On efficiently characterizing solutions

of linear Diophantine equations and its

application to data dependence analysis

C. Eisenbeis, O. Temam, H. Wijshoff

RUU-CS-92-01
January 1992

Utrecht University

N :
s - Department of Computer Science
\:‘D g}, Padualaan 14, P.O. Box 80.089,

K25 N 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

On efficiently characterizing solutions

of linear Diophantine equations and its

application to data dependence analysis

C. Eisenbeis, O. Temam, H. Wijshoff

Technical Report RUU-CS-92-01
January 1992

Department of Computer Science
Utrecht University
P.0O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 09243275

On efficiently characterizing solutions of linear Diophantine
equations and its application to data dependence analysis*

C. Eisenbeis! O. Temam?! H. Wijshoff$

Abstract

In this paper we present several sets of mathematical tools for characterizing the solutions
of linear Diophantine equations. First, a number of methods are given for reducing the
complexity of the computations. Thereafter, we introduce different techniques for deter-
mining the exact number of solutions of linear Diophantine equations. Finally, we present
a method for extracting efficiently the solutions of such equations. For all these methods,
the main focus has been put on their applicability and efficiency for data dependence
analysis.

Keywords: linear Diophantine equation, data dependence, data locality, dependence
test, number theory

1 Introduction

The extensive use of parallelism, fast processors and hierarchical memory systems greatly
enhance the performance potential for modern architectures. However, compiler design-
ers and programmers face the difficult task of making optimal use of these architectural
improvements. One of the most crucial bottlenecks for the performance of these architec-
tures comsists of efficient memory management. The first step to realize efficient memory
management is a good understanding of the memory behavior of programs. A major part
of the codes which run on these high-performance systems spend a large fraction of their
execution time in loops. Therefore, it is reasonable to restrict our study to the memory
behavior, i.e., memory references, exhibited by these structures. These references consist
mainly of references to arrays. The analysis of array references is equivalent to that of
array subscript functions. Studies such as in [ShLY89] show that most subscripts are linear
functions of loop indexes. Therefore, most problems related to reference analysis can be

formulated as the characterization of the solutions of one or a set of linear Diophantine
equations.

*Part of this work was done while the two authors O. Temam and H. Wijshoff were employed by the
Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, USA.

'INRIA, Domaine de Voluceau, 78153 Le Chesnay CEDEX, France

‘IRISA/INRIA, Campus de Beaulieu, 35042 Rennes CEDEX, France

$Department of Computer Science, Utrecht University, Padualaan 14, 3584 CH Utrecht, the Netherlands

Let us consider the loop nest of figure 1. In order to study the data dependencies

DO j; =M, N,
DO ja» = M2, N,

A(a1j1 +a2j2+a)=
oo = A(b1J1 + baj2 +b)

ENDDO
ENDDO

Figure 1: Fortran DO loop nest

within this loop nest equation a;j; + azj2 +a = by ji + b,]; + b has to be solved. Similarly,
understanding the data locality of array A requires the analysis of equations a,j; + azjs +
a = I and b1jy + bajz + b = I (where [is a location of array A). In both cases, we can
reduce the analyses of these subscripts to the characterization of the solutions of the single
linear Diophantine equation:

aj1t...+a,dn=C (1)

where n is the number of variables and C'is a constant.

Data dependence analysis has been studied to a great detail in the past. However,
most of this research concentrated on fast techniques for determining whether there exists
a data dependence or not, i.e., whether there is a solution for the Diophantine equation
or not. With the necessity of explicitly managing data for utilizing cache, local memories,
or explicit data prefetching, the need arises for an explicit characterization of the solution
set and its size. So, in this paper we will concentrate on the “quantitative” analysis of
these equations.

Depending on the problem considered, different characterizations are required: either
the number of solutions has to be determined or the solutions themselves have to be enu-
merated. In the literature on number theory and other domains of mathematics, many
studies can be found on the analysis of linear Diophantine equations. Because in this pa-
per we study these equations in the context of data dependence analysis, the constraints
imposed are slightly different from those considered in standard linear Diophantine equa-
tions analysis. First of all, the complexity of the computations required to obtain the
number of solutions or the solutions themselves must be as small as possible. This enables
the utilization of these techniques at compile-time and even at run-time. The latter is
crucial since many of the coefficients of the Diophantine equations will not be known at
compile-time. Secondly, we do not need to solve equations for any dimension n, but for
small values of n only. This is caused by the fact that n represents the depth of a loop
nest, which is small in general.

In this paper, fast methods for computing the exact or approximate number of so-
lutions, and for enumerating the solutions are presented. Section 2 describes efficient
techniques to compute the number of solutions, and is subdivided into three subsections

which successively describe the formalization and simplification of the problem, the meth-
ods for obtaining the exact number of solutions, and finally, approximation techniques
for this number. In section 3 the enumeration of the solutions is studied. This section is
subdivided into two subsections which successively describe the geometrical shape of the
solution set, and a way to generate the solutions. In section 4 we consider the different
possible applications of the results presented in the previous sections. Finally, in section
5, experimental results are presented.

2 Computing the number of solutions

Among the two problems considered, i.e., computing quickly and efficiently the number
of solutions and generating the solutions, the first one is by far the most complex. There-
fore, it is vital to simplify the problem as much as possible in order to obtain efficient
computations. The modifications proposed constitute a set of tools aimed at simplifying
the analysis of Diophantine equations. Some of them have other applications than only
speeding up the computations presented further on.

Let us now give the exact formulation of the problem considered:

Problem 2.1

(Ml,Nl),...,(Mn,Nn) €EZXZ
Ji € [M;, Nj]
al,...,a,,,C €EZ

an+t...tayjn=0C (2)
Find the number of integer solutions of equation (2) under the above constraints.
Remarks
- Throughout the next sections, we will refer to one specific example in order to

illustrate the transformations and the results obtained. The example is the following:
Example

n M1 Nl ai M2 Nz as M3 N3 as C
31-130}-36 (30 15 [-18 |-36 | 50 [240 | 40 | 1452

2.1 Problem reductions

In this section, three main transformations of the initial problem are presented. The
equation is modified so that all coefficients are positive, and all lower bounds of the
variables are equal to 0. Secondly, it is shown how a system of equations can be transformed
into one single equation. Then, we try to reduce the value of the different coefficients,
since these values determine the efficiency of the resolution methods. Finally, it is shown
that the number of solutions of the problem with no bounds on the variables is related to
the same problem with bounded variables.

2.1.1 Collapsing a set of equations

In many cases, the memory references which appear within a loop nest are due to multi-
dimensional arrays. Let us consider the example of figure 2. In this case, finding the data

DO j = M, My
DO j3 = My, N2

A(b1j1 +bejo + b,cih +caja+c)= ...
... = A(dyj1 + daj2 + d, €151 + e2j2 + €)

ENDDO
ENDDO

Figure 2: Loop nest computing on a 2-dimensional array
dependencies for instance, would require solving equations
bija + bajz + b = dujy + dajz + d

and
cij1+cjatec=e1j; +edpte

That is, a set of equations instead of the preferred single equation. In Fortran, multi-
dimensional arrays are stored contiguously in column major order. For instance, element
(,7) of matrix A in our example, is stored in address offset + (i + n1j) where ny is the
first dimension of A. Therefore, it is possible to linearize all matrices into one-dimensional
arrays and handle both of the equations at the same time. Consequently, instead of solving
a set of equations, only one equation, derived from the linearized subscripts, has to be
solved. In the previous example, equation

(bij1 + baja +) + ma(err + c2fa + ¢) =
(dijy + daja + d) + ma(ery + e2fz + €)

replaces the previous set of equations.

