonal block needed for an update is assigned to some other cluster.

At this point in the static strategies the cluster would send, via global memory, the
border block to the cluster that was assigned the next diagonal block. In this strategy, if
the next diagonal block is an S block then the cluster can keep the border block, retrieve
the $ block from global memory, and perform the next update. The cluster can keep
performing updates with the S blocks until all of the updates required by the border
block have been performed.

There is, however, a problem with allowing a cluster continue performing updates on a
border block B; with the S blocks. If there is a border block B; for the cluster in its local
work queue, no other cluster can update the border block B;. However, the border block
B; that is being updated by the S blocks can be updated by any of the clusters. This
may mean that one cluster is idle while there is local work for another cluster that is not
being done. Therefore, when a cluster z is performing S block updates on a border block
B; and a border block B, is placed in its local work queue, the cluster z places the border
block B; in the global work queue, rather than continuing the application of S blocks, so
that if some other cluster y is idle, then cluster y can perform the updates on border block
B;. The cluster z then retrieves border block Bj; from the local work queue and starts
updating the border block.

In order to limit the number of times a border block is transferred between clusters,
a cluster may not want to check its local work queue between every border block update
by S blocks. It may be that once a cluster has a border block being updated by S blocks
it may only want to check its work queue every other update or every third update. A
parameter is available to set the number of updates a cluster performs before checking it
local work queue in order to achieve better performance.

When the border block needs to be updated by an S block it was earlier stated that the
cluster then retrieves the S block from global memory to perform the update. However,
it is not necessary to retrieve the S block every time, nor may the S block even need to
be retrieved once. The cluster on which the factorization of the S block was performed
has no need to retrieve the S block since it already has the block in cluster memory. The
cluster can use its local copy of the S block and does not need to retrieve the block. In
addition, once a cluster has retrieved an S block from global memory, it saves the S block
in its cluster memory. As a result, a cluster only needs to retrieve an S block once. If the
cluster later needs the same $ block, it uses the copy it retrieved previously.

Due to the different loads on the different clusters, it may be that cluster z wants to
use an S block before cluster y has calculated the factorization of the S block. Therefore,
before a cluster can retrieve an S block from global memory it must make sure the S block
is actually available. If the cluster needs to update a border block with an S block that is
not yet available, it places the border block on the end of the global work queue and tries
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to find other work that it can do. If computations on cluster y complete much later than
on cluster z, cluster £ may not find any work that can be done until cluster y places the
S blocks in global memory.

The results for the use of the S blocks are presented in the Section 6.3.3.

6 MCSPARSE Results

This section presents the results for the large-grain parallel sparse system solver, Mc-
SPARSE. The experiments were performed on an Alliant FX/80 and the Cedar multipro-
cessor with various memory/processor configurations.

6.1 Stability Results

A parameter study was made using different combinations of the two diagonal casting
techniques described earlier to determine the set of parameters which would result in the
smallest relative errors. No border casting check was made. The following tests were
conducted:

No Checks This test was run without any diagonal casting checks.

Absolute Check This test was run with the minimum value allowed for a pivot set at
10~% (@ = 1073 in Equation (7)).

Relative Check This test was run with the tolerance on pivot size relative to the original
border at 107(8 = 10~* in Equation (8)).

Both This test was run with both diagonal casting checks made using the parameters
above.

The tests were run using matrices from the Harwell-Boeing test collection. All the
matrices chosen were from the real, unsymmetric, assembled (RUA) section of the collec-
tion. In all cases, the locally stable pivot test, Equation (6), used v = 0.1. A total of 78
matrices were solved by at least one version of the solver. The following table, Table 10,
compares the different sets previously described. The table lists the number of matrices
each set of parameters correctly solved to with the given number of orders of magnitude.
The number of matrices listed under the 0 column indicates that the parameter set solved
that number of matrices to same order of the relative error as the best result achieved
with the four versions of the code compared. The number of matrices listed under the
1 column indicates that the parameter set solved that number of matrices to within one
order of magnitude of the best result. The columns labeled 2 and 3 are similarly defined.
These tests were run on an Alliant FX/80 with 8 processors.

