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Abstract

We develop a general semantic theory of the asynchronous communication
mechanism of concurrent logic and concurrent constraint languages. The main
characteristic of these languages, from the point of view of the communication
mechanism, is that processes interact by querying and updating some com-
mon data structure. We abstract from the specific features of the underlying
datastructure by means of a uniform language where actions are interpreted
as transformations on an abstract set of states. Suspension and failure in
this framework are viewed as special states. This approach shows that there
exists a basic similarity between concurrent logic (constraint) languages and
other languages based on asynchrononous communication, like dataflow and
asynchronous CSP. Actually, our intention is to capture languages based on
asynchronous communication as instances of our paradigm, such an instance
being determined by a specific set of states and interpretation of the actions.
The computational model of our paradigm is described by a transition system
in the style of Plotkin’s SOS. A compositional model is presented that is based
on reactive sequences, i.e., seqences of pairs of states.
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1. Introduction

In this paper we propose a general semantic theory of the asynchronous commu-
nication of concurrent constraint and concurrent logic languages. These languages
have in common that processes communicate via some shared data structure. In the
case of concurrent constraint languages the data structure is given by the underlying
constraint system, while in concurrent logic languages it is given by the bindings
established on the logical variables. However, in both cases the data structure is
updated by means of operations which have free access (provided some consistency
requirements are met) whereas it is queried by operations that may suspend in case
the data structure does not entail the required information. The asynchronous nature
of the communication stems from the independency of the update and query opera-
tions in the sense that they can take place at different times. This marks an essential
difference with languages, like CSP [Hoa78|, where processes communicate by means
of a “handshaking” mechanism, i.e., by the simultaneous execution of (complemen-
tary) actions.

Our paradigm consists of a concurrent language £ which assumes given a set of
basic (or atomic) actions. Statements are constructed from these actions by means of
sequential composition, the plus operator for nondeterministic choice, and the parallel
operator. Furthermore we assume given an abstract set of states, which includes some
special states indicating suspension and failure. The basic actions are interpreted as
state transformations. A pure query action (like, e.g., a test) will have the property
that it will suspend in those states which do not contain the required information
(in those cases a special state representing suspension is delivered). On the other
hand, for those states which do contain the required information a query action is
the identity. A suspended process is forced to wait until actions of other processes
produce a state in which it is enabled. A pure update action is characterized by
the fact that it will never suspend. In case the result of the update gives rise to an
inconsistency, a special state representing failure is delivered. In general, an action
can embody both an update and a query component.

The concurrent constraint languages [Sar89] are modeled by interpreting the abstract
set of states as a constraint system and the actions as ask /tell primitives. Concurrent
logic languages, like Flat Concurrent Prolog [Sha89], can be obtained as instances of
our paradigm by interpreting the proper states (excluding suspension and failure) as
the bindings established on the logical variables, and the actions as the unification
steps (see [dBK90]).

Apart from the concurrent constraint languages, many languages for asynchronously
communicating processes can be obtained as instances of our paradigm by choosing
the appropriate set of actions, the set of (proper) states and the interpretation of the
basic actions. For example, the imperative language described in [HdBR90), based
on shared variables, can be modeled by taking as states functions from variables to
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values, as actions the set of assignments, and then the usual interpretation of an as-
signment as a state transformation. An asynchronous version of CSP [Hoa78], where
processes communicate via asynchronous channels (see also [JJTH90]), can be obtained
by taking as states the configurations of the channels and as actions the input-output

primitives on these channels. Other interesting instances of our paradigm are I0-
automata and data flow.

The basic computation model of the paradigm £ is described by means of a labeled
transition system in the style of Plotkin’s SOS. It specifies for every statement what
steps it can take. Each step results in a state transformation, which is registered in
the label: as labels we use pairs of states. Based on this transition system, various
notions of observables for our language are defined. One of the main results of this
paper is a compositional characterization of these notions of observables, which is
defined independently of the particular choice for the sets of actions and the set of
states. Thus a general compositional description of all the possible mechanisms for
asynchronous communication is provided, so unifying the semantic work done in such
apparently diverse fields as concurrent logic programming, data flow, and imperative
programming based on asynchronous communication.

The most striking feature of our compositional semantics is that it is based on reactive
sequences, i.e., sequences of pairs of states. A pair encodes the state transformation
caused by a transition step (initial state - final state). These sequences are not
necessarily connected, i.e. the final state of a pair can be different from the initial
state of the following pair. These “gaps” represent, in a sense, the possible steps made
by the environment. Thus such a sequence describes the behaviour of a process in
terms of its interaction with the environment. Since there is no way to synchronize on
actions, the behaviour of a process solely depends upon the current state. Therefore,
such a set of sequences encodes all the information necessary for a compositional
semantics.

The naturalness of the compositional model for our paradigm derives from the fact
that its definition is based on, essentially, sequences, and does not need additional
structures like failure sets, which are needed for describing deadlock in the case of
synchronously communicating processes. In [{BKPR91] we showed that our model
is more abstract than the classical failure set semantics, and for that reason more
suitable for describing asynchronous communication.

1.1. Comparison with related work

In spite of the general interest for asynchronous communication as the natural mech-
anism for concurrency in many different programming paradigms, not much work has
been done in the past, neither for defining a uniform framework, nor for providing
the appropriate semantic tools for reasoning about such a mechanism in an abstract
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way. In most cases, asynchronous languages have been studied as special instances of
the synchronous paradigm. For example, in [GMS89] the semantics of FCP is defined
by using an adaptation of the failure set semantics of TCSP [BHR84], and [SR90]
uses for a concurrent constraint language the bisimulation equivalence on trees of
CCS [Mil80]. Only recently [dBP91] it has been shown that for concurrent logic and
constraint languages reactive sequences of assume/tell-constraints are sufficiently ex-
pressive for defining a compositional model (both for the success and for the deadlock
case). The paradigm and the semantics presented here can be seen as a generalization
of this approach, abstracting from the specific details related to concurrent logic and
constraint languages, and showing that it can be applied to a much wider range of
languages.

In the field of data flow, compositional models based on an appropriate notion of
sequences called quiescent traces have been developed (for example in [Jon85]) and
have been shown to be fully abstract. For an overview consult [Kok89]. Related
paradigms (abstract processes communicating via asynchronous channels) has been
recently studied in [JHJ90] and [Jos90]. Also in these papers the authors propose a
semantics based on sequences of input-output events.

Finally, in [HdBR90], a semantics based on sequences of pair of states, similar to
the one we study in this paper, has been developed for an imperative language and
shown correct and fully abstract with respect to successful computations.