Remarks

- The number of unknowns in the collapsed equation is the same as in the original
system of equations.

- Tt is commonly said that complex analysis of Diophantine equations is not necessary
because coefficients found in matrix subscripts are generally simple [ShLY89], and
the use of some simple heuristics should be sufficient. However, such transformations
as the one proposed above cause the coefficients of the new Diophantine equation to
have non-trivial values necessitating a more thorough analysis.

The linearization of a set of equations as described above does not only create large
coefficients, but in many cases these coefficients will be composite numbers, causing the
analysis of the equations to be very time consuming and complex.

A way to overcome this disadvantage is to use prime multipliers instead of the leading
dimension of the arrays for linearizing a system of equations. This can be achieved by
viewing the set of equations:

A =0
:fz(i) =0 3)
@ =0

= AT=7C

with A a k X n integer matrix. Assume, for simplicity’s sake, that n = k and A is
non-singular. Then, this system can be transformed by applying row eliminations on A
(Gaussian Elimination) to:

-

Di=c¢

with D a k x k diagonal integer matrix. Write this system as:

A® =0
f2(5) =0 (4)
fil =0
Note that every equation uses a different subscript of 7.

Define

’
@)
and the sequence p, ..., px of prime numbers such that p; is the smallest prime greater

than M, p; is the smallest prime greater than p;, and so on. Then, solving the system of
equations (4) is equivalent to solving:

M = maz; veim, ,Ny)x...x[Mn,Nn]

nfi®)+pfa@d+ ..+ pfi()=0 (5)

Note that det(A) directly bounds the growth of the coefficients in equation (5).

The assumption k = n is mostly not satisfied, however. In general, the original system
will be rectangular, with k¥ < n. In this case, it is much harder to transform the orginal
system fi(?), . .., fa(2) to fi(3), .. ., f,(3) such that the index sets 7'of the fi areindependent
of each other. One way of obtaining this would be to allow “column” eliminations on A.
However, contrary to the above mentioned, the resulting problem would consist of solving:
D(j) = €and U(3) = 7, with D a k x k diagonal matrix and U a n X n upper triangular
matrix.

This latter equation complicates the analysis of the first one, as there is no one to one
correspondence between the jand 7 vectors in general. In the special case of n = k+1 this
one to one correspondence exists and this method can be applied. In fact for the above
described transformations to obtain a diagonal submatrix, the “Smith normal form” can
also be used [N72].

2.1.2 A few simple modifications

The simplifications proposed below are trivial ones which only aim at simplifying the
constraints of Problem 2.1.

o Make all ¢; > 0. If a; < 0, write a;5; = |a;|j; with j; = —ji, i.e., ji € [-Niy—M;].
Therefore, through a modification on the bounding intervals of the j;, it is now
possible to assume that a; > 0,Vi € {1,. .y n}

Example
The example of section 2 becomes:

n M1 N1 ay M2 N2 as M3 N3 as C
31-130 1 -36 130 [-18| 15 {36 | 50 | 240 | 40 | 1452

e Make all M; = 0. If M; # 0, write j = j;— M;, ie., j; € [0, N}, with N} = Ni= M;.
Equation (2) now becomes

@14t @it nin=C
with C' = C — a;M;. Therefore, through a modification on C, we can now assume

that M; = 0,Vi € {1,...,n}.

Example

The example of section 2 becomes:

n M1 N1 a M2 N2 a M3 N3 as C
31 0 (9430 0 [33]36} 0 | 190 |40 | 4000

e Divide equation (2) by the gcd of the coefficients. Let dy. , denote the gcd of
ai,...,an (A% ;). If di , does not divide C then there is no solution to equation
(2). Otherwise, write C' = ng'; and a:- = d—:—‘f;, Vil < i < n. Therefore, through a
modification on C, it is now possible to assume that AjL; a; = 1.

Tt must be noted that the ged of several integers can be computed very quickly using
Euclid’s algorithm [GKP89].

Example
In this case, ged(ay, az,a3) = 2. So, the example of section 2 becomes:
n M1 N 1| a1 M2 N2 as M3 N3 as C

3 0 94 15] O 33 |18} 0 190 | 20 | 2000

2.1.3 Unbounding the variables

A more complex modification of the problem is to unbound variables j;, that is, to have
j; > 0 instead of j; € [0, N;]. The reason for unbounding these variables is twofold. First,
the bounds on the variables make the problem much more difficult to deal with. Essentially,
because of the greater number of unknowns and the fact that the solution space is finite,
the complexity of finding solutions increases. Second, most number theory results on

6

P ———————E R S

linear Diophantine equations do not take into account such bounds, and therefore cannot
be applied to the problem considered.

Let Any,.. . Na(@1, ..« @n; C) be the number of solutions of Problem 2.1, and Ago(a1,. .-, 0n; C)

be the number of solutions of the same problem without bounds on variables j;. We will
show that AN, . N, (@1y- s @n; C) can be expressed as a function of Ag(a1,...,8n;C).
Let us first recall that any rational fraction g-g% where P(z),Q(z) are polynomials,
can be developed into an infinite series: 3 2o ¢;z'. Then, a well known result in number
theory is that Ae(a1,...,0s;C) is the coefficient of zC in the series development of
ﬁ:ﬁ'ﬁm’ and that An, . N.(a1,...,8n;C) is the coefficient of zC in the series

development of (1_z(1\;11+_1i:11 %’_:211:2(::';“)“"1 [PS64]. Consider case n = 2, then

(1 - z(N1+1)a1)(1 _ w(N2+1)a2)
T = 2)(1 = 2%)
1 p(M+1l)as p(Na+1)az z(Ni+1)a1+(N2+1)az
= A=) (-em)d-2%) (1-z=)(1-a%) T A=z = z)

Therefore,

AN1,N2(ala az; C)
= Aco(a1,a2;C) — Ago(a1,a2;C — (N1 + 1)a1)
— Ao (a1,a2;C — (N3 4 1)a2) + Ao(a1,a2;C — (N1 + 1)ar — (N2 + 1)az)

Similarly, (1 — e(M+D)a1). . (1 — z(N=+1)er) can be written, for any n, as Yz,
that is, a polynomial of 2" terms. Therefore, An;,.. Na(@15- -5 @nj C) can be expressed as
S 0 YiBoo(G15 - - 5 8n; C = i), an expression with 2" different terms of Ago(aly...,00;C).

Since the values of n considered (1 < n < 4) are small enough, 2" (2 < 2" < 16)
will not be too large, rendering the computations of Axo(@1,...,a,; C) feasible. So, it is
possible to restrict our effort to determine the expression of Axo(@1,...,0n;C).

