Kayles on special classes of graphs —

An application of Sprague-Grundy theory

Hans L. Bodlaender

Technical Report RUU-CS-91-49
December 1991

Department of Computer Science
Utrecht University
P.0O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Kayles on special classes of graphs —
An application of Sprague-Grundy theory

Hans L. Bodlaender
Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

Kayles is the game, where two players alternately choose a vertex that has
not been chosen before nor is adjacent to an already chosen vertex from a
given graph. The last player that choses a vertex wins the game. We show,
with help of Sprague-Grundy theory, that the problem to determine which
player has a winning strategy for a given graph, can be solved in O(n3) time
on interval graphs, on circular arc graphs, and on permutation graphs, and in
O(n!'%31) time on cographs. For general graphs, the problem is known to be
PSPACE-complete, but can be solved in time, polynomial in the number of
isolatable sets of vertices of the graph.

1 Introduction

For various reasons, games keep attracting the interest of researchers in mathemat-
ics and computer science. Games can provide for models, for instance for human
thought processes, economic behavior, fault tolerance in computer systems, and
computational complexity of machine models. Also, the analysis of games can pro-
vide for entertainment, and /or beautiful theory that is interesting on its own. It may
be interesting to note that the very first book written on graph theory [7] already
contained a section on the relations between graphs and games.

In this paper we consider a combinatorial game, that is played on graphs, called
Kayles. In this game, two players alternately choose a vertex from a given graph.
Players may not choose a vertex that has been chosen before, and may also not
choose a vertex that is adjacent to a vertex that has been chosen before. The last
player that is able to choose a vertex wins the game.

The game can also described as follows: when a player chooses a vertex, this
vertex and all its neighbors are removed from the graph. The first player that ends
his move with the empty graph wins the game.

We consider the problem: given a graph G = (V, E), does there exist a winning
strategy for the first player when Kayles is played on G? We denote this problem also

1

by the name Kayles. Kayles has been shown to be PSPACE-complete by Schaefer
[8].

Despite its intractability for general graphs, Kayles has some nice characteristics,
which together allow for efficient algorithms that solve some special cases. We
remark that the game Kayles is:

e a two player game.

e finite. The game always ends after a finite number of moves, and each player
can choose each time from a finite number of possible moves.

o full-information. There is no information that is hidden to one or both players,
like e.g. in bridge, where cards of other players are unknown.

¢ deterministic. Every move gives rise to a unique position; no randomization
devices (like dice) are used.

¢ impartial. This means that positions have no preference towards players. In
other words, for each position, either the player that must move has a winning
strategy, or the other player has — this is regardless of whether player 1 or
player 2 must move from the position. For example, chess is not impartial, as
there are white and black pieces owned by the players.

o with ‘last player that moves wins the game’ rule.

These six characteristics of Kayles make that it can be analyzed with help of Sprague-
Grundy theory. Some readers may know this theory as the theory of the game
Nim. In this theory, one associates to each position a (natural) number, here called
nimber after {1]. (The position has nimber i, when it can be represented by a stack
of corresponding height in the game Nim.) It is possible to do some calculations
with these nimbers, and determine which player has a winning strategy. In many
cases, these calculations will be intractable, but — as will be shown in this paper
— in some cases, they are not.

Those basic notions and results of Sprague-Grundy theory that are needed for
this paper are reviewed in section 2. For more background, we recommend the reader
to consult [1] or [3]. Some graph theoretic definitions are also given in section 2.

In section 3, we give a data structure, needed for the algorithm, described in
section 4. This algorithm solves Kayles on a graph with n vertices, e edges, and «
different isolatable sets of vertices, in time O(ane). In sections 5, 6 and 7 we give
modifications of this algorithm, that solve Kayles on interval graphs, circular arc
graphs, cographs, and on permutation graphs in polynomial time. For the result on
cographs, we show that the nimber of a cograph with n vertices is of size O(n0631).
Some final remarks are made in section 8.

2 Definitions and preliminary results

In this section we give some definitions, and review some results from Sprague-
Grundy theory. All graphs in this paper are considered to be finite, undirected and
simple. For a graph G = (V, E), and a subset of the vertices W C V, the subgraph of
G, induced by W, is denoted by G[W] = (W, {(v,w) € E | v,w € W}). We denote
|V| by n, and |E| by e. For v € V, denote the set containing v and all neighbors of
v by N(v) = {v}U{w e V| (v,w) € E}. For X C V, write N(X) = Uyex N(v).

Definition 2.1 Let G = (V,E) be a graph. A set of vertices W C V is called
isolatable, if both of the following conditions hold:

1. G[W] is connected.

2. There erists a set X CV, with W =V — N(X).

In other words, a set W C V is isolatable, if it induces a connected subgraph of
G, and there exists a set of vertices X, such that if we remove X and all neighbors
of vertices in X from V, then W remains. The latter condition is equivalent to the
following condition:

There exists a set X C V| such that G[W] is a connected component of
G[V — N(X)].