The main contribution of both this paper and [dBKPR91] is the generalization of the
results obtained in [dBP90, dBP91, JHJ90, HdBR90] to a paradigm for asynchronous
communication, and thus providing a uniform framework for reasoning about this
kind of concurrency. However, in this paper we elaborate in more detail on how one
can obtain various languages as instances of the general paradigm. Specifically, we
emphasize the case of concurrent constraint languages (the concurrent logic languages
are viewed as instances of the general constraint paradigm), and that of I0-automata
and data flow. Additionally, we give a characterization of a notion of observables
which involves abstraction from finite stuttering in terms of transition rules.

1.2. Plan of the paper

In the next section we start by presenting our paradigm. We give the syntax and the
computational model (characterizing the observational behaviour) of the language.
Additionally we address the problem of a compositional characterization of a notion
of observables which involves abstraction from finite stuttering. In Section 3 we give a
detailed description of an application of our general theory to the concurrent logic and
concurrent constraint languages. Section 4 illustrates how various other formalisms
for asynchronous processes, notably, I0-automata and data flow, can be obtained as
instances of our paradigm. The last section briefly sketches some future research.
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2. The paradigm and its semantics

We shall introduce a simple programming language £, which will also be referred to
as a paradigm for asynchronous communication. The terminology is motivated by
the fact that £ represents an entire family of different languages, parameterized by
a set of atomic actions. These languages have in common that the basic mechanism
for interaction is based on querying and updating a shared data structure (the state).
Each particular choice for the set of actions yields a specific language, also called an
instance of £. Various examples of such instances will be presented in the next two
sections.

After having given the syntax of our paradigm, an extensive description of two seman-
tic models (operational and compositional (denotational)) is given. Next variations on
these models will be discussed due to the abstraction from so-called finite stuttering.

2.1. The language

Let (a €)A be an arbitrary set, the elements of which are called atomic (or basic)
actions. (Note that here and in the sequel we use (z €)X for introducing at the same
time a set X and a special element  ranging over X .) We define the set (s €)£ of
statements as follows:

su=a|s;8|s1+s|s| s

Moreover, £ contains a special element E, the terminated statement.

An atomic action a can perform one computation step, in which it changes the
state of the system. (The set of states will be introduced shortly.) The sequential
composition s;; s, is executed by first performing s; and next s,. The execution of
the nondeterministic choice s; + s, between the statements s; and s, amounts to
executing either s; or s,. It will be global in the sense that such a choice can be
influenced by the activity of the environment. The parallel composition s; || s, of s
and s; is executed by interleaving computation steps from both components. We do
not include any constructs for recursion for the sake of simplicity. The main results
that follow can be extended to cover also infinite behavior!.

In particular, the co-domains of our semantic models should then be turned into complete spaces
of some kind in order to obtain infinite behaviour as limit of a sequence of finite approximations. A
suitable framework would be the family of complete metric spaces (see [dBZ82]).
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2.2. The operational model

The operational model will be defined in three stages. First the meaning of atomic
actions is given, next a transition system for £ is defined, and finally a notion of
observables is derived from the transition system.

The actions of our language will be interpreted as transformations on a set of abstract
states.

Definition 2.1 Let (0 €) T be a set of abstract states. Let (1 €) Tsa be defined by
U {6,A}. An interpretation is a function of type

I: A— (Z— Zsa)

An interpretation maps atomic actions to state transformations. If I (a)(o) = 6,
the action cannot proceed in the current state o; its execution is suspended. This
need not necessarily lead to a definitive deadlock of the whole system, because some
other component of the program may be enabled to take a next step. (See the
transition rules below.) Note that the operator plus models global rather than local
nondeterminism, since the choice may depend on the state, which is global.

The interpretation of I(a)(c) = A is that the attempt to execute the action a leads
to a failure (system error). Examples are dividing by 0 or, in the context of constraint
programming, adding a fact to the store that makes it inconsistent. Failure is regarded
as the “most undesirable situation”, and we assume that if an action generates a
failure in a certain state o, then the same action will still generate failure in all
possible future states (after o) in which the system can evolve. This implies that
failure is definitive, a situation of no recovery.

Given an arbitrary triple (4, , I) (the set of atomic actions, the set of states, and the
interpretation function I, respectively), we next describe how the semantics of the
language £ can be constructed. It is based on a labelled transition system (L, Label, —
). The set (A €)Label of labels is defined by Label = & x Ysa. A label represents
the state transformation caused by the action that is performed during the transition
step.

Definition 2.2 Let I be an interpretation. The transition relation —C Lx Labelx L
is defined as the smallest relation satisfying the rules of Table 1.

The interpretation of a transition step s 27) o is as follows. Under the assumption

that the current state is o, the statement s can perform a computation step, changing
the state into ¢/, and resulting in the statement s’.
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(o0’
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s+tm F
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Table 1. The transition system. If s’ = E then read ¢ for s'; t,s' || tand t | s in
the rules R2 and R3.

The last rule D5 shows that in a choice between suspension and failure a process
always chooses to suspends. This is because, as explained above, failure is regarded
as the most undesirable situation.

The rules for failure are F1-F4. The rule for parallel composition (F3) is based on
the fact that failure is definitive. If one component fails, then the complete system
can fail immediately. On the other hand, the system is not obliged to fail as soon
as one component can fail: R3 can be applied before F3, and this allows the other
components to make some proper steps before. Such a possibility is quite natural
since, in a model based on interleaving, it would be very expensive to check at every
step that there are no components that fail (it would require a negative premise in

F3).

Based on this transition system, an observational semantics is defined next. It gives

for every statement the set of sequences of states corresponding to its (completed)
transition sequences.
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Definition 2.3 Let (w €)Xt denote the set of all finite non-empty sequences of

states. The concatenation w; - wy of two sequences w, and wy 15 recursively defined
byb-w=46 A-w=A, and

(owy) - wp = o(wy - wy)

We put Tf; = £+ U+ {6,A}. Let P(-) be the set of subsets of (). The function
0:L—%—P(EH

is given by O[E](c) = {0} and, for s + E,
Olsl(0) = {oor--oupp | s O o 2 . lnd) py

In the definition of O, only connected transition sequences are considered: the labels
of subsequent transitions have the property that the last element of the first label
equals the first element of the second. Note that the last element ¥ of the sequences

in O[s}(o) is either a proper state o’ € %, or the deadlock state § , or the failure state
A.