As can be seen from the table the main diagonal casting improvement results when
performing the check against the magnitude of the pivot (and indirectly against the rest of
the pivot column and overall norm of matrix). Using only the check of the pivot relative
to the norm of the original border elements yielded results similar to no casting at all. The
combination of the two types of casting produced the worst results of the four different
combinations. Notice that the differences are not that great between the four versions.
This is due to the fact that the HO phase of H* ordering enhances stability for many
matrices to a level such that little or no casting is required.
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Test 0 1]2(3] Total
No Checks 52111 2|1 66
Absolute Check | 55 | 11 | 2| 2 70
Relative Check |51 {1013 65
Both 4813|013 64

Table 10: Casting Parameter Study

Test New | Better | 0| 121} 3| Total
Relative Casting 6 22135(15]1(1 79

Table 11: Casting Results for Relative Casting

When the border casting was added to the solver, the accuracy was increased and the
solver was able to solve more of the matrices. The tests run with the border casting also
use the first diagonal casting check with a = 1073, The border casting used a tolerance of
107° (e = 108 in Equation (9)). Six matrices were solved with border casting that could
not be solved with diagonal casting alone. However, five matrices that were solved before
could no longer be solved. These failures were due to the amount of casting the solver
attempted in order to obtain a more accurate result. The resulting border size exceeded
a bound set in the implementation of MCSPARSE.

Table 11 shows the results when border casting is added and contains the same fields
as the previous casting results table, with the addition of two new columns. The first
column, New, indicates the number of new matrices that were solve. The second column,
Better, indicates the number of matrices for which the accuracy of the solution improved
compared to the solver with diagonal casting only. As can be seen from the table border
casting improved the accuracy of the solver for 28 matrices and still solved a total of 79
matrices within 3 orders of accuracy of the best parameter set for the solver.

Another factor that influences the stability of the solver is the ordering of the matrix.
The effect of different orderings on the stability of the solver can be seen by using the
orderings that were presented in Section 3.6.3. Table 12 shows the relative maximum
norm of the error,
maXlSiSn(I Tcalculated — Tknown |) (17)

maxlSiSn(l Tknown l)

for a subset of the large RUA matrices. The smallest error for each matrix is highlighted.
The solver results are not provided for the Tarjan ordering or for the No H2 ordering
due to the inability of the solver to handle the size of the diagonal blocks for most of the
matrices. The solver was configured to use diagonal casting with @ = 10~° and border
casting with e = 10~8,

As can be seen from this table the solution of different orderings of the same matrix can
vary by up to six orders of magnitude for some matrices and have little effect on others.
This implies that the ordering used in conjunction with the solver can have a significant
effect on the stability of solution of some matrices.

It can also be seen that the effect of the bounded transversal on the stability of the
matrices is considerable. For nine of the thirteen matrices the unbounded transversal
resulted in the largest relative error in the solution. Of the other four matrices, the
solutions of two resulted in the same error regardless of the ordering, and in the remaining

error =
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Matrix Hybrid H2 | No HO { Nored
gaff1104 9E-06 | .2E-05 1E-03 | .1E-06
gematl12 .6E-07 { .3E-08 1E-07 1 .3E-07
gre_1107 1E-05 | .8E-06 .2E-04 | .5E-08
mahistlh .2E-08 | .2E-08 | .9E-07 | .1E-07
orsirr.1 JAE-12 | .1E-12 | .6E-13 | .5E-12
orsreg.-1 1E-12 | \1E-12 | .1E-12 | .1E-12
pores_2 3E-05 | 4E-06 | .2E-04 | .5E-08
saylr4 .1E-10 | .1E-10 | .1E-10 | .1E-10
shermanl 1E-12 | 4E-13 | .1E-12| .1E-12
sherman4 A1E-13 | .2E-13 | .2E-14 | .1E-13
shermanb .2E-08 | .8E-08 .1E-04 | .3E-10
west1505 2E-05 | .2E-06 3E-03 | .1E-06
west2021 5E-06 | .7TE-06 | .1E-06 | .2E-07

Table 12: Maximum Norm of the Relative Error for the Large RUA Matrices Using
Different Orderings

two the error was one order of magnitude better than the other orderings. These results
support the use of the bounded transversal in the ordering to improve the stability of the
solver.

Further tests were conducted to examine the relationship between casting and the
bounded transversal. In these tests, a set of matrices were ordered with and without
the bounded transversal. The two orderings were then solved with and without casting.
The casting methods used within the solver were the same as the previous test. Table 13
contains the results.