The new problem can be expressed as follows:

Problem 2.2

a1j1+...+anj,,=C (6)
Find the number of integer solutions of equation (6) under the above constraints, that is,

compute Aoo(@1,-.-,8n; C).

2.1.4 Reducing the value of the coefficients

Reducing the value of the coefficients a; and C is important since the complexity of the
solution techniques is related to the size of these parameters. Erhart [E64] proposed a
method for reducing these values by dividing the coefficients by appropriate values. The

constraints of Erhart Problem are similar to those of Problem 1.2 except that all the vari-
ables (let us call them j;) must be strictly positive:

Erhart Problem
i >0
al,...,an,C' eEN

o o 1
aij1+...+a,3, =C (M
Find the number of integer solutions of the previous equation under the above constraints.
This small difference in the constraints does not prevent us from applying Erhart

results to Problem 1.2, similarly to the techniques of section 2.1.2, let us define j,f =ji+1
with j; > 0. Then j; > 0, and problem 1.2 can be reformulated as follows:

Problem 2.3
§i>0
a1,...,a,,CE€N

ajr+ ...+ anj,=CH(@1+...4+a,)=C"
Find the number of integer solutions of the previous equation under the above constraints.
Let us now give Erhart theorem:

Theorem 2.1 Let aq,...,a, be relatively prime. Let us define g; = Ap_y rz; 0k, and

H,.——L———- Let C., be defined as follows (k; > 0):

k=1,k#i
° Clgl = C' + a1k, where C1g1 is the smallest multiple of g1 of this form,

o Cyg0=C, + S2ky where C,g2 is the smallest multiple of g2 of this form,

. C3g3 = C2 +3 k3 where ng3 is the smallest multiple of g3 of this form,

] C;g,, =C_, + s B—ky, where C, gn is the smallest multiple of g; of this form.

prper-
Then we can reduce problem 2.3 to:

Problem 2.4

gi >0

Al,...,An,C:1 as defined above

Avjy ¥ oot Anjn = C., (8)

Find the number of integer solutions of equation (8) under the above constraints.

AR LAY T O G TR SRR £ R S AT e e e

Remarks
- It must be noted that this algorithm has a small finite number of steps equal to n.
- The problem of finding C; and k; on each iteration is equivalent to finding the Bezout

[GKP89] numbers of equation C,ful - ﬁ:ug = 1. Then g; = u; and k; = us.

Example
When applying Erhart reduction to the example of section 2, we obtain:

e g1=2, A1 =1,k =0, C; =1052.
e g2=5,A; =3,k =2, Cy = 214.

0 g3=3,A4;=2,k3=1,C3=72.

’an N1 ai M2 N2 as M3 N3 a3C
3(1 111 3| 1 2 |72

This reduction method ensures smaller values of the coefficients and the right-hand side

of the equation. It must be noted that the efficiency of this technique is highly dependent
on the values of the g;.

2.2 Fast methods for determining the exact number of solutions

Let us now consider Problem 2.2, with all previous simplifications already performed
(Erhart simplifications are not compulsory since they are independent of the following
computations). Three different methods are presented in this section. The first method is
a new technique while the last two methods are based on work by Erhart and Comtet.

2.2.1 Fast determination of the number of solutions

The technique as presented here is based on a simple calculation. For our purposes, this
technique is probably the most interesting one among those proposed here, because it is
general enough to be applied for any value of n, and it is very efficient for 1 < n < 4.

In the next paragraphs, the computation of Ay (as,...,an;C) is described for n €
{2,3,4}. The method can be directly generalized for greater values of n.

Case n = 2 Problem 2.2 can be written as follows:

Problem 2.5
J120,522>0 (9)
a1,a2,C €N (10)
aghay=1 (11)
a1j1 +azj2 =C (12)

Find the number of integer solutions of equation (12) under the above constraints.

I s—————————TIEEEE S G S

Hypothesis (11) is due to the simplification of section 2.1.2. Under these constraints, it is
possible to apply Bezout’s theorem to equation (12). This theorem states that there exist
two integers u, up such that

aju; +agug =1 (13)
and that all solutions of equation (12) have the following expression:
0< j1 =Cu—azA
0< j2 =Cup+arA

where) is an integer parameter. The two constraints j; > 0,72 > 0 can be transformed
into two constraints on A (recall that a; > 0 and az > 0):

A< Cu
az

A _>_ —CU2
a1

Since) is an integer, the number of solutions of equation (12), i.e., the number of possible
values of), is given by the following expression:

Cu —Cu
Aco(ar,02:C) = L] = [——

T+1

Remarks

- uy,uy can be computed very quickly using Euclid’s algorithm. Above, it was men-
tioned that it is necessary to compute the ged of ai, a2 in order to perform the
simplifications. We indicated that Euclid’s algorithm can be used for that purpose
also. In fact, it is possible to compute u1,uz and di2 =gcd(ay,az) at the same
time, during one single execution of Euclid’s algorithm [GKP89], which makes the
computation of these three numbers very efficient.

Case n =3 Forn = 3, equation (2) can be written as follows:
a1ji1 + azj2a = C — asjs
Consequently,
Aoo(a1,a2,a3;C) = > Acx(ar,85;C - a3js3)
all possible 33

Let us give the closed formula for the possible values of js:

if 73 is a solution then dy3 | (C — a3j3), ie., C — azj3 = 0 mod dy

& C —azjz = 0(d12)

& j3= a:;lC (d12), since az Ad12 =1
Define j§ = a3'C mod dyz, then the possible values of j3 are of the form jz = 39 + Ad12
(where A is an integer parameter). There are two constraints on 43 (j3 >0, C —azjz > 0)

which give the interval within which A varies, i.e., A € |0, C-as33 |1, Therefore,
azdi2

Aoo(ala az, as; C) =

C—aajg
L a3 312 J

> Axlar,a2(C - asj3) — Aazdiz)
A=0

10

T A 3 A S NS, AT £ SR 5 T ST T

Example
The example of section 2 can be treated as follows:

e j9=1.
e X € [0,33].

e The number of integer solutions of the unbounded equation is 397. For the bounded
equation, the number of solutions is 168.