In section 4 we will prove that Kayles can be solved in time, polynomial in the
number of different isolatable subsets of vertices of the input graph G. Thus, we are
interested in classes of graphs where this number is bounded by a polynomial in the
number of vertices of the graph. Examples of such classes are the interval graphs,
the circular arc graphs, the cographs and the permutation graphs.

Definition 2.2 A graph G = (V, E) is an interval graph, iff one can associate with
each vertex v € V an interval on the real line [b,, e,] C R, such that for allv,w € V,
v# w: (v,w) € E & [by, €] N [by,e0] # 0.

Interval graphs can be recognized in O(n + €) time, and in the same order of
time, the corresponding interval model can be built [2]. As only the order of the
endpoints of the intervals matters, one can assume that all b,,¢, € {1,2,...,2n}.

A generalization of the interval graphs are the circular arc graphs. They can de
defined as follows:

Definition 2.3 A graph G = (V, E) is a circular arc graph, iff one can associate
with each vertex v € V an set of integers S, C {1,2,...,2n}, (n = |V|), with S, is
either of the form {b,,b,+1,...,e,—1,¢,}, or of the form {b,,b,+1,...,2n—1,2n}U
{1,2,...,es — 1,6}, (bu,ey € {1,2,...,2n — 1,2n},) such that for all v,w € V,
v#w: (v,w)eE & S, NS, #0.

Recognition of circular arc graphs, and building the corresponding representation
can be done in O(n3) time [9].

Definition 2.4 Let G, = (W1, Ey) and Gy = (Va, E;) be two disjoint graphs. The
(disjoint) union of G and G, is the graph G1UG, = (VU V,, EyUE,). The product
of G1 and G, is the graph G; x G, = (VU Vo, EyUE, U {(v,w) | v € V), w € V3}).

In some cases, we write G4 U G3, or G; X G2, for graphs G;, G, which are not
disjoint. As we always want the operations U and X to work on disjoint graphs, we
assume implicitly in these cases, that we take the disjoint union or product of two
disjoint graphs that are isomorphic with G;, and G, respectively.

Definition 2.5 A graph is a cograph, if and only if it can be formed by the following
rules:

1. Every graph with one vertex and no edges is a cograph.

2. If Gy = (W1, Eh) and G, = (W, E;) are disjoint cographs, then Gy U Gy and
G, x G, are cographs.

To each cograph G, one can associate a labeled rooted tree T, called the cotree
of G. Each leaf node of T corresponds to a (unique) vertex of V. Each internal node
is labeled with either a 0 or a 1. Children of nodes, labeled with 1 are labeled with
0, and vice versa. Two vertices are connected, if and only of their lowest common
ancestor in the cotree is labeled with a 1. It is possible to associate a cotree with
each node of the tree. Leaf nodes correspond to the cotree with the one vertex
they represent. Internal nodes labeled with 0 (1) correspond to the disjoint union
(product) of the cographs, corresponding to the children of the node. G equals to
cograph corresponding with the root of T. Cographs can be recognized in O(n + ¢)
time, and in the same time the corresponding cotree can be build [4].

Definition 2.6 A graph G = (V, E) is a permutation graph, iff there exist a bijec-
tion f:V — {1,2,...,n}, and a permutation 7 : {1,2,...,n} — {1,2,...,n}, such
that for all v,w € V: (v,w) € E & (f(v) < f(w) and n(f(v)) > n(f(w))) or
(f(v) > f(w) and 7(f(v)) < 7(f(w))).

Permutation graphs can be recognized in O(n3) time, and in the same time, the
corresponding numbering of the vertices and permutation = can be found [6].

Next, we review some notions and results from Sprague-Grundy theory. For a
good introduction to this theory, the reader is referred to [3] or the less formal and
very entertaining {1].

A nimber is an integer € N = {0,1,2,...}. For a finite set of nimbers S C N,
define the minimum excluded nimber of S as mexz(S) =min{i € N | i ¢ S}.

We now assume that we consider positions in a two-player game, that is fi-
nite, deterministic, full-information, impartial, with ‘last player wins’-rule. (As in
Kayles.)

To each position in such a game, one can associate a nimber in the following
way. If no move is possible in the position (and hence the player that must move
loses the game), the position gets nimber 0. Otherwise the nimber is the minimum
excluded nimber of the set of nimbers of positions that can be reached in one move.

Theorem 2.1 [1, 3] There is a winning strategy for player 1 from a position, if and
only if the nimber of that position is at least 1.

Denote the nimber of a position p by nb(p). We next define the sum of two
games. For (finite, deterministic, impartial, ...) games G;, G,, the sum of G; and
G2, Gi + G2 is the game, where each player when moving first decides whether he
wants to make a move in G; or in G,, and then selects a move in that game. The
player that makes the last move (whether it is in G; or G,) wins the game G; + G,.

