Linear Planar Augmentation Algorithms

for Outerplanar Graphs

Goos Kant

RUU-CS-91-47
December 1991

Utrecht University

S X Spe.
(\) p1 e - - "
f iﬁ\g Department 6f Computer Science
x &
o S Padualaan 14, P.0. Box 80.089,

K i '3\» 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30-531454

Linear Planar Augmentation Algorithms

for Outerplanar Graphs

Goos Kant

Technical Report RUU-CS-91-47
December 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 00243275

Linear Planar Augmentation Algorithms for
Outerplanar Graphs*

Goos Kant
Dept. of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

In this paper we show that for outerplanar graphs G the problem of aug-
menting G by adding a minimum number of edges such that the augmented
graph G’ is planar and bridge-connected. biconnected or triconnected can be
solved in linear time and space.

keywords: outerplanar graphs. augmentation algorithms, data structures,
connectivity.

1 Introduction

A number of graph problems can be viewed as augmentation problems [3]: Given a
graph G = (V, E), find a set of edges E’ of minimum size such that G’ = (V, EU E')
satisfies a certain property. In this paper we inspect three properties, considered
by Kant & Bodlaender [11]: bridge-connectivity, biconnectivity and triconnectiv-
ity, while preserving planarity, i.e.. G is planar and G’ also must be planar. The
problems are called the planar bridge-connectivity, biconnectivity and triconnec-
tivity augmentation problem, respectively [11]. These planar graph augmentation
problems derive their significance from the need to draw planar graphs elegantly.
Several efficient planar graph drawing algorithms require the input graph to fulfill
certain connectivity constraints (see e.g.. [9. 16. 21]). Thus, some extra (dummy)
edges are added such that the resulting graph fulfills these constraints. In order to
preserve the structure of G as much as possible, we want to add a minimum number
of dummy edges.

As shown in [11], the planar biconnectivity augmentation problem is NP-complete
and the planar bridge-connectivity and triconnectivity augmentation problem are

*This work was supported by the ESPRIT Basic Research Actions program of the EC under
contract No. 4171 (project ALCOM I1I).

drawing of the triconnected planar drawing of the biconnected outerplanar graph.
graph of figure 5 using Tutte.

Figure 1: Drawing example of the outerplanar graph of figure 5.

still open. Approximation algorithms, working within 3,2 and $ times optimal,
respectively, are included in [11] as well. These problems, however, become effi-
ciently solvable when we restrict our input graphs to trees and outerplanar graphs.
We show in this paper that the planar bridge-connectivity augmentation problem
for an outerplanar graph G can be solved in linear time, by modifying the gen-
eral augmentation algorithm to meet bridge-connectivity constraints of Eswaran &
Tarjan [2]. Finding an augmentation that biconnects a graph seems to involve dif-
ficulties that are not present in the bridge-connectivity augmentation algorithm [3].
Also here, the planar biconnectivity augmentation algorithm in this paper is more
complicated, but can still be done in linear time, by modifying the corresponding
general linear augmentation algorithm of Hsu & Ramachandran [8] in an elegant
way. (Actually, the algorithm of Hsu & Ramachandran is a corrected and simplified
version of the algorithm of Rosenthal & Goldner [17].) In the case of arbitrary planar
graphs (for which the problem is NP-complete [11]), a strongly related algorithm
can be obtained, working in O(nlogn) time and with a performance ratio 2 [11].
Recently a linear algorithin is presented to augment a graph by adding a minimum
number of edges to admit triconnectivity [7]. In this paper we show by a totally
different approach how to make a (not necessarily biconnected) outerplanar graph
triconnected and still planar by a minimum number of edges in linear time, thereby
using a variant of the linear planar bridge-connectivity algorithm for outerplanar
graphs. This means that several planar drawing algorithms for drawing biconnected
and triconnected planar graphs can be used for outerplanar graphs, by augmenting
them with as few edges as possible. In figure 1 an example of a drawing of a bicon-
nected outerplanar graph is given. by making it triconnected and applying Tutte’s
convex drawing algorithm [21]. Observations how to augment G while maintaining
outerplanarity are included as well.

Augmentation algorithms seems to have a lot of interest nowadays. Other recent
augmentation algorithms. which do not preserve planarity, can be found in [4, 14],
but they only consider the edge-connectivity constraints. Other recent algorithms,

dealing with vertex-connectivity, can be found in [6, 12]. In [10] an augmentation
algorithm is described to augment planar graphs such that they are triangulated,
while preserving degree constraints.

This paper is organized as follows: in section 2 some definitions are given. In
section 3 we give some general observations on drawing outerplanar graphs and aug-
mentation techniques. In section 4, 5 and 6 the planar augmentation algorithms for
outerplanar graphs to meet bridge-connectivity, biconnectivity and triconnectivity
constraints, respectively, are presented.

2 Definitions

Let G = (V, E) be an undirected graph with |V| = n vertices and |E| = m edges. G
is connected if there is a path between every pair of vertices. If v is a vertex of G such
tha.t G —{v} is disconnected, then v is called a cutvertex. If (z,y) is an edge such that

= (V, E — (z,y)) is disconnected, then (r,y) is called a bridge. If G is connected
and contains no cutvertices, it is biconnected. If G is connected and contains no
bridges, it is bridge-connected. If G is connected and the deletion of any two vertices
with incident edges preserves the connectivity, then G is called triconnected. The
connected (biconnected, bridge-connected, triconnected) components of a graph are
its maximal connected (biconnected, bridge-connected, triconnected) subgraphs. A
tree is an undirected, connected, acyclic graph.

A graph is called planarif it can be drawn in the plane such that there is no pair
of crossing edges. A graph is called outerplanar if it can be drawn as a planar graph
with all vertices occuring on one face. called the outerface. A graph is outerplanar
if and only if its biconnected components are outerpla.nar and can be recognized in
linear time [13].

Central to the algorithms is the concept of the block graph of G, denoted by be(G)
(cf. Harary [5]): each biconnected component (or, shortly, block) is represented by
a b-vertex and each cutvertex of G is represented by a c-vertex of be(G) and two
vertices u,v of bc(G) are adjacent if and only if the corresponding cutvertex of u
in G is contained in the corresponding block of v in G or vice versa. It can easily
be shown that bc(G) is always a forest. It is known as the be-tree of G when G is
connected. Every path in bc(G) contains alternating b- and c-vertices. A pendant
block is a block which contains exactly one cutvertex. Let p(v) of a cutvertex v
denote the number of pendants. connected at v. Let p be the number of pendants of
G (thus the number of leaves in bc(G)) and let ¢ be the number of isolated vertices
in be(G). Let d(v) denote the number of components of G — {v}, i.e., the graph
after deleting cutvertex v. Each component of G — {v} is called a v-block. If G is a
tree then for all v, d(v) = deg(v), the degree of vertex v. Let d = max,ev{d(v)}.