Case n =4 For n = 4, equation (2) can be written as follows:
a1j1 + azjz = C — a3jz — G4J4
For any value of (jy,j2) and (js, ja), there are two integer parameters p and v such that

a1j1 + azjz = pdiz (14)
asjs + a4js = vdsg (15)

For given values of u and v, there are respectively Aq(a1,a2; pdy2) pairs (j1,j2) solutions
of (14), and A (a3, a4; vdas) pairs (43, ja) solutions of (15). Since pdiz = C — vday, for
each value of u there exists at most one single value for v. Now, for each of pair (J1,J2),
solution of a1j; + azjs = pdy2 and each pair (js, js), solution of asjz + asjs = C — pdia,
the 4-tuplet (ji,j2,J3,j4) constitutes a solution to equation (12). Therefore, for a given
value of p, there are Ay (a1,as; udi2) X Aso(as,as;C — pdy2) solutions to equation (2).
Let us now give the expression of all possible values of u:

if p is a solution then ds4 | (C — pdy2), since C — pdiz = vdsy

& C—udip=0 (d34)

o U=E di’}C (d34), since dzgg Adi2 =1
Let 40 = dj;C mod da4, then the possible values of x are of the form pu = pO + Adsq4.
There are two constraints on g (g > 0, C —dyou > 0), which give the interval within which

A varies. That is, A € [0, L%ﬁﬁj] .
Therefore,

A(a1,a2,03,64C) =

e
Y Awl(a1,02;C — pOdiz — Adiadss) X Aoo(a1,a2; pdrz + Adr2dsa)
A=0

Remarks

- The method described above can be generalized for any value of n, except that
instead of a formula or a single sum, several nested sums will have to be computed
to obtain As(ai,...,as;C). So, the complexity of the computations will grow
exponentially with n because of the nesting of the sums.

- However, the level of nesting of the sums is equal to 232, which suggests that the
method is still usable for n = 5,6 at a relatively moderate cost.

- The integer inverse of numbers such as az~! (dy2) can be computed very quickly
using Euclid’s algorithm. For instance, a3z~ ! (dy2) is an integer such that a3~ las =

11

i e e

1 (dy2), i.e., such that Ju € N : as~laz = 1+ udyy, which can be rewritten as
a3~laz — udiz = 1. Therefore, finding az~! (di2) is strictly equivalent to computing
the Bezout numbers of equation az~1j; —dy2j2 = 1, which justifies the use of Euclid’s
algorithm.

Complexity of the method The simplifications presented in section 2.1 and the use of
Euclid’s algorithm have, in general, a menial cost compared to that of the above method,
and will therefore be neglected. The complexity of the computation depends mainly on

L%:—}:%gj for n = 3, and on [g—%'{lﬁ‘—oj for n = 4. However, it can be shown that the
complexity can be changed such that it depends on the coefficients only, and not on C,
which can be very large in some cases (cf. A.1 for the expressions of Awo)-

For n = 2, the number of operations is nearly negligible (less than 10). For n equals
3, or 4, Ao is a sum of elementary operations and therefore, the complexity of the com-
putations is equal to the number of elementary operations for each iteration of the sum,
times the boundaries of the sum, times 2", since 2" values of A, must be computed in
order to get the number of solutions of Problem 1.

Thus, for n = 3, the complexity is of the form

C — a3j3
23xa X | ——
3 l' asdiz

| ~2xa3x| (16)

azdyo

while for n = 4, the complexity is

— 0
2wy X | 2 | 2 X ag X |—— 17
x| di2d34 | 4 I'dlzds4J (17)

with a3 and a4 less or equal to 12.
For the transformed expressions of Ao, which can be found in A.1, the complexity, for
n = 3, is given by
23 X ,33 X (a1 + (12) (18)

while for n = 4, it is given by
24 x B X (a1a3 + aja4 + agaz + a2a4) (19)

with B3 and 4 less or equal to 20.

Since there are no constraints on the coefficients a;, they can be reordered so that a3
is the largest one reducing the complexity for the case n =3 (16). Erhart reduction gives
us means for reducing C, but it also reduces the value of the coefficients, therefore its use
for reducing the complexity of (16) and (17) should be handled with care.

For the modified expressions of the sums, the complexity of (18) and (19) depend on
the coefficients a; only. Similarly, the coefficients should be reordered so that a; + a2 and
ai1a3 + a1a4 + az2a3 + azaq are as small as possible. On the other hand, it can be noticed
that, this time, Erhart reduction can be used straightforwardly because parameter C does
not appear in the complexity bound.

Finally, it must be noted that the fact that the exact number of operations of both
methods can be computed at a very low cost suggesting the use of an heuristic for deter-
mining which type of sums should be used in each case.

12

2.2.2 Two other ways for determining the exact number of solutions

Erhart [E64] and Comtet [C80] proposed two different methods for determining the exact
number of solutions. These methods are interesting but have some constraints which pre-
vent their systematic use. Both methods are based on the observation that A (a1, ...,e;C)
is a quasi-polynomial®.

Erhart’s method When the a; are pairwise prime, Erhart proved that A, (a1, ..., 0, C)
can be decomposed as follows:

Aoo(afl’ .. -aan;c) = f(C) + "/)(C)

where f(C) is a polynomial of degree n — 1 and #(C) is a periodic function of period
a1 X ...X ay:

$(C) = i%(m

with ¢,,(C) a periodic function of period a;:

[a; odd:
n—1 2C+2iii @5
a;—1 CO8| —5—T— & pr
- E —)
2k=2g; £vp=1 nj#‘,,m_a_:Lp
¢4, (C) = §
a; even:
et 20+ 6
" a;—2 CO8 TT""—_LL——G'. pn

S + g Lo ™3

L 2k=la; 2k—2q; £p= Hj#i"i"—a_:!_p

The problem with computing v(C) is caused by the presence of costly functions such
as sinus, cosinus in the expression of the function. The cost of computing this function is
of the order of 3_% ; na;. On the other hand, for n < 6, Erhart determined explicitly the
formulas for f(C) (cf. A.2), which are simple.

The constraints on the a; (a; pairwise prime) are relatively strong. However, it is inter-
esting to note that, for n = 3, the Erhart reduction of section 2.1.2 makes all coefficients
pairwise prime. This is not true for greater values of n, though the reduction method still
increases the probability of having pairwise prime coefficients.

Comtet method Comtet noticed that the quasi-period of Ay (a1, ...,a,;C) is equal
to A, the least common multiple of the coefficients.

Using this fact, he proved that, for all ¢,0 < ¢ < A, for all C : C = ¢ (4),
Axo(a1,...,a,;C)is a polynomial in C of degree n—1. Therefore, only the first n values of
C with C =c(A4),C =c¢,c+A,...,c+(n—1)A, are needed to compute this polynomial.
Consequently, A x n values of A,(a1,...,a,;C) need to be computed to get a complete

'a quasi-polynomial is a function of the form f(z) = Efio ci(z)z' where ci(z) is a periodic function
with an integer period

13

characterization of this function, that is, to get the A polynomials corresponding to the
A possible values of c.

For small values of C, the technique presented in section 2.2.1 is very efficient. There-
fore combining this technique with the one proposed by Comtet yields a relatively efficient
method. It must be noted that its performance is highly dependent on the value of A.
Indeed, if C = ¢ (A), then Ay(ai,...,a,;C) must be computed for C =c¢,c+ A,...,c+
A(n—1), and if A is too large these values of C will be large, and therefore computing the
initial values of Ay(a1,...,a,;C) will be too costly. There again, Erhart reduction can
be applied in order to reduce the value of C and (a;),<;<,, and thereby the value of A.

2.2.3 Comparison of the different methods

The two concerns that prevail in the analysis of the above techniques are efficiency and
applicability.