The function O can also be recursively described as follows. First an auxiliary oper-
ator is introduced. Let - : (£ x £) x P — P be given by

(0,0} - X = {{0,0") - w | w e X}

Now we have, for s # E,

Olsl(e) = Ufo-O[s1(o") | s 22 s
U {o-6] s % By
U {oc-A s (8) E)}

The model O is not compositional for two different reasons, related to the fact that
the semantics of our language is nonuniform (the meaning of atomic actions depends
on the current state), and the fact that deadlock in general is dependent on the choice
structure of statements -which is not taken into account by O. This we will illustrate
by means of two examples.

Example 2.4 Consider £ = {0,1,...} and let s(z) denote the successor of = for
z € X. Further let the set of actions A and the interpretation I be given by

A={z:=0, z:=1, 7:=5(z)},
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I(z:=0)(0) =0, I(z:=1)(0) =1, I(z:= s(z))(o) = s(o)

Now Ofz :=0; 2 :=1](0) = {1} = Oz :=0; z := s(2)](0), whereas
Of(z:=0; 2z :=1) || z := 1](0) = {1}
Ol == 0; 2 = s(2)) | 2 = 1](0) = {1,2}

Example 2.5 Consider A = {0,1,71,6}, © = {0, 1}, and

10)0) =0, 100 =1, 10)0) =8, 1)) ={ | ¥ o=

Now Of0; (71 + 6)[(c) = {¢6} = O[(0; 71) + (0; 8)](o) whereas
5016 € O[((0;71) + (0; 8)) | 1](o)

o016 ¢ O[(0; (71 + 8)) || 1](0)

2.3. Compositional semantics

Next we introduce a semantics D that describes the behaviour of £ in a compositional
manner. It is introduced using the transition system, and it is later shown to be
compositional.

Definition 2.6 Let (X,Y €)P be defined by
P=7(Q)
Q=ExI)U(ExI) (Ex{6A})

(The empty sequence is denoted by €.) Again the concatenation wy-wy of two sequences
wy and wy in Q is recursively defined by (0,68) - w = (0,6), (o,A) - w = (0,A), and

({0, 0")wr) - wy = (0, ") (wy - wy)

Nezt a compositional model D : £ — P is defined as follows. We put D[E] = {¢}
and, for s £ E,

D[[S] = {<01’0;) {0, Py | s (61—’6}) N (?’—a'f) - ("_"_'1)1’) E}

9
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The function D yields sets of sequences of pairs of states, rather than just states.
The intuition behind such a pair {0, 0") is that if the current state is o, then the com-
putation at hand can transform this state into o’. An important difference between
the functions O and D is that in the definition of the latter, the transition sequences
need not be connected: for instance, in the above definition o1 may be different from
03. The idea behind such a “gap” is that the state transformation from o1 to o, may
be caused by the environment, e.g., a program running in parallel with the present
one.

The main interest of D lies in the fact that it is compositional. This we show next.

To this end, semantic interpretations of the operators ; ,+, ||, denoted by the same
symbols, are introduced.

Definition 2.7 Three operators ; ,+, |: P x P — P are introduced as follows.
{ehX={d | X=X|{}={e}+X=X+{}=X
and, for X # {¢} # Xa,

* Xi; Xo = U{{o,0) - ({w}; X3)| (0,0") - w € X1}
U
{{(0,6)| (0,6) € X1}
U

{{o,A)] (0, 4) € X1}

o Xi+X = {{0,0) - v| (0,0") - w € X;}
L{J(U, ') - w| (o,0') - w € Xz}
L{J(a, 6)| {0,6) € X1 A (0,6) € X3}
?(a, 6)| (o,A) € X1 A (0,68) € X3}
lL{JJ(a, 6)| (0,6) € X1 A (0,A) € X;}

{{o,A)] (0,A) € X1 A (0,A) € X3}

10



DE BOER ET AL.: A PARADIGM FOR ASYNCHRONOUS COMMUNICATION

o Xi[| X2 = U{(o,0) - ({w} || X2)| (0,0") - w € Xy}
tJJ{(G, o'y - (X1 [[ {w})] {o,0") - w € X;}
L{J(a, 6)| (0,6) € X1 A (0,68) € X,}
L{J(a, A)l (o, A) € X1}
?(0, A)| (o, A) € Xa}

The definitions of ; and | are recursive. They can be formally justified by induction
on the “length” of sets X, to be defined as the maximum of the lengths of their
elements. (To be precise, this indicates that our domain P has to be restricted to
sets for which such maximum exists. In the present context, this is not a limitation
since we are not dealing with infinite behavior. )

The sequential composition of two sets X; and Xj is as usual; it consists of the set of
all words obtained by concatenating a word from X; and a word from X;.

The nondeterministic composition X + X; contains all sequences of X; and X, that
start with a real computation step (i.e., a pair (o, 0')). Such steps can always be taken
autonomously. In addition, X; + X; contains a suspension step (o, 6) if it is contained
in both components, or if (¢,6) is contained in the one component and (o, A) is
contained in the other. Finally, X; + X; contains (o, A) only if both components do.
Summarizing, the nondeterministic composition can be viewed as set union with the
removal of certain suspension and failure steps. Apart from the interplay between §
and A, one can say that those suspension and failure steps are removed that occur
only in one of the two components.

In the synchronous case, the parallel composition of two processes usually consists
of three parts: the left merge, which contains those interleavings of computations
starting with a step from the left process; the right merge, defined similarly; and
finally the synchronization merge, consisting of computations that start with a step
which is the result of the synchronization of a step from the left and a step from
the right process. In the present asynchronous framework, the main difference is
the absence of the synchronization merge. The first two sets in the definition of the
parallel composition X; || X; correspond to the left and the right merge. Although
there is no synchronization merge, some kind of synchronization does take place:
Xi || X; contains a pair (o, §) only if it is contained in both components.

The definition of the above operators is clearly inspired by the transition rules of the
transition system corresponding with each operator. This is at the same time the
basis for their correctness with respect to the operational model O. In the semantics
for concurrency, it seems to be a general phenomenon that operational semantics (in

11
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Plotkin’s SOS style, see [Plo81)) is more basic than denotational semantics in the
sense that the latter can be derived from the former. See [Rut90] for a systematic
development of this idea in the context of bisimulation equivalence.