The results show that the effects of casting and the bounded transversal are different
for different matrices. For matrices such as orsirr.1, orsreg.1, saylr, shermanil, and
shermany, roughly the same results are achieved regardless of use of the transversal or
casting. For sherman5 and west1505, however, the solutions of the bounded orderings are
the same regardless of the casting, and better than the unbounded transversal case, with
or without casting. In contrast, mahistlh and west2021 show much better stability with
casting than without, but the transversal has little effect on these matrices. And gemat12
provides better results as long as either casting or the bounded transversal is used. These
comparisons show that, in practice, in order to provide the best stability for a wide range
of sparse matrices both techniques should be used.

The stability results so far have compared different versions of the solver to indicate
when the stability of the solver has improved. However, it is also important to compare
the solver against other known solvers. For these comparisons the solver MA28, [Duf77],
was chosen and 80 matrices were solved. MA28 was run with the stability factor (u) at
1.0 (the most stable value) and with a value of 0.1 (which is less stable but allows better
control of fill-in). MCSPARSE was run with the diagonal casting (@ = 1075) and border
casting (¢ = 1078). Table 14 compares the relative stability of the two solvers, showing the
increase in the stability of MCSPARSE over MA28 for the RUA test matrices. The different
columns indicate the difference in the order of the relative errors between the two solvers.
If the MCSPARSE solver had a relative error of 10-1° and if the MA28 solver had a relative
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Matrix With Casting Without Casting

Matrix Bounded | Unbounded | Bounded | Unbounded
gaff1104 .9E-06 .1E-03 .6E-06 4E-05
gematl2 .6E-07 1E-07 2E-07 .1E-05
gre_1107 .1E-05 2E-04 BE-05 SE-04
mahistlh .2E-08 9E-07 1E-01 .2E-01
orsirr_1 1E-12 .6E-13 1E-11 AE-12
orsreg_1 AE-12 AE-12 A1E-12 AE-12
pores.2 .3E-05 2E-04 SE-12 .1E-03
saylr4 1E-10 .1E-10 1E-10 .1E-10
shermanl 1E-12 1E-12 1E-12 1E-12
sherman4 .1E-13 2E-14 .6E-14 2E-13
sherman5 .2E-08 .1E-04 .6E-08 AE+10
west1505 2E-05 3E-03 S5E-05 4E-03
west 2021 .5E-06 .1E-06 | .8E401 .2E+00

Table 13: Maximum Norm of the Relative Error for the Large RUA Matrices Comparing
the Bounded Transversal and Casting

Stability [ > +3 [ +3 | +2 | +1] 0] -1] -2|-3| < —3
u=1.0 2| 2| 3| 4|20[14]11] 8 16
u=0.1 4] 1] 6| 721|121 5 13

Table 14: Casting Stability Compared to MA28

error of 10~3 then this would be considered an improvement of +2 orders of magnitude.
Table 15 compares the stability for only fourteen of the large RUA matrices.

It can be seen that the two solvers MA28 and MCSPARSE are comparable with respect
to relative error achieved. The table for all the matrices shows that for 64% of the matrices
the difference between the solvers is within two orders of magnitude and for 78% of the
matrices the difference between the solvers is within three orders of magnitude. When only
looking at the large matrices the numbers are similar, for 50% of the matrices the difference
between the solvers is within two orders of magnitude and for 79% of the matrices the
difference between the solvers in within three orders of magnitude. Another factor in the
comparison of the stability results is the nondeterminism of border casting.!

6.2 Fillin Results

To determine if the modified Markowitz count was successful in reducing the amount
of fill-in a number of tests were run using the RUA matrices from the Harwell-Boeing
test collection. This section presents the results from the tests conducted with the large
matrices (the matrices with at least 1,000 rows). The number of rows in the matrices and
the original number of elements in the matrices can be found in Table 1.

The tests were conducted by altering the choice of the values outside the diagonal block
which are included in the modified Markowitz count. The following tests were conducted.

