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Abstract

In this paper an order-theoretic interpretation for the process algebra ACP is
developed. We show that it is a model for the theory by showing that the axioms
for ACP hold in the interpretation. We furthermore show that the model is complete
in the sense that two ACP terms are equal if and only if they are equal in the model.

1 Introduction

In the nineteenseventies a new and fruitful branch of computer science emerged,
namely the theory of processes. In the algebraic version of it, the immense complexi-
ties of reasoning about the behavior of concurrent systems were reduced by identifying
small sets of ‘primitive’ combinators and small collections of basic equalities that the
terms of the algebra, c.4. the processes, should obey. Examples include Milner’s CCS
[Mil80], Hoare’s CSP [Hoa85] and Bergstra and Klop’s ACP [BK84, BK85]. In this paper
we focus attention to the latter.

Traditionally, ACP is interpreted over a domain of finitely branching process graphs
modulo bisimulation. It is known that an order theoretic model for ACP is possible,
but such a model has, to our knowledge, never been built. This paper closes the gap
by defining in detail an interpretation (ie. a denotational semantics) for the algebra,
which has an w-algebraic complete partial order, P, as its target. The main result of the
paper is a proof that the interpretation is a sound and complete model. That is, every
equality between terms of the algebra ACP holds if and only if it holds in the model.

P itself is defined by means of a reflexive domain equation: P = P*({§}, + A, + A, xP).
Thus defined, P is too large: it also contains elements that are not the denotation of
any term. We identify an inclusive subset P’ C P such that the denotation of a term
always lies in P’ and P’ is the smallest such subset. We need the whole of P, however,
to define our semantical operators: intermediate values may fall outside P'.

The main tool we employ in defining our semantical operators is a typed lambda
calculus. The category Cpo of complete partially ordered sets with continuous maps is
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cartesian closed [LS86]. Hence it has a typed lambda calculus as its internal language.
Any continuous function occurs as a constant in this language. Furthermore, any typed
lambda term in the language has an interpretation as a continuous function (arrow)
in the category. This implies that we only need to identify a small set of primitive
continuous functions in order to be able to define complex functions using the typed
lambda calculus. These complex functions are then by definition continuous. This
approach can be summarized by saying that ‘careful informal reasoning induces precise
formal definitions’. Apart from the main result, we feel that another contribution of
the paper consists of the clear and concise definition of a denotational semantics to a

non-trivial, reflexive domain. Thus the paper can serve as a case study in denotational
semantics.

The paper is organized as follows. In section 2 a brief introduction is given to the
process algebra ACP. In section 3 we develop the necessary domain theory. In section
4 we give the definition of our the cpo P and list some of its properties. The last two
sections are essentially self-contained and constitute a small overview of the domain

theory relevant for our purposes. In section 5 we present our model and prove it
sound.

Acknowledgement I would like to thank the Utrecht Formal Models Group for stim-
ulating discussions.

2 The Process Algebra ACP

In this section we give a brief introduction to the process algebra ACP. For a full
account of it the reader is referred to [BK84, BK85, BW91, Vaa89]. The algebra is a
one-sorted algebra the elements of which are called processes.

Definition 2.1 The set of terms T of ACP is inductively defined by
s u=al|8|(s8) | (s+8)|(s|Ls)|(sls) | (slls)]|Bu(s)
wherea € A and H C A.

Here A is a (countable) set of constants or primitive actions, with typical element a. §
is a special constant that will be used to denote deadlock. The intuitive reading of
the binary operators is: ; denotes sequential composition, + denotes choice, || denotes
merge, and || and | are left-merge and communication-merge, respectively. 9y is a
unary operator for each subset H C A. It is the encapsulation operator that prevents
actions a € H to be visible outside its scope. Note that we used an infix notation, as

is customary. Usually we suppress brackets. It is assumed that + has lower priority
than the other operators.

In this context, we are interested in the equational theory of the algebra, that is, in
the question which terms are equal. Having the aforementioned interpretation of the
operators in mind, the basic axioms of the theory are given in Table 1. We have the
usual rules of transitivity, reflexivity and substitution. Note that we have assumed a
function v : (AU {6}) x (AU {6}) - (A U {6}) that is commutative, associative and
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z+y=y+z Al Og(a)=aifa¢ H D1

t+(y+2z)=(r+y)+z A2 |Oy(a)=ébifacH D2
rt+z=2 A3 | 0h(z+y)=0u(z)+8u(y) D3
(z+y)iz=z;2+y;2 A4 | Op(x;y) = Ou(z);0u(y) D4
(z:9);2 = z;(y; 2) A5

c+b6=2 A6

bjx=246 A7

alb = v(a,b) CF

clly=z|y+ylo+aly CM1|G|y)|z=2|@lz) Sc1
a||z=a;z CM2 ((zly) | z==|(y | 2) SC2
(a;2) Ly = a; (= || v) CM3 | zly = y|z 5C3
(z+y)|lz=z| 2+y|lz CM4|z|ly=y] = SC4
(a;2)|b = (alb); = CMS5 | z(y]2) = (z|y)l SC5
al(b;z) = (alb); = CM6 (z||(yllz)=(zllv)l = SC6
(a; 2)|(b;9) = (alp); (= || y) CM7

(z+y)|z=2z|z+y|z CMs8

z|(y + 2) = z|y + z|= CM9

Table 1: Axioms for ACP

has § as zero. This function encodes the basic communication between any actions
a,b € A: if 7(a,b) = c # & then we say that a and b can synchronize. The synchronous
execution of a and b is then regarded as the execution of the communication action c.