Definition 2.7 Let i;,1, € N be nimbers. i, @ i, is the binary sum of i, and i,
without carry, i.e., 1y @iy = {2 | (|51/2%] is odd) & (|12/27] is even)}.

In other words, write ¢; and ¢; in binary notation. For every digit, take a 1 if
either ¢; has a 1 for that digit, and z; has a 0 for that digit, or vice versa. For
example 10D 7=(8+2)d(4+2+1)=8+4+1=13.

With (p1,p2) we denote the position in G, + G,, where the position in G; is p;
(z=1,2).

Theorem 2.2 [1, 3] Let p; be a position in G, p, a position in G. The nimber of
position (py,p2) in Gi + G2 equals nb((py,p2)) = nb(p1) D nb(p,).

3 A data structure

In this section we describe a data structure X, which is needed for the algorithm in
section 4. For a finite, ordered set V, the data structure can store subsets W C V
with a value val(W), and retrieve these values. The following operations are possible
on the data structure:

o store(W,z),for WCV,z € N.

o present(W). Returns true, if an operation store(W,z) has been performed
before for any value of z.

o val(W). Returns, if present(W), the value z of the last operation store(W, z).
Undefined, if not present(W) holds.

(yeS,4,') (yeS,S,') (yeS,7,‘)

Figure 1: An example of data structure X, storing {1,2} with value 4, {1,3} with
value 5, {2} with value 5, {2,4} with value 7, and {4} with value 8

We assume an ordering < on V, and assume that testing < can be done in
constant time. (In our application, V is the set of vertices of G. We just number
the vertices of G by vq,vs,...)

We now give a simple, recursive description of the data structure X. It consists
of three parts:

e A boolean variable empty_present, which denotes whether present().

o An integer variable empty_val, which denotes val(9), if present(®), and is un-
defined otherwise.

e A data structure Y, where for every v € V such that there exists a W C V
with present(W) and v is the lowest numbered element in W, a pointer is
stored to another data structure of type X, that stores all sets W C V with v
the lowest numbered vertex in W.

An example of this construction is given in figure 1.

To search for a set W C V' (assume W is given in sorted order): if W = 0, then
empty_present and empty_val give the desired information. Otherwise, let v be the
smallest numbered vertex in W, and search for v in the data structure Y. If v does
not appear in Y, then not present(W). Otherwise, follow the pointer for v in data

structure Y to the smaller data structure X, and repeat the process with W — {v}
in this data structure.

To store(W, z), do the following. (Again, we assume that W is given in sorted
order.) If the data-structure is not yet initialized, initialize it. (Reserve memory
locations for empty_present and empty_val, and do all what is necessary to initialize
data structure Y.) If W = 0, set empty_present to true, and set empty_val to z.
Otherwise, take the smallest element v from W, and check whether v is present in Y.
If not, insert v in Y, and add a pointer to a new, not yet initialized data structure
of type X. Otherwise, find the pointer stored for v in Y. In both cases, follow the
pointer, and repeat with W — {v} on the smaller data structure.

There are several possible ways to implement the data structures Y. Three of
these possibilities are:

e as a balanced search tree, e.g. an AVL-tree. As both search and insert oper-
ations cost O(logn) time per access to a data structure of type Y, the total
time per store, present or val operation is O(|JW|log|V]). The space needed
is O(Epresent(W) le)

¢ as an van Emde Boas data structure [10]. The operations in data structure Y
take now O(log log n) time and the total time per store present or val operation
becomes O(|W|loglog |V]). The space needed per data structure Y is O(|V|),
hence in total O(|V'|a), where a is the number of sets W that are present in
the data structure.

e as a dynamic perfect hashing data structure, as described by Dietzfelbinger
et al [5]. Search operations cost O(1) time worst case, insert operations cost
O(1) expected time. Memory use is linear in the number of stored keys.
This method uses randomization. Using this data structure, present and val
operations cost O(|W|) time worst case, and store operations cost O(|W|)
expected time. The amount of space that is used again is O(T presens(w) [W1)-

4 Kayles and nimbers

As Kayles is an impartial, deterministic, finite, full-information, two-player game
with the rule that the last player that moves wins the game, we can apply Sprague-
Grundy theory to Kayles, and we can associate with each graph G the nimber of
the start position of the game Kayles, played on G. We denote this nimber nb(G),
and call it the nimber of G.

Note that when nb(G) is known, then one can directly determine, with theorem
2.2 which player has a winning strategy.

An important observation is the following: when G = G; UG, for disjoint graphs
G1, G2, then the game Kayles, played on G, is the sum of the game Kayles, played

on Gi, and the game Kayles, played on G,. Hence, by theorem 2.2, we have the
following result.

Theorem 4.1 nb(G; U G;) = nb(G1) @ nb(G,).

