A Protocol Scheme for a Class of
Minimum Delay Routing Algorithms

Petra J.M. van Haaften

RUU-CS-91-43
November 1991

Utrecht University

0 So
5 (2 Department of Computer Science
% Y Padualaan 14, P.0. Box 80.089,

U sY 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31- 30 - 531454

A Protocol Scheme for a Class of
Minimum Delay Routing Algorithms

Petra J.M. van Haaften

Technical Report RUU-CS-91-43
November 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

A Protocol Scheme for a Class of Minimum Delay Routing
Algorithms *

Petra J.M. van Haaften

Department of Computer Science, Utrecht University
P.0.Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

In this report protocols and proofs of correctness are given for a class of minimum
delay routing algorithms. The class of routing algorithms is described by the iteration

gt =gk+agh, i=1,.,N-1

where for each i ¢; is the routing vector at node i and the vector A¢k is a solution to
the following problem:

minimise §TA¢; + L A$TM;Ag;

subject to ¢¥ + A¢; > 0,3, Adu = 0, Agu(t) = 0 for 1 € BX(t).
The class was proposed by Bertsekas in [Bert78] and discussed in [Gaf79], [BGG82],
and [BGG84).

In this report a general scheme is given for the protocols which provide a dis-
tributed implementation of the algorithms that belong to the described class. A proof
scheme for these protocols is given. Example algorithms are given; for each algorithm,
a protocol that implements the algorithm is shown and a correctness proof for the
protocol is given. As far as we know, correct protocols and proofs for the example
algorithms were not presented before.

*This work was partly supported by the ESPRIT Basic Research Actions of the EC under contract no.
3075 (project ALCOM).

1 Imntroduction

In this report a general protocol scheme is presented for a class of minimum delay routing
algorithms for use in computer networks. The algorithms are meant for quasi static
routing, which means that they can be used in an environment in which bursts of changes
occur, followed by a relative long period in which no changes occur. From the protocol
scheme a protocol skeleton, as defined in [Sch91], can be derived for each algorithm in the
class. In the context of this report, an algorithm is an iteration for computing the optimal
routing vectors at the nodes, together with the additional formulas for the computation
of the variables that occur in the iteration. Such an algorithm does not describe the
computation of an iteration value in a distributed environment. A protocol is needed that
does describe this distributed computation: this protocol must control the communication
between the processors in the network and make sure that the actual values are computed
by each processor. Protocols that perform this task can be deduced easily from the general
protocol scheme presented in this report.

The class of algorithms considered in this report was proposed by Bertsekas and dis-
cussed by Bertsekas, Gafni, and Gallager in their report [BGG82], which also appeared as
a paper ([BGG84]). Whereas [BGG82] analyses the mathematical properties of conver-
gence for the algorithms from the class, it did not actually present distributed algorithms
for it. The sequential algorithms from the class presented in [BGG82] compute routing
vectors ¢;(t) for each destination t. These vectors denote the fractions of flow that node i
must send over each of its outgoing links. The algorithms derive from sequential quadratic
programming methods and iteratively update the routing vectors towards a situation in
which the total delay in the network is minimal. Each algorithm in the class can be
described by the iteration

Pt =gk + Agk, i=1,..,N-1
where the vector AgK is a solution to the problem:
minimise §TA; + AT MiA¢;
subject to ¢X + Adi > 0,3, Adi = 0, Agu(t) = 0 for 1 € BE(t).

Sequential quadratic programming (SQP) methods are regarded as the most effective to
solve constrained optimisation problems of the form: minimise;cp. D1(f) subject to c(f)
> 0. The function D1, minimised by the algorithms described here, denotes the expected
number of messages/sec being transmitted times the expected delay per message. Dt
depends on the current flow f. Minimising DT minimises the expected delay per message,
as the message arrival rate is independent of the routing algorithm.

SQP methods iteratively update the vector ¢; with a ‘search direction’ A¢gk that solves
the subproblem: minimise,4cpa gf Ad + %A¢THkA¢. This search direction is subject to
some restrictions. In the formula defining the subproblem, the matrix Hy is an approxima-
tion of the Hessian of the Lagrangian function. The Lagrangian function is a well-known
function, used in many optimisation methods. The Hessian matrix for a certain function
is the matrix containing the second order partial derivatives of this function. As these
derivatives are often hard to compute, an approximation of the Hessian is used. The
approximation is dependent of the algorithm under consideration. In the formula given
before, which describes the class of algorithms, Hy is replaced by a matrix M multiplied by
a factor t;/a. Further, g denotes the marginal link delay: the increase in Dt that results
from an increase in the incoming traffic. The restrictions made are very straightforward:

the amount of flow over any link must never become negative and the total amount of
outgoing flow of each node should remain constant. The restriction that A¢;(t) = 0 for 1
€ Bk(t) is included to prevent loops and will be discussed later.

The scaling factor a is necessary to prevent divergence when the starting value is far
from optimal. Its value is constant during the execution of the algorithm, but may differ
for each algorithm. Therefore the determination of its value must be considered. This is
not an easy task: a scaling factor that is too small will result in slow convergence, but when
a scaling factor is too large, the algorithm may not converge at all. For a moderately large
scaling factor convergence can be proven, but large initial oscillations in the mean delay
may occur. Instead of a ‘general’ scaling factor a, it may be possible to use a different
scaling factor ajy for each link (i,k). A detailed analysis of the effect of the choice of a on
the objective function can be found in [CAT90].

More mathematical background on SQP-methods in general can be found in [GMSW88]
and more specifically on minimum delay routing methods in [BG87], [Sik86], [BGG84],
[Gal77] and [Bert79].

The following list gives the variables used in the description of the class considered in
this report. All variables are defined with respect to the routing vector ¢. The definitions
equal the ones used in [BGG84] and [Gal77), but note that different definitions may occur
in the literature on this subject as well.

L = the set of links in the network.
ti(t) = the expected traffic in bits/sec at node i with destination t.
t; = the expected traffic in bits/sec at node i.

#ik(t) - = the fraction of the flow t;(t) that is routed over link (i,k).
This fraction is 0 if link (i,k) does not exist.

#i(t) = the vector [¢;1(t), ..., din-1(t)].

#(t) = the vector [¢y(t), ..., dn-1(t)]-

Adix(t) = the update of ¢y (t).

rj(t) = the expected traffic in bits/sec entering the network at node i with destination
t.
f; = the expected traffic ("flow”) in bits/sec on link (i,k).

Dik(fix) = the expected number of messages/sec under transmission in link (i k)
times the expected delay per message.

D (fi) = L)

ik
Dt = ¥ (i,x) Dik(fix), the total delay minimised by this algorithm.
Barl?(% = the marginal delay of messages from node i with destination t.

This is also called the incremental delay, as it denotes the cost in terms of
the increase in Dt as a result of an increase in the incoming traffic.
6i(t) =Di + %, the marginal link delay in link (i,k) with respect to destination t.
6i(t) = the vector [§i1(t), ..., Gin-1(t)).
Bi(t) = the set of nodes k that are blocked at i for destination t.
The notion of blocked nodes will be explained later.
a = a scaling parameter for the algorithm under consideration.

The value of the computed flow variable ¢ is defined to be optimal when it lies within
acceptable bounds from the value that minimises the total delay D in the network. The
computation of ¢¥*? as described above is iterated for k — oo until the value of & is

optimal. In every iteration a new value for the routing variable ¢ is computed.

In the distributed computation of the routing vectors, processor i computes ¢;. For
this computation i needs data from other processors. How the communication between
the processors and the computation of the variables take place is described below.

The value of grL.)(%)' is needed for two purposes in the general protocol scheme. gr%{j

occurs in Mj and so its value is needed in the computation of Ad)}‘. Its value is also needed
in the computation of B;(t). In the general protocol scheme gFl.)&)‘ is denoted by MD(i,j)

and is computed according to the following scheme from [Gal77):

(1) wait until MD(k,j) is received from each downstream neighbour k # j,
(2) compute MD(i,j) = 55 ¢u(j) [Dj(fa)+ MD(k,j)],
(3) broadcast MD(i,j).

D (fix) and D{j(fic) can be computed from Dj(fi) but, because it is difficult to compute
Dix(fix), it is preferable to estimate its derivatives directly. This estimation can be made
on-line, for example by using the perturbation analysis method described in [CAT90).

The routing vectors that result from the algorithm should be updated in such a way
that they remain loop free. The ordering imposed on the nodes by the marginal delays MD
should be consistent with the downstream partial ordering: a downstream node must have
a smaller marginal delay. Routing variable @in(t) is improper if ¢m(t) > 0 and MD(1,t)
< MD(m,t). To prevent the occurrence of improper variables the notion of blocked nodes
is introduced.