Example 2.8 Consider A = {70,71,6}, & = {0,1}. Define I(6)(0) =6 and

10 ={3 4720 1ene={} ¥oz

We have

D[?0; 6] || D[?1; 8] =
{(0,0)(0,6), {0,0)(1,8), (1,6)} || {(1,1)(0,8), (1,1)(1,6), (0,8)} =
{(0,0)(0,6), (1,1)(1,6), (0,0)(1,1)(1,6), (1,1)(0,0)(0, 6)}
A subtle point is that in computi'ng this parallel composition, one will also try to com-
bine (0,0)(0,6) from the left component and (1,1)(1,6) from the right one. However,

this will not contribute to the final outcome: starting with the step (0,0) from the left
followed by (1,1) from the right, one ends up with

(0,0)(1,1) - ({(0,8)} | {(1,6)})
which equals B, since the latter parallel composition is empty and w -0 = 0. The
parallel composition {(0,6)} || {(1,8)} yields the empty set because a suspension pair

(0,8) is only included if it is contained, with the same state o, tn both components.
In other words, these components should synchronize with respect to 6.

Using the above operators, the compositionality of D can be stated.

Theorem 2.9 Forall s,t € £, x€ {;,+,]|},

D[s + t] = D[s] * D[t]

Finally, it is shown that D is correct with respect to the operational semantics O.
That is, if two statements are distinguished by O, then D should distinguish them
as well. The relation between O and D can be made precise using the following
abstraction operator. Let a: P — ¥ — P(ZI},) be defined by

o X)(0) = Ha(z)(0) | 2 € X}

12
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where

0 otherwise

a(z)(o_) - { {0’010'2 ces o-,ﬂ/)} if z = (0’, 01)(0-1,0-2)  es (0-"’ 1/))

The operator a selects from a set X, given an initial state o, all connected sequences
starting with o.

Theorem 2.10 ao D = 0O

2.4. Stuttering

So far, we have been considering only one notion of observables (the semantics O).
It gives for a program the set of all its computation sequences, each of which consists
of all the states through which the computation leads. Intuitively, this requires a
synchronous cooperation between the observer and the program: observation steps
are in one-to-one correspondence to computation steps.

Often this view is not abstract enough. For instance, if one is concerned with the
verification of programs, then it is more important to observe the moments in the
computation where a new state is reached rather than observing all possible compu-
tation steps. More specifically, if a program takes a computation step that leaves the
state unchanged (e.g., if it only reads a value) then this repetition of states should
not be observed. Such repetitions of states is sometimes called stuttering.

In this subsection, we shall investigate how the above models should be changed
if one wants to abstract from finite stuttering. That is, we shall define a second
notion of observables (O,,) in which finite repetitions of states are deleted. Next, a
compositional characterization for this new model is provided.

Operationally, it is straightforward to abstract from stuttering. For a word w € I},

del(w) is the word obtained from w by deleting all subsequent occurrences of identical
states: formally, del(c - 6) =0 -6, del(c- A) =0 - A, and

vy _ ) del(o’ - w) if o=d
del(c - o' w) = { o-del(o’ - w) if oo
If B: P(Z§p) = P(EfL) is defined by B(X) = {del(w) | w € X} we can put

O, : L = X - P(ZH), One = B0 0O

13
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The above denotational model D is correct with respect to O and hence also with
respect to O,,:

Ons=B00=BoaoD

Denotationally, things become more interesting and considerably more difficult if one
is not satisfied with the model D. Although it is compositional and correct with
respect to O,,, it is not very abstract, i.e., it makes more distinctions than necessary.
For instance, let 7 € A and let I(r)(0) = o, for all ¢ € £. Then D[} # D[r; ],

whereas both statements not only have the same operational meaning,

Ons[7](0) = On[[7; 71(0) = {0}

but, more importantly, cannot be distinguished in any context.

Let us try to define a model D,, that is more abstract than D in such a way that it
still is both compositional and correct with respect to O,,.

A first attempt would be to try a similar approach as in the operational case by apply-
ing an abstraction operator to D that removes stuttering steps. Since the denotational
model D yields sequences of pairs of states, one could try to remove those pairs in
which the state is not changed: (o, o). This is not correct, though. Consider the ac-
tion 70 as in Example 2.8 above. Its denotational semantics is D[?70] = {(0,0), (1, 6)}.
Removing the stuttering pair would leave {(1, 6)} as a result. This is simply not cor-
rect with respect to the operational semantics O and O,,, because all information
about what happens in the state 0 has disappeared.

A somewhat more subtle proposal would be to replace two pairs (o,0') (0’0"} by
(0,0") (note that the information that the computation leads through o’ is not lost
here). Again, this does not work in general. Consider ¥ = {1,2}, 7 € A as above,
and a € A with I(a)(1) = 2 and I(a)(2) = 1. Intuitively, the statements a and a; T
should get the same meaning. Their meanings under D are

D[a] = {(1,2),(2,1)}
Dfa; 7] = {{1,2)(1,1),(1,2)(2,2), (2,1)(1,1), (2,1)(2,2)}

In reducing the latter set to the former, the sequences (1,2)(2,2) and (2,1)(1,1)
can be replaced by (1,2) and (2,1), respectively. Now the problem arises that it
is in general not clear what to do with disconnected sequences like (1,2)(1,1) and

(2,1)(2,2).

Therefore an alternative approach is taken. Rather than trying to make two sets of
sequences equal by only removing certain stuttering steps, one can instead also add
such steps, in case they are present in the one set but not in the other.
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Definition 2.11 The operator Close : P — P is defined as follows. For X € P, the
set Close(X) is the smallest set Y € P such that, for all 0,0’ € % and w, Wy, Wy € Q,

1.XCY

2. ifwy - wp €Y and either w, # € or (0,A) # wy # (0, 6)
then wy - (0,0) - wp € Y

8. ifw-{0,0') - (0',0') v, € Y then wy - (0,0') - wp € Y
4. fw - (0,0)-(0,0") - w, €Y then w - (0,0") - € ¥
5. tfw-(0,0)-(0,6) € Y then w-(0,6) € Y
6. ifw-(0,0)-(0,A) €Y thenw-(0,A) € Y

Nezxt we put

D,,:L— P, D, =CloseoD

Of the closure conditions above, clause 2 is the most difficult one to understand. It
allows the addition of arbitrary stuttering steps (o,0) at any place in the sequences
of Y, which is in itself quite intuitive. There is however one exception: if (0,6) € Y
then it is not allowed to add (o, ) - (0, 8) (and similarly for A). This would violate
the compositionality of D,,, as the following example illustrates. Let ¥ = {1} and
T € A be as above; let a € A with I(a)(1) = 6. Then

Dla] = {(1,4)}
D[r; a] = {(1,1) - (1,6)}

If the restriction in condition 2 above were to be dropped, then D,,[a] = D,,[r; a].
This is undesirable, since the two statements can be distinguished by O,, using the
context - + 7; that is,

(1,6) € On,fa+ 7](1)
(1,8) € On(7; @) + 7](1)

Under the assumption that D,, is correct with respect to O,,, this implies D,,[a+7] #
D,,[(; a) + 7]. Hence D,, cannot be compositional.

