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Abstract

In this paper we investigate the problem how to delete a number of edges
from a nonplanar graph G such that the resulting graph G’ is maximal planar,
i.e., such that we cannot add an edge e € G — G’ to G’ without destroying
planarity. Actually, our algorithm is a corrected and more generalized version
of the maximal planarization algorithm of Jayakumar et al., based on the
planarity testing algorithm using PQ-trees of Booth & Lueker. Our algorithm
can be implemented to run in O(n?) time.

1 Introduction

Planarity testing is the problem of determining whether a given graph G with n
vertices and m edges is planar or not. It has many applications, e.g. in the design
of VLSI circuits, determining the isomorphism of chemical structures and in various
problems dealing with the readability of diagrams. Two planarity testing algorithms
of different types are known, both having a linear time complexity. One is called
a “path addition” algorithm and the other is called a “vertex addition” algorithm.
These terms refer to the principles used in the algorithms. The path addition algo-
rithm is originally due to Auslander & Parter [1] and a linear time implementation
was developed by Hopcroft & Tarjan [8]. In this paper, we investigate the vertex
addition algorithm, which was presented first by Lempel, Even & Cederbaum [11],
and improved later into a linear algorithm by Booth & Lueker [2], using a novel
data structure called the PQ-tree.

If a graph is not planar, then we may want to delete some edges to obtain a
planar subgraph (e.g. for embedding purposes). Finding the minimum number of

*This work was supported by the ESPRIT Basic Research Actions of the EC under contract
No. 3075 (project ALCOM).



edges whose deletion from a nonplanar graph gives a planar subgraph, is an NP-
complete problem [7]. Therefore, we restrict our attention to computing a mazimal
planar subgraph G' of G, that is, a subgraph G’ such that for all edges e € G—G' the
addition of e to G’ destroys the planarity. The first algorithms for this problem work
with an O(mn) worst-case time bound [5, 12}, which can also be achieved trivially by
starting with one edge and checking for every subsequent edge, whether its addition
to the graph preserves the planarity (by employing a linear-time planarity tester).
Recently Cai, Han & Tarjan [3] described an O(mlogn) maximal planarization
algorithm, based on the Hopcroft-Tarjan planarity testing algorithm. Di Battista
& Tamassia described an algorithm to check in O(logn) amortized time whether
adding an edge to the graph preserves the planarity, which yields an O(mlogn)
time maximal planarization algorithm as well.

Up to now, no general maximal planarization algorithm based on PQ-trees was
known, having a complexity better than O(mn). Jayakumar, Thulasiraman &
Swamy [9] presented an O(n?) planarization algorithm for a special class of graphs
based on PQ-trees but, as will be shown in this paper, this algorithm is not correct.
In this paper we correct this algorithm to a maximal planarization algorithm, which
works for all instances. The algorithm can be implemented to work in O(n?) time,
which is better than the time bound of O(mlogn) for dense graphs. Moreover,
instead of testing for every edge whether or not it can be added without destroying
the planarity, it calculates for every vertex the minimum number of edges which
must be deleted to preserve planarity. This is the main reason why we employ the
PQ-tree approach.

This algorithm not only constructs a maximal planar subgraph in an efficient way,
but it really tries to minimize the number of deleted edges. In figure 1 an example
is given where from a nonplanar graph with k2 + 3k + 5 vertices and 2k2 + 6k + 5
edges, k(k + 1) edges are deleted by the algorithms of Cai et al. [3] and Di Battista
& Tamassia [6], while only k edges are deleted by our algorithm (in figure 1, k = 5).
Due to the computation of the minimum number of deleted edges per added vertex,
our algorithm seems to have such a better behaviour than the other planarization
algorithms in general. In section 6 some experimental results are given.

The paper is organized as follows. In section 2 we describe the PQ-tree data-
structure and its implementation for testing planarity of graphs. In section 3 we
revise this algorithm to compute a particular planar subgraph G’ of a nonplanar
graph G. In section 4 we give three totally different counterexamples to show that
the maximal planarization algorithm of Jayakumar et al. [9] is not correct. In
section 5 we present our maximal planarization algorithm. Section 6 contains some
experimental results and some concluding remarks.
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Figure 1: Example to show that our algorithm deletes only O(n®%) edges and the
other algorithms delete O(n) edges.