Definition 1.1 A node i is defined to be blocked relative to destination t if i has a path
to t containing some link (1,m) for which @y,(t) is improper.

This definition originates from [Gal77]. In Gallager’s algorithm the set B(i,t) is used,
which is defined as the set of nodes k that are blocked relative to destination t and have
¢ix(t) = 0. The computation of this set, presented in [Gal77], is as follows:

Each node 1 determines for all neighbours m that are downstream for t whether ¢(t)
is improper. If any of these neighbours satisfies this condition, 1 adds a tag to its broadcast
message containing MD(L,t), that is sent in step 3 of the scheme for the computation of
MD given above. Node | also tags its messages sent in step 3 if it receives a tagged message
containing MD(m,t) from a downstream neighbour m. Now B(i,t) is the set of nodes 1
from which node i received a tagged message for destination t.

In Section 2 a general scheme is given for protocols which provide distributed imple-
mentations of all algorithms that belong to the considered class. The relation between
this scheme and the class of algorithms is described in Section 2.2. In the protocol scheme
a notation is used that differs from the notation used in this introduction. This notation
is introduced to distinguish the variables used in the protocol scheme from the variables
of the algorithms. A list of the variables used in the general protocol scheme is given in
Section 2.1. A protocol for a particular algorithm can be obtained by refining the general
protocol scheme. This refinement is described in Section 2.2. A proof scheme for proving
the correctness of such refinements is given in Section 3.

In Sections 4 and 5 example algorithms are given. For each algorithm a protocol
that implements the algorithm is shown and correctness proofs for these protocols are
given. The relation between the algorithms and the protocols, and especially between
the variables used in the algorithms and those used in the protocols, is made explicit

4

here. Section 4 describes a protocol for Gallager’s minimum delay routing algorithm from
[Gal77); Section 5 describes a second derivative algorithm originating from [BGG84].

2 The General Protocol Scheme

In Section 2.2 a general protocol scheme is given from which a protocol skeleton can
be derived for each algorithm in the class described in the introduction. For clarity an
overview of the variables used in this scheme is given in Section 2.1.

2.1 A List of Variables

Below the meaning of every variable used in the protocol scheme of Section 2.2 is given.

R(i) a bit that denotes whether node i is involved in a round of the

computation.

traf(i,t) = the amount of traffic in node i with destination t.

traf(i) = the amount of traffic in node i.

#(i,b,t) = a routing variable in node i, which denotes the fraction of traf(i,t)
that must be sent over link (i,b).

F(i,b,t) = the flow with destination t over link (i,b) in bits/sec.

F(i,b) = the flow over link (i,b) in bits/sec.

input(i,t) = the amount of input at node i with destination t.

input(i) = the amount of input at node i.

D(i,b) = the total delay of messages on (i,b) as a function of the flow. The flow
parameter F(i,b) is left out in the parameter list.

Dt = the total delay of all messages in the network, 3-(;1,) D(i,b).

MD(,t) = 31%&.1-(?)" the marginal delay of messages from i with destination t.

B(i,t) = a bit that denotes whether node i is blocked for destination t.

MDTAB(i,b,t) = a table in node i containing values [MD(b,t),B(b,t)] for each neighbour b.

MDQUE = a queue used to store messages sent by a node executing round k that
node i receives while it is executing some round k’ < k. The queued
messages are handled when i executes round k himself.

DATA(i,t) = the data necessary for the computation of Ag(i,t).
DD(i,t) = the data necessary for the computation of DATA(i,t).
DF(DATA) = a function used to compute the update A¢.
DATA, DD, and DF are dependent on the algorithm under
consideration.
8(i,b,t) = D{, + MD(b,t).
@ = the scaling factor for the iteration.

Note the difference with the variables in the algorithm where, in particular, B(i,t) is a set.

This set corresponds to the set of B(i,t)’s of the protocol with value 1. The bit notation
is chosen for efficiency, as sending a bit is preferred to sending a set.

2.2 The Protocol Skeleton

The general protocol scheme is described by a protocol skeleton for a node i and a des-
tination t. When the word downstream is used in the protocol skeleton, ‘downstream

for destination t’ is meant. Each node i uses the same protocol skeleton. The protocol
skeleton consists of actions and operations. An action can be executed when its guard
evaluates to true. A node can execute at most one action at a time. An operation is a
computation of a value and is executed within an action. The use of operations makes the
skeleton easier to understand and makes it easier to reason about the computations.

The general scheme was modeled after a protocol for Gallager’s minimum delay routing
algorithm (which can be found in [Gal77]), as presented by Siksma in [Sik86].

The protocol scheme works in rounds. Every time a round is finished and the value of
the routing variable ¢ is not optimal, a new round is started. A round can be started by
any node that is not involved in a round and that detects that the value of ¢ is not optimal.
Rounds are initiated in Action Init. As an effect of Action Init, all nodes are activated
and each node executes Action RecMD for each neighbour-destination pair (b,t). In each
round one iteration of the computation of ¢ is executed and all nodes are involved in this
computation. It will be proven in Section 3 that a node can be no more than 1 round
ahead of any other node. So a node can receive messages from the current and from the
next round. The messages originating from the next round are stored in a queue named
MDQUE. Before a node starts a new round, it handles all messages stored in MDQUE
without any interruption.

¢ is computed in Operation CompFlow, which corresponds to the original algorithm.
The subroutines necessary for the computation of the values of the used variables are
Operations CompDD, CompData, CompMD, and CompB. In Operation CompData the
value of DATA(i,t) is computed. This value is necessary in the computation of the new
value for ¢. For the computation of DATA(i,t) DD(i,t) is needed. DD(i,t) can be computed
from data received from downstream neighbours; this computation is executed in Oper-
ation CompDD. In Operation CompMD, MD(i,t) is computed according to the scheme
given in the introduction. The set of blocked nodes is computed in Operation CompB.
The protocol scheme is shown below and continued on the next two pages.

From the general protocol scheme, protocols that implement particular algorithms can
be derived. Any such protocol is a refinement of the general protocol scheme in which
Operations CompDD and CompData and function DF(DATA) are specified. DF(DATA)
describes the iteration used to compute ¢ in a particular algorithm implemented by a
refined protocol. DATA(],t) is the set of data necessary in the iteration.

General Protocol Scheme
%First the operations are specified, then the actions.%

Operation CompDD
%node i computes DD(i,t)%
(1) compute DD(i,t) from the DD(b,t) sets received from the downstream neighbours b of i

Operation CompData
%node i computes DATA(i,t)%
(1) compute DATA(i,t) with data received from the downstream neighbours of i

General Protocol Scheme (Continued)

Operation CompMD
%node i computes MD(i,t)%
(1) MD(i,t) := 0;
(2) FOR all neighbours b of t with ¢(i,b,t) > 0
DO MD(j,t) := MD(i,t) + #(i,b,t)-[D’(i,b) + MD(b,t)]

Operation CompB
%node i computes B(i,t)%
(1) FOR all neighbours b of i
DO IF ¢(i,b,t) > 0 AND MD(i,t) < MD(b,t)
THEN B(i,t) := 1;
(2) FOR all neighbours b with ¢(i,b,t) > 0
DO B(i,t) := B(i,t) OR B(b,t)

Operation CompFlow
%node i recomputes ¢(i,b,t) for all neighbours b of i and all destinations t%
(1) FOR all destinations t
DO (a) FOR all neighbours b of i with B(b,t) = 1
DO IF ¢(i,b,t) =0
THEN Aé(i,b,t) := 0
ELSE A¢(i,b,t) := —¢(i,b,t);
(b) FOR all neighbours b with B(b,t) # 1
DO A¢(i,b,t) := traf(i,t)-DF(DATA)/a;
(c) FOR all neighbours b of i
DO &(i,b,t) := &(i,b,t) + Ad(i,b,t)

Action Init

Guard: R(i)=0, ¢ is not optimal;

(1) R@) = 1;

(2) send {DD(i,i), MD(i,i), B(i,i)} to all neighbours

General Protocol Scheme (Continued)

Action RecMD
Guard: {DD(b,t), MD(b,t), B(b,t)} can be received ;
(1) IFR@GE) =0
THEN do Action Init;
(2) IF MDTAB(i,b,t) # NIL
THEN MDQUE(,b,t) := {DD(b,t), MD(b,t), B(b,t)}
ELSE (a) MDTAB(j,b,t) := {DD(b,t), MD(b,t), B(b,t)}
(b) IF b is downstream of i for t
AND messages {DD(bj,t), MD(b;,t), B(b;,t)} are received from all
downstream neighbours b; of i
THEN do Operation CompDD;
do Operation CompData;
do Operation CompMD;
do Operation CompB;
send {DD(i,t), MD(i,t), B(i,t)} to all neighbours that are not
downstream of i
(c) TF messages {DD(b;,t), MD(b;,t),B(b;,t)} are received from all
neighbours b; of i
THEN send {DD(i,t), MD(i,t), B(i,t) = 0} to all downstream neighbours
(3) IF messages {DD(b;, tx), MD(b;, tx), B(b;, tx)} are received for all tyx # i from all
neighbours b; of i, and t # i
THEN (a) do Operation CompFlow;
(b) MDTAB(),b;, ti) := NIL for all b; and ty;
(c) R(i) := 0;
(d) IF MDQUE # NIL
THEN handle each value of MDQUE in Action RecMD as if it was
a message that arrives at this moment and set MDQUE to NIL
(Step d is an atomic action.)