Comtet’s method:

e This method must be used in combination with the fast determination technique
in order to get the initial values of A, needed to compute the coefficients of
the polynomial.

o The technique works for small values of A and n only. Otherwise the number
of terms of A, that must be computed becomes prohibitive. Unfortunately,
the value of A in the applications considered might often be large, especially if
the collapsed equation of section 2.1.1 is used. A will also be large if the a; are
relatively prime (because A is then equal to the product of the a;), but in that
case Erhart’s method can be used.

e If n x A is small enough, the technique is very interesting because it provides,
at a moderate cost, the analytical expression of A,, as a collection of A poly-
nomials of degree n.

Erhart’s method:

o Erhart’s method is probably the most elegant regarding mathematics, but the
constraints on the coefficients are important, a fact which restricts its applica-

bility. However, it is not too costly to test if the a; are pairwise prime using
Euclid’s algorithm.

e The analytical expression of the function 1 is relatively complicated (presence
of cos and sin), and therefore hardly usable.

o If 3%, a; is small enough, the method can be used for n < 6, which is not a
big constraint.

e The method is interesting in itself since the decomposition into a polynomial
and a periodic function gives a good insight for the function A.

14

Fast determination:

e This method is more straightforward compared to the two above, as it is based
on a fast determination of the solutions.

o The analytical expressions obtained allow a good understanding of the role of
the different parameters.

e For common values of the parameters and n < 4, the technique is at least as
efficient as the two above. It can still be used for any other dimension, but with
a loss of efficiency.

e This method imposes no constraints at all on the parameters.

2.3 Getting an approximation of the number of solutions

Computing an approximate number of solutions instead of the exact one enables the
computation to be simplified considerably. In this section, approximations are derived of
which the complexity is a function of n only, so, it is independent of the value of any other
parameter.

The advantage of getting an approximate number of solutions is twofold. First, it must
be noted that most methods provide us with algorithms for computing A (ay,...,a,;C)
while for approximations, analytical expressions can be derived. In the latter case,
Ax(a1,...,a,;C) can be studied as a function of C or the coefficients a;. Second, de-
pending on the application, it is not always necessary to compute an exact number of
solutions. Sometimes, all we want to know is whether there are “lots” or “few” solutions.

We will present two different approximations, both of them are derived from the exact
methods presented above. The error yielded by each approximation is highly dependent on
the value of the parameters. Both approximations provide us with polynomial expressions.

2.3.1 Approximation derived from fast determination

The idea of this approximation is very simple. None of the computations are changed
except that, in the final expressions | X | is systematically replaced by X — % Then, the
sums can be computed analytically, and the result is a polynomial in C (cf. A.3 for more
details):

Case n = 3:

Aoo(al s @2, A3, C) =~
C—az33 C—agj3

L L
[(C — a3j§) (8 + 82) + 1] (Sos 4 1) dizag(gh + 82 o, 2)2(o 12

asdi2

‘An upper bound on the error of this approximate expression of A, (a1,as,a3;C) is
[m—J Since 2" values of A,, must be computed to get the number of solutions, an upper
bound on the overall error is 2" x |

ﬂade

Example

The approximate number of solutions (for the bounded equation) of the example of sec-
tion 2 is equal to 164.

15

2.8.2 Approximation derived from Erhart’s method

As was pointed out, Ay (ay,...,a,;C) can be considered as a sum of a polynomial and a
periodic function. Experimental computations of the periodic function ¥(C) tend to prove
that its value is very small compared to that of the polynomial function f(C), though it
is quite hard to get a precise theoretical upper bound of ¥(C). A gross upper bound of
P(C) is:

con(Tt ity

ket

204 . a5,
cos(B5ir — +§’*' ~ (%irl)r) x

2C+ .. Gy
Z": LN S coa(—z;:,—,?*‘—’)
2"_10,,' 2k‘2a,-

i=1

— cos(%5t)

o . ®G; . WG; q,—2
[Tz min(sin2t, sin7L 4i22)

If this function is neglected, we get an approximate value of A (a1,...,a,;C) using
the polynomial function f(C). Since this function f(C) has been computed by Erhart for
1 < n < 6,it can be used for our purposes.

Example
The approximate number of solutions (for the bounded equation) of the example of sec-
tion 2 is equal to 162.

2.3.3 Geometric characterization of the solutions

In this section, we consider the canonical basis (€i,...,€,) of Z™ and the j; as the coor-
dinates in this basis. The application f(j1,...,7n) = @1J1 + ...+ @nJjn can be viewed as
a linear transformation of the lattice Z». We first construct a matrix N € Z" similar to
the Hermite reduced form [S86] of that transformation:

(a1,...,a,) = (10...0)N

and N is an n X n unimodular matrix, i.e., det(N) equals 1 or —-1. Now we consider the

new basis (f;) defined by f; = N~le; and we call t; the coordinates in this basis. The t;
are related to j; by:

151 J1
ta J2

=N .
tn jn

In this new basis, f has a very simple form, since f(j1,...,Jn) = fF(N " (t1,..-,tn)) =
(10...0)NN-1(t1,...,t,) = t1, and the number of solutions of equation a1j1+. ..+ a,j, =
C is exactly equal to the number of solutions of equation t; = C, i.e., the number of integer
points in the intersection of t; = C with the iteration space.

The iteration space considered is the infinite quadrant j; > 0,...,J, > 0. Its intersec-
tion with the hyperplane ¢; = C is a simplex polyhedron with n vertices Ay,..., A,. A is
the vertex which (ji)1<k<n coordinates are equal to (0,...,0, i(C), 0,...,0), from which

we can derive the ¢; coordinates (C, "‘:‘;C, N "‘g’;c) .

16

IR T e

Now, we work in the (n — 1) dimensional hyperplane ¢; = C, for which (Fayenns fu) is
a basis. In this basis, the volume of the polyhedron is given by the following expression:

1 ind - -
V= ———idet (A1 2,A1A3,...,A1 n)
(n-1)!
m22 _ m21 m2n _ ™21
as a) e an ay
1 m32 _ m31
Cn—l az ap
(n-1)!
mp2 .. Mgl Mpn . Mp)l
az ai an ay
Cﬂ_l dl...n

(n-1)'ay...a,

(This formula gives the (n-1)-dimensional volume of the “hypertetrahedron” defined as the
space in the first coordinates quadrant, under the (n-2)-dimensional hyperplane defined
by the n—1 vertices A;, A3, ..., An, where A; is taken as the origin.) The approximation
lays in the fact that the number of integer points within a polyhedron is not exactly equal
to its volume.

Erhart [E64] asserts that it is possible to give an exact formula for the number of
integer points inside a polyhedron as soon as its vertices are integer points themselves.
This requires that the (j;)1<i<n Or the (¢;)1<i<n coordinates of the vertices are integers, i.e.,
that Vi € {1,...,n},q;|C. “However, this is not likely to happen very often. Nevertheless,
if it is possible to derive a fast method for computing the convex hull of any rational
polyhedron, such a formula may then prove to be very useful.

3 Extracting the solutions

In this section, we explain how the solutions can be explicitly computed. Throughout this
section, the constraints are those of Problem 2.1.