When constructing be(G) for an outerplanar graph G, we assume that the cutver-
tices ci,...,ck, connected at a certain blockvertex b in bc(G), appear in the order
they appear on the outerface of the corresponding block B of G. This means that

Figure 2: Example of a graph and a block graph (from [8]).

in be(G), the order of the sons of every blockvertex is fixed, and for a cutvertex, any
order of the sons is allowed. Such a “fixed” be(G) can be constructed in linear time
[20] and will be used in the next sections throughout. Note that adding one edge
between two arbitrary pendants of an outerplanar graph does not destroy planarity,
because we can always embed this edge on the outerface. An added edge will also
be called augmenting in the following sections. In figure 2 an outerplanar graph G
and the corresponding block graph be(G) are given.

3 Preliminaries

Outerplanar graphs are an interesting class of planar graphs, since all vertices share
one common face. Several problems, which are NP-hard for planar graphs, become
easily solvable for outerplanar graphs, e.g., the CHROMATIC NUMBER PROBLEM.
With respect to augmentation problems, it has been shown by Kant & Bodlaender
[11] that every outerplanar graph can be triangulated while minimizing the max-
imum degree in polynomial time. Since the problem is NP-complete for planar
graphs, this again gives a contrast between outerplanar and planar graphs.
Biconnected outerplanar graphs can be drawn by placing all vertices on the
cornerpoints of a regular n-gon, and drawing the chords as straight lines inside
the cycle. This leads to a convex planar drawing, but the minimum angle can be
O(2) and the ratio between the longest and smallest edge can be O(n). Another
algorithm for drawing outerplanar graphs works only for triangulated outerplanar
graphs, i.e., all faces inside the cycle are triangles. It starts with drawing a triangle
ABC, which has one edge on the outerface. say AB. It draws AB horizontal and
draws C above AB such that AC = BC' and ZBAC = /ABC. From AC and BC
recursively the remaining parts of the outerplanar graph are drawn. See figure 3
for an example. Here the drawing can be constructed such that the minimum angle
is T(ﬁ'?)' However, the ratio between the longest and smallest edge can be O(2").

This drawing construction has also succesfully been applied by Lin & Skiena [18],

A%ﬁé/\\

B

Figure 3: Drawing an outerplanar graph.

to draw a polygon P on a grid whose visibility graph is a triangulated outerplanar
graph.

In this section we consider the problem of augmenting an outerplanar graph such
that the resulting graph is again outerplanar and bridge- or biconnected. If G is not
connected, then we apply the following algorithm of [2]: let ¢ be the number of trees
in bc(G). Let v(7), 1 < i < 2t be a set of vertices of bc(G) such that

1. v(2i — 1) and v(2i) are each a pendant or an isolated vertex in the ith tree of
be(G), for each 7,1 < i < t.

2. v(2: — 1) = v(2:) if and only if the /th tree of be(G) is an isolated vertex.

It now easily follows that be(G) U {(v(2i).v(20 + 1))|1 < 7 < t} is a tree having
P’ = p+ 2¢ —2(t — 1) pendants and no isolated vertices [2]. We add the edges
between arbitrary vertices of the pendants in G, if there is an edge between the
corresponding leaves in bc(G). Hence we may assume further that G is connected
and outerplanar.

Biconnecting G while maintaining the outerplanarity is obtained as follows by
the algorithm of Read [13]: let an embedding of the outerplanar graph be given, i.e.,
let the edges around each vertex be given in the adjacency list in clockwise order
with respect to a planar drawing. Compute the blocks (e.g., by using [19]). We add
an edge (u, w) between two consccutive neighbors v and w of cutvertex v, if u and w
belong to different blocks. For every vertex v we do this exactly d(v)—1 times, since
v belongs to d(v) different blocks. After this addition, v is not a cutvertex anymore,
because there is a path between the e-blocks. not using v but the new added edges.
To see that G is still outerplanar we inspect a cutvertex v. Let u and w be two
consecutive neighbors of ¢ in the embedding of G, belonging to different blocks,
but no edge (u,w) is added by the augmentation algorithm (since only d(v) — 1
edges are added). Notice that (u.v) and (v.w) belong to the outerface before the
augmentation, hence also after the augmentation v still belongs to the outerface.
This completes the followiug theorem.

Theorem 3.1 Therc is a simple linear-time algorithm to augment an outerplanar
graph by adding edges to a biconnected outerplanar graph.

By changing the algorithm a little it can be proved that the degree of every vertex
increases by at most 2 (see Kant & Bodlaender [11]). Since every biconnected graph
is also bridge-connected, this algorithm can be used to bridge-connect G as well.
Notice that an outerplanar graph G cannot be triconnected, since deleting any pair
of vertices u, v, for which (u,v) is a chord of G disconnects G.

Biconnecting (or bridge-connecting) G by a minimum number of edges while
maintaining outerplanarity seems to be a much harder problem. Even for trees T
with p leaves it is not very difficult to construct examples in which 2 edges are
sufficient to biconnect (or bridge-connect) T'. and examples in which p — d edges are
necessary to biconnect (or bridge-connect) T. Also there exists outerplanar graphs
G with b blocks and 2 pendants, for which b — 1 edges are necessary to biconnect
G. Moreover it seems pretty hard to prove that the solution is also minimum.

Therefore we inspect the problem of augmenting outerplanar graphs such that the
augmented graph is bridge-connected, biconnected or triconnected and planar. We
show that the number of edges added is equal to the non-planar case, and therefore
optimal. Also the algorithms are very simple and can easily be implemented to
run in linear time. For drawing biconnected and triconnected planar graphs a lot

of advanced algorithms are known, which can be used to draw the (augmented)
outerplanar graphs.

4 Bridge-connectivity

In this section we inspect the problem of how to add a minimum number of edges to
an outerplanar graph G, such that the augmented graph G is bridge-connected and
planar. Bridge-connecting G is equal to bridge-connecting the forest bc(G). The
algorithm for bridge-connecting be(G) is inspired on the general bridge-connecting
algorithm of Eswaran & Tarjan [2]. They gave the following lowerbound on the
number of edges needed to make bc(G) bridge-connected (recall the definitions of
section 2):

Theorem 4.1 ([2]) Atleast [E]4¢ edges are needed to make be(G) bridge-connected.

If G is not connected, then we apply the algorithin of section 3, hence we may
assume further that G is connected and let T be its be-tree. All that remains is to
find a set of [2] edges to bridge-connect any tree with p leaves and a fixed order of
the leaves given.