3 Structure of a Correctness Proof for the Protocol Scheme

In this section a proof scheme is given for the general protocol scheme presented in the
previous section. From the proof scheme proofs can be derived for protocols which are
refinements of the general protocol scheme. All parts of the proof scheme that can be
proven for the general protocol scheme are given explicitly, parts dependent of the refine-
ment are given without proof and are indicated by an asterisk. The proof scheme is given
for an arbitrary destination t. Many theorems are proven for an arbitrary node i. As the
protocol is completely symmetric, this is sufficient to prove correctness for each node and
destination. Before a proof can be given, a definition of optimality is necessary.

Definition 3.1 A delay constraintis a constraint on the allowed deviation of the minimum
delay caused by ¢.

The following example of a delay constraint for node i is given in [Sik86]:

There is no neighbour b of i with ¢(i,b,t) = 0 and D’(i,b) + MD(b,t) < (D'(i,b’)
+ MD(b’,t)), for any neighbour b’ of i with ¢(i,b’,t) > 0 and there are no
neighbours b and b’ of i with D’(i,b) + MD(b,t) — D’(i,b’) + MD(b’,t) < B,
where B is some previously determined boundary-value.

A delay constraint can impose requirements on the delay to several destinations.

Definition 3.2 A flow ¢ is optimal when ¢ satisfies the chosen delay constraint for each
node i.

The start criterion of the protocol is that the delay constraint evaluates to false for some
node i. (Think of the guard ‘¢ is not optimal’ for Action Init, as ‘the start criterion
evaluates to false’.)

3.1 Assumptions

The first step of the correctness proof states the general assumptions, which are given
below.

Assumption 3.1 Low-level functions work correctly.

Assumption 3.1 implies that no messages are lost.

Assumption 3.2 Channels are FIFO.
Assumption 3.3 The network is connected.
Assumption 3.4 No changes occur during the execution of the protocol.

Assumption 3.4 is realistic, because the protocols are meant to be used for quasi-static
routing. The assumption will be used implicitly in the proof. This assumption is im-
portant, because messages generated in one run of a protocol, should not be received in
another run of the protocol.

3.2 Correctness within One Round

In the second step of the correctness proof we concentrate on the events in one iterative
computation of ¢. In every round a new value for ¢ is computed once. For now we assume
that the data that are used in the round under consideration are the same data that ought
to be used in this round and are not used before. This fact is represented in the proof by
the phrase ‘if the data that node i knows are recent’.

In the proof scheme properties, lemmas, theorems and corollaries are given. Properties
are facts that follow immediately from the program text. Lemmas are used to prove
theorems. In a theorem the correct computation of a variable is claimed. Corollaries
follow directly from a lemma or theorem.

For each variable of importance it is proven that its value is computed only when all the
necessary data are available, that the computation corresponds to the original algorithm
and that this computation is executed correctly. The first variable for which these facts
are proven is MD(i,t).

Property 3.1 A message containing MD(i,t) is sent by node i to nodes that are not
downstream of i only when a message containing MD(b,t) is received from each neighbour
b of i which is downstream for t.

Property 3.2 A message containing MD(i,i) is sent to each neighbour b of i once every
round.

Property 3.3 A message containing MD(i,t) is sent downstream by node i only when a
message containing MD(b,t) is received from each neighbour b of i.

These properties follow directly from the text of Action RecMD of the protocol.

Lemma 3.1 Node i sends {DD(i,t), MD(i,t), B(i,t)} to each neighbour b once every
round.

Proof: {DD(it), MD(i,t), B(i,t)} is sent by i in Action RecMD. Node i sends this
message to his upstream neighbours when it has received messages {DD(b,t), MD(b,t),
B(b,t)} from all its downstream neighbours b (Property 3.1) and he sends it to its
downstream neighbours when messages {DD(b,t), MD(b,t), B(b,t)} are received from
all its neighbours b (Property 3.2). Suppose node i has sent messages {DD(i,t), MD(i,t),
B(i,t)} to its upstream neighbours, but not to its downstream neighbours and a message
{DD(b,t), MD(b,t), B(b,t)} arrives. If this message was sent by a downstream neighbour
b, MDTAB(i,b,t) # NIL and no messages {DD(i,t), MD(i,t), B(i,t)} are sent by node i
to its upstream neighbours. Suppose node i has sent messages {DD(i,t), MD(i,t), B(i,t)}
to all its neighbours and a message {DD(b,t), MD(b,t), B(b,t)} arrives. As messages are
received from all neighbours already, the MDTAB-entry is filled and no messages are sent.
When a new round is started, MDTAB is emptied. o

Corollary 3.1 In each round of the protocol Action RecMD is executed exactly once for
each neighbour-destination pair (b,t).

Property 3.4 MD(i,t) is computed by node i if and only if i has received the value of
MD(b,t) from all neighbours b which are downstream for t.

This property follows directly from the program text of Action RecMD.

Lemma 3.2 When node i starts computing MD(i,t), i has knowledge of all the necessary
data.

Proof: For the computation of MD(i,t) node i needs to know the values of D’(i,b) and
#(i,b,t) for each neighbour b and for each neighbour b with ¢(i,b,t) > 0 it needs MD(b,t).
Node i knows the current value of ¢(i,b,t) and can compute D’(i,b) for each neighbour
b. When i starts computing MD(i,t), it has received MD(b,t) from each downstream
neighbour b, according to Property 3.4. So i has knowledge of all the data it needs. O

Theorem 8.1 If the data that node i knows are recent, then the computation of MD(i,t)

in Operation CompMD is done in a way that corresponds to the computation scheme for
3"%)(% presented in [Gal77], and this computation is executed correctly.

10

Proof: For initiator t MD(t,t) = 3‘?'—‘1?({:)- = 0. Now it suffices to prove that MD(i,t) is
set to %’({l’ in Operation CompMD in Action RecMD when MD(b,t) = 6%&1 for each b
downstream of i for t. %)&’ satisfies the following relation:

dDT . , dDt
el (i, b, t) - [Dfy, + ——=].
ori(t) neighb§nbofi Orp(t)
At the end of Operation CompMD
MD(i,t) = Y 8(i,b, t) - [D'(i, b) + MD(b, t)]

neighbours b with ¢(i,b,t)>0

= > ¢(i,b,t)-[D'(i,b) + MD(b,1)]

neighboursb of i
dDt
= >, #(ibt)-[Dh +]
neighboursb of i 3I‘b(t)
if the value of MD(b, t) is correct for each downstream

neighbour b of i for t
dDr
ar;(t)’

Because of this result and Lemma 3.2, MD(i,t) is computed correctly and corresponds to
aD 0
ari(t) "

The second variable of importance is B(i,t). Facts about the computation of B(i,t) are
given below.

Property 3.5 Each message containing MD(i,t) also contains B(i,t) and DD(i,t), and
vice versa.

Property 8.6 B(i,t) is computed by node i if and only if messages containing B(b,t) are
received by i from all neighbours b of i which are downstream for t.

This property follows directly from the text of Action RecMD.

Lemma 3.3 When node i starts computing B(i,t), i has knowledge of all the data it needs
for the computation of B(i,t).