The second important observation is that when some vertices X C V have
been chosen, then the nimber of the resulting position is equal to the nimber of
G[V —N(X)]. In other words: the game does not change when we remove all vertices
that have been chosen and all their neighbors from G. In particular, the nimber of
the position arising from playing v in G as first move equals nb(G[V — N(v)]).

It are these two basic observations that make it possible to compute the nimber
of graphs with a polynomial number of isolatable sets of vertices in polynomial time.

Theorem 4.2 There erists algorithms, that given a graph G = (V, E), computes
nb(G) in O(ane + an?loglogn) time worst case, or in O(ane) ezpected time, re-
spectively, and in O(an) space, where « is the number of different isolatable sets of
vertices of G.

Proof: We use a data structure X, as described in section 3, in which we
store isolatable sets W C V' with nb(G[W]). Initially, X is empty. The following
recursive procedure, when called with a set W C V returns the value of nb(G[W]).
It is called by the main algorithm with compute_nimber(W), for every connected
component G[W] of G. The nimber of G is the ®-sum of these nimbers.

procedure compute_nimber (W): integer;
{W C V. The procedure returns the nimber nb(G[W]).}

begin
if present(W) then return(val(W))
else
M = 0;
for all v € W do
begin compute the connected components of G[W — N(v)].
Suppose these components have sets of vertices
Wi,...,W, CW.
{ We compute now: nb(G[W — N(v)]) = nb(G[W1]) @ ...
onb(G[W;]).}
n:=0
for : :=1 to r do
begin n := n® compute_nimber(W;);
end;
{ Now n = nb(G[W — N(v)]).}
end;
{ M forms the set of the nimbers of positions, reachable in one
move from G[W].}
ans := mezx(M);
store(W ,ans);
return(ans)
end.

Correctness of the algorithm follows from the earlier made observations. For the
running time of the algorithm, observe that the computations in the else-part are
carried at most once for a set W. compute_nimber is only called with isolatable
sets W C V. It is possible to keep all sets W, W; sorted in time, linear in W. We
count the time, needed for one call of compute_nimber(W), including the calls of
present(W;), and if present(W;), of val(W;). We need O(n? + ne) = O(ne) time
for all computations of connected components. In case the data structures Y are
implemented with van Emde Boas data structures, the calls to present(W;) cost
O(|W;|loglog n) time each. In total, this is O(n?loglog n) time. If we use dynamic
perfect hashing, the expected time becomes O(n?). The total over all « isolatable
sets of vertices gives the bounds stated in the theorem. Clearly, the space needed
for the data structure is bounded by O(an). O

5 Kayles on interval graphs and circular arc
graphs

In this section we consider Kayles when played on interval graphs, or on circular
arc graphs. We show that nimbers of these graphs, and hence players with a win-
ning strategy, can be determined quickly, as there are only O(n?) isolatable sets of
vertices, and these have an nice and easy structure.

Assume that G = (V| E) is an interval graph, and let with each vertex v € V an
interval [b,, e,] be associated, such that b,,e, € {1,2,...,2n}, b, < e,, and for all
v,we€ V,v#w: (v,w) € E & [by,ey] N[by,ey] # 0.

Lemma 5.1 Let W C V be an isolatable set of vertices. Then there exist numbers
bw,ew € {1,2,...}, such that forallve V:veW & b, < b, <e, <ew.

Proof: Take by = min{b, | v € W}, and ey = max{e, | v € W}. Suppose
by, = bw, €v, = ew, V1, v2 € W. Clearlyv € W = by < b, < e, < ew.

Suppose there exists a vertex w ¢ W with by < b, < e, < ew. Either
w € X, or w is adjacent to a vertex + € X. In both cases, we have a vertex
z € X with [by, ez] N [bw,ew] # 0. As = may not be adjacent to v; or v, we have
bw < by < e; < ew. As vertices in W are not adjacent to X, we can write W
as the disjoint unionof A= {v € W |e, < b} and B={ve W e, <b,}. A
and B are non-empty, as they contain v; and v,, respectively, and there cannot be

an edge between a vertex in A and a vertex in B. Hence G[W] is not connected,
contradiction. O

From this result and theorem 4.2, it follows that Kayles can be solved in poly-

nomial time on interval graphs. We give a modification of this general result, which
uses O(n3) time.

Let Gij (1 £ i < j < n) denote the subgraph of G, induced by all vertices v € V
witht < b, < e, <j: Gij=G[{veV|:<b, <e, <J}]- The algorithm uses a
two-dimensional array A, where A(z, 5) will store the value of nb(G;;).

fori:=0to2n —~1do
begin for j :=1 to 2n —i do
begin S := 0;
for all v € V do
begin if j < b, <e, <j+1
then S :=SU {A(j,b,— 1) ® A(es + 1,5 +¢)
elseif j=b,<e,<j+:
then S :=SU{A(e, + 1,5 +1)}
elseif j <b,<e, =7 +1
then S :=SU {A(j,b, — 1)}
elseif j=b,<e,=7+1
then S := S U {0}
end;
A(7,7 + 1) :== mez(S)
end
end;
output A(1,2n).