If v(a,b) = § then a and b cannot synchronize and any attempt to synchronize them
results in deadlock.

In Table 1, axioms Al — 7 are the axioms of Basic Process Algebra with Deadlock.
Axiom C'F relates the communication between elementary actions a and b to our given
function 7. Axioms CM1 - 9 are the axioms dealing with parallel composition. In
particular, they state that the parallel composition of two processes s, || s, performs
an action by either choosing one of its arguments and performing an action of that
argument, or by synchronizing. Axioms D1 — 4 deal with the Encapsulation operator.
Axioms SC1 — 6 are called ‘Standard Concurrency Axioms’.

Recursion is handled in this framework as follows: it just consists of adding new
systems of equations like X = s where s is some term possibly containing occurrences
of the variable X and other variables. Formally we introduce a (countable) set PVar
of procedure variables, with typical element X. We extend the set of terms 7 with the

exira clause s ::= X, thatis, a procedure variable is a term. We denote this extended
set of terms by 7+,

Given a new equation X = s we say that X is defined by s, or that the declaration of X
is s. For technical reasons we have to insist that every term s defining some procedure
variable X is guarded in X, that is, every occurence of X in s must be preceded by (at



least) one atomic action. To handle things smoothly, we require that every procedure
variable in s is guarded. It is easy to see that the theory developed in the next sections
still holds if we would employ a more liberal notion of ‘guardedness’. Consult [BW91]
for a fuller treatment of this notion. Our notion of guardedness amounts to introducing
a sublanguage 7; C 7+ given by

g = a|6|(g;:8)|(g1+92)| (911l 92) | (g1 3) | (a1lg2) | Bur(g)

and defining Dcl : PVar — T, to be the set of admissable procedure declarations.
Needless to say, an equality s = ¢ for s,z € 7+ only holds with respect to some fixed
declaration d or, that every declaration d induces its own equality relation =,.

An interpretation of the theory consists of a collection of elements P together with an
interpretation function I : 7 — P, assigning to each n-ary funtion symbol f, an n-ary
funtion I(f) : P* — P. (A constant, or zero-ary function symbol is assigned an element
in P.) The interpretation extends to the whole of 7 by induction on the structure of
terms. An interpretation I is called a model of the theory if I(z) = I(y) for each axiom
z = y in Table 1. We can extend an interpretation I to the whole of 7+ by assigning
an element I(X) € P to every procedure variable X € PVar. Thus we view procedure
variables as 0-ary function symbols. The interpretation I is a model for 7+ if, moreover,
I(X) = I(d(X)) for every X € PVar. Note that such an equality in general only can
be obtained if P admits solutions for recursively defined equations (over P).

3 Domain Theory

In this section we give the mathematical preliminaries on which this work is based.
Most of the results mentioned in this section are well-known, but appear scattered
through the literature. This section introduces the various constructions and notations
we use in the sequel. For a more complete treatment of the theory, consult [Plo].

Partial orders. A tuple (D,C) where D is a set and E C D x D is a relation on
D, is called a partial order if C is reflexive, transitive and anti-symmetric. We assume
that each partial order has a distinguished element L that is least with respect to the
ordering relation, that is, L C d for all d € D. Given a partial order (D,C), we call a
subset {z; : ¢ < w} a chain if z; C z;, for all ¢ < w. In this case we write (z;); for the
subset. An element d € D is an upperbound for a chain (z;); if z; C d for all i. d is a
least upperbound (lub) if d C &' for any upperbound d’. We write | J; z; for the unique
least upperbound of a chain (z;);, if it exists. A partial order (D, C) is called complete

(or a cpo) if it has least upperbounds for all chains.

The notion of chain is fundamental in the study of semantics of programming lan-
guages. Essentially, the meaning of a (recursive) program is viewed as the lub of
(inductively defined) approximations to it. The approximations are all in some sense
“finite”. We formalize this as follows. An element d € D for some cpo D is called
finite if d C | ; z; implies d C z; for some k. The phrase ‘finite’ can be understood by
observing that for finite d and any chain (z;); such that | J; z; = d, it must be the case
that d = z; for some k. Hence any chain leading up to some finite element, stabilizes
at that element. We denote the collection of all finite elements of some cpo D by K(D).

4



Given our goal of defining a semantics, it is natural to restrict attention to cpo’s that
are completely determined by their finite elements. That is, for all z € D we wish there
to exist a chain (z;); C K(D) such that z = | J; z;. These cpo’s are called algebmic. They
are called w-algebraic if moreover this collection of finite elements is a countable set.
We will use the term ‘domain’ for an w-algebraic cpo.

Functions. The natural notion of function between sets with some structure is of course
a function that preserves the structure. In our case, the function should at least preserve
the ordering. Thatis, if f : D - Eand z C y € D then f(z) C f(y) € E. We call
these functions monotonic. We are quite liberal in the sense that we do not insist that
functions preserve the least element. Functions f such that f(1) = L are called strict.

The next restriction that we impose on functions is that they commute with the taking
of a lub. This means that f (| |;z;) = |J; f(zi), where the lub on the left-hand-side is
taken in D, and the one on the other side in E. These functions are called continuous.