'The nondeterminism arises from the use of S blocks and the implementation choice of updating in
parallel multiple rows of a border block with the same diagonal block
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Matrix MCSPARSE MA28
©u=10]|u=0.1
gaff1104 9E-06 | .5E-06 | .4E-06
gemat12 3E-07 | .5E-10 | .1E-09
gre 1107 3E-05| .4E-08 | .6E-06
mahistlh .1E-08 | .1E-12 | .1E-12
orsirr_1 JA1E-12 | 4E-12 | 9E-12
orsreg.1 JAE-12 | 4E-12 | A4E-11
pores_2 2E-05 | .1E-09 | .1E-09
saylrd 1E-10 | .2E-10| .8E-10
shermant1 AE-12 7 9E-13 | .1E-11
sherman2 .1E4+01 | .6E-08 | .7E-06
sherman4 7E-14 | .7E-14} .1E-10
sherman5 4E-09 | .2E-12{ .2E-09
west1505 3E-05 | .1E-07 | .5E-08
west2021 S5E-05 | .4E-08 | .3E-08
Table 15: Stability Comparison Between MCSPARSE and MA28
Test row.mult | ofactor | col.mult | bfactor
Both 1.0 1.0 1.0 1.0
Row 1.0 1.0 0.0 1.0
Column 0.0 1.0 1.0 1.0
Neither 0.0 1.0 0.0 1.0

Table 16: Parameters for Sparsity Testing

Both This tests include both the off-diagonal row counts and the border column counts
in the modified Markowitz count.

Row This test only included the off-diagonal row counts in the modified Markowitz count.

Column This test only included the border column counts in the modified Markowitz
count.

Neither This test used neither the border column counts or the off-diagonal row counts.
The Markowitz count was calculated from the elements within the diagonal block.

The parameter values used for the tests are in Table 16. The number of fill-in elements
from the tests are in Table 17. This table also contains two other columns. The MA28
column indicates the number of fill-in elements generated by MA 28 with the stability factor
(u) at 1.0 and at 0.1. The No Control column indicates the number of fill-in elements
MCSPARSE generated when operating without any fill-in control.

Clearly, the use of some sort of fill-in control is crucial for MCSPARSE. As expected,
MA28 almost always produces less fill-in than MCSPARSE due to its more global pivot
search. However, MCSPARSE benefits from a localization of the fill-in which allows for a
more efficient exploitation of available storage (due to selected use of dense structures) so

that the cost of the extra work created by fill-in is significantly reduced. This can be seen
in the experimental results of Section 6.
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Matrix MA28 No Control Both Row | Column | Neither
u=10|u=0.1
gaff1104 57626 62450 107407 | 91524 | 94317 88257 92268
gemat12 27374 18526 661352 | 132291 | 125124 | 133917 | 125418
gre_1107 39706 | 37411 246047 | 198616 | 194791 | 198745 | 199749
mahistlh 4624 2729 39490 | 21350 | 20076 21677 20771
orsirr_1 80683 | 44957 143431 | 81700 94703 | 101511 | 108215
orsreg-1 310517 | 136528 266218 | 240348 | 230888 | 219794 | 220971
pores_2 28545 29149 128724 | 61500 | 57870 62558 62239
saylr4 288438 | 451305 686714 | 533654 | 533351 | 461879 | 510048
shermanl 14860 20262 35440 | 24456 | 23241 22428 24158
sherman?2 | 258300 | 241186 354402 | 320374 | 318746 | 316680 | 322516
sherman4 10756 18571 25502 18190 16351 18405 17078
sherman5 | 191177 | 131962 342410 | 195123 | 207527 | 208106 | 199759
west1505 3380 2664 51096 | 23652 | 20251 24766 | 22069
west2021 3944 3530 78052 | 32534 | 31764 31680 32375

Table 17: Fill Elements for Large RUA Matrices

6.3 Results of load balancing experiments

This section presents some results of load balancing experiments on a Cedar configuration
of four clusters with two processors per cluster. For such tests, it is necessary augment
the results on the large reordered Harwell-Boeing matrices with results on parameterized
expansions of these matrices. This is due to the fact that many of the Harwell-Boeing
matrices are too small to warrant a multicluster version of MCSPARSE. The expansions of
the reordered matrices are obtained via a simple repetition strategy which preserves the
bordered block upper triangular structure. For example, the fourth expansion of bp_800
consists of four repetitions of the diagonal blocks along the diagonal followed by four
repetitions of the border diagonal block. This includes four sections of the border rows
and off-diagonal rows. Elements are also added at an average of five per row to each of
the off-diagonal rows. This can be seen in Figure 17. The A block represents the diagonal
blocks and part of the off-diagonal rows. The B block represents the off-diagonal portion
of the border rows. The C block represents the off-diagonal columns with the border
diagonal block. And the D block represents the border diagonal block. The area filled

with the dashed lines indicates where the random fill-in elements were placed during the
expansion.