The algorithm computes nb(G;4:)) successively for ¢ ranging from 0 to 2n — 1
and j from 1to 2n —:. If j < b, < e, < j+1i, then v belongs to Gj(j+i)- Then,
removing v and its neighbors from G,(H,) splits Gj(j4;) in two parts Gj,-1) and
G(e.,+1)(1+.) If either j = b,, or e, = j + ¢, then one of this parts is empty. If both
J = by, and e, = j + ¢, then both parts are empty and the resulting nimber is 0. It
follows that for each v in Gj(j44), nb(Gj(jti) — N(v)) is computed correctly, and put
into S. Hence mez(S) = nb(Gj(;+:)). This shows correctness of the algorithm.

Clearly, the algorithm uses O(n®) time. With theorem 2.1, we can directly
determine which player has a winning strategy after execution of the algorithm.

Theorem 5.2 There exists an O(n®) algorithm for Kayles on interval graphs.

The same result holds for circular arc graphs. We use basically the same algo-
rithm. Define V;; to be theset {v € V' | S, C {3, +1,...,5 —1,7}},if ¢ < 7, and
fveV |8, C{i,i+1,....,2n - 1,20} U {1,2,...,5 — 1,5}, if i > j. Similar as
before, we can compute all nb(G;;), now for all pairs 7, 7, with 7,5 € {1,2,...,2n},
using dynamic programming, in O(n?) time in total.

Theorem 5.3 There exists an O(n3) algorithm for Kayles on circular arc graphs.

10

6 Kayles on cographs

Cographs also have the property that the number of isolatable sets is bounded by a
polynomial.

Theorem 6.1 Let G = (V, E) be a cograph, and let Tg be its corresponding cotree.
Let W C V be an isolatable set of size at least two. Then there exists a I1-labeled
internal node ¢ in T such that W equals all vertices, represented by a leaf-descendant
of i in Tg.

Proof: Let ¢ be the lowest common ancestor in T of all vertices in W. 1
is an internal node with label 1. (If ¢ has label 0, then G[W] is not connected.) ¢
cannot have a leaf-descendant = with £ € X, because then ¢ will be lowest common
ancestor of a vertex w € W and z, hence (w,z) € E, contradiction.

Suppose a leaf-descendant v of ¢ does not belong to W. v must be adjacent to
a vertex z € X, and the lowest common ancestor j of v and z must be a 1-labeled
internal node that is an ancestor of 7. But now j is also the lowest common ancestor
of an arbitrary vertex w € W and z, hence (w,z) € E, contradiction. O

It follows that there are O(n) isolatable sets in a cograph with n vertices. From
theorem 4.2, it follows that Kayles can be solved on cographs in O(n?e) expected
time, or O(n%e + n3loglogn) worst case time. A better algorithm can be obtained
with a more careful analysis. Hereto, we compute for each cograph, associated with
a node in the cotree T, the set of nimbers of the positions, reachable in one move.

Definition 6.1 Let G = (V, E) be a graph. The nimberset of G is the set of nimbers
nbs(G) = {nb(G[V — N(v)] | ve V}.

Recall that nb(G) = mez(nbs(G)). We use the following notation: for a set of
nimbers S C N, and a nimber o, we denote a ® S = {a® 3| B € S}.

Lemma 6.2 Let G, = (W3, Ey), G2 = (V2, E;) be two disjoint graphs.
(i) nbs(G1 U G2) = nb(G2) ® nbs(Gy) U nb(G) & nbs(G,).
(1) nbs(G1 X G3) = nbs(G1) U nbs(G3).

Proof: (i) nbs(G1 U G;) = {nb(G1[Vi — N(v)]U G2) | v € V1} U {nb(G,[V> —
N(W)JUGL) | v € V3} = nb(G3) B {nb(G1[Vi —N(v)] | v € V1}Unb(G1) D {nb(G2[V>—
N(v)] | v € Va} = nb(G3) & nbs(G;) U nb(G;) & nbs(G2).

(ii) Write G = Gy x Gy. nbs(G) = {nb(G[V;UVs — N(v)]) | v € Vi} U{nb(G[V4 U
Vo= N(©))) | v € V2} = {nb(G1[Vi — N(v)]) | v € 1} U{nb(Ga[V2a = N(v)]) | v € V2}
= nbs(G1) U nbs(G,). O

The lemma can be generalized as follows.

11

Lemma 6.3 Let G, = (W1, E1), Go = (Va, Eq), ..., G = (V,,E;) be r disjoint
graphs.

(i) nbs(G1U G2 U...UG,) = Uri<ic, nb(G1) @ nb(G2) @ ... ® nb(Gi-1) ® nb(Git1) @
... ®nb(G,) ® nbs(G;).