Since we are working with domains in which all elements arise as lub’s of chains of
finite elements, the continuous functions f : D — E stand in a one-to-one correspon-
dence with monotonic functions f’ : K(D) — E (cf. [Kni91]). This means that every
continuous function is completely determined by its action on the finite elements. This
easily proven fact enables us to define a continuous function f : D — E by specifying
a monotonic function f’: K(D) — E, which is a much easier task.

Proposition 3.1 Let D and E be domains. Let f : K(D) — E be monotonic and let g : D —
E be monotonic and continuous. Define1 f: D — E by
1 f(z) =] f(2)

where (z;); C K(D) is some chain such that x = | |; z;. Then

1. 1 f is well-defined and continuous.

2. f=(11) I K(D).

3. =1 (g 1 K(D)).
Given a function f : D — D, a fixed point of f is a value d € D such that f(d) = d.

All continuous functions have fixed points. The least fixed point of a continuous f is

given by ||, f*(L). For all D, the function fizp : [D — D] — D that yields this least
fixed point is a continuous function.

Domain constructions. First of all, observe that we can turn each countable set X into
a domain X, by adjoining a new least element L and stipulating that LC zand z C =
for all z € X. Cpo’s of this form are called flat. Every set theoretic function f : X — Y
can be extended to a continuous function f, : X; — Y, by defining f, (1) = L and
fi(z)= f(z) forz € X.

Let D and E be domains. We define the following constructs yielding new domains:
e D x E is the cartesian product of D and E. The underlying set is

{(z,9): 2 € D,y € E}



The order is given by (1, 1) C (22, y2) iff z; C 22 and y; C y,. Its bottom element
is (1, 1).

e D + E is the sum of D and E. The underlying set is

{{0,2):ze D\ {L}}Uu{(L,y):y€ E\ {L}}u {1}

This is just the counterpart of the disjoint union of ordinary sets. For z,y € D+ E,
the order is givenby z C yiffz = L or z = (i,2'),y = ({,y) and 2’ C ¢ (i = 0,1).
Note that D + E is the coproduct of D and E with respect to strict functions.

e One can generalize + to arbitrary finite sums. We denote this by D; + -+ D,..

If D and E are domains, then so are D x E etc. All constructions come with special
functions to and from them. We define

e projections 7 : D X E — D and ' : D x E — E given by n(z,y) = z and
7'(z,y) = y, respectively.

eif f: A—> Dandg: A — E then (f,g) : A - D x E is given by (f,g)(a) =
(f(a),g(a)). Note that 7o (f,g) = f and 7' o (f,g) = g.

e inclusions ing : D — D+ E and iny : E — D + E given by iny(L) = L and
ini(z) = (i,z).

¢ sum projections outo : D + E — D and out, : D + E — E given by
1 ife=1
outo(z) =4 L ifz=(1,y)
z' if 2 =(0,2')
and likewise for out;.
e sum discriminators isp: D+ E — T and is; : D + E — T given by
4

1 ifz
isolz) =q t ifz=(0,2)
f ifz=(1,2)

and likewise for is;. Here we have used the domain of truthvalues T = {L4,t,f}
with the obvious partial ordering.

¢ all functions can be extended to finite sums.

Finally we review the construction of the powerdomain P*(D). It is more difficult than
the previous ones, and a more detailed exposition can be found in [Kni91]. Given a
domain D we want to define P*(D). We start with the collection F(D) of all finite sets
of finite elements of D. These will act as the finite elements of P*(D). We order F(D)
by putting

XCemY iff(Vze XIyeYeCy)A(VyeYIze Xz Cy)
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This order is called the Egli-Milner order. (F(D),CEgnm) is a pre-ordered set, so we can

form its completion to get a domain (see [Kni91]). This domain is by definition the

powerdomain of D. A suitable representation uses the following closure operation.
CX)={| |zi C K(D):3z € Xz C | Jzi & Vidz’ € X.z; C 2}

It is easy to check that Cl indeed is a set theoretical closure operation. Furthermore we

have CI(X) = Con(X) for all X € F(D) where Con(X) = {y: 321,22 € X.2; Cy C 25}
is the convex closure operator. Defining

Up(X:)i = {| =i : 7 € X3}
for a Egli-Milner ordered chain (X;); in (D), the powerdomain then consists of all
sets Cl(Up(X;);) for chains (X;); C F(D). Unfortunately, the ordering of these sets is
in general no longer Egli-Milner, but becomes the Plotkin order. For details, consult

[Plo76, Smy78, Kni91]. We will always be working with finite elements, and these are
Egli-Milner ordered.

e For f: D — E we define P*f : P*(D) — P*(E) by
P*f(X)=Cl{f(z):z € X}

e For f: D; x D; — E we define ft: P*(Dy) x D; — P*(E) by
H(X,y) = Cl{f(z,y): = € X}

e For f: Dy x D; - E we define f} : P*(D,) x P*(D;) — P*(E) by
(X1, X2) = Cl{f(21,22) : 71 € X1,22 € X3}

o We have a continuous function ¥ : P*(D) x P*(D) — P*(D) given by
W(X,Y)=CI(XUY)

e We have a continuous function { - [} : D — P*(D) given by
=0 = {=}

e We have a continuous function i : P*(P*(D)) — P*(D) given by

Wx)=c(Ux)

The constructions (-) X (-), P*(-) etc., are all continuous. That is, for a chain of functions
(f:)i we have g x | |; fi = Ui(g % fi) etc. In particular this means that one can solve
recursive domain equations involving these constructors (c.f. [Plo, SP82]). Also, the
derived operations (-)! and (-)! are continuous.