6.3.1 Block Size Results

The effect of the partitioned diagonal block size (the new blocks formed, at the start of
the factorization, by regrouping the diagonal blocks that result from H*), when using the
interleaved static load balancing scheme, can be seen in Figure 18. This graph shows the
wall clock time to solve the fourth expansion of the bp_800 as a function of the minimal
diagonal block size. When the partitioned diagonal block size is too small, the number of
diagonal blocks is very large and the overall amount of time to solve the matrix increases.
However, when the diagonal block size is too large the number of blocks is very small and
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Figure 17: Fourth Expansion of bp_800
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Matrix One | Interleaved Even | Even

Cluster Parallel | Work
bp_800 1.40 2.80 2771 3.03
gematl2 33.17 21.70 21.04 | 22.47
saylrd 62.10 40.90 38.19 | 45.14
sherman2 58.58 32.32 30.22 | 39.20
shermanb 41.80 22.33 20.97 | 29.21
west1505 4.21 4.28 4521 4.99
west2021 4.94 5.08 4.86 5.33

Table 18: Static Load Balance Solution Times

again the overall amount of time to solve the matrix increases due to a loss of parallelism.

The effect of the partitioned border block size (the border blocks formed by the solver
regrouping the border blocks from the ordering) can be seen in Figure 19. This graph
shows the wall clock time to solve the sixth expansion of bp-800 as a function of the
maximal border block size. As the border block size increases, the time to solve the
system also increases. Of course, decreasing the partitioned border block to very small
sizes causes an increase in execution time as well due to increased overhead of intercluster
synchronization.

6.3.2 Static Load Balance Results

This section compares the static load balancing schemes. The three experiments were as
follows:

Interleaved The application of the interleaved load balance algorithm.
Even Parallel The application of the even division of parallel work algorithm.
Even Work The application of the even division of work algorithm.

Table 18 presents the wall clock times for the solutions of the matrices using the
different load balancing algorithms. The one cluster wall clock times are also provided.

These results show that the even division of parallel work is slightly better than the
interleaved version, which are both much better than the version with the even division
of work. The results show that for all but one of the example matrices the even division
of parallel work provides the best performance. For the other matrix, west1505, the inter-
leaved version actually provides better performance. The results show that the interleaved
scheme is on average 3.43% slower than the even division of parallel work scheme. The even
division of work scheme, however, is clearly the worst overall with performance 17.64%
slower than the even division of parallel work scheme. This table also demonstrates the
problem with the Harwell-Boeing matrices on a multicluster Cedar. The matrices gemat12
and sherman5 are the only ones large enough to show improved performance on multiple
clusters relative to a single cluster. Based on these results, the default static scheme chosen
for MCSPARSE is taken to be the even division of parallel work scheme.
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Matrix Interleaved Even Even

Parallel Work

NoS | WithS | NoS | WithS | No S With S
gematl2 | 21.70 20.53 | 21.04 18.77 | 22.47 20.98
saylr4 40.90 40.80 | 38.19 37.46 | 45.14 45.41
sherman2 | 32.32 32.33 | 30.22 30.11 | 39.20 39.30
sherman5 | 22.33 18.52 | 20.97 19.00 | 29.21 23.40
west1505 4.28 4.30 | 4.52 452 | 4.99 5.09
west2021 5.08 4.54 | 4.86 489 | 5.33 5.30

Table 19: Dynamic Load Balance Solution Time Comparisons

6.3.3 Dynamic Load Balance Results

The third expansion of the shermand matrix was used to investigate the effect of using
S blocks to enhance the performance of the static scheme. The speedup of MCSPARSE on
four clusters over MCSPARSE on one cluster as a function of the number of S blocks is
presented in Figure 20. It is seen that as the number of S blocks increases the speed up
of the solver improves. However, after some point the addition of more § blocks decreases
performance due to the fact that a more significant amount of intercluster synchronization
and data movement is required.