Proof: To compute B(i,t) i needs the following data: MD(i,t), ¢(i,b,t) for each neighbour
b ofi and D’(i,b), B(b,t), and MD(b,t) for each neighbour b of i with #(i,b,t) > 0. It follows
from the text of Action RecMD that i starts computing B(i,t) directly after computing
MD(,t). D’(i,b) can be computed by i. The current value of #(i,b,t) is known to i.
Property 3.6 states that i received B(b,t) from each downstream neighbour b before it
started the computation. This implies that i also received MD(b,t) from each downstream
b, because of Property 3.5. So i has knowledge of all the data it needs when it starts
computing B(i,t). o

The next fact to prove is that the B(i,t)’s are computed correctly. In the following lemma
Bprot(i,t) is the bit B(i,t) as used in the general protocol scheme and Bag(ist) is the set
B(i,t) as used in the algorithm from [Gal77], which was described in the introduction.

11

Lemma 3.4 { b | Bpri(b,t) = 1 and b is a neighbour of i} = { b | b € Byjg(ist) and b is
a neighbour of i}

Proof: In Operation CompB B(i,t) is set to 1 if there exists a neighbour b of i with
#(i,b,t) > 0, and MD(i,t) < MD(b,t) or B(b,t) = 1.

In the scheme to determine the B;(t)’s described in [Gal77] the following happens:
when node i is blocked for t, i tags the messages containing MD(i,t). Node i decides to
tag its messages if for some downstream neighbour m ¢(i,m,t) is improper and ¢(i,m,t)
> o-[D'(i,m)(F(i,m)) + MD(m,t) — MD(i,t)]/ traf(i,t) or if i received a tagged message
containing MD(m,t) from some downstream neighbour m. A variable ¢(i,k,t) is improper
if ¢(i,k,t) > 0 and MD(i,t) < MD(k,t).

‘B(i,t) = 1’ is equivalent to ‘(Bj(t) — {k | there is no link (i,k) }) # @". ‘¢(i,b,t) > 0’ is
equivalent to ‘b is downstream from i with respect to t’. B(b,t) = 1 in Operation CompB
means that b is blocked for t. In this case b will tag its messages when b executes the
scheme described in [Gal77] and i will receive a tagged message from one of its downstream
neighbours. So Operation CompB is equivalent to the scheme for the determination of the
B;(t)’s, described in [Gal77]. o

Theorem 3.2 If the data that node i knows are recent, then the set of b’s with Bproe(b,t)
= 1 is computed in Operation CompFlow corresponding to the scheme from [Gal77] for
the computation of B,jg(i,t) and this computation is executed correctly.

Proof: This follows from Lemmas 3.3 and 3.4. a
Now DD(i,t) is considered.

Lemma 3.5 *+ When node i starts computing the new value of DD(i,t) in Operation
CompDD, i has knowledge of all the necessary data.

Theorem 3.8 * If the data that i knows are recent, then DD is computed as in the
computation scheme for the variables corresponding to DD in the original algorithm.

The next variable to be considered is DATA(i,t);

Lemma 3.6 + When node i starts computing the new value of DATA(i,t) in Operation
CompData, i has knowledge of all the necessary data.

Theorem 3.4 * If the data that i knows are recent, then DATA(),t) is computed as

in the computation scheme for the variables corresponding to DATA(i,t) in the original
algorithm.

Now proofs can be given for the availability of all the necessary data for the computation
of ¢, the fact that the computation of ¢ in the protocol corresponds to the computation
of ¢ in the original algorithm and the fact that this computation is performed correctly.

Property 3.7 If and only if node i has received {DD(b,tx), MD(b,tx), B(b,ty)} for all

neighbours b and for all destinations ty, node i computes new values for ¢(i,b,t) for all
neighbours b of i and for all destinations t.

12

This property follows from Action RecMD of the protocol.

Lemma 3.7 * When node i starts computing the new value of ¢ in Operation CompFlow,
i has knowledge of all the necessary data.

Use Property 3.7 to prove this lemma.

Corollary 3.2 In each round of the protocol a new value for ¢ is computed exactly once.

Theorem 3.5 * If the data that each node knows are recent, then ¢ is computed in
Operation CompFlow corresponding to the original algorithm and this computation is
executed correctly.

Lemma 3.7 shows that each node has knowledge of all the necessary data at the moment
it starts computing ¢. These data are computed correctly (by Theorems 3.1, 3.2, and
3.4). ¢ is computed once every round (Corollary 3.2). Now it has to be shown that the
updating of ¢ in Operation CompFlow is equivalent to the updating of ¢ in the original

algorithm. This part of the proof is dependent of the computation scheme for ¢ used in
the original algorithm.

3.3 Multiple Rounds

Many rounds of the protocol may be necessary to compute an optimal value for ¢. There-
fore in the next step of the correctness proof the succession of the rounds is considered. It
is proven that the data used in each round indeed are the data that belong to that round.

Lemma 3.8 If node i initiates round k, then all nodes will participate in round k.

Proof: If node i initiates round k, it sends a message containing MD(i,i) to all its
neighbours. On receipt of this message each neighbour that was not participating in this
round yet, starts participating in round k and sends a message to all its neighbours. As
the network is connected, each node will receive at least one message. In this way each
node starts participating in round k. a

Lemma 3.9 If node i finishes a computation of ¢, i disposes of the stored values of
MD(b,t), B(b,t), and DD(b,t) for all neighbours b.

Proof: Node i stores the values of MD(b,t), B(b,t), and DD(b,t) in MDTAB(i,b,t). After
i finishes the computation of ¢ in step 3a of Action RecMD, i sets MDTAB(i,b,t) to NIL
in step 3b of Action RecMD for each neighbour b of i. o

Lemma 38.10 Node i never uses values of MD(b,t), B(b,t), and DD(b,t) for a neighbour
b, which it stored in MDTAB during round k’, in its computation of ¢ in any round k
with k > k.

Proof: Node i disposes of the stored values used in a computation of ¢ as soon as the
computation is finished (Lemma 3.9), so i can not use these values in a new computation

of ¢. o

13

Lemma 3.11 A message containing MD(b,t), sent to node i in round k, is received by i
before a message containing MD(b,t), sent to i in round k+1.

Proof: Node b starts participating in round k+1, only after it finished round k. So all
messages that b sent in round k were sent before b sends any message in round k+1. As
channels are FIFO (Assumption 3.2), a message containing MD(b,t) sent in round k is
received before a message containing MD(b,t) sent in round k+1. a

Lemma 3.12 If there are nodes in the network which are involved in different rounds,
then these nodes are involved in round k’ or in round k’+1, for some number k'.

Proof: A node i can only start a round k+1 if it has finished round k. It can only finish
round k, if all nodes have participated in round k. Suppose node i is in round k+1. There
are two possible cases: (a) all nodes, other than i, are still participating in round k or are
participating in round k+1 or (b) all nodes have finished round k and are participating in
round k+1 or k+2. For suppose some node | is still participating in round k and some node
m is participating in round k+2. Node m can only execute round k+2 when m finished
round k+1, because no node participates in two rounds at the same time. This implies
that all nodes participated in round k+1. So node 1l can not be in round k, because it
must have participated in round k+1. This is a contradiction. a

Lemma 3.13 If a message containing MD(b,t) is stored in MDQUE during round k, then
this message originates from round k+1.

Proof: Suppose node i is in round k. This implies that every node in the network is in
round k or k—1, or every node is in round k or k+1.(Lemma 3.12). Suppose every node is
in round k or k—1. A node can not start round k before he has finished round k—1. Round
k—1 is finished only when messages containing MD(b,t) from this round are received from
all neighbours b. Each node b sends a message containing MD(b,t) once every round
(Lemma 3.1). So when node i is in round k, he does not receive any messages from round
k—1; it can only receive messages originating from round k or k+1. If i receives a message
containing MD(b,t) sent in round k, MDTAB(j,b,t) is empty(Lemmas 3.1 and 3.10) and
DD(b,t), MD(b,t), and B(b,t) are stored in MDTAB. If i receives a message containing
MD(b,t), originating from round k+1, i already received a message containing MD(b,t)
originating from round k (Lemmas 3.1 and 3.11). MDTAB is not emptied before Action

RecMD is entirely executed, so MDTAB # NIL. Now the message is stored in MDQUE.
a

Lemma 3.14 All messages stored in MDTAB during round k, were sent during round k.

Proof: A message containing MD(b,t) is stored in MDTAB during round k if this
message was received during round k and originated from round k (this can be seen in
the proof of Lemma 3.13) or when this message was the first message containing MD(b,t)
in MDQUE at the start of round k. Because each round a message containing MD(b,t)

is sent, this message was sent when i was in round k—1. Lemma 3.13 implies that this
message originates from round k. o

14

Lemma 3.15 In round k a message from MDQUE is stored in MDTAB if and only if this
message originates from round k.