(1t) nbs(G1 X G2 X ... X G,) = nbs(G1) Unbs(Gz) U...Unbs(G,).

The idea is to use these lemmas to compute for all internal nodes in Tg, the
nimber and nimberset of the corresponding cograph. It is helpful for decreasing the
running time of this computation, when we know what the maximum nimber is that
a cograph with n vertices can attain.

Let s(K) denote the minimum number of vertices of a cograph G with nimber
at least 2X. We will show that s(K) = 3.

Lemma 6.4 For all K >0, s(K) < 3%,

Proof: We give a series of cographs, Hy, Hy, H,, ..., with Hg containing
exactly 3K vertices, and nbs(Hg) = {0,1,2,...,2K —1}, and hence nb(Hg) = 2X.

For Hy, take a graph with one vertex and no edges. For K > 1, take Hx =
(Hx-1 U Hg_1) x Hg_,. With lemma 6.2, one easily verifies with induction that
Hg fulfills the conditions mentioned above. O

Theorem 6.5 For all K >0, s(K) = 3K,
The proof of theorem 6.5 is given in Appendix A.
Corollary 6.6 For every cograph G = (V, E) with n vertices, nb(G) < 2n!/1°83,

Proof: Take the largest K with 2X < nb(G). By theorem 6.5, n > 3% hence
nb(G) < 2.9K — 9. 3(1/log3)K <2 nl/log3

Note that 1/log 3 = 0.63093.

We now give an algorithm that solves Kayles on cographs. We suppose that
cograph G is given together with its cotree Tg. For each node ¢ in Tg, let G;
denote the cograph corresponding with this node, and write nb(i) = nb(G;), and
nbs(i) = nbs(G;). Let z = |2n!/1983|. To store nbs(i) for each node ¢ in T, asso-
ciate with each node 7 in Tz a boolean array with entries for all nimbers 0, 1,..., z.
The algorithm computes nbs(:) and nb(i) for all nodes ¢ in Tg. For easier pre-
sentation, we state the algorithm as a recursive procedure, which is called with
compute_nimbersets(r), with r the root of Tg.

procedure compute_nimbersets(node ¢):
begin if i is a leaf of T
then begin nbs(z) := {0};

12

nb(i) 1= 1;
end;
else begin Suppose the children of ¢ are jq,..., j,;
helpnbs := nbs(j1);
helpnb := nb(j1);
if label(z) = 0
then for k:=2 to r do
begin helpnbs := nb(ji) ® helpnbs U helpnb @ nbs(jx);
helpnb := mezx(helpnbs);
end;
else begin for k:=2tor
do helpnbs := helpnbs U nbs(ji);
helpnb := mex(helpnbs);
end;
nbs(z) := helpnbs;
nb(t) := helpnb;
end;
end.

Correctness follows from lemmas 6.2 and 6.3. Taking the union of two sets of
nimbers, and taking the @-sum of a nimber and a set of nimbers can be done in
O(z) time. As Tg has n leaves, and hence < n — 1 edges, a linear number of

these operations is done. Hence, the total time of the algorithm is bounded by
O(nz) = O(n1*+1/183) = O(n1631),

Theorem 6.7 Kayles can be solved on cographs in O(n!*1/1°€3) = O(n1631) time.

7 Kayles on permutation graphs

In this section we show that Kayles can be solved in O(n®) time on permutation
graphs. The method is more or less similar to the method used for interval graphs.

One can show that the number of isolatable subsets of a permutation graph is
bounded by O(n*). We do not need this fact, and do not prove it here.

We suppose that we have a permutation graph G = (V,E), with V =
{1,2,...,n}, and a permutation = : {1,2,...,n} — {1,2,...,n}, such that
E={(v,w) |v,weV, (v<wAr(v)>n(w))V(v>wAr(v) < n(w))}.

For1<i<j<n,denote V; ={veV |i<wv<jand n(z) < 7(v) < 7(j)}.
Note that Vg(,,+1) =V,and V; = Vii+y = 0. Write G;; = G[V;].

The algorithm in this section is based on computing the nimbers nb(G,;, for all
1,7,0<1:<j<n+1, with dynamic programming.

Lemma 7.1 Let v € V;j, 0 < i < 3 < n+ 1. The connected components of
G[Vi; — N(v)] are Gy, and G,;.

13

Proof: From the definitions it follows that V;; — N(v) = Vi, UV,;. Further
note that V;, N V,; = @, and no vertex in V;,, can be adjacent to a vertexin V,;. O

From this lemma, and theorem 4.1, the following lemma can be derived directly:

Lemma 7.2 Let0<:<j<n+1.
(1) For all v € V;; : nb(G[V;; — N(v)]) = nb(Gi») ® nb(G.,;).
(ii) nb(Gi;) = mez{nb(G;,) ® nb(G,;) | v € Vj;}.