A function f : P*(D) — P*(E) is called linear if f(X wY) = f(X)w f(Y) for all
X,Y € P*(D). It is known that P*f, (f)! and (f)! are linear.

We need the following continuous function if (-) then (-) else ():TxDxD—-D
given by

1 ift=L1
if tthen d, else t, =¢ d; ift=t
dy ift=1

4 The Semantic Domain

In this section we give the definition of the domain P that underlies our order-theoretic

denotational semantics for ACP. P is defined as the least solution of the following
reflexive equation

PE'P‘({&}_L+AL+A_LXP)

where § ¢ A is used to denote deadlock. For definiteness, let ¢ be the isomorphism
between the left- and right-hand sides.

It is instructive to see how the solution P is obtained as we will need the construction
in the sequel. For a full treatment of the theory of solving reflexive domain equations,
see [Plo, SP82]. The following theory is taken from those papers. Briefly, we solve
the equation in Cpo®, the category that has as objects cpo’s and as arrows embedding-
projection pairs

(k:D— E,l: E— D)
satisfying

lok=1p kolLC 1g.
Now P is the colimit of the sequence

Py = {1}

Pn+1 = 'P*({QS}L + AL +A1 X Pn)

with as embedding-projection pairs the pairs (in : Pa = Pat1,Jn : Pay1 — Fa) given
by

'io = jo = Az.L
int1 = P*(Lsp +1la+1a X in)

dnt1 = P*(1gsy +1a+ 14 X jn)



Intuitively, iy is the inclusion of P, into Pn4; and j, maps a set at nesting depth n + 1
onto L. We write

inm = im-10"-"0iny1 0ty
Jnm =jn°jn+1°"'°jm—1

The colimit comes equipped with functions a : Pa — P and S : P — FPa. These a,
and B, have the properties that a, 0 8, C an41 0 Brt1s Un @n ©Bn = 1p, @n = Qp41 010
and B, = jno ,Bn+1'

Concretely, P consists of w-indexed sequences

P= (Po,Pl,---,Pm---)

Bn({Pos--+sPns++-)) = Pn

and

an(p) = (JOn(p); oo ’j(n-—l)n(p), p, in(n+1)(p)’ .o ’)

for p € P,. As {6}, and A, are w-algebraic, every P, is w-algebraic. In turn, P itself is
w-algebraic and its collection of finite elements is given by an(p) for p € K(Py).

We now give a characterization of the continuous functions f : P — P in terms of
functions f, : P, — P,. This characterization will enable us to derive properties of
functions f : P — P by showing that these properties hold of certain (induced) functions
f( : P, —» P, and invoking a limit argument. The latter task will be substantially
easier since we are allowed to reason by inductive arguments. To our knowledge, this
approach is new.

First of all, to each f : P — P we associate a function f(*) : P, — P, by f(® = f,0 foan
for each n. Observe that we have
gno f™ 0iy = jnofay10f0an41 0in
= fnofoay,
f(n)

Let us call a family of functions {f,.:P,.-—»P,,:n<w}comp¢tibkiff.,=j,.of,,+1 01ipn.
We write [fu]n for such a family. Note that a family of functions is compatible if
fa0jn=1Jno Sat1.
Each fn: P, — P, givesrisetoaﬁmctionf,. :P — P given by fo = ano faofs. Fora
compatible family {f.]. we have

fn an°jn°fn+1°in°ﬂn
Qn41 © fr+1 © Pnt1
fn+1
Hence we may define [fy]}, = LI, fn- This is a continuous function.

I
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Proposition 4.1 For all f : P — P and all compatible families [fn]n we have

1. [f(™)], is compatible.

2. [fal} is continuous.

3. [f]} = £.

.o (1) =

Proof We have already proven 1. and 2. above. For 3. we have

ol =

For 4. we have

()™

Uanoﬂnofoanoﬂn

LI(en 0 Bn) o f o J(@n 0 Bn)
lpofolp

= ﬂn o [fn]I. 0 Qp
= ﬂn°U(am°fm°ﬂm)°an
= U(ﬂnoamofmoﬂmoan)

= U(jnm o fm o inm)
Jn

5 The Denotational Semantics

In this section we define our denotational semantics [—] and prove that this semantics
provides a model for ACP. To this end we define semantic functions corresponding to

the syntactic constructors of the language.

Séquential composition We want to define a function @ : P x P — P. First define the

higher order operator ¥

\I’:[PXP-*P]—D[({ﬁ}_L-i-A_L-[-AJ_XP)XP—>({6}_|_+A_L+AJ.XP)]

by

U(f)(z,p) = if iso(2)

then z
else if is(z)
then iny({out:(z),p))
else ina((r(outs(z)), f(x'(outa(2)), p)))

and ¥ = M.~ o (W1(f)) o (¢ x 1). Put © = fiz(¥).

10



In the remainder of this section, we suppress the functions in; and out; for the sake
of simplicity, trusting that the reader can provide them himself where needed. For
instance, we will write {Ja[} instead of {|ini(a)[}. This convention increases readability
of the expressions considerably.