Proof: The following assertion is proven by induction: If a messagein MDQUE originates
from round k, then this message is stored in MDTAB during round k.

Base.

It is easily seen that a message in MDQUE, originating from round 1, is stored in MDTAB
during round 1: the proof as given for the induction step can be given for k=1 without
use of the induction hypothesis, because no messages are stored in MDQUE during round
0.

Induction step.

Assume that the assertion holds for all rounds j with j < k. Consider the assertion for
round k. When node i starts participating in round k, a message containing MD(b,t) and
originating from round k is the first message containing MD(b,t) in MDQUE. (During
execution of round k—1 by i, only messages from round k were stored in MDQUE (Lemma
3.13). All messages originating from round j < k were removed from MDQUE during this
round (induction hypothesis). MDQUE is a FIFO-queue, channels are FIFO (Assumption
3.2), and each message sent in round k is received before any message sent in round
k+1 (Lemma 3.11).) At the end of round k—1 MDTAB is emptied and no messages
are received between this step and the handling of the messages in MDQUE, so the first
message containing MD(b,t) in MDQUE is stored in MDTAB during round k. This is the
message originating from round k, as proven above. This proves the assertion for round

k.

The only-if part of the lemma follows from Lemma 3.14.]

Lemma 3.16 All messages originating from round k are used for the computation of ¢
and stored in MDTAB in round k.

Proof: No messages can be sent by a node in round k if some node is still in round k’ <
k—1. If a message originating from round k is received by a node i involved in round k, it
is stored immediately in MDTAB as was proven before. If such a message is received by a
node i involved in round k-1, i stores it in MDQUE. This message is stored in MDTAB
when i executes round k, as proven in Lemma 3.15. The values stored in MDTAB are
used for the computation of ¢. o

Theorem 3.6 In each round of the protocol the new value of ¢ is computed as in the
original algorithm and this computation is executed correctly.

Proof: This follows from Theorem 3.5 and Lemma 3.16. m]

Theorem 3.7 When ¢ is computed according to the original algorithm, the value of ¢
converges to the value that causes the minimum total delay in the network.

Note that this theorem concerns the original algorithm, not the protocol. The convergence
of the algorithm will usually be proven before a protocol for the algorithm is considered.

15

Corollary 8.3 Iteration of Operation CompFlow results in convergence of ¢ to the value
that minimises the total delay in the network.

In practice, Operation CompFlow is not iterated infinitely many times, but until a value
is reached that implies an acceptable deviation of the minimum delay, i.e., a value that
satisfies the delay constraint for all i.

Theorem 3.8 Actions of the protocol are executed until ¢ is optimal.

Proof: Whenever a node reaches the end of a round with a value for ¢ which does not
satisfy the delay constraint, this node starts a new round of the protocol. The value of ¢
converges to the value that minimises the delay (Corollary 3.3), hence an optimal value
for ¢ is reached. a

Lemma 3.17 If no actions are executed by node i after round k, then no node will execute
an action after round k.

Proof: Suppose node i does not execute any action after round k and suppose there
is a node j which does execute an action after round k. Thus node j participates or has
participated in round k+1. There must be a node that initiated round k+1. But if a
node initiates round k+1, then all nodes will participate in round k+1 (Lemma 3.8). This
contradicts the assumption that node i does not execute any action after round k. a

Theorem 3.9 If a flow ¢ is optimal at the end of a round k and no further changes occur,
then ¢ remains optimal and no more actions will be executed.

Proof: Suppose at moment 7 ¢ is optimal and no round is executed. Evaluation of the
start criterion produces the value false at each node. So no node will start a new round
and therefore ¢ will not be updated after 7 and remains optimal.

Suppose at moment 7 ¢ is optimal and round k is being executed and suppose ¢ became
optimal at moment 7' < 7, during which node i updated ¢ in Operation CompFlow.
Suppose all nodes, other than i, updated ¢ while executing Operation CompFlow in this
round before 7’. If MDQUE is empty, i will not be involved in round k+1 started by
another node. No node will start a new round after 7, because ¢ is optimal. If MDQUE
is not empty, then there is a node 1 # i that started round k+1. A node starts a new
round only when its start criterion evaluates to true and round k+1 was started before 7’ ,
which implies that ¢ was not optimal at 7/. This is in contradiction with the fact that ¢
is optimal at 7'. So MDQUE is empty, no new round will start after 7' and ¢ will remain
optimal.

Suppose at 7'/ there are some nodes, which did not update ¢ yet in round k and 1is the
last node that updates ¢ in round k . I’s update can have two effects on the optimality
of ¢. ¢ can be updated to a value that causes a delay smaller than the delay caused by
the previous value or to a value that causes a greater delay. In the first case ¢ remains

optimal, in the second case ¢ is not optimal at the end of the round and a new round is
started. O

The correctness of the protocol is expressed by the following theorem:

Theorem 38.10 Continuous execution of the protocol yields an optimal value for ¢.

16

Proof: This follows from Theorems 3.6, 3.7, 3.8 and 3.9. a

The general proof structure is a tool for proving the correctness of a protocol for any
algorithm in the class described before. As each protocol, implementing an algorithm
from the considered class, is a refinement of the general protocol scheme, all proofs given
in this section are valid for such a protocol. Only the proofs of Lemmas 3.5, 3.6, and 3.7
and of Theorems 3.3, 3.4, 3.5, and 3.7 must be given for a particular refinement of the
general protocol scheme. These proofs are sufficient to prove correctness of the protocol.
In the following sections some important algorithms belonging to the class described in
the introduction are given, together with protocols that implement these algorithms and
with correctness proofs for the protocols.

4 Gallager’s Algorithm

In this section Gallager’s minimum delay routing algorithm is considered. In Section 4.1
the original algorithm is given, as published in [Gal77]. A protocol for this algorithm is
given in Section 4.2. The correctness of this protocol is proven in Section 4.3.

4.1 The Algorithm
Gallager’s minimum delay routing algorithm ([Gal77)) is given below.

Algorithm A
FOR k € B;(j)
DO ¢i(j) := 0 and Ay(j) := 0;
FOR k ¢ B;(j)
DO IF k # Kmin(i,j)
THEN ¢u(j) := oul(§) — Ai(j)
ELSE ¢ik(j) := ¢k(i) + Twkmin(ig) Dik()

WHERE A(j) = min[éi(5), naw(3) /)],
7 = a scaling factor,
ax(j) = Di(fi) + S22 ~ minungn,) Dl (fim) + £255],
and Ky, is the node m that achieves the minimum in the expression that
defines aj(j).

In this algorithm every link determines the gradient of the average delay with respect to its
own traffic flow. First each node i determines the neighbour ky;, corresponding to the link
(i,kmin) with the least marginal delay. Then i computes the amount of flow with destination
J» Ai(j), which is to be transferred from link (i,k) to link (i,kmin). The minimum is taken
of the computed quantity and the current flow variable to prevent routing updates from
giving rise to negative flows. The amount of reduction of the objective function depends
on the difference between the marginal delay on links (i,k) and (i,kmin), and on the scaling
factor 7.

This algorithm uses a stronger definition of blocked nodes than the one used in the
general protocol scheme. This definition is necessary to prove convergence of the algorithm.

17

Definition 4.1 A node i is blocked relative to j if i has a path to j containing some link
(L,m) with ¢,(j) improper and the additional requirement that

fm(i) > alDi(fim) + 2285 - 22%1/00),

where a is a scaling factor equal to the n used before.

In the algorithm the set B;(j) is used, which is defined as the set of nodes k that are
blocked relative to j and have ¢;x(j) = 0, together with the set of nodes k with (i,k) ¢ L.

Gallager’s algorithm is now specified one more time, using the variable names that were
used in the general protocol scheme. Variables of the algorithm that have no corresponding
variables in the protocol are left unchanged.

Algorithm A
FOR k with B(k,j) = 1 or (i,k) ¢ L
DO ¢(i,k,j) := 0 and A¢(i,k,j) :=0
FOR k with B(k,j) = 0 and (i,k) € L
DOIFk#m

THEN @(i,k,j) := (k) — Ad(ik])

WHERE Aé(i,k,j) = min[4(i, k, j), aai(j)/traf(i, j)],
aik(j) = D'(i,k)(F(i,k)) + MD(k,j) -
Ininm:B(mJ):O and (i,m)GL[D’(i’m)(F(iam)) + MD(mx])]v
and m is the node that achieves the minimum in the expression defining a;(j).