The new semantics D,, satisfies the required properties.

15
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Theorem 2.12 The model D,, is compositional and it is correct with respect to O,,.
That is, O,, = Boa o D,,.

The correctness is a direct consequence of the fact that the closure operator above

does not influence the connectedness of sequences (and the fact that B and Close
commute).

We conclude this section by giving an alternative description of D,, in terms of an
extended version of the transition relation.

Definition 2.13 Let the transition relation

—2sC L X Label x L

be defined as the smallest relation satisfying the rules given in Table 1 and, in addition,
the rules in Table 2 (1 € A is as above).

S1 a (:l)") T if 1(a)(0)=0"'#6,A

5o 24 ¢

s(—dﬂs

S8

(X (4
S4 S S § —

S5 R s P E

S6 s 9 s’ s'wE

Table 2. Additional rules for stuttering.
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Now we have the following theorem.
Theorem 2.14 Foralls€ L, s # E,

Dyls] = {{o1,0%) - (ou, ) | s 2D, o @B, .. ) gy

This theorem can be proved using the observation that there is a clear correspondence
between clause 2 of Definition 2.11 and rules S1 and S2 of Table 2, and similarly
between the clauses 3, 4, 5 and 6 of Definition 2.11 and rules S3, S4, S5 and S6 of
Table 2, respectively.

The above characterisation of D,, is reminiscent of the way one can model weak
observational congruence ([Mil80]) (or rooted tau-bisimulation ([BK86])), as strong
bisimulation by adding rules like, for instance,

if s s and ' -2 " then s -2 "

(See [BK86, vG87].) The present case is by its non-uniform nature more intricate.

In [dBKPRY1], it is shown that D,, is fully abstract with respect to O,, for two
classes of interpretations (generalizing earlier results of [HdABR90] and [dBP91]).

3. Concurrent constraint programming

In this section we present the paradigm for concurrency called ‘concurrent constraint
programming’ (cc programming), and we show that it is an instance of the language
L introduced in the previous section. Namely, we show that the computational model
of cc and its compositional semantics can be described by instantiating properly the
set of actions, the set of states, and the interpretation function which constitute the
parameters of L.

Concurrent constraint programming was proposed by Saraswat [Sar89, SR90, SRP91).
We follow here the definition given in [SR90], which is more general than the later
formulations, because it deals with a more general notion of guard. In this version,
concurrent constraint programming can be regarded as a generalization of most of
the concurrent logic languages, including the ‘more powerful’ ones like Concurrent
Prolog. See [Sar89] for a detailed list of the logic languages which are subsumed by
the cc paradigm, and the corresponding justification.

Before describing the cc paradigm we have to introduce the notion of constraint
system. This notion plays a cental role in concurrent constraint programming: it is
both the data structure on which processes operate, and the communication medium
by which processes interact with each other. Actually, the only visible activity of a
process consists of manipulating this data structure.

17
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3.1. Constraint systems

The definition of constraint system we will give here is a slightly modified version of
the one described in [SR90]. We first need to introduce the notion of simple constraint
system.

Definition 3.1 A simple constraint system is a structure (S,+) where (a,b €)S is
a non-empty (denumerable) set of primitive constraints and - C P(S) x S is an
entailment relation satisfying the following conditions:

® ifa € o then at a, and

e ifak aandVb € a. B b then B} a.

Now extend |- to a relation on P(S) x P(S) as follows:
akFpiff VbeB.atkb

It is easy to see that |- is a preorder. Denote by ~ the associated equivalence relation:
a~piff abf A Bla

We use the notation [a] to indicate the equivalence class of a, namely
[e] = {8l @ ~ B}

The ordering relation induced by I on P(S) /~ X P(8)/~ is still denoted by |.

Definition 3.2 The constraint system generated by (S,\) is the structure (P(S)m
).

The structure (P(S),n,F) is a complete lattice with ordering relation [a] < [4] iff
[B] - [a]. The least element, denoted by true, is given by [0] = {a] O I a}. The

greatest element, denoted by false (or inconsistency), is given by [S] = {a] a F S}.
The Ilub operation, denoted by LI, is given by:

[ u[s] = [eup]

It is easy to see that this definition is correct, i.e., it does not depend upon the
choice of the representants of the classes, and that it actually corresponds to the lub.
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Furthermore, it can be naturally extended to arbitrary sets of elements, thus showing
that (P(S)/~,F) is in fact a complete lattice.

For the sake of simplicity, we will indicate the equivalence class [@] by a.

Note. The standard definition of constraint system includes a restriction (compact-
ness) on the entailment relation which has the effect to turn the structure (P(8)/~,F)
into a complete algebraic lattice. This guarantees that every element of the domain
can be generated as the result of a (possibly infinite) computation.

Example 3.3 Consider an alphabet consisting of

® a (denumerable) set of variables ¢,y z,. ..,

o for every n > 0 a set of n-adic function symbols f19,-.., (the 0-adic ones will
be called constants, and denoted by ¢, d, .. .)

)

o the equality predicate =.

Let (t,u €)T be the set of terms over the alphabet. The Herbrand constraint system
(H,F) is the structure generated by the simple constraint system (Eq,t), where Eq
is the set of equations on T, and & is the entailment relation generated by Clark’s
equality azioms [Cla79], i.e. the minimal relation satisfying the requirements in Def-
inition 3.1 and the following:

1.VteT. QFt=t

Vi,ueT. {t=u}lu=t

Viu,ve€T. {t=v,u=v}tFt=0v

T e b

If f is a n-adic function symbol (n > 0), then
Vi ooty tn,occun €T, {l =uy,...t, = un} F f(t,y. .. 1) = f(u,...,u,)
5. If f is a n-adic function symbol (n > 0), then
Vi, ... ta,u,...u, € T. Vi€ [1,n]. {flty, o cta) = flur, . un)} F 8 = oy
6. If f and g are distinct function symbols of arity m and n respectively, then,
Vh, ... tmytur,...u, € T.Vt,ue T. {F(t,. .. tn) =g(u,...,us)} Ft=u
7. Ifz occursin t and x # ¢t thenVu,v € T. {z = t}ku=wv.
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Note. Conditions (1), (2), (8) and (4) above correspond to the standard equality az-
ioms (reflexivity, symmetry, transitivity and substitutivity). Conditions (5), (6) and
(7) correspond to the so-called free-equality azioms, which enforce the interpretation
of = as syntactical identity, or, in other words, the interpretation of the function
symbols as data constructors. The standard formulation of the free equality azioms
(in first-order logic) is

FE1 f(zl,...:c,,):f(yl,...,y,.)—»:vl=y1 ANz, =1,

FE2 f(a:l,. .-xm) # g(yl,---,yn)

FE3 z#t ifz occursint andz £t

Observe that the structure (Eq,t) does not contain negated equations. However, the
negation of an equation t = u can be represented by enforcing the inconsistency of
t = u, i.e. by stating that t = u entails the equality of all elements in the domain (of
course, this representation makes sense only when T contains at least two terms).
This is the way in which FE2 and FES are expressed (conditions (6) and (7) above).