This bound is attainable. Hereto we first convert the tree T into a related tree
T’ by deleting every vertex v of degree 2 and merging its two incident edges into
one. T' can be obtained in linear time and every internal vertex has degree > 3.
We now pick an arbitrary nonleaf blockvertex as root. We number the vertices in
postorder, which means that we traverse the tree by a depth-first search traversal,
where we first visit the sons of a vertex for numbering, before numbering the vertex.
We visit the sons from left to right. which means that the leftmost descendant leaf

gets number v; and the root gets number v,,. Let v(1),...,v(p) be the leaves of T",
ordered in increasing v;-number. The following lemma is easy to prove:

Lemma 4.2 The descendants of any verter have consecutive numbers in any post-
order numbering.

The idea of the algorithm is as follows: we visit the vertices in increasing post-
order numbering. If v; is a leaf v(k), then we simply add an edge (v(k — 1), v(k)), if
k is odd. If v; is an internal vertex, then we test whether there exist an augmenting
edge (v(a),v(B)), with v(a) a descendant of v; and v(3) not a descendant of v;. If
not then we change it such that this holds. The algorithm can now be described
more formally as follows:

BRIDGE-CONNECT
A := 0; { A becomes the augmenting set of edges. }
z:=1;

fori:=2tondo
if v; is a leaf v(k) then
if k is odd then A:= AU {(v(k - 1),v(k))}
else
let v(j1),...,v(jx) be the descendant leaves of v;;
if j; is even and z < j; then
A:=A={(v(h)v(72)} U {(v(2),v(1)}; z 2= jas
endfor;
if z <pthen A:= AU {(v(z),v(p))} else A := AU {(v(1),v(p))}

It follows from the algorithm that |4| = [2], but to prove that G indeed is
bridge-connected and planar, we need the following lemma of [13]:

Lemma 4.3 Let (v.w) be an edge of G' = (V,E'U A). Then (v,w) is a bridge of
G' if and only if v is the father of w in T and there is no edge (o, 3) € A such that
a s a descendant of w in T and j3 is not a descendant of w in T.

Lemma 4.4 G' = (V. E'U A) is bridge-connected.

Proof: Let (v,w) be any edge of G’ such that v is the father of w in T. Suppose
the leaves of T which are descendants of w are {v(j;), -+, v(jn)}. w is not the root
thus j; > 1 or j, < p, assume j; > 1 (the case j, < p goes analog). If w is a
“leaf then j; = j, and w gets and incident edge to another leaf of G/, so assume
that w is not a leaf, thus j, > j;. If j; is odd then by BRIDGE-CONNECT the edge
(v(j1 —1),(v(51)) is added to A and v(j, — 1) is not a descendant of w, so assume j;
is even. If at this moment @ < j; holds. then the edge (v(2),v(j;)) will be added in
BRIDGE-CONNECT, and v(z) is not a descendant of w. Let us call such added edges
(v(x),v(s1)) in BRIDGE-CONNECT special.

Assume finally that j; is even and @ > j,. Since z = 1 initially and £ > 7, > 1
now, z has been changed and, hence, one or more special edges (v(a),v(b)) are
added. For every special edge (v(a),v(b)) holds that a is odd and b is even, and the
next special edge starts in v(b+ 1). The first special edge starts in v(1) and the
last one when visiting w ends in v(x — 1). Since j; is even no special edge can start
in v(j1). Let @ be the highest number < j; such that there starts a special edge
(v(a),v(d)) in v(a). But now b > j;, because otherwise b < j; — 2 and there would
start a special edge in v(b+ 1). Contradiction with the fact that a was the highest
number < j; where a special edge (v(«a), v(D)) starts. v(a) is not a descendant leaf
of w, but v(b) is. By lemma 4.3 we can conclude that (v,w) is not a bridge of G’, if
7 >1.]

Lemma 4.5 G' = (V,E'U A) is planar.

Proof: It follows directly from BRIDGE-CONNECT that when visiting leaf v(k),
that for all leaves v(i), z < ¢ < k holds that (v(i),v(i — 1)) € A with odd. This
means also that there are no edges (v(a).v(3)) € A with a < z < 3. Hence when
adding special edge (v(z),v(j1)) to 4 or when adding (v(k — 1),v(k)) to A, there
are no two edges (v(a),v(43)) and (v(5).v(8)) € A, witha < v < S and § < a or
6 > (3. Since this holds when visiting any vertex v;, it follows that G’ is planar. O

Constructing the graph be(G) can easily be obtained in linear time, as well as
adding the ¢—1 edges such that the graph is connected. Constructing the be-tree and
the post-order numbering can easily be performed in linear time. At each internal
node v we store a pointer to its leftmost leaf. Using this plus one pointer to leaf v(z)
the total required time is O(1) when visiting v; in BRIDGE-CONNECT. This leads to
the main theorem of this section:

Theorem 4.6 The planar bridge-connectivity augmentation problem can be solved
in linear time and space for outerplanar graphs.

5 Biconnectivity

Before introducing the algorithm for biconnecting outerplanar graphs, we first study
some properties of the block graph. The following definitions are coming from [8].

Definition 5.1 A vertex v of be(G) is called massive if and only if v is a c-vertex
with d(v) — 1 > [B]. A vertex v of be(G) is critical if and only if v is a c-vertex
with d(v) — 1 = [E]. The graph be(G) is critical if and only if there exists a critical
c-vertez in be(G).

Definition 5.2 A block graph be(G) is balanced if and only if G is connected and
without any massive c-vertex. (Note that be(G) could have a critical c-vertex.) A
graph G is balanced if and only if be(G) is balanced.

8

Definition 5.3 (the leaf-connecting condition) Two leaves u; and uy of be(G)
satisfy the leaf-connecting condition if and only if u; and ua are in the same tree
of be(G) and the path P from u; to uy in be(G) contains either (1) two vertices of
degree more than 2, or (2) one b-vertex of degree more than 3.

Some first observations concerning the block graph be(G) are the following;:

Lemma 5.1 ([17]) There can be at most one massive vertex in be(G). If there is
a massive vertez in bc(G), then there is no critical vertex in be(G), and there can be
at most two critical vertices in be(G), if p > 2.

The following fact for updating be(G’) from be(G) is given in [17].

Theorem 5.2 Given a graph G and its block graph be(G), adding an edge between
two leaves u and v of be(G) creates a cycle C. Let G' be the graph obtained by
adding an edge between ' and v’ in G where v’ and v' are not cutvertices in the

blocks represented by v and v respectively. The following relations hold between be(G)
and be(G').

o Vertices and edges of be(G) that are not in the cycle C remain the same in
be(G).

e All b-vertices in be(G) that arc in the cycle C contract to a single b-vertex ¥
in be(G').

o Any c-verter in C with degree equal to 2 is eliminated.

o A c-vertex 2 in C with degrec greater than 2 remains in be(G') with edges
incident on vertices not in the cycle. The vertex a also attaches to the b-verter

b in be(G').