4.2 A Protocol for Gallager’s Algorithm

A protocol for this algorithm was first presented by Cees Siksma in [Sik86]. It is presented
here with some minor changes. Most of these changes are denotational. As mentioned
before, the definition of B(i,j) is different from the definition used in the general protocol
scheme and instead B(i,j) is computed according to the following scheme: A node 1 deter-
mines for all downstream neighbours m whether ¢1m(j) is improper and whether ¢y,(j) >
ao[D’(1,m)(F(l,m)) + % - 5’%}‘5] /ti(j). If any of these neighbours satisfies both condi-
tions, 1 adds a tag to its broadcast message containing %)&)-. If 1 receives a tagged message

containing 5’%‘6’) of a downstream neighbour m, | also tags its own messages. B(i,j) now
represents the set of nodes k for which (i,k) ¢ L or from which a tagged message containing

MD(k,j) was received by i. The protocol skeleton for Gallager’s algorithm for node i is
shown below.

18

Protocol G

Operation CompMD
%node i computes MD(i,t)%
(1) MD(i,t) := 0;
(2) FOR all neighbours b of t with ¢(i,b,t) > 0
DO MD(i,t) := MD(i,t) + ¢(i,b,t)-[D(i,b) + MD(b,t)]

Operation CompB
%node i computes B(i,t)%
(1) FOR all neighbours b of i
DO IF ¢(i,b,t) > 0 AND MD(i,t) < MD(b,t)
AND ¢(i,b,t) > a-[D(i,b) + MD(b,t) — MD(i,t)]/traf(i,t)
THEN B(i,t) := 1;
(2) FOR all neighbours b with ¢(i,b,t) > 0
DO B(i,t) := B(i,t) OR B(b,t)

Operation CompFlow
%node i recomputes ¢(i,b,t) for all neighbours b of i%
(1) m := the neighbour b of i with B(b,t) = 0 which minimises D’(i,b) + MD(i,b,t);
(2) FOR all neighbours b with B(b,t) = 1
DO IF ¢(i,b,t) = 0
THEN Ag(i,b,t) := 0
ELSE A¢(i,b,t) := —¢(i,b,t);
(3) FOR all neighbours b # m with B(b,t) # 1
DO (a) §¢(i,b,t) := [D’(i,b) + MD(b,t) — D'(i,m) — MD(m,t)]/traf(i,t);
(b) A¢(i,b,t) := — min[¢(i,b,t), - d¢(i,b,t)];
(4) Ad(im,t) i= — Yprm AB(i,b,t);
(5) FOR all neighbours b of i
DO &(i,b,t) := ¢(i,b,t) + Ad(i,b,t)

Action Init

Guard: R(i)=0, ¢ is not optimal;

(1) R@) := 15

(2) send {MD(i,i), B(i,i)} to all neighbours

19

Action RecMD
Guard: a message {MD(b,t), B(b,t)} can be received ;
(1) IFR(GE) =0
THEN do Action Init;
(2) IF MDTAB(i,b,t) # NIL
THEN MDQUE(i,b,t) := {MD(b,t), B(b,t)}
ELSE (a) MDTAB(i,b,t) := MD(b,t);
(b) IF b is downstream of i for t
AND messages {MD(b;,t), B(b;,t)} are received from all
downstream neighbours b; of i
THEN do Operation CompMD;
do Operation CompB;
send {MD(i,t), B(i,t)} to all neighbours that are not
downstream of i
(c) IF messages {MD(b;,t), B(bj,t)} are received from all
neighbours b; of i
THEN send {MD(i,t), B(i,t) = 0} to all downstream neighbours
(3) IF messages {MD(bj, tx), B(bj,tx)} are received from all neighbours b;
ofi,forall ty #iand t #i
THEN (a) do Operation CompFlow;
(b) MDTAB(l,b;, tk) := NIL for all b; and ty;
(c) R(i) :=0;
(d) IF MDQUE # NIL
THEN handle each value of MDQUE in Action RecMD as if it was
a message that arrives at this moment and set MDQUE to NIL
(Step d is an atomic action.)

If B(b,t) is set to 1 in Action RecMD, ¢(i,b,t) can still have a value > 0. This value must
be set to 0 in Operation CompFlow. This is done in step 5. The routing variables for
blocked nodes with value 0 do not need to be changed. The corresponding change variable
is set to 0 in step 2. The presentation in [Sik86] contained some minor flaws, that were
corrected in the given scheme. These flaws are discussed below. The remainder of this
section can be skipped by readers unfamiliar with [Sik86].

In {Sik86] Siksma states that the following equation is valid:
F0y = T(i,b,t)-[MD(i,b)(F(i,b)) + 225
As MD(i,b) = a?-_(ij D'(i,b) = —é‘i.if—"l and 8D # %‘iﬂ'—"l (node i does not necessarily

route its messages with destination b over link i,b)), this equation is incorrect. Siksma’s
computation of MD(i,t) is based on this equation; therefore this computation must be
corrected. Operation CompMD was presented as follows:

Operation CompMD

(1) MD(j,t) := 0;

(2) FOR all neighbours b with ¢(i,b,t) > 0
DO MD(i,t) := MD(i,t) + &(i,b,t)-MD(b,t)

20

Operation CompMD (2) should be changed into:

(2) FOR all neighbours b with ¢(i,b,t) > 0
DO MD(i,t) := MD(i,t) + #(i,b,t)-[D'(i,b) + MD(b,t)]

The first two steps of Operation CompFlow were

(1) m := the neighbour b of i which minimises D’(i,b) + MD(i,b,t);
(2) FOR all neighbours b # m with B(b,t) = 1 AND ¢(i,b,t) = 0
DO A¢(i,b,t) := 0;

According to these steps a node k could be chosen for m with B(k,t) = 1. This is in
contradiction with the definition of m given by Gallager in [Gal77]. This flaw is corrected
in the following version of Operation CompFlow.

Operation CompFlow
(1) m := the neighbour b of i with B(b,t) = 0 which minimises D’(i,b) + MD(i,b,t);
(2) FOR all neighbours b with B(b,t) = 1 AND ¢(i,b,t) = 0

DO A¢(i,b,t) := 0;
(3) FOR all neighbours b # m with B(b,t) # 1 AND ¢(i,b,t) # 0

DO (a) 6¢(i,b,t) := [D(i,b) + MD(b,t) — D’(i,m) — MD(m,t)]/traf(i,t);

(b) Ag(i,b,t) := — min[¢(i,b,t), @ - 6¢(i,b,t)];

(4) Ag(i,m,t) 1= — T Ad(ib,t);
(5) FOR all neighbours b of i

DO ¢(i,b,t) := o(i,b,t) + Ag(i,b,t)

This operation still contains a flaw. If it is detected in the current run of the protocol
that node b is blocked relative to t, then a variable ¢(i,b,t) > 0 should be set to 0. This
is supposed to happen in step 5 of Operation CompFlow. Therefore A¢(i,b,t) should be
equal to —¢(i,b,t) for these i, b and t. This is the case when ¢(i,b,t) < a-¢(i,b,t). Because
of the definition of a blocked node #(i,b,t) > a - ¢(i,b,t). So when &(i,b,t) > o - ¢(i,b,t),
#(i,b,t) is not set to 0. This flaw can be easily corrected, as is shown in the version of
Operation CompFlow, included in Protocol G.

4.3 A Correctness Proof for Protocol G

In this section it is proven that Protocol G yields an optimal value for the routing variable
®. To prove correctness, only Lemma 3.7 and Theorems 3.5 and 3.7 need to be proven
correct. The correctness of the protocol then follows from the proof skeleton described
in Section 3. As mentioned before, in this algorithm all nodes k without a link (i,k) are
added to B;(t). We do not consider these nodes here; they are only added to simplify some
tests in Algorithm A. Lemma 3.4 remains valid.

Lemma 3.7 When node i starts computing the new value of ¢ in Operation CompFlow,
i has knowledge of all the necessary data.

Proof: Node i needs the following variables to compute ¢: D’(i,b), MD(b,t), B(b,t), and
#(i,b,t) for all neighbours b of i and a. a is a known value. D'(i,b) can be computed by
i. The old value of ¢(i,b,t) is known to i. Node i does not start computing a new value of
¢ before it has received MD(b,t) and B(b,t) from all neighbours b (Property 3.7). o

21

Theorem 3.5 If the data that each node knows are recent, then ¢ is computed in Opera-
tion CompFlow corresponding to Algorithm A presented in [Gal77] and this computation
is executed correctly.