Assume, for instance, that the alphabet contains only the variable symbols z,y and
the constant symbols c,d. Then, the Herbrand constraint system will be (isomorphic
to) the lattice represented in Figure 1.

3.2. The concurrent constraint paradigm

The class of cc languages (in their basic common features) is specified by the following
grammar

su=tell(a) | ask(a) | s1;8 | si+s | s | s

where a is a basic constraint, i.e. a constraint which is equivalent to a finite set of
simple constraints. The constraint system is a parameter of the language, and we will

refer to it as (C,F). The intended computational model can be informally described
as follows.

All processes of the system share a common store, which, at any stage of the com-
putation, is given by the constraint established until that moment. (Usually at the
beginning of the computation the store is supposed to be #.) The execution of an
action of the form tell() modifies the current store by adding « to it. More formally,
if the store at the moment of the execution is 83, it will become « LI B afterwards.
An action of the form ask(a) is a test on the store: it can be executed only if the
current store is strong enough, namely if it entails o. If this is not the case, then the
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{c=d}

{x:c,y:c} {z:c,y:d} {z:d,y:c} {x:d,y:d}

-
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y} {y=d} {z =d}

Figure 1. The Herbrand constraint lattice for z, y, ¢, d

process suspends (waiting for the store to get stronger by the contributions of the
other processes). In any case, the store remains unchanged.

Note that both the tell and ask actions are monotonic, in the sense that the store
after their execution is greater than or equal to the store before. This implies that
the store will evolve monotonically during the computation.

There is a difference between the various cc languages concerning the tell actions.
Some of them check for the consistency of o with respect to the current store, before
executing tell(a). Others just add o regardless of whether or not it will lead to an
consistent situation. The two kinds of tell are called atomic tell and eventual tell
respectively in [SR90]. The different definitions of this operation are already present
in the literature concerning concurrent logic programming. There the consistency
check is usually called atomic unification (this explains the terminology “atomic tell”:
unification on the Herbrand universe corresponds, roughly, to adding a constraint to
the store). An example of a language with atomic unification is Concurrent Prolog
([Sha86]), an example of a language without atomic unification is the language of

Guarded Horn Clauses ([Ued87]).
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Note that the inconsistent store is a situation of no recovery, since it is the top of
the lattice, and the store can only evolve monotonically. Inconsistency is usually
regarded as the most undesirable situation, the failure of the computation.

Obviously, the languages with atomic tell are more powerful, since processes can be
specified which will try to avoid inconsistency, if possible. A process which has the
alternative of provoking an inconsistency, or suspending, will always choose for the
latter. However, if a process detects a unavoidable inconsistency (due to the fact that
all the alternatives start with an action of the form tell(ar) with o inconsistent with
the current store), then it can immediately propagate it to the other processes so
that the whole system terminates (with failure). It would not make sense to oblige
the system to wait as long as possible (i.e. to execute first all the other processes);
in fact the store evolves monotonically, and therefore if o is inconsistent with the
current store it will be inconsistent with all the future stores as well.

3.3. Concurrent constraint languages as instances of £

We show now how to derive the formal computational model and, correspondingly,
the compositional semantics, for both cc languages with atomic and eventual tell, as
an instance of our paradigm L, i.e. by instantiating properly the parameters of £:
the set of actions, the set of states, and the interpretation function.

In both cases of atomic and eventual tell, the set of atomic actions of the language
is given by

A = {ask(e)] a is a basic constraint} U {tell(a)| a is a basic constraint}

The state of a computation is given by the store, therefore we can define
¥=C

Concerning the interpretation function of the ask actions, remember that ask ()
tests the store and it suspends if the store does not entail c. Furthermore, the

cc computational model of [SR90] prescribes the following laws for the suspension
mechanism:

® a process can suspend only if it has no possibility to proceed with a ‘proper
transition’, and

o the system can suspend only if all processes suspend (as long as some processes
can proceed and - hopefully — modify the store, suspension will be delayed).
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We see that the suspension mechanism corresponds to a § transition (cfr the table of
the transition system). Therefore we can model the ask actions as follows:

I(ask(a))(0") = {a' if o'k o

é otherwise

For the tell actions, the interpretation function depends upon the kind of tell, atomic
or eventual. We start with eventual tell, since it is more easy to describe.

3.4. Concurrent constraint languages with eventual tell

In the languages with eventual tell, the action tell(a) always proceeds and it adds «
to the store. Therefore we define:

I(tell(0))(o") = oUo’

In the following examples, we consider the Herbrand constraint system (H,F) de-
scribed in Example 3.3.

Example 3.4 Consider the processes
s1 = tell(z=c) + tell(y=c)
s2 = tell(z =d) + tell(y=d)
Let s be the system
s=s8| s

Bearing in mind that § = true and {c¢ = d} = false, the traces generated by s are the
following:

Ofs)(true) = { true-{z = c}- false,
true - {z =c} - {z = ¢,y = d},
true-{y =c} {z =d,y = c},
true - {y = c} - false,
true - {z = d} - false,
true- {z=d} -{z=d,y= c},
true - {y = d}-{z = ¢,y = d},
true - {y = d} - false }

The sequences ending in false derive from the fact that both s; and sy can perform
one of their alternatives regardless of what the other process has done in the past.
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Example 3.5 Consider the processes
st = ask(zr=c) ; tell(y=c)
2 = tell(z=c) + tell(z=4d)
Let s be the system
s=3 | s
We have

O[s](true) = { true-{z=c}-{z=c} -{z=c,y=c},
true - {z =d} -6 }

Ons[s](true) = { true-{z=c} -{z=c,y=c},
true- {z =d}-§ }

Note that the ezecution of an ask action will always introduce the stuttering phe-
nomenon.