Inspect the graph G and be(G) of figure 2. If we add an edge (8,10) to G, then
all b-vertices on the path hetween C and D in be(G) are contracted in one b-vertex
X, as shown in figure 4.

Lemma 5.3 ([8]) Le¢t uy and u, be two leares of be(G) satisfying the leaf-connecting
condition (definition 5.3). Lct o and 3 be non-cutvertices in blocks of G represented
by w1 and uy respectivdly. Let G' be the graph obtained from G by adding an edge
between o and B and let P represent the path between uy and uy in be(G). The
following three conditions are true.

o p=p-2.

o Ifv is a c-vertexr in P with degree greater than 2 in be(G), then the degree of
v decreases by 1 in be(G').

Figure 4: Example to get bc(G’) from be(G) when adding edge (8,10) in the outer-
planar graph of figure 2 (from [8]).

o Ifv is a c-vertex in P with degree equal to 2, then v is eliminated in be(G').

We first state a lower bound on the number of edges needed to augment a graph
to reach biconnectivity.

Theorem 5.4 ([2]) Let G be an undirected graph with t connected components and
let q be the number of isolated vertices in be(G). Then at least maz{d+t—2, [E]+q}
edges are needed to biconnect G, if ¢+ p > 1.

The algorithm to obtain this bound in general (without the requirement of pla-
narity) is based on the following observation [8]: in every step we search for two
leaves u; and u; of be(G) satisfying the leaf-connecting condition (definition 5.3).
Then we add an edge between two non-cutvertices in blocks of G represented by u;,
and uz. Then the number of leaves will decrease by 2 when updating bc(G). This
technique simplifies the original algorithm of Rosenthal & Goldner [17] where the
path from u; to u; should contain the c-vertex with highest degree.

We will show that applying this will lead to the lowerbound of theorem 5.4.

The algorithm of Hsu & Ramachandran [17] consists of three stages. We will
describe the three stages here. Stage 1 makes the graph connected; stage 2 eliminates
the massive vertices and stage 3 makes the graph biconnected. Stage 1 and 2 can
easily be modified for our problem but for stage 3 we have to modify both algorithm
and data structure intensively.

5.1 Stagel

First we have to connect the ¢ components with each other, using ¢ — 1 edges. But
for this we can use the algorithm described in section 3. This corresponds with
the given lowerbound of theorem 5.4, hence we may now further assume that G is
connected, and we try to biconnect its be-tree T' by max{d — 1, [2]} edges, without
destroying planarity.

10

5.2 Stage 2

Suppose there is a massive vertex v* in T. (If no massive vertex v* exists, no action
is taken at stage 2.) Let v be the number of components of T — v containing only one
leaf of T'. Call such components I-chains. There are d(v*) — v components of which
each contains at least 2 leaves, so p > v + 2(d(v*) — 7). We pick v* as the root of T
and number the vertices of T in preorder: traverse the tree by a depth-first search
traversal, where we first number the vertex, before visiting the sons from left to
right in T'. Let v(1),...,v(p) be the pendants of T, ordered so that number(v(z)) <
number(v(i+1)), for 1 <7 < p. We now add 26 edges such that as much as possible
1-chains are coalesced into one by the following algorithm, with § = d(v*) —1— [2].

t:=1;A:=0; { A becomes the augmenting set of edges. }

while |4 <26 and i < n do
if v(¢) and v(i + 1) are both 1-chains then 4 := AU {(v(:),v(i +1))};
ti=1+1

od;

t:=1;

while |A| < 26 do
if v(¢) is a 1-chain and (v(¢),v(i + 1)) ¢ A then 4 := AU {(v(s),v(i +1))};
t:=1+1

od

Let G’ be the augmented graph by adding the 26 edges of A between the corre-
sponding pendants. It easily follows that the edges can be added such that G is still
outerplanar. Let T’ be the corresponding bc-tree with p' leaves, with p’ = p — 26,
and let d’'(v) denote the d-value of v in T".

Lemma 5.5 ([17]) For all cutvertices v of T, d'(v) — 1 < [”{] holds.

Proof: For v*, it holds that d'(v™) — 1 = d(v*) =1 —26 = 8] -6 = [”{]
Now consider a cutvertex v # v*, and suppose that d'(v) — 1 > [”7'] Now p

> d(v*) +d(v) — 2 = (d(v") = 1)+ (d(v) = 1) > [2] +([£] +6) = [8] +([2] = 6) + 6
= 2[E] > p, which is a contradiction. a

5.3 Stage 3

In this stage, we have to deal with a graph G where bc(G) is balanced. The idea
1s to add an edge between two leaves y and - under the conditions that the path
P between y and z passes through all critical vertices and the new block tree has
two less leaves if bc(G) has more than 3 leaves. Thus the degree of any critical
vertex decreases by 1 and the tree will remain balanced. We also want y and z to
be leaves that satisfy the leaf-connecting condition. because then we can use lemma

11

5.3 and will lead to the desired lowerbound of [2] edges to biconnect a balanced
graph. Moreover, this path must be such that adding an edge between two non-
cutvertices of the blocks represented by y and z does not destroy planarity. We call
two leaves y and z adjacent if after adding (y,z) to bc(G) all other leaves of be(G)
are either inside or outside the new created cycle C. Hence in every step we look for
two adjacent leaves y and z, satisfying the leaf-connecting condition and the path
P between them passes through all critical vertices. We will show that these pairs
always exists.

Since the vertices with degree 2 are of no interest in the algorithm, we eliminate
them from the bc-tree, by contracting their two incident edges into one.

The algorithm can now be described as follows:

SEQ_BCA
(* G has at least 3 vertices and bc(G) is balanced; *)
Let T be bc(G) rooted at an arbitrary b-vertex b*;
while p > 2 do
if d = 2 then
let v be a b-vertex (unequal to b*) with degree > 2
else
let v be a c-vertex with the largest degree in T
use algorithm PATHFINDER(v) to find a vertex w with degree > 2
and two adjacent leaves y and : such that the path
between them passes through v and w;
find non-cutvertices @ and 3 in the corresponding blocks
of G represented by y and z respectively;

add an edge between a and 3: update the block graph T
od;

We now describe the procedure PATHFINDER, that finds a vertex w and the
two adjacent leaves y and = whose path P between them passes v and w. Recall
from section 2 that any order of sons of a cutvertex is allowed, but the sons of a
blockvertex may only be swapped from a left-to-right order into a right-to-left order.
We construct the following data structure for bc(G) (which is almost equal to the
construction of PQ-trees, introduced in [1]):

e Every vertex v in bc(G) is represented by a record. If v is not a leaf, then v has
a pointer to its leftmost and rightmost son. called I-son and r-son, respectively.

e The sons of each vertex are stored in a doubly linked list.

o If a vertex is a son of a c-vertex or the left- or rightmost son of a b-vertex,
then it has a father-pointer to it. otherwise this pointer is nil.