2 Planarity Testing Using PQ-trees

Let G = (V, E) be a graph with n nodes and m edges. We assume that G is simple,
that is, has no multiple edges or loops. A graph is planar if it can be embedded in the
plane without any crossing edges. A graph G is planar if and only if the biconnected
components of G are planar [11]. We henceforth assume that G is biconnected. The
planarity testing algorithm of Lempel, Even & Cederbaum first labels in linear time
the vertices of G as 1,2,..., n, using what is called an st — numbering. An st-
numbering is a numbering of the vertices of G by 1, 2, ..., n such that the vertices
1 and n are necessarily adjacent and each j of the other vertices is adjacent to two
vertices ¢ and k satisfying i < j < k. Let Gy = (Vi, Ei) be the subgraph of G
induced on the vertices 1, 2, ..., k. If k < n then there must exist an edge of G
with one end in V; and the other in V — V;. Let G} be the graph formed by adding
to Gi all these edges. These edges are called virtual edges, and their ends in V — Vi
are called virtual vertices and labelled as their counterparts in G, but they are kept
separate; i.e., there may be several virtual vertices with the same label, each with
exactly one entering edge. Let By (the bush form) be an embedding of G}, such that
all the virtual vertices are placed on the outer face. It can be shown [11] that the
st-graph G is planar if and only if for every By, 2 < k < n — 2, there exists a planar
drawing By, isomorphic to B such that in Bj all the virtual vertices labeled k + 1
appear consecutively.

The PQ-tree Ti corresponding to the bush form B consists of three types of
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Figure 2: Example of G, Gy, By and corresponding PQ-tree (from [4]).

vertices: (i) Leaves in T} represent virtual edges in By, (ii) P-nodes in T represent
cutvertices in By, and (iii) Q-nodes of Ty represent the maximal biconnected com-
ponents in Bx. G, Gy, Bi and the corresponding PQ-tree are illustrated in figure
2.

A few definitions are now in order. Let Ey; denote the set of leaves in Ti which
corresponds to the virtual vertex k + 1. A node X in T} is said to be full if all
its descendant leaves are in Ex,;; X is said to be empty if none of its descendant
leaves are in Ej,1; otherwise X is partial. If X is full or partial, then it is called a
pertinent node. The frontier of T, is the sequence of all the descendant leaves of T}
read from left to right. The pertinent subtree of T} is the smallest connected subtree
which contains all the leaves in Ex4;. The root of the pertinent subtree is called the
pertinent root. Two PQ-trees are considered equivalent if one can be obtained from
the other by performing one or more of the following type of operations.

e Reversing the order of the children of a Q-node.
e Permuting the children of a P-node.

It can be shown [2] that Bj, exists if and only if Tk can be converted into an equivalent
PQ-tree T} such that all the pertinent leaves appear consecutively in the frontier of
T!. Booth & Lueker have defined a set of patterns and replacements using which
T! can be reduced into a PQ-tree Ty in which all the pertinent leaves appear as
children of a single node. The reduction process consists of two phases. In the
first phase, called the BUBBLE_UP phase, the pertinent subtree is identified. In the
second phase, called the REDUCTION phase, pattern matching and corresponding
replacements are carried out using the reversing and permutation operations.

To construct T4y from Tk, we first reduce Ti to T} and then replace all the
leaves corresponding to virtual edges of vertex k + 1 by a P-node whose children
are all leaves, corresponding to outgoing edges of vertex k + 1 in G. The algorithm
of Booth & Lueker, which we will refer to as PLANARITY_TEST, starts with T} and
constructs the sequence of PQ-trees Ty, T3,.... If the graph G is planar, then the
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algorithm terminates after constructing 7,,_1; otherwise, it terminates after detecting
the impossibility of reducing some T} into T;. The crucial result in the complexity
analysis of PLANARITY_TEST is stated in the following theorem [2]:

Theorem 2.1 The sum of the sizes of all the pertinent nodes in the PQ-trees
T1,Ts,...,Ta-1 of a planar graph is O(m + n).

3 The Planarization Algorithm

In this section we discuss the basic principle of an approach for planarization, due to
Ozawa & Takahashi [12] and also studied by Jayakumar et al. [9]. Following these
papers, we classify the nodes of a PQ-tree according to their frontier as follows:

Type W: A node is said to by Type W, if its frontier consists of only empty leaves.
Type B: A node is said to be Type B, if its frontier consists of only full leaves.

Type H: A node X is said to be Type H if the subtree rooted at X can be arranged
such that all the descendant pertinent leaves of X appear consecutively at
either the left end or at the right end of the frontier.