3.5. Concurrent constraint languages with atomic tell

As already explained, the main difference between cc atomic tell and cc eventual tell
is that the execution of an atomic tell can take place only if it doesn’t lead to an
inconsistent store. The computational model of cc [SR90] prescribes the following
laws concerning the detection of an unavoidable inconsistency (failure):

e it can happen only when there are no other alternatives, and
e it can immediately be propagated to the whole system.
We see that the failure corresponds to a A transition (cfr the transition system

table). Bearing this in mind, we can define the interpretation function of the atomic
tell actions as follows:

A otherwise

I(tell(a))(0") = { o'Uo if o'Uo # false

Note that the computations of systems based on atomic tell will never generate an
inconsistent store, therefore we could restrict the set of proper states as follows:

L =C\ {false}.
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Example 3.6 Consider the processes sy, s, and s as described in Ezample 8.4. With
the new interpretation function, which models the consistency check, we obtain

Ofsl(true) = { true-{z=c}-{z=c,y=4d},
true-{y=rc} -{z=d,y=c},
true-{z =d}-{z=d,y = ¢},

true - {y=d} - {z=c,y=4d} }

Note the difference with Ezample 3.4: here the processes s, and s, will always test
the compatibility of their choices with the choices already done by the other.

The processes defined in Ezample 3.5 yield the same traces as before.

Example 3.7 Consider the processes

s1 = ask(z =c) + (tell(z = c) ; tell(y = d))

s = tell(z =d)
Let s be the system
s=38| s
We have

Ons[s)(true) = { true-{z =c} A,
true-{z=c} - {z =c,y=d} - A,
true- {z =d}-6 }

Note that if s, starts first, then s, will prefer to suspend (waiting — in this case in
vain — for some process to add information to the store) rather than to enter “the
state of no return” (A).

4. Examples of Instances

In this section we give some other examples of instances of the paradigm. Recall that
an instance makes a specific choice for the set of states ¥, the interpretation I, and
the set of atomic actions A. More examples of instances (like asynchronous CSP and
asynchronous CCS) can be found [dBKPR91].
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4.1. An imperative language

Let A be the set of assignments z := e, where z € Var is a variable and ¢ € Ezxp
is an expression. Assume that the evaluation £(e)(o) of expression e in state o is

simple in that it does not have side effects and is instantaneous. Let the set of states
be defined by

Y = Var — Val

where Val is some abstract set of values. Then define I by

o= 0= ) 4L

With this choice for A, ¥ and I, the semantic models for £ are essentially the same

as the operational and denotational semantics presented for a concurrent language
with assignment in [HdBR90].

One could include in this language a suspension mechanism by associating with each
assignment a boolean expression, which must be true to enable the execution of the
assignment (otherwise it suspends). A basic action is then an object of the form
b.z := e. Its interpretation is:

o(y)  E(D)(o)and y £z
I(b.z :=¢)(o)(y) = g’(e)(a) iftf(b)(a) and y =z

4.2. Input/Output-automata

The next example shows that Input/Output-automata (I0-automata) are an instance
of our paradigm. This may come as a surprise because the communication between
I0-automata is defined in a synchronous way. However, as our instance shows, the
fact that an I0-automaton is not to allowed to refuse inputs makes its communication
mechanism asynchronous. We first give a short introduction to IO0-automata, but
more information can be found in [LT87], and in [Jon90] on which this introduction
is based.

An [0-automaton is formally a tuple
(1,0,8,s,T)

where I is a set of input events, O is a set of output events, S is a set of states,
s € S is the initial state and T C S x (I U O) x S is the transition relation. A
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triple (s,4,5') in T is called a transition because it states that the IO-automaton
can make the transition from state s to state s’ via event i. The transition relation
should satisfy the following condition: for all states s € S and for all input events
i € I there is a state s’ € S such that T(s,i,s’) (input events can be accepted by
the automaton in all states). All sets should be finite and we require the intersection
of I and O to be empty.

The 10-automaton starts execution in its initial state and its transitions may change
the state. A transition is labeled by an event: if it is labeled by an input event it
is called an input transition and labeled with an output event it is called an output
transition. Intuitively, from a certain state an I0-automaton can always do its out-
put transitions starting from that state, and accept input transitions. For output
transitions the environment (another I0-automaton) should accept it as input event
(but every automaton will always accept input events) and for input transitions the
environment should offer the corresponding event. In the formal definition of an IO-
automaton the only requirement that distinguishes input and output transitions is
that in every state all input transitions are possible. This corresponds in the seman-
tic model to the fact that the automaton should always be prepared to accept input
events. Also in the semantics we will see that the automaton suspends when it is
in a state from which there are only input transitions and none of the input events
is available (yet). When we put two I0-automata in parallel, they synchronize on
their events. Because the synchronization of an input event and an output event
yields an output event, the only observations we can make from a closed system of
I0-automata are finite sequences of ouput events followed by suspension and infinite
sequences of output events.

The basic operation on IO-automata is the parallel composition: given two IO-
automata it yields a new IO-automaton that synchronizes on all events. Formally,
the definition is as follows: Let N, = (Ii, 01, 81,5, T1) and N; = (I, 0y, 53, 5,, T,)
be two I0-automata. Then the parallel composition Ny || N, is the I0-automaton
N = (I, O,S,g, T) with S = S] X Sg, I = .[1U12\01U 02, O = 01U 02, s = (§1,§2),
and such that T'((s1, s2), a, (s{, s;)) holds if the following four requirements are satis-

fied:

1. a € Il U 01 = T1(31, a’s{)>
2.a¢IIU01#31=S{,
3. ae LU 0; = T2(321 a,sé),

4. a¢I2U02=>32=s§.

Intuitively, the four requirements state that if two automata can synchronize on an
event then they should do so, and only in the case that an event of the automaton is
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not an event of the other automaton then the automaton can do this event without
synchronization. The combination of two input events gives an input event, and

combinations of input/output events and combinations of output events give output
events.

There is another important hiding operator on I0-automata, but we can not model
this operator in the present framework: it requires a block construct in the language
L. (This extension will be discussed in a forthcoming paper.)

Next we turn to the semantic model. First we observe that there is no language for
I0-automata: they are given as tuples on which operations like parallel composition
are defined. Therefore we are going to code the transitions of the IO-automaton as a
statement (procedure call) and then we use the parallel composition operator of £ as

the semantic counterpart of the parallel composition operator on I0-automata. We
will make the following steps:

1. we assign names to I0-automata

2. we take as the set of atomic actions the set of events labeled by names of
I0-automata

3. we code the transitions of the I0-automata in a set of recursive procedures
(here we have to extend the language £ with a simple mechanism for recursion)

4. we take states with for each I0-automaton a buffer in which input events are
stored: only if this buffer is empty the corresponding automaton can do output
events (this is how we simulate the synchronization of the events: first perform
the output event and later we make sure that the corresponding input event
takes place).