Proof: Lemma 3.7 shows that each node has knowledge of all the necessary data at
any moment it starts computing. The following shows that the update of ¢ in Operation
CompFlow is equivalent to the update of ¢ by the rewritten Algorithm A as described in
Section 4.1.

In Operation CompFlow the following updates of ¢ are executed:

#(i,m,t) := &(i,m,t)+ Ad(i,m,t)
= ¢(i,m,t) - E Ad(i,b, t)
neighbours b#m
= ¢(hbm,t)= 37 (-minfg(i,b,t), ade(i, b, t)])
neighbours b#m
= ¢(i’m,t)+
> minfg(i,b,t),

neighbours b#m

a[D'(i,b) + MD(b, t) - D(i,m) — MD(m,t)]
traf(i, t)

]

For b # m, b ¢ B(i,t):

#(i,b,t) = ¢(i,b, t) + Ad(i, b, t)
= ¢(i,b,t) — min[¢(i, b, t), ads(i, b, t)]
For b # m, b € B(i,t):
#(i,b,t) := ¢(i,b,t) + Ag(i,b,t)

(i, b, t) — ¢(i, b, t)
= 0

This is exactly the result of the assignments of Algorithm A written out in full. o

In [Gal77] Gallager proves the convergence of Algorithm A to the value of ¢ that implies
the minimum delay in the following theorem:

Theorem 3.7 Assume that for all links (i,k) Djx(fik) has a positive first derivative and
nonnegative second derivative for 0 < fix < Ci, where Cjy is the capacity of link (i,k), and
that

lim Djk(fix) = oo.

fix—Cix
For every positive number Dg there exists a scaling factor « for algorithm A such that if
#° satisfies D1(¢°) < Dy, then

lim Dr(¢™) = ngn Dt(¢),

m=—+00

where ¢™ = A(¢™1) for all m > 1.

This theorem completes the correctness proof of the protocol for Gallager’s algorithm.

22

5 A Second Derivative Algorithm

In this section an algorithm based on second derivatives of the delay function is given,
together with a protocol that implements this algorithm. The algorithm was presented in
[BGGB84] and is given in Section 5.1. A protocol for the algorithm is presented in Section
5.2 and a correctness proof for this protocol is given in Section 5.3.

5.1 The Algorithm

The Second Derivative Algorithm consists of a particular computation of a new value for
¢n from the old value of ¢; and the computation of the values of all the data needed in
the computation of ¢. A new value for ¢ is computed from the formula

K+l _ maglo. ok - 28—)
g = max[0, i traf(i, t)(DX + Rl)]’

where « is a scaling factor, u; is a variable originating from optimisation techniques, and

2
R = T 68, Diny + (T $imy/Rim) . The derivation of this algorithm from mathematical
theories can be found in [BGG84].

5.2 A Protocol for the Second Derivative Algorithm

A protocol for the algorithm described above can be derived by substituting R for DD,
® and § for DATA, and —A%%}%gﬂl for DF(DATA) in the general protocol scheme. &
is a variable introduced to sepa,lza.'te the computation and use of DATA. The parts of the
protocol skeleton that are specific for the algorithm are given below. Operations CompMD

and CompB remain as in the general protocol scheme and are not mentioned below.

Protocol SD

Operation CompDD

%node i computes R(i,t)%

(1) R(i,t) := 0;

(2) FOR all neighbours b of i with ¢(i,b,t) > 0
DO R(i,t) := R(i,t) + ¢(i, b, t)’D"(i,b)

(3) R(it) 1= RGot) + (Sb withotsbiyo0 s bs)y FD,) -

Operation CompData
%node i computes ®(i,b,t) and §(i,b,t) for all downstream neighbours b of i %
(1) FOR all downstream neighbours b of i
DO (a) 3(i,b,t) := traf(i, t)*(D”(i,b) + R(b,t));
(b) é(i,b,t) := D’(i,b) + MD(b,t)

23

Operation CompFlow
%node i recomputes ¢(i,b,t) for all neighbours b of i %
(1) FOR all neighbours b of i with B(b,t) = 1
DO IF ¢(i,b,t) = 0
THEN A¢(i,b,t) := 0
ELSE A¢(i;b,t) := —o(i,b,t);
(2) (a) compute y;;
(b) FOR all neighbours b with B(b,t) # 1
DO Ag(i,b,t) := —2liibt)m),
(3) FOR all neighbours b of i
DO ¢(ibt) i= 4(ibit) + Ad(ib,t)

Action Init

Guard: R(i)=0, ¢ is not optimal;

() R@E) =1

(2) send {R(i,i), MD(i,i), B(i,i)} to all neighbours

Action RecMD
Guard: {R(b,t), MD(b,t), B(b,t)} can be received;
(DIFR(GE)=0
THEN do Action Init;
(2) IF MDTAB(i,b,t) # NIL
THEN MDQUEC(],b,t) := {R(b,t), MD(b,t), B(b,t)}
ELSE (a) MDTAB(i,b,t) := {R(b,t), MD(b,t), B(b,t)};
(b) IF b is downstream of i for t
AND messages {R(bj,t), MD(b;,t), B(b;j,t)} are received from all
downstream neighbours b; of i
THEN do operation CompDD;
do operation CompMD;
do operation CompB;
send {R(i,t), MD(i,t), B(i,t)} to all neighbours that are not
downstream of i;
(c) IF messages {R(bj,t), MD(b;,t),B(b;,t)} are received from all
neighbours b; of i
THEN send {R(i,t), MD(i,t), B(i,t) = 0} to all downstream neighbours;
(3) IF messages {R(bj, tx), MD(bj, tx), B(bj, tx)} are received from all neighbours b;
ofi,forall ty #iand t #1i
THEN (a) do Operation CompFlow;
(b) MDTAB(i,b;, tx) := NIL for all b; and ty;
(c) R(i) := 05
(d) IF MDQUE # NIL
THEN handle each value of MDQUE in Action RecMD as if it was

a message that arrives at this moment and set MDQUE to NIL
(Step d is an atomic action.)

24

5.3 Correctness Proof for the Protocol

To prove the correctness of the protocol, it is sufficient to prove the correctness of Lemmas
3.5, 3.6, and 3.7 and Theorems 3.3, 3.4, 3.5, and 3.7. Then the correctness of the protocol
follows from the general proof scheme.

Lemma 3.5 When node i starts computing the new value of R(i,t) in Operation CompDD,
i has knowledge of all the necessary data.

Proof: For the computation of R(i,t) i needs to know ¢(i,b,t) for each neighbour b and
needs D”(i,b) and R(b,t) for each downstream neighbour b. Node i can compute D”(i,b)
and has received R(b,t) from all downstream neighbours before he starts CompDD. O

Theorem 8.3 If the data that i knows are recent, then R(i,t) is computed as in the
formula given in the previous section.

Proof: It is easily seen from the program text of Operation CompDD, that R(i,t) is equal

0 b with(i,b,t)>0 ¢(i,b,t)2D”(i,b) + (T #(i, b, t)‘/R(b,t))2 after Operation CompDD.
b with¢(i,b,t)>0¢(i,b,t)zD”(i,b) = Y, #(i,b,t)*D"(i,b). From the correspondence be-
tween R;(t) and R(i,t), ¢ib(t) and ¢(i,b,t), and between D} and D”(i,b), it now follows
that R(i,t) is computed in correspondence to the formula shown in the previous section.
a

Lemma 3.6 When node i starts computing the new values of ®(i,b,t) and 6(i,b,t) in
Operation CompData, i has knowledge of all the necessary data.

Proof: For the computation of ®(i,b,t) i needs the following data: traf(i,t), and D”(i,b),
and R(b,t) for each neighbour b. For the computation of §(i,b,t) i needs to know D’(i,b)
and MD(b,t). So for each downstream neighbour b, i needs to know D”(i,b), R(b,t),
D’(i,b), and MD(b,t) and i needs to know traf(i,t). traf(i,t), D”(i,b), and D’(i,b) can be
computed by i. It follows directly from the program text that node i starts executing
Operation CompData only after it received messages containing R(b,t) and MD(b,t) from
all downstream neighbours b. So i has knowledge of all the necessary data. a

Theorem 3.4 If the data that i knows are recent, then ®(i,b,t) and (i,b,t) are computed
as in the computation scheme for ®;,(t) and §,(t) presented in [BGG84].

Proof: &;;, is defined in [BGG84] to be t?(D +Rp). In Operation CompData, ®(i,b,t) is
set to traf(i, t)*(D"(i,b) + R(b,t)). As traf(i) corresponds to t;, D”(i,b) to D}, and R(b,t)
to Ry, it follows that the computation of ®(i,b,t) in Operation CompData is equivalent to
the computation of ®;, as presented in [BGG84)].