Type A: A node X is said to be Type A if the subtree rooted at X can be arranged
such that all the descendant pertinent leaves of X appear consecutively in the
middle of the frontier with at least one non-pertinent leaf appearing at each
end of the frontier.

The central concept of the planarization algorithm is stated in the following theorem

of [9] which is essentially a reiteration of the principle on which PLANARITY_TEST
is based.

Theorem 3.1 A graph G is planar if and only if the pertinent roots of all subtrees
in 15,T3,...,T,—1 of G are Type B, H or A.

We call a PQ-tree reducible if its pertinent root is Type B, H or A; otherwise it
is called irreducible. A graph G is planar iff all the T}s are reducible. If any T; is
irreducible, we can make it reducible by appropriately deleting some of the leaves in
it. For a node X in an irreducible PQ-tree T;, let the w-, h- and a-number be the
minimum number of descendant leaves of X, which should be deleted from T; such
that X becomes Type W, H and A, respectively. We denote the tuple of numbers
thus associated to a node by [w, h,a]. (Note that a partial node can not be made
Type B, because we do not delete empty children.) When we have calculated these
numbers for the root of the subtree of the pertinent nodes, we set the Type of the
root according to the minimum of these numbers. If this minimum is not zero, we
traverse the tree top-down and determine the Type of each pertinent node. Using



this information, a decision about pertinent leaves can be made, which must be
thrown away to make the tree reducible.

For this, we process T; bottom-up by the algorithm cOMPUTE(T;) from the
pertinent leaves to the pertinent root. When a pertinent node X is processed,
the [w, h, a] numbers of all its pertinent children are computed and we can compute
the [w, h, a] number for X, using this information.

After computing the [w, h,a] number for the pertinent root R of T;, we can
determine whether T; is reducible or not. If the minimum of & and a is zero for R,
then T; is reducible, otherwise we make R Type H or A depending on which one of
h and @ is minimum, and make T; reducible by deleting the corresponding pertinent
leaves from T;. The procedure which traverses the tree top-down and determines
the Type for each pertinent node in 7; to obtain a reducible T} will be denoted by
DELETE_NODES(T;). Ef,, denotes the corresponding set of removed incoming edges
of i + 1.

The algorithm PLANARIZE can now be described as follows:

PLANARIZE
Construct the initial tree T; = T};
for::=1ton—-1do
BUBBLE_UP(T;);
COMPUTE(T;);
if min{h,a} for the pertinent root R is not zero then
make R Type H or A corresponding to the minimum of 4 and q;
DELETE_NODES(T});
replace all full nodes of T; by a P-node X with all

outgoing edges of node ¢ + 1 appearing as children of X.
od

Theorem 3.2 ([9]) Algorithm PLANARIZE determines a planar spanning subgraph
G, of the nonplanar graph G in O(n?) time.

Proof: For the proof that PLANARIZE determines a planar spanning subgraph
G, of G, the reader is referred to [9].

For the complexity bound it can be shown that the number of children of all
the Q-nodes in T; is at most n [9]. Since there are at most ¢ P-nodes and n Q-
nodes in every T}, it follows that the amount of work in COMPUTE(T;) for all the P-
and Q-nodes is O(n + ¢ + indeg(i + 1)), where indeg(z + 1) is the number of edges
entering vertex  + 1 in G. Summing up the work for all T}’s, we get the complexity
of computing the [w, &, a] numbers as O(m + n?) = O(n?).

By a similar proof it follows that the complexity of determining and removing
the sets £} ;,2 <i<n—1is O(n?). o
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4 Jayakumar’s Maximal Planarization Algorithm
is not correct

For a given nonplanar graph G, let G, be a planar spanning subgraph of G obtained
by the algorithm PLANARIZE. In [9], Jayakumar et al. gave an O(n?) algorithm, here
called MAX_PLANARIZEL, to add edges to G, such that the augmented graph G},
G, 2 Gy, is maximal planar with respect to the inputgraph G, when G, is bicon-
nected. We will show indeed that the augmented planar subgraph is not necessarily
maximal planar, when G, is not biconnected. Moreover we show that Jayakumar’s
algorithm, which is a modification of an incorrect maximal planarization algorithm
of Ozawa & Takahashi [12] is not correct, even when G, is biconnected. We explain
here in detail the problems of this algorithm to get some insight in the problems
in terms of PQ-trees. We use the same examples to show the behaviour of our
algorithm in section 5. We first give a brief overview of MAX_PLANARIZEL.