Lemma 5.1 The compatible family [©(™)),, is given by the following functions,
On = (On)!
where we use the auxiliary construct
Ont1 ¢ [{8}L + AL + AL X Pa] X Poya = [{6}1 + AL + AL X Py]
inductively given by
Go = Az,y.1

®ﬂ+1 = Aa:, Y. if iso(z)
then 2z
else if is)(z)
then (z, jn(¥))
else (7(z), 7'(z) On Jn(¥))

Proof First we observe that we can define o, and 8, with the help of functions &,
inductively given by

if isp(z) V is1(z)
then z

else (7(z),a(7'(2)))

putting a, = ¢~ 0 P*(&,) o ¢. Likewise for §,. Hence both a, and 8, are linear.

We proceed by induction on n to show that ™) = @,. The case n = 0 is trivial. For
n > 0, we have p; O+ py = Bos1(0nt1(P1) © angi(pa)). This last function is the
pointwise extension of

if 1s9(z)
then z
else if is;(z)
then (z, Bn(an+1(p2)))
else (r(z), Bn(an(n'(2)) © ans1(p2)))

We have that 8, o0 an41 = jn and that
Ba(p © am(p") = Ba(p @ an(jmn(P')))

for all n,m > n. Hence Bn(an(7'(2)) © ant1(p2)) = Bn(an(x'(z)) © an(jn(p2))). Hence
the desired conclusion. m]

Corollary 5.2 O™ o (jn X ju) = jn 0 @1,

n



Lemma 5.3 For all py,p2,p3 €P,

1. (p1 O p2) © p3 = ;1 O (p2 © pa) (Axiom A5);
2. {ino(6)} © p1 = {ino(8)]} (Axiom A6).

Proof First we show that for all n, (9, O™ p;) 0™ p = py @™ (g O™ pj) for all
ph, b, 0s € Pa. Thecase n = 0 s trivial. For the induction step we argue as follows. The
right hand side of the equation, considered as a function of p}, ), ps, is the pointwise
extension of
if iso(z)
then z
else if i3,(z)
then (2, jn(ph O™ p}))
else (7(z),~'(z) O™ ja(ph olr+1) 5))

By properties of the compatible family [@(™],, we have that
7'(x) O jn(ph O+ ) = 7'(2) O (jn(p2) O Jn(p3))
By induction hypothesis, the last expression equals
(7'(2) @™ ja(py)) O ja(ps)
Now it is easy to see that the left-hand side is the pointwise extension of the aforemen-
tioned function.

The claim now follows because
P10p)0ps = (| en(Bn(pr) O™ Ba(p2))) @ p3

L) em(Bra(|] on(Bn(p1) O Bu(p2)))) O™ Brm(p3))
LJetm( L] drm(Ba(p1) ©® Ba(p2))) O™ Bm(ps))

n>m

= Lem((Bn(p1) 0™ Bm(p2)) 0™ Bm(p3))
= Ueam(Bum(p1) 0™ (Bn(p2) O™ fm(25)))

= pO(p20ps)
The second equality is immediate. o

In order to define the other operators it is convenient to have another function A
available. This function A : P — P removes §’s from the first level of its argument,
unless that argument equals {|6[}. Note that this function is of a ‘global’ nature, that
is, A is not linear. It is this definition that enables us to formulate our model. We can
define A, : P, — P, uniformly on the finite elements of P, by

X i#X={06
A"(X)={ X\ {(0,8)} otherwi{s(e &

12



It is easy to see that A,, is monotonic on the finite elements of P, and hence extends to a
continuous function on P,. It is also easy to show that A, 0jn = jn © Aps1, hence [An]n
is a compatible family. Let A : P — P be the induced function on P. The following
lemmas list some elementary properties of A.

Lemma 5.4 Forall p,p €P,

1. A(A(p)) = Alp);
2. A(pu o) = A(A(p)W A(Y)) = A(p® A(P));
3. A(pOp)=A@)0OY.

Choice We define the semantic choice operator @ : Px P — Pas ® = Aoy.
Remark. Note that with this definition of the choice operator, it is in general not the

case that p® p = p or that p @ {6[} = p. We can define another choice operator & such
that these equalities hold for all p € P with help of &' given by

if iso(z)

then {yf}

else if iso(y)
then {z[}

else {z[t ¥ {y}

and setting & = o(')}. Proofs of the properties of other operators would become
more difficult, however. Also, the present formulation has a strong underlying intuition
as a global choice operator and gives rise to the identification of the (relevant) substruc-
ture P' (see below). Furthermore, we need A in the definition of various operators
below.

Lemma 5.5 For all p1,p2,p3 €P,

1. p1 ® p3 = p2 ® p1r (Axiom Al);
2. p1 ® (p1 © p3) = (p1 © p2) @ pa (Axiom A2);
3. (p1 @ p2) © p3 = (P1 © p3) ® (P2 © p3) (Axiom A4).

Proof The first equality is trivial. For the other two equalities, we have
nO@op) = AmYA(pzYps)
= A(pr1¥p2¥ps)
A(A(p1 Y p2) ¥ p3)
(P ®p2)Ops
A(m ¥ p2) O p3
A((p1 ¥ p2) © p3)

A(pr © p3 W p2 O p3)
(p1 © p3) ® (P2 © p3)

1

(P ®p2)Op3

= n

1l
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where equality (+) holds since © is defined pointwise in its first argument and hence
is linear in that argument. o

Parallel composition We define the parallel composition operator @ : Px P — P as
follows.