This lemma suggests the following dynamic programming algorithm.

for : := 0 to n + 1 do nb(Gy;) :=0;
for i := 0 to n do nd(Gi(iyy)) :=0;
for::=0to2n—-1do
begin for j :=1 to 2n —: do
begin S := 0;
forallve Vwithj<v<j+iand 7n(j) <7(v) <7(y+1)
do S:=SU {nb(GJ.,) o) nb(G,,(j.,_;))};
nb(G(+i)) := mex(S);
end
end;
output nb(Go(nt1))-

Again, by theorem 2.1, player 1 has a winning strategy, if and only if
nb(Go(n41)) > 0. The algorithm clearly takes O(n?) time.

Theorem 7.3 Kayles can be solved in O(n®) time on permutation graphs.

8 Final remarks

In this paper, we obtained polynomial time algorithms for Kayles, when restricted
to either interval graphs, circular arc graphs, permutation graphs, or cographs. For
several other interesting classes of graphs, the complexity of Kayles is still open.
Probably the most notable of these classes is the class of trees. Already in 1978,
Schaefer mentioned as an open problem the complexity of Kayles, when restricted
to trees where only one vertex has degree at least three [8]. To the authors best
knowledge, this problem is still unresolved.

Acknowledgements

I like to thank Mark de Berg, Goos Kant, Ton Kloks, and Marc van Kreveld for
several very helpful ideas and comments.

14

References

[1] E. Berlekamp, J. Conway, and R. Guy. Winning Ways for your mathematical
plays, Volume 1: Games in General. Academic Press, New York, 1982.

[2] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pg¢-tree algorithms. J. Comp. Syst.
Sc., 13:335-379, 1976.

[3] J. Conway. On Numbers and Games. Academic Press, London, 1976.

[4] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for
cographs. STAM J. Comput., 4:926-934, 1985.

[5] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In Pro-
ceedings of the 29th Annual Symposium on Foundations of Computer Science,
pages 524-531, 1988.

[6] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[7] D. Konig. Theorie der endlichen und unendlichen Graphen. Akademische Ver-
lagsgesellschaft, Leipzig, 1936.

[8] T. J. Schaefer. On the complexity of some two-person perfect-information
games. J. Comp. Syst. Sc., 16:185-225, 1978.

[9] A. Tucker. An efficient test for circular-arc graphs. SIAM J. Comput., 9:1-24,
1980.

[10] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an
efficient priority queue. Mathematical Systems Theory, 10:99-127, 1984.

A Proof of theorem 6.5

Here we show that for all K > 0, s(K) > 3X. As it is shown in lemma 6.4 that
s(K) < 3K theorem 6.5 follows.

First observe that s(0) = 1, as the empty graph has nimber 0, and a graph with
one vertex has nimber 1. The graph with two vertices and no edges has nimber 0,
and the graph with two vertices and one edge has nimber 1. Hence s(1) > 3. We
will now show that for all K > 1, s(K + 1) > 3. s(K). With induction, the result
then follows.

Suppose G = (V,E) is a cograph with nimber > 2%*!, with minimum size
of n = |V|. Let Tg be the corresponding cotree. We write G; for the cograph,
corresponding with node ¢ in Tg.

15

First observe, that if for any node i in Tg, 25+! € nbs(G;), then G; contains
a subgraph with nimber 2X+!. The size of this subgraph is smaller than the size
of G, hence G was not of minimum size. Thus we may assume that nbs(G) =
{0,1,2,...,2K%1 — 1} and for all i € I: nbs(G;) C {0,1,2,...,2K+1 —1}.

We say that a node i € Tg is K-heavy, if nb(G;) > 2K or nbs(G;) N {2, 2% +
1,...,2K¥1 1} £ 0. A node i € Tg is K-precise, if nbs(G;) = {0,1,2,...,28 — 1.
Note that for a K-precise node i, nb(G;) = 2K.

Claim A.1 If iy is K-heavy, then iy is K-precise, or ig has a descendant that is
K -precise.

Proof: From lemma 6.3 it easily follows that every K-heavy node either is
K-precise, or has a K-heavy child. O

As the root r of Tg is K-heavy, it follows that there must be at least one K-
precise node in Tg. Note that if a K-precise node ¢ has a descendant j # ¢ that is
also a K-precise node, then G is not minimal: use the cograph corresponding to the
cotree, obtained by replacing the subtree rooted at i in T by the subtree rooted at
j. So assume no K-precise node has a descendant which is also K-precise.

Claim A.2 There are at least two K -precise nodes in Tg.

Proof: Suppose that ¢ is the only K-precise node in Tg. Then the only K-
heavy nodes in T are the nodes on the path from T to root . With induction, one
can prove that for each node j on this path, {0,1,2,...,2K — 1} C nbs(G;). (Use
lemma 6.3, and note that only one term contains the binary factor 2K.) Hence, if a
predecessor jp of ¢ is 1-labeled, it follows that for the unique K-heavy child j; of jo,
nbs(G;,) = nbs(Gj,). Hence G was not of minimum size, contradiction.