For each case (dimension 2, dimension 3, and dimension n), we will first describe the
shape of the solutions for (j;)1<i<n unbounded, and then derive the restrictions that must
be imposed on the solutions to fit in the iteration space. Finally some means are given

to enumerate the whole solution set, depending on the parameters used for describing the
solutions.

3.1 Shape of the solutions for unbounded variables and dimensions 2
and 3

Because the Hermite reduced matrix can be used to generate the solutions easily, we refer
to section 2.3.3 for the general case of generating the solutions. In this section we explicitly
compute the Hermite reduced matrix N for the dimensions 2 and 3.

Case n = 2 In section 2.2.1, we gave a description of the solutions for di3 = 1. Let us
now give the solutions for the general case (d12 # 1), since we will use it extensively in the
rest of this section. Provided that C is a multiple of dy2, the solutions of equation (12)

17

AP T S

are:

ji = Cuifdy2 — (az/d12)A
j2 = Cuy/diz + (a1/d12)A

where) is an integer parameter and u; and u; are integers verifying: ajuy + agug = dja.

Case n =3 For t; = C, the solutions can be described by:

N 151
jo =M1 t2 (20)
J3 t3

with M unimodular and thus invertible. Its inverse is:

51 az a3
]\4_1 = asug + azlz —agu; —aszuy
0 -3 V2

3.2 Extracting the solutions for bounded variables

We essentially have two methods for extracting the solutions: enumerate either the (j;)1<i<n
or the (¢;)1<i<n B-tuplets. On one hand, it is relatively easy to compute the bounds of
the j; para,n_lefers, but enumerating the (j;)1<i<n n-tuplets is not very efficient since many
such n-tuplets do not correspond to a solution; therefore many n-tuplets are unsuccessfully
considered before being dropped. On the other hand, the space of solution of the ¢; is
much more dense since each of the #; vary with stride 1 in this space. However, computing
the bounds of these parameters is relatively costly.

When the number of the #; variables is less or equal than the number of equations, a
straightforward application of Gaussian Elimination can be used for isolating one of the
variables, of which the obtained bounds can be used to recursively compute the bounds
for the remaining variables. However, when the number of variables is larger than the
number of equations, then this technique will not work. Therefore we resort to the Fourier
pair-wise elimination method [D74]. This method succeeds by successive elimination of
each of the variables. In the following paragraphs we explain this technique for n = 3. It
can be applied straightforward to the general case.

Recall the expression for the three dimensional case of (Jih1<ica as functions of t3,13
(t1 = C). Since j; € [M;, Ny, it follows that:

M, <L u1C + 2 < M (21)
My < uC — ayvala — asts < Ny (22)
Mz < u3zC — ayvsta +agts < N3 (23)

The principle of the method is to isolate one parameter in each inequality, e.g. t3. (For
simplicity’s sake we will assume that the a; are non-negative in this example.)

M]S U1C+t2 SN] (24)

18

eSS g R ———

1 1

-‘-l;('u,zc — ajvty — Nz) < i3 < E;(UQC — ajvly — M2) (25)
1 1
;;(—uac + ayazvsty — M3) < t3 < a;(—uac + ajazvsty — N3) (26)

Inequalities (25) and (26) give the interval of variation for t3 (from the maximum of lower
bounds up to the minimum of upper bounds).

Now, we eliminate t3 by using the fact that any lower bound on t3 must be less than
any upper bound. Since this fact is trivially verified for the lower and upper bound of the
same inequality, the following inequalities can be written:

Mi< wuC+H+t; £MN (27)

1 1
Eg(ugc — ayvaty — N2) < a—z("usc + ayazvsty — N3) (28)

1 1
;—(—u;;C + ajazvsty — M3) < a—(uzc — ayvatz — M2) (29)

2 3

from which we derive, by now isolating 3 in turn:

M;—uC Lt < Ny —uC (30)
1 1
-J;((agug + a3u3)C 4+ agNs3 — azNz) <ty L a((aqug 4+ a3U3)C + azMs3 — a2M2§31)

This gives the interval of ;. Note that two inequalities (28) and (29) are used to
generate one two-sided inequality (31). In general n inequalities of the form of (28) and
(29) can be used to generate |n/2| two-sided inequalities.

These formulas can now be used to generate the solutions of a1j1 + azjs + asjz = C
by the following DO loop structure:

t =C
DO1 ty = mam(Ml - u,C, —51;((a2u2 + a3U3)C +azN3 — azNz)),
min(N1 — uqty, a—ll-((a21£2 + a;;u;;)C + azgMsz — agMz)
DO1 i3 = ma:c(;ls-(uzc e Nz), -“1—2(—-1.&30 + ajyazvzts — Ma)) ,
min(-;l;(uzC — ayvatg — Mz), 01—2(—'1130 + ajazvsty — N3))

1 CONTINUE

and references to j; within the loop body are replaced by references to ;.

Note that for this example also Gaussian Elimination could have been used to isolate
the variables, because the number of variables equals the number of equations, i.e. three.
It can be easily verified that the resulting bounds are the same.

The Fourier-Motzkin method is known to be very expensive since it may generate an
exponential number of equations. In our case, two facts make it tractable. The first one
is that the dimension n of the problem is not large, and the second one is that, because
of the particular form of the expressions, the number of inequalities generated seems to
remain bounded. Moreover, the general expression of the bounds of (#;)1<i<n can still be
symbolically computed once for all, as it was shown here for the case n = 3. Then, the
values of the coefficients can be substituted at compile-time or at run-time.

19

UTO———— T

4 Applications

To give an insight at the range of applications that could benefit from the results presented
in the previous sections, we propose a set of possible applications, all related to the initial
problem, that is, the explicit management of d-dimensional arrays within Fortran DO
Loops.

Dependence test There already exists a number of dependence tests (GCD test,
Banerjee [B88] test) which all require very few computations. However, none of these
tests is exact for any value of (a;)1<i<n, (Mi> Ni)i1<i<n and C. (In [PKP90], it is shown
that Banerjee’s test is exact only under certain conditions). Therefore, it is possible to
write a heuristic which would first apply one of these tests and, if it fails or cannot be
applied, would compute the exact number of solutions, as proposed in this paper. Since
the number of operations required can be known a priori, it is possible to create a cost-
function that would determine whether it is worth doing this computation, therefore, this
is a “risk-free” technique. It must also be recalled that the determination of the number
of solutions presented in this paper can be used for any value of the parameters. The
efficiency of this test compared to the more standard tests is shown in the next section.

Parallelizing loops with dependencies Whenever dependence tests state that
a loop has dependencies then it is generally executed serially. In the case of constant
dependencies, it has been shown that it is possible to extract independent sets of iterations
which can then be parallelized. However, when the dependencies are not constant, the
parallelization of the loop is much harder.

In this paper, we showed how to extract the solutions of any dependence equation.
So, it is possible to use this tool for getting the independent set of iterations that could
then be executed concurrently. What is more, computing first the number of dependencies
could give a hint at the number of independent sets that could be selected and therefore
help decide if the whole operation is worth being performed.