The wall clock times for the solution, with and without S blocks, of the large Harwell-
Boeing matrices used for the evaluation of the static load balancing schemes are shown in
Table 19. (see Section 6.3.2). These results were collected without fine tuning the number
of S blocks to achieve the best performance as was done in the previous test. A default
value of five S blocks was used for all matrices. Even without tuning performance im-
provements were achieved for almost all the matrices. As expected, the improvements were
the most significant for the matrices shermans, which resulted in an average performance

increase of 15.45%, and gemat12, which resulted in an average performance increase of
7.61%.

6.4 Cedar Performance Results

This section contains the performance results for MCSPARSE collected on a four cluster
Cedar configuration, with each cluster comprising four processors. The times given in this
section are wall clock times, in seconds, for the code running in single user mode.

As mentioned in the previous section, the size of the system to be solved has to
be fairly large in order to reduce the overhead associated with the exploitation of large
grain parallelism to an acceptable level. So, only the large sized Harwell-Boeing matrices
gemat12, saylrf and shermans, together with the seventh to ninth expansion of bp_800
were used to obtain performance measurements on the Cedar system. The results for these
systems are summarized in Table 20.

This table shows clearly that as the size of the system increases, e.g., the seventh
through the ninth expansion of bp_800, the speedup increases accordingly. It should be
noted that for the eight and the ninth expansion the speedup for two clusters is superlinear,
2.4 and 2.7 respectively. This is caused by the fact that, when these systems were solved
on one cluster, the data space required was larger than the cluster memory on one cluster,
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Matrix 1 Cluster 2 Cluster 4 Cluster

Wall Time | Wall Time | Speed Up | Wall Time Speed Up
bp-800.7 48.919 33.213 1.47 27.523 1.78
bp-800.8 98.175 40.967 2.40 34.848 2.82
bp-800.9 137.076 50.844 2.70 43.802 3.13
gemat12 36.434 17.819 2.04 17.947 2.03
saylrd 42.390 35.279 1.20 31.629 1.34
sherman3 37.054 26.265 1.41 25.106 1.48

Table 20: Solution Time for Large Matrices

which resulted in a significant number of page faults. When the systems were spread
across more than one cluster, the cluster data space required was satisfied by the available
cluster memory, the number of page faults decreased, and the super-linear speed up was
obtained.

6.5 Alliant FX/80 Performance Results and MA28 Comparisons

In this section we give performance results for MCSPARSE on the Alliant FX/80, and
compare its effectiveness against a known sequential sparse solver, MA28 [Duf77].

The solution times of the large matrices from the RUA collection for both the Mc-
SPARSE and MA28 solvers are presented in Table 21. This table contains the user process
times for the solutions as collected in single-user mode on the Alliant FX/80. The times
for the MCSPARSE solver are presented for both one and eight processor runs.

When comparing the solution times for MCSPARSE against MA28, it is necessary to
include the ordering time for the matrix along with the solution time. The columns
labeled as Total contain the sum of the ordering time and the solution time. For MA28
the solution times are presented for two stability constraints, v = 1.0 and u = 0.1. The
single time presented for each MA28 run contains both the ordering and solution time.

This table shows that, although MCSPARSE was not specifically designed to run effi-
ciently on an Alliant FX/80, the speedup obtained for eight processors over one processor
is significant. The Alliant FX/80 is a tightly coupled multiprocessor compared to the
Cedar architecture for which MCSPARSE was intended. These results clearly indicate that
the large and medium grain parallelism exploited by MCSPARSE does not entail an unnec-
essary amount of overhead or mismatch in load balance that would prevent reasonable
performance on a tightly coupled architecture. Second, it can be observed that the time
for performing the ordering H* is less than the time needed for factoring and solving the
system, though still proportional to the latter one. It should be noted, however, that the
ordering was performed on one processor. The ordering time could be reduced significantly
via a parallel implementation, which should be easy realizable due to the recursive nature
of H*. The comparison with MA28 shows that the performance improvement can vary
considerably, but is substantial, e.g., a factor of 75 for orsreg_1 using u = 1. The eight
processor version of MA28 was produced via a restructuring compiler so there is clearly
room for improvement in its performance. Nevertheless, the superiority of MCSPARSE is
often large enough to indicate any performance increase via a redesign of MA28 to apply
parallel pivots might still fall short. In any case, MCSPARSE often compares favorably with
such a parallel pivots code for unsymmetric systems. The interested reader should see
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Matrix Hybrid | McsPARSE 1CE | MCSPARSE 8CE MA28
Reorder | Solution | Total | Solution Total | u=1.0| u=0.1
gaff1104 2.634 23.864 | 26.498 5803 | 8.437 | 50.714 | 85.148
gemat12 6.407 44.194 | 50.601 10.640 | 17.047 | 67.127 | 15.600
gre_1107 3.345 23.196 | 26.541 5567 | 8.912| 38.975| 27.695
mahistlth 3.995 4.362 | 8.357 1.317 | 5.312 5.269 4.404
orsirr_1 1.698 11.305 | 13.003 3624 | 5.322| 94.902 | 23.622
orsreg-1 4.219 31.244 | 35.463 7.820 | 12.039 | 898.284 | 99.724
pores_2 4.933 9.474 | 14.407 3.007 | 7.940 | 28.889 | 27.777
saylr4 6.833 84.743 | 91.576 21.736 | 28.569 | 256.879 | 962.375