Since we may permute the children of a c-vertex in any order, we sort the children
of each c-vertex v such that all non-leaves occur at one side, say starting from the
leftmost son of v. The idea now is to walk from v towards root b*, until the father-
pointer is nil or b*. Let w be the highest reached vertex from v to b*, then we change
the tree such that we can reach v from w by following only /-son pointers. We reach
leaf y now by following !-son pointers from v and reach leaf z by following r-son
pointers from the left brother of w (if w has at least two sons), otherwise we follow
r-son pointers from w.

If there are only three leaves, then we can reduce bc(G) into a new block tree
with two leaves by picking any pair of leaves in bc(G) and connecting them. We
know that we can reduce a block tree of 2 leaves into a single vertex by connecting
the two leaves. So assume further that p > 3, then the algorithm can be described
more formally as follows (swap(«, b) changes the contents of a with b and vice versa):

PATHFINDER(vertex v);
(* v is the c-vertex with largest degree in T or a b-vertex with degree > 2; *)

w = v;

while father(w) # nil and father(w) # b* do

if w is not leftmost son of father(iw) then swap(w, l-son(father(w)));

w := father(w);
od;
y i="v;
while y is not a leaf do

if leftmost son of y is a leaf then swap(l-son(y), r-son(y));

y := l-son(y);
od;
if w has degree > 2 then : := left brother of w

else z := rightmost son of w:

while z is not a leaf do
if rightmost son of ¢ is a leaf then swap(l-son(z), r-son(z));
z := r-son(z);

od

Lemma 5.6 y and : are adjacent.

Proof: From the father of w there are two paths downwards: one via w and
v to y, following only the leftmost son pointers, and one via the left brother of w
or via the rightmost son of w to leaf . following only the rightmost son pointers.

Hence all the other leaves are on one side of the cycle, obtained by adding (y, 2) to
T. O

This means that we can add an edge (a, 3) between two non-cutvertices of the
blocks of y and z without destroying the planarity.

13

Lemma 5.7 y and z satisfy the leaf-connecting condition.

Proof: v is a vertex with degree > 2. When we stop in the while-loop of
PATHFINDER, then father(w) is nil, and hence has degree > 2 and is part of path
P, or father(w) = b*. Assume w.lo.g. that d(b*) < 3, thus b* has degree 1. Of
course w has degree > 2. If w # v then we have already found another vertex w
with degree > 2, so assume w = v. If v is a c-vertex and there is another vertex
vy with degree > 2 in T, then v, is the leftmost or rightmost son of v, because the
children of each c-vertex in T are sorted such that all non-leaves occur at one side.
But path P visits from v both the leftmost and rightmost son of v and, hence, v, will
be a part of P by PATHFINDER. Assume finally that v is a b-vertex (hence d = 2).
If v has degree > 3 then w = v satisfies the leaf-connecting condition. Otherwise
v has only two sons. PATHFINDER walks downwards through both sons. Hence if
both sons are not leaves, then one of them has degree > 2 and will be detected by
PATHFINDER. Hence the leaves y and = always satisfy the leaf-connecting condition.

O

Lemma 5.8 For outerplanar graphs G with be(G) balanced, the algorithm SEQ_BCA
(using the procedure PATHFINDER) finds a set of [B] edges, that when added to G,
yield a biconnected planar graph.

Proof: Assume w.lo.g. that p > 3. In this case, a critical vertex must have
degree more than 2.

Case 1: If bc(G) has two critical vertices v and w, then all other non-leaves have
degree 2 and, hence, are eliminated from the tree. Since PATHFINDER will find
another vertex with degree > 2 if present. both v and w will be part of P.

Case 2: If bc(G) has only one critical vertex v, algorithm SEQ_BCA finds it. Because
bc(G) is balanced and p > 3, there must exist another vertex w with degree more
than 2. Otherwise v is massive. PATHFINDER will find a vertex w with degree > 2.
Case 3: The block tree bc(G) has no critical vertex. Then SEQ_BCA will take the
c-vertex with highest degree if d > 2. otherwise it takes a b-vertex with degree > 3.
In both cases PATHFINDER will find another vertex w with degree > 2 on the path
P.

In all three cases, we can find two vertices of degree more than 2 or a b-vertex
of degree more than 3. Thus by lemma 5.3. the number of leaves in the new block
tree reduces by two. When v or w is critical. the value of d is reduced by 1. Thus
the block tree remains balanced. Hence we can achieve the lower bound of theorem
5.4 by the algorithm. a

For finding the c-vertex with highest degree, we maintain an array bucket, and
initially we store in bucket[i] all c-vertices with degree i. Using an extra pointer,
we can find in O(1) time the c-vertex with highest degree. When the degree of a
c-vertex decreases, we can remove it from one entry and store it in another entry in

14

O(1) time. If all buckets are empty, meaning that there are no c-vertices in T, then
we have to take a b-vertex with degree > 2. Notice that either b* or one of its sons
must have degree > 2, hence we can easily find such a vertex in O(1) time.

If d(b*) > 3, then the lowest common ancestor of y and z is always a b-vertex b;.
Let w,,w; be two sons of b;, which are part of P. We now walk from y to z and
make every c-vertex a son of b, and we make all sons of a b-vertex sons of b;. We
store them between w; and w; in the order we visit them between y and z. Since
all b-vertices on P are now eliminated and every c-vertex on P is now son of P,
the degree of several vertices on P is decreased in the updated tree. Since only the
degree of vertices on P decreases, we test these vertices for degree 2, because then
we eliminate them. If the lowest common ancestor of y and z is a cutvertex ¢;, then
we take a new b-vertex b;, and do the same as above, and add finally this b-vertex
as son of ¢; in the tree T'.

Lemma 5.9 Algorithm SEQ_BCA runs in O(n + m) time.

Proof: The block-tree can be built in O(n + m) time. The total number of
vertices in the block tree is O(n). A linear time bucket-sort routine is used to sort
the degree of the c-vertices. By the algorithm PATHFINDER, every path P between
the leaves y and z can be found in O(|P|) time. By theorem 5.2, the number of
times a vertex is visited is no more than its degree. Since the summation of degrees
of all vertices in a tree with n vertices is O(n), the lemma is true. 0

This lemma completes the following result:

Theorem 5.10 There is a linear algorithm to augment outerplanar graphs by a
mintmum number of edges such that the resulting graph is biconnected and planar.