Studying the locality of arrays Whenever an array has non-trivial subscripts,
all its elements will not be accessed the same number of times. Therefore, it is interesting
to get the “locality map” of the array, that is the number of references per each element.
This is equivalent to solving equation (2) for a range of values of C. Ideally, we would like
the number of solutions as a function of C. This is typically the role of the approximate
functions presented in section 2.3, since these functions can be studied analytically and
provide us with trends on the number of solutions.

Then, such information could be used in data partitioning for instance, to move those

elements of matrices which are most frequently used in the upper parts of a memory
hierarchy, see also [EJWB90].

5 Experimental Results

The following tables give a description of the experiments conducted and the results ob-
tained. Basically, 25 Diophantine equations have been gathered from different sources
(Perfect Club codes [Perf89], Banerjee’s examples [B88], generic equations). For each

20

[Eoanon g [N C [a1 L M | N [[e | M | N T o3 | My [Ny [ag [Mg | Ny |
1.2 2] 3 T 1 -5 1 50
2.2 2 -8 -3 1 160 2 1 160
32 2 129 1 i 129 2 T 129
4.2) 4 1 i 1 8256 [4
3.2 E] 1] T 1 1 1128 [} 1
6.2 2 [} 1 T 1 72062 [} 3
7.2 2 128 128 | O 0 129 T 64
8.2 2 128 [} [1 120 1 61
9.2 2 23 [-10 | 23 31) 12
10.2 2 216 23 110 23 134 19 12
13 | K] [1) 1 0 €3 T 2 64 129 [} 83
2.3 13 -15 [} 1 100 2 1 50 -5 T 50
33 | 374216 1 110 23 256 189 182 1024 | -8713 2827
13 s 374216) 1990 | 2348 [13318 | 18233 12 8713 | 2827137
5.3 || I 1 1| -100 | 100 2 100 | 100 3 100 100
1.4 M3 Ti0 || -2 T 30 1 T 100 | 1 1 100 1 1 50
2.4 T % 2 || T 100 -2 1 100 1 1 100 -2 1 100
(X 2 12 [-8 132 -1 1 2‘0’0’““'—1__ 30 134) 1 200
X (K 1 1 1 100 2 T 56 [3 1 100 5 1 50
54 T4 126 129 [€3 -1 0 [3 | 0 €2 129 0 €3
6.4 |3 160 || 2 10 10 1 -10 10 8 10 10 i6 | -10 10
T4 i 12387 || 8 18 1 L TT‘H‘T 18 180 134 | -11 31

Table 1: Diophantine equations used as tests

equation, GCD-Banerjee’s test, classic enumeration (i.e, test of each possible value of the
ji), Fast Determination technique, approximation of Fast Determination and Erhart ap-
proximation, have each been applied and timed on a Sparc 1+ workstation (optimization
turned on).

As can be seen from these tables for classic enumeration the times can be substantially
large (in some cases more than 100 seconds) depending on how many solutions exists.
The surprising result is that fast determination is in most cases just slightly slower than
GCD-Banerjee’s test, a factor of 2 to 5.

Also the improvement in efficiency of the two approximation techniques over fast de-
termination is at most a factor of 10, except for one case: equation 7.4. This would imply
that except when efficiency is crucial for the data dependence analysis fast determination
should be used in favor of the approximation techniques.

As can be expected the accuracy of the approximation techniques increases when the
number of solutions becomes large. It should be noted that the approximation techniques
do not lend themselves to decide whether there exists a solution if the number of solutions
given by these approximation techniques is small.

6 Conclusion

In this paper we presented several sets of mathematical tools for characterizing the solu-
tions of linear Diophantine equations. These equations occur frequently when studying
memory references appearing in regular DO Loop structures.

The first set of tools aims at simplifying the constraints in order to reduce the com-
plexity of the methods and to allow existing number theory results to be applied. The
second set proposes three different methods for getting rapidly the exact number of solu-
tions of Diophantine equations. Those methods show a tradeoff between the complexity
of the computations required and their range of applicability. The third set of tools is
composed of two approximations which provide a fast way for getting an approximation of
the number of solutions, and also allow an analytical study of the closed expression for the
number of solutions. Those two approximations have different range of applicability and

21

[r “ Banerjee - GCD “ Enumeration | Fast Determination “ Fut%&:ﬁ;i:ition " Erhart Approx. J]
Equation # Sol. Time sol. ‘Time sol. Time sol. ‘Time —Nb sol. Time
1.2 7 2e-4 17 5.3e-3 17 Be-4
2.2 i 2e-4 33 1.3e-2 33 Be-4
3.2 Yes 2¢-4 65 2.0e-2 65 be-4
4.2 o 2e-4 [] 71.0e-4 0 Te-4
5.2 (] 2e-4 0 1.0e-4 0 Te-4
6.2 No 2e-4 0 7.0e-4 0 Ge-4
7.2 ~No Ze-d [} T.0e-4 0 Te-d
8.2 o 2e-4 0 7.0e-4 0 Te-4
9.2 ? 3e-4 1 1.9e-3 1 Oe-4
10.2 ¥ Se-4 0 T.1e-3 0 1.4e-3
IL_Avs:2 ™ T 224 || [] [51e3 || € [7T7%ed [™ I hadad [T ™ |
1.3 I Yes Je-4 0 0.5 0 1.4¢-3 || 31 2.3e-3 32 1.9e-3
2.3 Nt 3e-4 458 0.2 155 T.5e.3 || 487 2.3¢-3 161 1.8¢-3
3.3 || 3e-4 186 > 100 186 1.5e-3 0 2.3e-3 0 1.8¢-3
4.3 1 7 Jde-4 (3 > 100 586 .6e-3 2.1e-3 2821351 1.7e-3
5.3 | _No 3e-d 0 95.5 0 3.6e-3 || 0 Z.5¢-3 0 2.0e-3
[Avg3 W™ | 3ed || 128] 50 [128 | Toed | 93 | 2383 | 99 [18e3]
1.4 T Yes Je-4 1527 45.4 152760 4e- Te-3 152760 4.0e-3
2.4 I Yes 3e-4 238625 84.6 2386258 1.9e-2 38314 8e-3 238789 4.0e-3
3.4 u_§eL 3e-4 1121998 > 100 1121998 2.1e-2 || 1114207 8e-3 1121998 5.0e-3
4.4 1l o de-4 0 Ge-4 0 1.6e-2 1l [Se-3 0 5.0e-3
5.4 I Yes Te-4 0 > 100 [T7e-2 || 4 Be-3 1955 7.06-3
6.4 f? Je-4 1067 2.1 1067 2.2e-2 0 Te-3 0 4.0e-3
1.4 |} I Je-4 167686 > 100 16766 1.3e- 1 9 le-3 16767 1.0e-3
T Avgs [™ | 3ed || ziesso] 625 | 216350 | B¥e.Z]| 214926 | bGe-s | 216500 | 3.9e-3]|

Table 2: Results and timings (CPU time in seconds) of the different methods

error precision. The last tool proposed is a method for extracting the solutions themselves.

The main assets of these tools are their efficiency and applicability. Indeed, most of
them can be used for all cases, independently of the value of the parameters and their
time complexity is small enough to allow a compile-time and above all, run-time use, a
fact which extends the scope of possible applications.