Let G, be the biconnected planar subgraph of G obtained by the algorithm
PLANARIZE. The idea to augment G, to a maximal planar subgraph G, is as follows.
Start with G and construct its chain of PQ-trees. After constructing a PQ-tree T,
reducibility is obtained by deleting a minimum number of leaves representing the
edges in El,,. (Note that T; will become reducible if all the leaves from the set
E!,, are deleted from T;.) This can be done by computing the [w, k,a] number
of the pertinent nodes in T;. Let T:(G,) denote the smallest subtree of T; whose
frontier contains all the pertinent leaves from G,. Since we would like to include
Gp in the final maximal planar subgraph, we take care that, during the reduction
of T}, no node in Ti(G,) is made Type A except its root. This ensures that the
bottom-up reduction process proceeds at least up to the root of T;(G,) and possibly
beyond. While computing the [w, h,a] numbers we ignore the presence of leaves
from G — G,, which we will call empty leaves. In the following, the empty leaves
in T; corresponding to the edges in E},, will be called the new pertinent leaves of
T;: and the other pertinent leaves of T; (corresponding to the edges entering vertex
i+ 1 in Gp) will be called preferred leaves.

Again a node is called full if its frontier has no empty leaf from Gy; it is empty if
its frontier has only empty leaves from G,; otherwise it is partial. We call node X
a preferred node if it has some of the preferred leaves in its frontier. This procedure
leads to a construction of a sequence, here called the preferred sequence, containing
all preferred nodes and further only empty nodes and as much as possible new
pertinent nodes. Hence if X is new pertinent, then then X may either be retained
in the reducible T: or X may be deleted along with all its descendants to make T;
reducible. The formulas for computing the [w, k, a] numbers of the pertinent nodes
are similar as in COMPUTE(T;).

Having computed the [w, h,a] numbers for the pertinent nodes in Tj, we can
obtain a reducible T; by traversing the pertinent subtree top-down from the pertinent
root using the procedure DELETE_NODES. Processing the PQ-trees T3, T3, ..., Tn—2



Figure 4: Partial nodes are bound to new places. N denotes a new pertinent node
and B denotes a bound node.

using the different procedures described above, a maximal planar subgraph of the
nonplanar graph G is obtained, according to theorem 5 of Jayakumar et al. [9], when
G, is biconnected. However, as we will show in the next three cases (a), (b) and
(c), the algorithm is not correct. These examples are explained here, to use them
in section 5 to describe the behaviour of our maximal planarization algorithm.

case (a) Call a node X in T; bound to a new place, when in MAX_PLANARIZE1
the tree T} is not equivalent to T; of PLANARIZE, due to the node X, e.g., it
has a different parent in MAX_PLANARIZEL as in PLANARIZE. One important
problem of MAX_PLANARIZEL is that it can bind partial nodes to new places in
the PQ-tree, since some new pertinent leaves may be included in the preferred
sequence. Inspect for this the instance, as given in figure 4.

There is a partial P-node P1, whose new pertinent descendant leaves become
part of the preferred sequence, which consists of the preferred children of Q-
node Q1. In PLANARIZE the pertinent children of P1 are removed from the
PQ-tree. But adding P1 to the preferred sequence implies that P1 becomes a
child of Q1, while in PLANARIZE P1 still was a child of P2. So T; of PLANARIZE
and T, of MAX_PLANARIZE] are not equivalent. Hence we cannot always form
the maximal preferred sequence in some later step j > i. In some instances,
however, the new pertinent children of P1 must be added to the preferred
sequence to obtain a maximal planar subgraph.

case (b) Assume new full nodes Pi,..., P can be added to the maximal preferred
sequence, without binding partial nodes to new places in the PQ-tree. Let
P,,..., P all have a set of empty leaves L1,..., L in their frontier, which
are not pertinent. Let the father R of Py,..., Pk be the root of the pertinent
subtree. When R has at most one partial preferred child, then at least one
new full node, say P;, can be made Type H. This implies that the correspond-
ing set of descendant leaves L; need not be removed from the PQ-tree. But
when all leaves of L; are removed from Ty in later steps in MAX_PLANARIZEL,
while leaves of some other set L; could be included in a maximal preferred
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Figure 5: MAX_PLANARIZE] does not work when G, is not biconnected.

sequence, we should make P; Type H instead of making P; Type H, to obtain
a maximal planar subgraph G,. Since in MAX _PLANARIZE] this node P;, with
|L;| minimal is made Type H, this will not always lead to a maximal planar
subgraph G,.

case (c) Finally, as also mentioned in [9], MAX_PLANARIZEL may not find a max-
imal planar subgraph when G, is not biconnected. Inspect figure 5 for this
problem.