6 Triconnectivity

6.1 Triconnecting Trees

We now inspect the problem how to augment an outerplanar graph G with a mini-
mum number of edges such that the augmented graph G’ is triconnected and planar.
Hereto, we first restrict our attention to trees. where every vertex of degree 2 must
get one additional edge and every leaf must get two additional edges. This means
that at least [2] + L edges are required to triconnect a tree, with L the number
of leaves and K the number of vertices v with degree 2. This bound is attainable
while preserving planarity.

First, if G does not contain a vertex of degree > 3, then G is a path P of vertices
V1,...,Up. Triconnecting this path P is easy by adding the edges (v1,v3), (v, vy4),
(vs, vs), (vs,V6), . - . (Vp—2,Vp), (vp—1.v1). Hence assume from now on that there is at
least one vertex r with deg(r) > 3. which is the root of T'.

15

Let us call a path P in T with only vertices of degree 2 a chain. If |P| (the
length of P by counting the number of vertices) is greater than 2 then we handle
P as follows. Let vy, v,,..., v be the vertices of P. Add an edge between v; and
Uk, Uy and vi_1, etc., until one or two vertices are left (UL"J and Urk 1) Adding
edges from gty and vrky to vertices, not part of P makes the chain P trlconnected
hence we may assume further that every chain has length 1 (a I-chain) or length
2 (a 2-chain). We assume that the order of the children of each vertex in T is
fixed, and by a preorder numbering (see section 4.2) we determine the left-to-right
order lo,...,Ir -y of the leaves. Let for each nonleaf vertex v;, I(v;) be its leftmost
descendant leaf, and let for every leaf I; in T, V(I;) be the set of vertices v, with
deg(v) = 2 and I(v) = I;. For each l; we sort the elements of V(I;) in increasing
order, according to their preorder-number (by bucket-sort).

We now try to add edges between vertices of V(/;) to achieve triconnectivity
while preserving planarity. We must be sure that we do not add edges between two
vertices of a same 2-chain. For this we visit the vertices of V'(I;) and add, if allowed,
edges between consecutive vertices:

CHAIN-EDGES(V(1;));
let V(I;) = {v1,...,v};2:= 1;
for i := 3 to p step 2 do
if chain(vi—1) = chain(v;) then add edge (vy,vi_1);r =1
else add edge (v;_1,v;);
endfor

The algorithm looks like the algorithm BRIDGE-CONNECT, but we only have to visit
the vertices of V'(I;) in increasing order. Similar to lemma 4.4, it can easily be shown
that CHAIN-EDGES will preserve planarity but moreover, it follows that there will
be no edge added between two vertices of a common chain. This means that all
chains, which received an edge, are now become triconnected. If |[V(l;)| is odd, then
one vertex remains unmatched, otherwise two. For all sets V'(I;), let V(I;) contain
the unmatched vertices of V(I;) after CHAIN-EDGES(V/(I;)), hence |V (I;)| < 2 for all
leaves. Let A = {(I;,1i4+1)],0 < i < L} (with additions modulo L). Now, do the
following:

CHANGE-SETS
for all /; with |V([;)]=1 do
let V(L) = {v;};
A:=A—{(lioy, 1)} U {(liz1.)}
od;
for all [; with |V([;)] =2 do
let V() = {vi,, v, }, with v;, above v;,:

A= A'—{zlv }U{lllil)}
endfor

16

Figure 5: The change when |V'(I;)] =1 (a) and when |V(;)| = 2 (b).

In figure 5 both changes are given. Now these leaves [; with |V([;)| = 1 must get
one outgoing edge, and the leaves I; with |[V'(/;)] = 2 must get one outgoing edge,
as well as the corresponding vertices v;,. but they may not be connected with each
other, because then the graph cannot become triconnected. For these pairs I, v;, We
say that chain(l;) = chain(v;,). Let v,...., v be the vertices of T', ordered left to
right by increasing preorder number, which must get one additional edge. We again
apply the algorithm CHAIN-EDGES on the set vertices {vy,...,v:}. If two vertices
remain unmatched, then we add an edge between them, otherwise we add an edge
between v; and v;.

Theorem 6.1 G’ = (V, EU A) is triconnected and planar.

Proof: Regarding the planarity it easily follows from Figure 2 and the algorithm
CHAIN-EDGES that adding the set .4 to G does not destroy the planarity. For the
triconnectivity constraint we have to show that if we delete two vertices from G',
then the graph must still be connected.

If for all V(L;), |V(l;)] = 0, then there is a cycle C on the leaves of T. For
every leaf l;, with |V (1;)] > 0 there is an edge from /;_; to an edge v; € V(I;) and
there is a path from v; to [;, hence there is always a cycle C, containing all leaves.
Let v;,v; € G’ be two arbitrary vertices of G. we now show that G’ — {v;,v;} is
connected.

Suppose first that v; or v; do not belong to C, hence there is a path P on the
leaves. All leaves can reach each other via P and all vertices, not descendants of v;

17

and v; can reach each other via T'. Since the degree of the root is 3, there is always
a path from some leaves in G’ — {v;,v;} to r, hence via this path all vertices can
reach each other.

Assume now that v;,v; € C. If they are both leaves, then via T all vertices
can reach each other. Otherwise, assume v; is not a leaf and let I; be the leftmost
descendant of v;. I; has an augmenting edge to a vertex v, of C, not a descendant
of v;. If v has degree 3 in T, there is a path from v; to a leaf I} in T, with k # 1.
There is a path form I via lg41,lk42,... to a vertex vg of C, with 3 # a. Hence
there are two node-disjoint paths P, P, from v; to vertices, not descendants of v;.
If v; € P, then via P, we can reach from v; all descendants of v;, which are not
reachable via P,. Moreover, via P,, there is a path P3 to the root r, not crossing
v;, hence via P, and P; we can reach all vertices, not descendants of v; or v;. If v;
has degree 2 in T, but degree 3 after CHAIN-EDGES, then v; belongs to triconnected
component and, hence, has 2 node-disjoint paths P, and P, via descendants of v;
to vertices, not descendants of v;. Otherwise, as shown in figure 5 and by applying
CHAIN-EDGES on the remaining set of vertices v of degree 2, v; directly receives an
edge to a vertex vg of C. Since there is also a path via [; to a vertex v, of C, with
a # B and v,,vg both not descendants of v;, we again have 2 node-disjoint paths
from v; to all other leaves of C. From this it easily follows that G’ — {v;,v,} is
connected for every arbitrary pair of vertices v;, v;, hence G’ is triconnected. O

Since |A| = [5] + L, the augmenting set is optimal. Since also [V(lp)| + -+ - +
|V (Ip=1)| £ n, this leads to the following

Lemma 6.2 There is a linear time and space algorithm to augment a tree by a
minimum number of edges such that the augmented graph s triconnected and planar.