Let Name be a names that can be assigned to I0-automata, and let Event be the
set of events (from which input and output events are taken). We assume that for
each o € Name the input events I, and the output events O,, are fixed. Morever, we
assume for a # o, that O, N Oy = 0. A consequence of this assumption is that for
every event there is only one 10-automaton which has this event as one of its output
events (single producer). We take disjoint sets of states (S, N Sy = 0 for different a
and o) because then we can use these states directly as the procedure variables in
our instantiation (otherwise we would have to do some renaming).

Formally we then take the following instantiation:

1. Atomic actions A = Event x Name, (we will use the CSP-like notation a?: for
the pair (o, i) made up of a name a and an input event i, and alo for the pair
(a, 0) with o an output event)
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2. States ¥ = Name — Event*,

3. Interpretation function: (we use the variant notation ofa := z] for the state
which is like o, except for the value in o which is z)

e if i € I, and if 0(a) = i - & then I(a?i)(o) = ofa := 2],
¢ if o(a) is the empty word then
| vy ) o) o ifd' Fano€ Ly
H{alo)(o) /\a.{ o(a) otherwise

e and equals § in all other cases.

The next step is to construct a statement that “drives” the I0-automaton. The
problem is that the transition relation of every I0-automaton contains cycles (it has
a finite number of states and it can always accept input). A natural way to model this
is to use recursion, but this is not yet included in the paradigm. For this example we
extend the transition system with four rules for recursion. Full treatment of recursion
in the paradigm (including divergence) is a topic of future research. Here we extend
the language £ as follows: we allow procedure variables z in statements and we

assume that every procedure variable has an associated statement s,. The four rules
are:

1. if s, ) 5 then z &%) s,

2. ifs,MEthenwa,

3. ifs,MEthenx(f’—&zE,

4, mdifsszthenwa.

Assume given an 10-automaton with name a. As members of the set of procedure
variables we take states of the automaton and with each state s € S we associate the
sum over the following statements:

o for every s' € S,i € I with T(s,1,s') the statement a?:; s/,

e for every s' € S,0 € O with T(s,0,s’) the statement alo; s'.

Note that this statement is never empty: in every state all input events are allowed.

As an example consider the automaton a of figure 2. The procedure variables
S0, 81, 82, 83 have the following associated statements:

so = aliy; s2+ aliy; s, + alog; s
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So il 3 iz S2

01 4, iz, 02

51 il’iZ \391.1’7&

Figure 2. The transition graph of the I0-automaton

S = a‘?zl, S3 + a?z2, S3
8 = aliy; s3+ aliy; s3+ alog; s3
s3 = alh; s34+ aliy; s;

The IO-automaton starts in state s, and the associated program that drives the
automaton is the procedure call s;. The only terminal configuration is one in which
no steps are possible. An automaton is never finished, because it is always willing to
accept new inputs. The only situation in which the execution stops is in when there
is no output available and all automata are waiting for events to arrive.

Our semantics makes only finite observations and this explains why we our interpre-
tation does not have to consider fairness issues. It would be nice to give a proof that
our interpretation coincides with the standard definitions of [LT87].

4.3. Data flow Networks

The last example is to show how data flow networks can be couched in the paradigm.
The instance is similar to the one used for I0-automata and hence we are more brief.
For data flow networks we also need to extend £ with recursion and hiding: we
take the same extensions to the language £ and the transition systems as for the
10-automata example.

A data flow network contains nodes that are connected by directed channels. The
channels are perfect first-in/first-out buffers on which data items are passed. The
nodes in the networks execute in parallel: they take data items from incoming chan-
nels, and put data items on outgoing channels. One way to describe these execution
steps is to give a transition relation.
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All channels are named, and if nodes refer to a channel with the same name then
they share that channel. We assume that for every channel there is at most one node
that puts data items on it, but that there can be several nodes that take data items
from that channel. For each of the nodes that take tokens from the channel there is

a different buffer: when the producer outputs a data item then a copy is made for all
buffers.

The nodes have internal states, taken from a set S, and the transitions are of the
form (s, X,s’, Y), where s, s’ are states in S, and X, Y are sets of pairs of the form
(c, w), where c is a channel name and w is a sequence of data items. The intuition
is as follows: If the node d is in state s and if for every pair (¢, w) € X we have that
the sequence w of data items is a prefix of the contents of the buffer of channel ¢ for
node d, then three steps are taken:

1. for every element (¢, w) in X the sequence w is removed from the buffer of
channel ¢ for node d,

2. the node moves from state s to state s/,

3. for every element (¢, w) in Y the sequence w is added to the buffers of channel
c for all nodes different from d.

We assume for simplicity that the sets of channels in X and Y are disjoint.

The set of states is defined as ¥ = Node x Channel — Dataltem*. We need the
following two functions for the instantiation: The function Check that checks for a
given node whether the a set of channel contents are a prefix of the actual contents
of the buffers in a state. Formally:

Check : Node x P(Channel x Dataltem™) — ¥ — {true, false}
Check(d, X)(o) = (V(c,w) € X . w < o(d, c))

where < denotes the prefix ordering on sequences. Then we have a function MakeStep
that, given a node, removes data items according to its first argument and adds data
items according to its second argument.

MakeStep

Node x P(Channel x Dataltem™) x P(Channel x Dataltem*) - £ — ¥
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MakeStep(d, X, Y)(o) = Md',c) .

o(d',c) otherwise

»

The instance has three parts:

1. the set of states

Y = Node x Channel — Dataltem™,

2. the set of atomic actions
A = Node x P(Channel x Dataltem*) x P(Channel x Dataltem*) :

the node together with two sets of pairs of channel names and sequences of data
items: one set with sequences that should be removed (if present) and a second
set of sequences that should be added to the buffers of the channels,

3. the interpretation function I is defined by

1(d, X, Y)(0) = MakeStep(d, X, Y)(o) if Check(d,X)(o) = true
A TRI)= s otherwise

The rest of the construction follows the pattern of the IO-automata. Note that also
for this instantiation all channels remain visible to every process and a hiding operator
for the language £ should be used to hide channels.

5. Future Work

Various extensions of the general compositional model for asynchronous communi-
cation will be investigated. Important additional features to be incorporated are
recursion and infinite behaviour, a general definition of a “hiding” operator which
covers so seemingly diverse notions as the hiding of logical variables in concurrent
logic languages, of asynchronous channels in asynchronous versions of CSP, and of
local states in shared-variable concurrency. Also of interest is the development of
process algebras for the various asynchronous communication mechanisms. Finally,
another interesting line of research is offered by the development of a general real-time
model for asynchronous communication.
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