First recall the higher order operator ¥ used in the definition of sequential composi-
tion. This operator will again be used in the definition of the left-merge operator. For
communications, we lift the function v as given in the definition of the algebra to

v ({6} +AL) x ({631 + AL) = ({8}1 + AL)

Hence ~ is strict, commutative, and associative and has (0,8) as zero. We now define
VYo : PxP->P]—
[({6}L+ AL+ AL X P)x ({831 + AL+ AL x P) - ({6}L+ AL + AL X P)]
by
To(f)(z,y) = if (iso(2) V isa(2)) A (is0(v) V isa(v))
then ~(z,¥)

else if is3(z) Ais2(y)

then if iso(v(z,7(¥)))
then {6[}

else (7(z,7(y)),7'(v))
else if isy(z) A isi(y)

then if iso(7(x(z),¥))
then {46}

else (7(n(z),3),7'(2))

else if iso(7(x(2),x(¥)))
then {6}

else ((r(z),x(y)), f(x'(2), ' (¥)))
and we define ¥¢ = Af.A 0471 o (¥c(f))} o (4 X ¢)-
We now define
8(f)(p1, 22) = ¥(F)(P1, p2) ® E(F)(P2, 21) ® ¥ (f)(P1,P2)

and put ® = fiz(®). Likewise, we define ®; = ¥(®) and ©® = ¥¢(®). The next
lemma follows immediately from the definitions.

Lemma 5.6 Forall a,b,c€ A, p,p €P,
1. {af © §o0 = (b} @ {lalt = {(a,b)} (Axiom CF);
2. (e} © {50) © {lcb = {ab © ({o} @ {ecb) = {v(1(a,d),0)};
3. {ap ®1 p = {{a,p)} = {lal} © p (Axiom CM2);
4. ({a} © p)®L ¥ = {alt © (» ® p') (Axiom CM3);
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5. ({al ©p) © {6} = {7(a,b)} © p (Axiom CM5);
6. {a} © ({b} © p) = {7(a,b)} @ p (Axiom CM6);
7. Qe ©p) © ({8} O )= {1(a,0)} © (p& p') (Axiom CM7).

Lemma 5.7 For all py,p2,p3 €P,

1. p1 ® p2 = (p1 OL P2) ® (P2 OL P1) ® (71 © p3) (Axiom CM1);
2. (p1 ® p2) ®r 3 = (P1 ®L p3) @ (P2 O p3) (Axiom CM4);
3. (pL®p2) © p3=(P1 © p3) @ (P2 © p3) (Axiom CM3);
4.9, © (P20p3)=(p1 © p2)® (P11 O p3) (Axiom C M9).
Proof For the second equality, we have A(p ®L P') = A(p) L ¢ just like for ©. The

claim now follows by the same argument. For the third equality, A is the left-most
function in the definition of ® . Hence

(P11 ®p2) © p3 A(pr¥p) © ps
(myp2) O p3

A((pr © p3)¥ (P2 © p3))
(71 © p3)® (P2 © p3)

where equality (+) holds since @ is by definition linear. The fourth equality is proved
similarly. a

Next we are going to show that the Standard Concurrency Axioms hold. First, we have
that ®(") is given by:

—
+*
—

2™ (p,7) = 8 (p, 7)) 8™ &L (¢, p) 8™ © M(p,¥)

where © () is inductively given by ® ©(z,9)= L and & (»+1) _ go( @ ™) putting
© ™) = A o (@ ")t. Furthermore, @{" is given completely analogous to o).

®(I?) = Az,y..L
®(I:'+1) = \z,y. if isg(z)then z
else if is;(z)then (z,jn(v))
else (r(z), 7'(z) ®™ jn(y))

Lemma 5.8 Forall p,p’ € P,

1. p© p =9 O p(Axiom SC3);
2. pRp = ® p (Axiom SC4).
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Proof We prove that, for all p,p’ € Pa, p © My =p 0™pandpd™p = @™ pby
simultaneous induction on n. The first equality follows easily from the fact that o™
is defined symmetrically in z and y, and the induction hypothesis. The claim for ™
is then trivial. ]

Lemma 5.9 Forall py,p2,p3 € P,
1. (p1 ®1 p2) ®L P3) = P1 OL (P2 ® ps) (Axiom SC1);
2. (pp © p2)®Lp3=p1 O (P2 ®L ps) (Axiom 5C2);

3.9 0 (pa © p3)=(1 © p2) © ps (Axiom SC5);
4. p1 ® (p2 ® ps) = (p1 ® P2) ® p3 (Axiom SC6).

Proof We prove the equalities in their (-)®) form, by simultaneous induction on =. The
base case n = 0 is in all cases trivial. For the first equality, we have

&) (z, 8 +1)(py, p3)) = ifh iso(z)
then 2

else if is1(z)
then (z, jn(®"+)(p2,p3)))
else (1!'(22), ®(n)(rl(z)’j"(®(n+l)(p2’ Pa))))

BEH(BE ) (z,2),p3) = i iso(2)
then z
else if is;(z)
then (z, ®(")(jn(P2)vjn(P3)))
else (x(z), @™ (B (x(2), jn(P2)); in(P3)))

By properties of the compatible family [®™)],, and the induction hypothesis on e
these two expressions are the same.

The second equality is proved likewise.

The associativity of @ (*+1) follows readily from the associativity of ¥ and the induction
hypothesis on ®™.