So we may assume that 7 has exactly one predecessor, namely r, which is labeled
with a 0. Hence we can write G = G; U H. (H is the union of all cographs,
corresponding to the other childs of r.) nbs(G;) = {0,1,2,...,2K — 1}, nbs(H) C
{0,1,2,...,2K —1}. If nb(H) < 2K, then 2K + nb(H) ¢ nbs(G; U H), hence
nb(G) < 2K+1, So nb(H) = 2K. Applying lemma 6.2 it follows that nbs(G; U H) =
{2K,2K 4 1,2K 2 .. 2K+1 _ 1} contradiction. O

If there are at least three K-precise nodes, then note that each of these must
have at least s(K) leaf-descendants. Hence s(K + 1) > 3 - s(K). Assume now there
are exactly two K-precise nodes, 7o and #;. Let i, be the lowest common ancestor of
120 and ;. Similar as above, we can argue that G is not of minimum size, if a node
between 2o and i5 or a node between ¢; and i, has a label 1, and if 2; has label 1,
then it has exactly two children, which are both K-heavy. (Each subtree rooted at
one of these two children contains exactly one of ig and ;, in this case.)

We consider now two cases, namely that i, has label 0, and that ¢, has label 1.

Case 1. i, has label 0. Then G, can be written as G;, = G;,UG;, UG, U...Gj, .
Write H = G, U...UGj,. Note that nbs(H) C {0,1,2,...,2% — 1}, as none of

16

the nodes j1,...,jr is K-heavy. If nb(H) = 2K, then nbs(G;,) = {0,1,...,2X — 1}
and i, is K-precise, contradiction. So nb(H) < 2K and it follows that nbs(G;,) =
{2K,2K 41,...,2K+1 1} U nbs(H).

Claim A.3 Letj be a node in T on the path from iz to r. Let H; be the subgraph

of G;, obtained by removing all leaf-descendants of io and of 4, from G;. Then
nbs(G;) = nbs(H;) U {2K,2K +1,... 2K+ 1}

Proof: With induction. For j = 1;, the claim holds, as is argued above.
Suppose the claim holds for the K-heavy child j' of j. Note that none of the other
children of j is K-heavy. We must have that nb(G;) = nb(Hj) < 2K, otherwise
nb(Gj) = 2K+1, which contradicts the minimality of G.

Write G; = G;; UH, or G; = Gj x H. If j is labeled with a 0, then H; =
H; U H, and nbs(G;) = nb(Gj) & nbs(H) U nb(H) & nbs(H;) Unb(H) & {25,2K +
1,...,2K+1} = nb(H;) @ nbs(H) U nb(H) & nbs(H;) U {2K,2K +1,...,28+1} =
nb(H; U H){2K 2K +1,... 2K+1} If j is labeled with a 1, then H; = H;; X H and
nbs(G;) = nbs(G;) Unbs(H) = nbs(Hy) U {2K, 2K +1,... 2K+1 1} Unbs(H) =
nb(Hp x HYu {2K 2K 1, 2K+1} O

In particular, we have for the root r of T that {0,1,2,...,2K+1—1} = nbs(G,) =
nbs(H,) U {2K,2K +1,...,2K+1 — 1}, Hence nb(H,) > 2K. So, if we remove all
leaf-descendants of 79 and ¢; from G, we remain with a graph with nimber at least
2K hence with a graph with at least s(K) vertices. As both G;, and G;, contain at
least s(K) vertices, G contains at least 3 - s(K) vertices. This ends the analysis of
case 1.

Case 2. i3 has label 1. Then G;, can be written as G;, = (G;, UG, U...G,,) X
(Giy, UGK, U ...Gk,). Write H =G, U...G,,, and K = G, U...Gy,. Calculation
shows that nbs(Gy,) = {0,1,2,...,2K — 1} U 2K @ nbs(H) U 2K & nbs(K).

Consider the graph G’ = G;, U (H x K). There are two cases:

Case 2.1. nb(H x K) = 2K. Then G contains at least 3 - s(K) vertices: H and
K together contain at least s(K) vertices and are disjoint from G, and G;,, which
both also contain at least s(K) vertices.

Case 2.2. nb(H x K) < 2X. As none of the nodes ji,...,Jr, ki,..., ks is K-
heavy, it follows that nbs(G’) = nb(H x K) @ nbs(G;,) U nb(G;,) ® nbs(H x K) =
nb(H x K)®{0,1,2,...,2K —1}u2K @ nbs(H)U2K ®nbs(K) = nbs(G;,). Now let
G" be the cograph, that corresponds to the cotree that is obtained by replacing in
T¢ the subtree rooted at i, by the cotree T of G’. The nimberset for i, does not
change under this replacement operation, and hence nb(G”) = nb(G). But G” has

fewer vertices than G, contradiction. This ends the proof of case 2, and of theorem
6.5.

17