6.2 Triconnecting Biconnected Outerplanar Graphs

Next we consider outerplanar graphs, but first we inspect biconnected outerplanar
graphs, which are cycles with non-intersecting chords. Every vertex with degree 2
must have an additional edge and therefore we walk from an arbitrary startvertex v,
around the outerface to recognize the chains. i.e., simple paths in which all vertices
have degree 2. Every biconnected outerplanar graph has at least two vertices v, with
deg(v) = 2 [13]. Let F be an internal face of the outerplanar graph, containing two
chains Cy, C; of length ¢y, ¢y, respectively and assume ¢; > ¢;. Then we first add
¢, edges between the two chains, and we add edges between the remaining vertices
of Ci, until one or two vertices remain unmatched. If there is only one chain C,,
then we only add edges between vertices of C'j, until one or two remain unmatched.
This can easy be done while preserving planarity. When there are more than two
chains, belonging to one face, then a similar technique can be applied such that all
unmatched vertices belong to one chain. Next we number the vertices vq,...,v,
around the outerface. We also number all vertices of degree 2 by v(1),...,v(p)

18

around the outerface, visiting in order of increasing v;-number. To get G tricon-
nected, we apply a similar technique as in section 3: when we visit a vertex v(k) of
degree 2, then we test if the “subtree of v;" is triconnected. In this case we test for
each chord (a, 8) (an edge, not on the outerface of the outerplanar graph) if there
are two edges from one side of (a,) to the other side. The algorithm can now be
described as follows. Assume v; = v(1) is a vertex of degree 2.

TRICONNECT_BIC_OUTERPLANAR
A :=0; { A becomes the augmenting set of edges. }
zT:=1;
for::=2tondo
if v; = v(k) for some k then
if k is odd then A := AU {v(k - 1).v(k))}
else
for all chords (v;,v;) with 1 < j <7 do
let v(j1),...,v(jp) be vertices of degree 2 in G between v, and v;;
if j; is even and x < j; then
A= A= {(v(1), 0(G2)} U {(o(2) v (i) i o= o
if j, is odd then
A= A= {(0(pm1) . Up))} U {(2(2), 0(Gpas))}i 2 2= G
endfor
endfor;
if z < p' then A:= AU {(v(x).v(p))} else 4 := AU {(v(1),v(p))}

Lemma 6.3 We can augment a biconnected outerplanar graph G by a minimum
number of edges such that the augmented graph G' is triconnected and planar.

Proof: Every vertex of degree 2 get one augmenting edge, plus we have one
extra edge if the number of vertices of degree 2 is odd, hence the set of augmenting
edges is optimal.

The structure of the algorithm TRICONNECT_BIC_OUTERPLANAR is equal to the
algorithm BRIDGE-CONNECT, and by a similar proof as in lemma 4.4 it can be shown
that G’ = (V, EU A) is planar.

Regarding the triconnectivity, inspect two vertices v;,v; € G/, with ¢ > j. G’ —
{vi,v;} splitst the outercycle C' in two paths Py, P,. If v; and v; belong to two
different faces in G, then there is a chord in G, connecting the two paths P, P,,
hence G’ — {v;, v;} is still connected. Assume now that v; and v; share a common
face. If v; and v; are in the same chain. one easily sees that G’ — {v;,v;} is connected.
So assume v;, v; are on different chains. Let (vg.v;) be a chord in G with k < j as
large as possible and ! > j as small as possible. It is well known that for every chord
(vk,vr) in a biconnected graph. there is a vertex v, of degree 2, with k¥ < a < I.
Thus the set vertices {v(j1),....v(j,)} of degree 2 in G between v; and v; is not
empty. If j; is even and z < j;. then by adding (v(x),v(j1)) to A, there is an edge
from one side of (v, v) to the other side. Similar if j, is odd then again via the

19

B w6

W)
(a) a biconnected outerplanar graph (b) triangulating the intemal faces and numbering the vertices

i 3) w6)

W)

(c) applying TRICONNECTED_BIC_OUTERPLANAR (d) the complete triconnected planar graph.
when visiting chord (i, j).

Figure 6: Example of the algorithm TRICONNECTED_BIC_OUTERPLANAR.

edge (v(jp),v(Jp + 1)) there will be an edge from one side of (vk,v;) to the other
side. If there is a vertex v; between v(j;) and v(j,) on the outerface, then v(j;) and
v(jp) do not belong to the same face, because we first added edges in one face such
that the remaining vertices of degree 2 belong to one side. Since v(j;) and v(jp)
have degree 2 and do not belong to one internal face, there is an edge («,), with
a between v(j;) and v(j,) and 3 between v(j;) and vi (or between v(j,) and v;).

Since B # v(j1),v; # B or v; # v(j;) holds, say v; # v(j1). But now there is a
path P between P, and P, in G' — {v;,v;}. and via (a,) and vy, because v; # a.
O

In figure 6 an example of the algorithm TRICONNECTED_BIC_OUTERPLANAR is
given.

6.3 Tricon'necting Outerplanar Graphs

To triconnect outerplanar graphs G. which are not necessarily biconnected, we ap-
ply the techniques for triconnecting trees and biconnected outerplanar graphs. If
G is not connected, then we can apply the algorithm of section 3 to connect the
components with each other, so we may assume that G is connected.

20

Figure 7: Example of the areas of the outerplanar graph of figure 2.

We now recognize the biconnected components of G and add edges between
vertices of chains, sharing a common face inside one biconnected component of the
outerplanar graph, such that only one or two vertices remain unmatched in each
internal face and (if possible) part of the same side. To be more precise about
these biconnected components, which must receive an augmenting edge, we state
the following lemma, which can be verified quite easily.

Lemma 6.4 A mazimal biconnected component B; in an outerplanar graph B; needs
at least one incoming edge in any triconnectivity augmentation if and only if there
is vertez of degree 2 in B; or its corresponding b-vertex has degree 2.

We now build the be-tree T of G. Let one arbitrary b-vertex b* or c-vertex c*
be the root. Again the order of the children of a b-vertex is fixed. We assume
that the left-to-right-order of the children of a b-vertex corresponds with walking
counter-clockwise around the outerface of the coresponding block. We eliminate
all c-vertices of degree 2 in T, which will have no influence on the structure of the
graph. Let ly,...,I _; be the leaves of T visited from left to right, corresponding
with the pendant blocks bg,....b,_; in G. We introduce the following definition:

Definition 6.1 An area A; in G is the face which we obtain by adding an edge
between the pendants b;_, and b;.