For the last equality, we write out left- and right-hand-sides of the equality.
m ®(n+1) (Pz ®(n+l) ps) =
= [p Y (p2 @Y )]t} ™+ [(p2 @Y p3) "D p ]2 @)
[(ps ®gu+1) 2) ®(I:u+1) Pl]{3} 69("+1) [(p2 @ (n+1) ) ®(I:s+l) pl]{4} e(n-n)
o2 © ™) (5 @D p)[( ) [py @ 1) (3 OV P Y
[py © (n+1) (p2 © (n+1) ps)]{7}-

(Pl ®(n+1) PZ) ®(n+l) p3 =
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= (o1 80 p2) OFFY po]1 @) [(py &0 pr) @Y s
(2 © D) p) &FY pal®) ¢+ [p3 8F* (1 @) )Y @D
(o1 8+ p2) © 4 55l 64D [(p O 1) © ™V po] Y Y
[(pr © ¥V pg) © (41 pg] (7.
In the above we have, by the previous cases in the lemma, that {i} = {i'} for1 <i<T.
0O

Encapsulation Each subset H C A gives rise to the following continuous function
H:A -T:

1 ifz=41
Ar)={t ifz£l & z€H
f otherwise

Fixing such a set H C A, we define Vg : P — P with the help of
Uy:(P-P)—- ({§}L+AL+AL xP)— ({§}L+AL+AL x P)
by
Yp(f)(x)= if isi(z) _
then if H(z)
then §
else z
else if is3(z)
then if A(x(z))

then é
else (r(z), f(x'(z)))

else z

Now define ¥z = Af.Ao0 ¢l o P*(¥u(f))o¢d and Vg = fiz(¥y). We give some
elementary properties of V.

Lemma 5.10 Let H C A and let a € A. Then

1. Vy({lal) = {60 if a € H (Axiom D1);
2. Vu({al}) = {al} if a ¢ H (Axiom D2).

Lemma 5.11 For all p,p’ € P,

1. Va(p) = Va(A(p)) = A(Va(p)):
2. Va(pwp) = A(VH(p) ¥ Vu(P))
3. Va(p® ¥) = Vau(p) ® Vau(p') (Axiom D3).
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Proof We have

Va(por) = Va(A(pyp))
= A(Va(p)¥ Vu(?))
= Vu(p)® Va(®)
The other equalities follow immediately from the definitions. O

Lemma 5.12 Forall py,p; €P, Va(p1 O p2) = V(1) © Vi (pa) (Axiom DA4).

Proof Again define the compatible family {Vﬁ}‘) : P, — P, : n < w} and use induction
on n to prove that for each n,

v (po®™ p) = VP (p) 0™ vid(p)

for all p,p € Pa. o

Having defined semantical counterparts to all syntactic operators, we are ready to de-
fine the denotational semantics. First of all, let T : PVar — P be the set of environments
or meanings of procedure variables.

Definition 5.13 We define D : £ — T' — P by induction on the structure of s as follows:

o D(y)(a) = {al};
o D(7)(8) = {;
o D(y)(s1-82) = D(7)(s1) © D(7)(s2);
o D(7)(s1+ 82) = D(7)(81) ® D(7)(s2);
o D(7)(s1 | 82) = D(7)(1) ®L D(7)(82);
o D(7)(s1l82) = D(7)(s1) © D(7)(s2);
o D(v)(1 || 82) = D(7)(81) ® D(7)(82)i
o D(7)(9x(s)) = Va(D(7)(3))i
o D(7)(X) = 7(X).
;‘he order on P extends to an order on T. The higher-order operator T : I' — T defined
Y
T(7)(X) = D(v)(d(X))

is a continuous operator and hence has a fixed point 74. Now define [-]: £ — P as
D(va)-
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In view of the preceding lemmas, the only equalities that we still need to prove are
Axioms A3 and A6. We can define the following subset P’ C P. First, define the
operator A*: P — P as

O(f)(z) = if iso(z) Visi(z)
then z

else (r(z), f(r'(2)))
and set ® = Af.A 0 ¢! 0 P*(O(f)) 0 ¢. Set A* = fiz(6). Intuitively, A* applies A
recursively to a process. Define P = A*(P), the direct image of P under A*. As
A*(A*(p)) = A*(p), P’ consists of all fixed points of A*. For the next proposition we

need the following definition. Given a domain D, a subset D’ C D is called inclusive if
whenever (z;); C D’ then | |z; € D'

Proposition 5.14 P/ is an inclusive subset of P.
Proof Given a chain (p;); C P/, we have that
A e =) a*m) = »

Hence P is closed under lub’s. a

Since L, [a},[6] € P’ and all operators preserve the property of being in P, it follows
that [-]: 7+ — P'.

Lemma 5.15 Forallpe P,
1. p®p = p (Axiom A3);
2. p® {6} = p (Axiom A6).
Hence we have obtained the following, main result of the paper:

Theorem 5.16 [—] is a model for ACP.

6 Completeness

In the preceding section we saw that z = y in the equational theory implies [z} = vl
The question arises whether the semantics is complete in the sense that the reverse
implication also holds. In this section we give an affirmative answer to that question,
thus showing that the model we gave for ACP is complete. In the sequel we will denote
an equation z = y of the theory by Fz = 3.

First of all, we need some results from the theory of ACP. For a fuller treatment and
proofs of the facts mentioned here, consult [BW91].

19



Definition 6.1 The collection N of normal forms of terms is given by the following grammar.

n n m
n u= 6| Za;| Ea.~+2ak-n.'
k=1

=1 =1

where Y1, ¢ = z and a; € A.