shermanl 0.973 2.948 | 3.921 1.026 | 1.999 5.653 | 11.466
sherman4 0.797 3.139 | 3.936 1.022 | 1.819 3.660 § 10.737
shermanb 5.036 60.838 | 65.874 13.118 | 18.154 | 705.007 | 284.739
west1505 8.814 4,937 | 13.751 1.340 | 10.154 7.940 6.385
west2021 14.657 5.405 | 20.062 1.668 | 16.352 | 13.206 | 11.117

Table 21: Solution Time Comparison Between MCSPARSE and MA28
[GSZ91] for the performance of the unsymmetric sparse code Y12M2.

7 Conclusions

A parallel solver for unsymmetric linear systems of equations, MCSPARSE, Was introduced,
which combines different granularities of parallelism. One of the main concerns addressed
by MCSPARSE is the maintaining of stability and sparsity at acceptable levels while allowing
large grain parallelism to be exploited. This is achieved by the use of a novel ordering
technique H* combined with a new technique, casting, which provides a mean to discard
the application of unstable pivots during the factorization. This enables MCSPARSE to
obtain stable factorizations which are comparable to standard factorization routines, such
as that employed in MA28. '

The H* ordering combines four different orderings, HO, Tarjan’s algorithm for finding
strongly connected components, H1 and H2, to transform a matrix into bordered block
upper triangular form. Except for the HO ordering all of these orderings are symmetric,
which distinguishes this ordering from other tearing techniques. The effectiveness of the
H* ordering, in terms of producing small borders and for improving the stability of the
factorization, has been demonstrated.

Casting has been described for general matrices and for the bordered block upper
triangular form produced by H*. For the latter matrices, casting maintains stability by
using numerical information gathered during the factorization to adjust the diagonal blocks
and the border produced by H*. The particular implementation of diagonal block and
border block casting used in MCSPARSE has been described and evaluated by comparison
with MA28.

Multiple levels of parallelism are present and exploitable in MCSPARSE: very large-
grain parallelism with several diagonal block factorizations and border block updates per
cluster of processors; large-grain parallelism within a cluster when factoring a diagonal
block per processor; medium-grain parallelism when using the processors in one cluster to
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factor a single diagonal block or update a single border block; and fine-grain vectorization
used within each processor. Experiments investigating the performance of MCSPARSE
on both a tightly coupled multivector processor, an Alliant FX/80, and a more loosely
coupled cluster-based architecture, a four cluster Cedar, have been reported and show the
algorithm’s effectiveness.

There are several avenues of investigation left to pursue with respect to MCSPARSE. A
parallel implementation of the H* ordering would improve further the overall performance
of MCSPARSE. The code could be adapted to map its multilevel parallelism onto other
multivector processors and to exploit their architectures efficiently. Initial results, [Wan91],
indicate that MCSPARSE can be adapted to use a combination of positional dropping,
i.e., ignoring a fill-in element due to its position in the matrix, and numerical dropping,
i.e., ignoring a fill-in element because of its relative magnitude [GSZ90Db, GSZ90a], to
produce a preconditioner for conjugate gradient-like algorithms. Finally, the techniques
used in MCSPARSE should be considered for use with more conventional approaches to
solving systems with tearing techniques, e.g., exploiting the Sherman-Morrison-Woodbury
formula.
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