Though these tools can be taken as results in themselves, they should rather be consid-
ered as means for aiding data dependence analysis for restructuring compilers. Our goal
was to stress the assets of our methods for dealing with Diophantine equations, rather than
delivering complete applications, or solutions for given problems. Nevertheless, it is our
belief that some applications based on these results, such as those presented in section 4,
are worth further developments.

Acknowledgments
We would like to thank M. Crouzeix, W. Jalby and P. Kars for their helpful comments

and suggestions.

References

[B88] U. Banerjee: Dependence analysis for supercomputing, Kluwer Academic Publisher,
Norwell, Massachusetts, 1988.

[C80] Comtet: Combinatoric analysis, PUF, 1980.

[D74) R. J. Duffin: On Fourier’s Analysis of Linear Inequality Systems, North-Holland,
1974.

22

I —— PSR EEE i S A

[E64] E. Erhart: Sur un probléme de géometrie Diophantienne linéaire (On a problem of
linear diophantine geometry), PhD Thesis at the university of Strassbourg, France,
June 1964.

[EJWB90] C. Eisenbeis, W. Jalby, D. Windheiser, F. Bodin: A strategy for array manage-
ment in local memory, Advances in Languages and Compilers for Parallel Processing,
MIT Press, 1991.

[GKP89] R. L. Graham, D. E. Knuth, O. Patashnik: Concrete mathematics, Addison-
Wesley, 1989.

[Perf89] L. Pointer: Perfect Club Report, CSRD Report No. 896, Center for Supercom-
puting Research and Development, University of Illinois, July 1989.

[PS64] G. Polya, G. Szego: Lessons and ezercises of analysis, Springer-Verlag, 1964.
[N72] M. Newman: Integral Matrices, Academic Press, London, 1972.

[PKP90] K. Psarris, X. Kong, D. Klappholz: The I test: A New Test for Subscript Data
Dependence, Proceedings of 1990 International Conference on Parallel Processing,
August 1990.

[S86] A. Schrijver: Theory of Linear and Integer Programming, Wiley-Interscience, 1986.

[ShLY89] She, Zhiyu, Zhiyuan Li and P-C. Yew: An empirical study on array Subscripts
and Data Dependencies, CSRD Report No. 840, Center for Supercomputing Research
and Development, University of Illinois, August 1989.

A Appendix

A.1 Modifying the complexity of the sums

The transformations below aim at modifying the complexity of the sums presented in
section 2.2.1.

Case n = 3:
Let us now demonstrate these transformations for n = 3. It can be noticed that the
following sum:

C~a33d

=5y .0 .0
Doo(ar, a2, a5;C) = E |.(C —asjs — Aduaa)mJ _ r—(C —a3js — /\duas)uz.] +1
A=0 a2 o
can be split into the following three sums:
Lc-mg LC-GaJ'gJ
s3d1a . %3912 .0 .0
o (C — asjs — Adizas)ur | —(C — a3j3 — Adizas)u2 C — aaj8
Aco(ar, 82,085 C) = Z L - =T - 4D

Let us now concentrate on the first sum; all transformations performed on this sum
can be applied similarly to the second one:

C-a3id

=5 Lz
azn I.(C —a3js — /\dlzaa)mJ - Zl LAl - B1,\J
A=0 az = (o))

23

with Ay = (C - agjg)ul, B, = dy2a3u; and Cy = as.
Parameter) can be decomposed as follows, using the Euclidean division by ay:

A=Qqa2+ Ry

Then the previous sum can be decomposed itself into two sums, with @2 and R as new
parameters. Since Rj is the remainder of a division by a3, then 0 < Ry < min(Cy -

L, |#))- Since 0< A< |5, then 0< Qs < Eoc]

lﬁjA Bi)
Do l=—l

A=0

Lghl-F
min(Cy -1 43D 1L T2

Ay — BiC1Q2 — B\R
Z 2 | 1012 1 2J

Rap=0 Q2=0

Lg2-R
min(C1—1,15L1) t—"}c;—ij

E Z [_él——-c-,?lg-z—j - B1Q2

Ra=0 Q2=0
miﬂ(cl‘l'L%}J) Lﬁx] ~ R, A1 — BiR,
1 - —
E '. 01 J X L Cl J

|ABHRe o (1B)
2

Ra=0

Remarks
- The terms of the sum are of the same complexity as in the original sum, and the
order of this new sum depends on a coefficient only.

Case n = 4:
The transformations are identical for n = 4.

Aco(a1,a2,83,84;C) =

C-dyg8®°
l): 301253: J(L(u°d12+Aduds4)“1J - |‘—(#°412+«\dudsa)"2" + 1)><
= ag a)

C—u®dyg=Adyad —(C—u®dy3—rdyad
(L(w ua4 132 u)uaJ - (C—n 412%" 12 34)“4'] +1)

This sum can be subdivided into four sums. For each sum, the transformations are
similar to the case n = 3.

A.2 Erhart polynomials
Let us assume that C' = C + E%‘—a'

n=2 ,

f(o)= I-FC—;T

i=1 0t

n=3 .

12 A ag’

C — =
f(C)= zl-ln 1:‘
i=1"

n 2 .

oy= L= 20
- 6].-[?=la

12

n=>5:
Cl4 _ E _; a."C
10)= 1
i=1 @i

1 [(Z ;“i‘l “?)2 E ;ni_l a’]
73 2 + 5

+ 7
24 Hi:l a
n = 6:
Clb —s '.; a.-2 Crs

1O = —45 H.-l

BTy

’
C

A.3 Approximations of section 2.3.1

Case n = 3:
Let us now demonstrate these transformations for n = 3. It can be noticed that the

fol].OWng sum:
: C lﬁ_‘a ; J C—n;ig—Ad a203)u - C—-asjg—kd 2043 ug-]]
°°(a1’a2’a3’) E ! l(ag :) 1J l (ay :)

can be split into the following three sums:

C~a3j? C—agj?
333§ 333 ‘g_unaa)u,]+(LC—aang+l)

l'.'—a—J ~(C—a
D DI R I i

Beoar, 03,085 0) = i ! |G dmenin

Let us now concentrate on the first sum; all transformations performed on this sum

can be applied similarly to the second one:

C=ao jo
PR (Gt EUEO YR i PRy

With A1 = (C - a3j3)u1, Bl = d12a3u1 and C1 = as
Now, by replacing |a] by a — }, we obtain:
L -
AT

= kf‘;’J A,—B,A '}
=(# - x 4] - E&L‘)

Case n = 4:
The transformations are identical for n = 4

Ay (61,0832,a3,04;C)

°
lC—d I ° (0
= Z L J(l(# 412+«\412434)“1J i (u dn+d’\ldndu)“2'| +1)x
(L(c:uodm"'\dladu)"sj - [—(C—#odua—:dudu)“q'l + 1)
—(u® —pu0 - —(C~-u® -
~ (! du+ldudul“1 (u du+:ldndu)“2 +1) x ((C M dna:\dndu)"a _ —(C-u dnasldmdad)"c +1)

25