8ip is defined in [BGG84] to be D} + %?—}. In Operation CompData §(i,b,t) is set to
D’(i,b) + MD(b,t). D’(i,b) corresponds to Df, and MD(b,t) is defined as 3‘%&)—. So the
computation of §(i,b,t) in Operation CompData is equivalent to the computation of 6
presented in [BGG84]. a

Lemma 3.7 When node i starts computing the new value of ¢ in Operation CompFlow,
i has knowledge of all the necessary data.

25

Proof: Node i needs to know a, it needs to know B(b,t) and ¢(i,b,t) for all neighbours
b and é(i,b,t) and &(i,b,t) for all downstream neighbours b. « is a known value. The
old value of ¢(i,b,t) is known to i. Node i does not start computing a new value of ¢
before it has received B(b,t) from all neighbours b (Property 3.7). &(i,b,t) and 6(i,b,t)
are computed for all downstream neighbours b in Operation CompData. It follows from
the program text that Operation CompData is executed before Operation CompFlow, so
i has knowledge of all the necessary data. a

Theorem 3.5 If the data that each node knows are recent, then ¢ is computed in Opera-
tion CompFlow corresponding to the Second Derivative Algorithm and this computation
is executed correctly.

Proof: Lemma 3.7 shows that each node has knowledge of all the necessary data at
the moment it starts computing. In the following it is shown that the updating of ¢
in Operation CompFlow is equivalent to the updating of ¢ as described in the Second
Derivative Algorithm. In Operation CompFlow the following updates of ¢ are executed.
For all neighbours b of i with B(b,t) = 1 and ¢(i,b,t) = 0:

#(i,b,t) = (i,b,t)+ Ad(i,b,t)
= ¢(i’bvt)
= 0

For all neighbours b of i with B(b,t) = 1 and #(i,b,t) > 0:

¢(i,b,t) := ¢(i,b,t)+ A¢(i,b,1)
= ¢(i,b,t) - ¢(i,b,t)
= 0

For all neighbours b of i with B(b,t) = 0:

#(i,b,t) := ¢(i,b,t) + A¢(i,b,t)
. atraf(i, t)(8(i, b, t) — u;)
= ,b,t)— =
#(1,b.1) (G, b, t)
= o(i,bt)— atraf(i, t)(6(i, b, t) — 1)
P77 traf(i, t)2(D”(i, b) + R(b, t))
: a(&(i, b, t) - /"i)
= ,byt) — =
#0058 — R (D, b) + Kb, 0)
This is exactly the result in the assignment of the Second Derivative Algorithm. a

Theorem 3.7 When ¢ is computed according to the Second Derivative Algorithm, the
value of ¢ converges to the value that causes the minimum delay.

Proof: In [BGG84] the following theorem is stated. Its proof can be found in [Gaf79].

Theorem C Let the initial routing ¢° be loop free and satisfy D1(¢°,r) < Dy,
where Dy is some scalar. Assume also that there exist two positive scalars A
and A such that the sequences of matrices {MX} satisfy the following two

26

conditions:

a) The absolute value of each element of MK is bounded above by A.
b) There holds

Al v; |2 < vTMEy; for all v; in the subspace {v; | Z vii = 0}
1¢B(i,4¥)
Then there exists a positive scalar @ (depending on Do, A and A), such that

for all @ € (0,@] and k = 0,1, ... the sequence {¢*} generated by the general
algorithm satisfies

Dr(¢**,r) < Dr(¢*,r) and
Jlim Dr(¢5,1) = min Dr(¢,r)

Furthermore, every limit point of {¢¥} is an optimal solution of the minimisa-
tion problem:

minimise D1(¢,r) = Z Da[fa(¢,1)]
(i,1)eL
subject to ¢ € ®.

To prove Theorem 3.7 it is sufficient to prove the assumptions made in Theorem C.
M; is a matrix with &y /traf(i, t)? at the diagonal and 0 at every other position. ®;/traf?(i,t)
= D4 + R). 0 < DY by assumption. D(¢°r) < Do implies that the second derivatives
#(4%,1) are bounded. In [Gaf79] it is proven that D(¢, r) is a nonincreasing function,
so D(¢¥,r) < D(¢%r) < Do for all k. It follows that the second derivatives DY(¢*,r) are
bounded from above for all k. Name the upper bound Dyax. Now 0 < D{{(q&k, T) < Dmax-
0 < Ry by definition. R} < max;R) < co. The finiteness of R follows from the definition
of Ry and from the boundedness of the second derivatives DY. Choose A = Dpax + max Ry
and choose) to be some scalar less than or equal to Diax + maxjR). The absolute value
of each element of M¥ is bounded from above by A and this bound is strictly positive. In
the case of this algorithm A| v; |* < vIMLy; is equivalent to

AN A¢E <) ATy /traf’(i,t)

(ij)eL (ij)eL
= Y A¢htraf?(i,t)(DX" + K;)/traf(i, t)
(i,j)eL
= E A¢}; . (D};H +R;)
(ij)eL
< (Dmax+ xna‘xlil) : Z A¢ik]

(ij)eL
This equation is equivalent to A < Dpayx + maxR;.

As Dy + maxR) > 0, there exists a positive scalar A < Dmax + maxiR), and this A will
be such that

Al vi |2 < viTM}‘vi

Now Theorem C can be applied and convergence of ¢ follows. a

27

6 Conclusion

This report presented a general protocol scheme for a class of minimum delay routing
algorithms. From this scheme protocols can be derived which provide a distributed imple-
mentation of the algorithms. This derivation is simple and quick. The protocols can be
proven correct by use of a general proof scheme which was also presented in this report.
Using the scheme, proving the correctness of a protocol becomes very easy and takes little
effort. For two example algorithms original protocols and correctness proofs were derived.

The general protocol scheme can be modified to fit a class of flow control algorithms.
This modification will be discussed in another report that will appear soon.

Acknowledgement

I thank Jan van Leeuwen for his helpful comments and suggestions. I also thank Prof.D.P.
Bertsekas for explaining some details in [BGG84].

References

[Bert78] Bertsekas, D.P. Algorithms for Optimal Routing of Flow in Networks. Coordi-
nated Science Laboratory Working Paper, University of lllinois at Champaign-
Urbana, June 1978.

[Bert79] Bertsekas, D.P. Algorithms for Nonlinear Multicommodity Network Flow Prob-
lems. in Bensoussan, A. and Lions, J.L. (Eds.), Proc. Int. Symp. Syst. Opti-
mization and Analysis, Springer-Verlag, pp. 210-22, 1979.

[BG8T] Bertsekas, D.P., Gallager, R.G. Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[BGG82] Bertsekas, D.P., Gafni, E.M., Gallager, R.G. Second Derivative Algorithms for
Minimum Delay Distributed Routing in Networks. Lab. Inform. and Decision
Syst., MIT, Cambridge, Rep. LIDS-P-1082-A, August 1982.

[BGG84] Bertsekas, D.P., Gafni, E.M., Gallager, R.G. Second Derivative Algorithms
for Minimum Delay Distributed Routing in Networks. IEEE Transactions on
Communications, vol. COM-32, no. 8, August 1984, pp. 911-919.

[CAT90] Cassandras, C.G., Abidi, M.V., Towsley, D. Distributed Routing with On-
Line Marginal Delay Estimation. IEEE Transactions on Communications, vol.
COM-38, no. 3, March 1990, pp. 348-359.

[Gaf79] Gafni, E.M. Convergence of a Routing Algorithm. Lab. Inform. and Decision
Syst., Mass. Inst. Technol., Cambridge, Rep. LIDS-TH-907, May 1979.

[Gal77] Gallager, R.G. A Minimum Delay Routing Algorithm Using Distributed Com-
puting. IEEE Transactions on Communications, vol. COM-25, no. 1, January
1977, pp. 73-85.

28

[GMSWS8S] Gill, P.E., Murray, W., Saunders,M.A., Wright, M.H. Recent developments in

[Sch91]

[Siks6]

constrained optimization. Journal of Computational and Applied Mathematics
22, 1988, pp. 257-269.

Schoone, A.A. Assertional Verification in Distributed Com-
puting. Ph.D.Thesis, Department of Computer Science, Utrecht University,
May 1991.

Siksma, C. Routering in Computernetwerken. M.Sc.Thesis (in Dutch), De-
partment of Computer Science, Utrecht University, INF/SCR-86-03, 1986.

29