Since the graph G is outerplanar, every vertex belongs to at least one area. If a
vertex belongs to two areas A4;, Aj. then we assign it to the area A; for which i is as
small as possible. In figure 7 an example of the definition of area is given.

For every leaf I; in T we define V7(/;) as the set of vertices v in G with degree 2,
for which v is assigned to area F;. If a maximal biconnected component contains no
vertices of degree 2, but its corresponding b-vertex has degree 2, then we assign one

21

vertex v of B; to V(1;), if v is on the outerface of B; and assigned to area A; (see
lemma 6.4).

Notice that if G is a tree, then this assigning to V(I;) corresponds with the
definition of the leftmost descendant leaf. We apply a preorder v;-numbering on
the vertices of G and we sort each set V'(/;) in order of increasing v;-number. We
now apply the algorithm TRICONNECT_BIC_OUTERPLANAR, but we visit all vertices
of V(I;), and we test for chords (vj,v;), if both vj and v; belong to area F,. We
do not add the last edge to A, which means that from every set V(l;), one or two
vertices remain unmatched. To augment these vertices, we change V(I;) by the set
of unmatched vertices in it, hence now [V'(;)] < 2. Let A = {(li, lig1)]0 <4 < L},
then we apply CHAIN-EDGES and additionally we apply CHANGE-SETS to augment
every vertex of degree 2 by an extra edge. Every leaf /; in T receives two extra edges.
We assign these edges to those vertices of the corresponding block b; in G, which
have degree < 2. Notice that every outerplanar block has at least two vertices with
degree 2, hence these vertices always exist.

Thus every vertex of degree 2 and every remaining b-vertex receives one extra
edge and every pendant receives two extra edges. Thus the set of augmenting edges
is optimal. Moreover, we can use the proofs of lemma 5.2 and 5.3 to show that the
augmented graph indeed is triconnected. The algorithms can easily be implemented
to run in linear time and space. thereby completing the following main result of this
section:

Theorem 6.5 There is « linear time and space algorithm to augment an outerpla-

nar graph G by a minimum number of cdges such that the resulted graph is tricon-
nected and planar.

Acknowledgements

The author wishes to thauk Tsan-sheng Hsu for some useful comments and for
pointing out an error in an carlier versiow.

References

[1] Booth, K.S., and G.S. Lucker. Testing for the consecutive ones property, interval
graphs and graph planarity testing using PQ-tree algorithms, J. of Comp. and
System Sciences 13 (1976). pp. 335-379.

(2] Eswaran, K.P., and R.E. Tarjan. Augmentation problems, SIAM J. Comput. 5
(1976), pp. 653-665.

[3] Frederickson, G.N.. and J. Ja'Ja. Approximation algorithms for several graph
augmentation problems. SIA J. Comput. 10 (1981), pp. 270-283.

N
[\

[4]

[5]
[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Frank, A., Augmenting graphs to meet edge-connectivity requirements, Proc.
31th Annual IEEE Symp. on Found. on Comp. Science, St. Louis, 1990, pp.
708-718.

Harary, F., Graph Theory, Addison-Wesley Publ. Comp., Reading, Mass., 1969.

Hsu, T., On four-connecting a triconnected graph, in: Proc. 33st Annual IEEE
Symp. on Found. of Comp. Science, Pittsburgh, 1992 (to appear).

Hsu, T., and V. Ramachandran, A linear time algorithm for triconnectivity
augmentation, in: Proc. 32th Annual IEEE Symp. on Found. on Comp. Science,
Porto Rico, 1991.

Hsu, T., and V. Ramachandran, On finding a smallest augmentation to bicon-
nect a graph, In: Proc. of the Second Annual Int. Symp. on Algorithms, Lecture
Notes in Comp. Science 557, Springer-Verlag, 1992, pp. 326-335.

Kant, G., Drawing planar graphs using the Imc-ordering, in: Proc. 33st Annual
IEEE Symp. on Found. of Comp. Science, Pittsburgh, 1992 (to appear).

Kant, G., and H.L. Bodlaender, Triangulating planar graphs while minimizing
the maximum degree, in: O. Nurmi and E. Ukkonen (Eds.), Proc. 8rd Scand.
Workshop on Algorithm Theory (SWAT92), Lecture Notes in Comp. Science
621, Springer-Verlag, 1992, pp. 258-271.

Kant, G., and H.L. Bodlaender, Planar graph augmentation problems, Ex-
tended Abstract in: F. Dehne, J.-R. Sack and N. Santoro (Eds.), Proc. 2nd
Workshop on Data Structures and Algorithms, Lecture Notes in Comp. Science
519, Springer-Verlag, 1991, pp. 286-298.

Khuller, S., and R. Thurimella, Approximation algorithms for graph augmenta-
tion, in: Proc. 19th Int. Colloquium on Automata, Languages and Programming
(ICALP’92), Lecture Notes in Comp. Science 623, Springer-Verlag, 1992, pp.
330-341.

Mitchell, S.L., Linear algorithms to recognize outerplanar and maximal outer-

planar graphs, Inform. Process. Lett. 9 (1979), pp. 229-232.

Naor, D., D. Gusfield and C. Martel. A fast algorithm for optimally increasing
the edge-connectivity, in: Proc. 31st Annual IEEE Symp. on Found. of Comp.
Science, St. Louis, 1990, pp. 698-707.

Read, R.C., A new method for drawing a graph given the cyclic order of the
edges at each vertex, Congr. Numer. 56 (1987), pp. 31-44.

Rosenstiehl, P., and R.E. Tarjan, Rectilinear planar layouts and bipolar orien-
tations of planar graphs, Discr. and Comp. Geometry 1 (1986), pp. 343-353.

23

[17] Rosenthal, A., and A. Goldner, Smallest augmentations to biconnect a graph,
SIAM J. Comput. 6 (1977), pp. 55-66.

(18] Lin, Y.-L., and S.S. Skiena, Complexity Aspects of Visibility Graphs,
Manuscript, Dept. of Comp. Science. State Univ. of New York, Stony Brook,
1992.

[19] Tarjan, R.E., Depth-first search and linear graph algorithms, SIAM J. Comput.
1 (1972), pp. 146-159.

[20] Tarjan, R.E., A note on finding the bridges of a graph, Inform. Process. Lett.
2 (1974), pp. 160-161.

[21] Tutte, W.T., Convex representations of graphs, Proc. London Math. Soc., vol.
10 (1960), pp. 304-320.