For any z € T there exists a unique z’ € N such that - z = z/. Hence we have a
y q

function N'F : T — N assigning to each term its unique normal form. We have the
following proposotion.

Proposition 6.2 For all z,y € T, t z = y iff - NF(z) = NF(y).

We can assign to each total p € P, = A*(P,) the following element N'F(p) € N. For
n = 1, let p € P!, be total, that is, p has no occurrence of L. Then either p = {(0,6)},
or p = {(1,a1),...,{1,a,)}. In the first case, NF(p) = § and in the second case,
NF(p) = ©%, a;. For the induction step in the definition, let p € Py, be total. Then
P= {(0’ 6)}! orp= {(1"11)’ LR (1, an)’ (2’ (alvpl))’ R (2, <am9pm)>} where Pk € P'I' In
the first case, N'F(p) = § and in the second case NF(p) = Tk, ai + Tiey am - N F(pi)-
Note that we have to “choose” an order in which to list the elements of p in the
definition of NF. In view of Axioms Al and A2, however, this order is irrelevant.
Hence for a process p, if NF' is defined analogously to A’ but with another listing
of the elements of p, we have - NF(p) = NF'(p).

The following proposition shows that the functions A'F and [~] are inverse to each
other.

Proposition 6.3 1. For all total p € Up<, P, » = INF(p)].
2. Forall z € N, + z = NF([z]).

Corollary 6.4 For all z1,z2 € N, F 21 = 23 iff [21] = [22]-

Theorem 6.5 For all z,y € T, + z = y iff [z] = [v]-

Proof We have
Fz=y iff FNF(z)=NF(y)
iff NF(2)]=INF(y]
iff [=]=[3]
where the latter equivalence holds since, by soundness, we have that [z] = NF(2)]
m

In order to extend the previous Theorem to the whole of 7+ we need some means to
relate infinite terms. This is dealt with using projections 7, and the Approximation
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Induction Principle which says that z = y iff Ta(z) = 7Ta(y) for all n. Here 7, is
inductively defined as

a(a) = a

() = 6

m(a-z) = a
Tne1(a-2) = a-ma(2)

m(z+y) = ma(z)+ Ta(y)
Note that we now have defined projections on the set of normal forms N. These
projections extend to the whole of 7 + by the following procedure. Lett; € 7 +. Given
#; define ;31 to be the term in which every procedure variable X is replaced by its
body d(X). Obtain the normal form N F(t,) by considering each procedure variable
X occurring in ¢, as a (new) constant action. Then put Tn(t1) = Ta(NF(tn))-

We can define projections 7, : P — P, as follows. Define %, by

#1(z) = if isg(z) Visi(z) then z
else 7(z)
#ng1(z) = if iso(z)V isi(z) then z
else (m(z), ma(7'(2)))

and set T, = P*(%n)-
We have the following lemma.
Lemma 6.6 For all z € T, [rq(2)] = malz].

Proof The lemma holds obviously for z € N. Forz € 7, wehave[z] = [NV F(z)]. Hence
[7n(2)] = [Fa(NF(2))] = 7N F(z)]. For z € T+ we first observe - 7,(z) = mn(2')
where 2/ is the nth expansion of z in which every procedure variable is replaced by an
arbitrary term s € 7. This follows easily from the fact that we have guarded recursion.
Likewise, Tn[z] = 7n[2']. Hence [x4(z)] = [7a(z)] = o[z} = 7alz) a

Obviously, 7, and f, are closely related. We have the following proposition.
Proposition 6.7 For all n, p.p/ € P,
1. Ba(p) = Bn(p') implies wa(p) = Tn(p);
2. Tn41(p) = Tnsa(7) implies Ba(p) = Ba(P)-
Corollary 6.8 For all p,p’ € P, p=p' iff for all n, m(p) = Tn(P).
Theorem 6.9 Forall z,y € T+, F z = y iff [z] = [y].

Proof
Fz=y iff Vn. b xa(z) = Ta(y)
iff Vn.[ra(2)] = [7a(¥)]
iff Va.r,[z] = 7yl
iff =] = [y}
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7 Discussion

We have defined an order-theoretic interpretation for ACP and we have proved that it
is a model. Some remarks seem in place. First of all, traditionally ACP is interpreted
over so-called process-graphs modulo strong bisimulation. A canonical model for the
algebra of finite terms (i.e. without procedure variables) is the set of finitely branching
trees of finite depth. These trees precisely correspond to finite and total (i.e. not contain-
ing L) elements in P, onto which [-] maps these terms. It follows that our semantics
is also complete, at least for the finite terms. That is, if t; # t2 then [t1] # [tz]. Next, a
recursively specified process X can be given meaning in the projective limit model. This
is essentially similar to how the denotation of X is obtained in P.

As remarked in the introduction, P contains a lot of junk’, ie. elements p ¢ P
Moreover, P itself contains junk: consider e.g. the infinite process {{(1,a): a € A}U{L}.
Since our recursion is guarded, this process cannot be obtained as the denotation of
any term in 7.

An important feature of ACP is the inclusion in the algebra of a so-called silent move 7,
which is used to model a step or a sequence of steps local to a process. Axioms for T
include 7 - z 4+ & = T - z. It is readily seen that this axiom prevents us from modeling
the semantic choice operator by a continuous function. Hence we cannot extend our
model to cover this extension of the algebra. A possible way out is to model 7 as
an ordinary atomic action and then divide out the equivalence induced by the new
axioms. It would be interesting to pursue this possibility.
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