L, is a new pertinent leaf and cannot be added to the maximal planar subgraph
P,,..., P, because there is an partial leaf L; in between. Assume L, is the
only incoming edge of a node i, which has no outgoing edges in Gp. This
implies that in step 7 of MAX_PLANARIZE], Ly will be changed into an empty
P-node with the outgoing edges. But if we apply step ¢ first then L could be
added to the maximal preferred sequence Py, ..., P. Since Ly is not added
to the maximal preferred sequence by MAX_PLANARIZEL, the resulting planar
subgraph will not be maximal planar.

In section 5 we present the algorithm MAX_PLANARIZE2 for the maximal pla-
narization of graphs, which will deal with these problems.

5 A New Maximal Planarization Algorithm

5.1 Outline of the algorithm

In section 4 we have shown that the algorithm MAX_PLANARIZE1 of [9] for maximal
planarization of graphs is not correct. In this section we present a corrected ver-
sion of MAX_PLANARIZE], that even works when G, the planar spanning subgraph
computed by PLANARIZE, is not biconnected. Our algorithm, MAX_PLANARIZE2, is
based on the idea of direction indicators in PQ-trees, as introduced by Chiba et al.
[4].

In MAX_PLANARIZE], insufficient information is available to decide whether an
edge e € G— G, can be added to G, when the corresponding leaf ! becomes pertinent

10



in T;. Our approach is to “delay these questions” by keeping [ in T;, until [ is part
of a maximal pertinent sequence in T}, j > i. Then we decide whether e can be
added to Gp. In every tree T; we again compute the maximal pertinent sequence
of incoming edges of node 7 + 1 in Gy, hence we call only these leaves pertinent.
(Recall the definitions of section 3 for the pertinent, full, partial and empty nodes.)
The leaves of edges (k,i + 1) € G — G, become not pertinent in T; and will not be
added in this step. We don’t remove (k,i+ 1) € G — Gp from T, because maybe
in some later PQ-tree Tj,j > i, (k,i + 1) can be added to G, while preserving
planarity. We call leaves of edges (k,: + 1) € G — G, potential leaves in the PQ-tree
T;,j > i. As in algorithm PLANARITY TEST, we reduce the tree T; such that the
pertinent nodes form a sequence of adjacent siblings of a common parent by applying
the templates and replacement patterns (see Booth & Lueker [2]). This sequence is
replaced by a P-node X with a set of leaves, representing the outgoing edges of 2 +1.
Furthermore, to store the place of maximal pertinent sequence in T}, we add adjacent
to X a sequence indicator. This special node, denoted by < i+1 >, marks the place
of the sequence in the PQ-tree. In [4], a related special node, a direction indicator,
is introduced to store the place of the maximal pertinent sequence of vertexi+1 in
the tree, with the direction of enumeration (from left to right or vice versa). This is
used in [4] to compute a planar embedding of the graph using PQ-trees. We treat
sequence indicators and potential leaves as empty leaves, as well as leaves of edges
€ G — G,, which are not potential yet.

In MAX_PLANARIZEL, a new pertinent leaf [ could be included in the sequence
of pertinent nodes, if only empty nodes are between ! and the maximal pertinent
sequence. Following this principle in our algorithm, a potential leaf [ can only be
added to the maximal pertinent sequence in Tj, if only empty leaves are between
! and its sequence indicator, denoted by si(l), in some tree T;,j > i. Moreover,
when we reduce the tree such that all elements of the maximal pertinent sequence
are adjacent siblings of a common parent ([2]), we have to take care that we do not
bind partial nodes to new places (recall the definition of binding to a new place in
section 4). This observation can formally be described as follows

Definition 5.1 A potential leaf | is near its sequence indicator si(l), if the PQ-tree
T; can be reduced such that they are adjacent siblings, by deleting only empty nodes
and not binding partial nodes to new places.

When a potential leaf [ and its sequence indicator si(l) are near, then this is
called a near pair, and we can reduce the PQ-tree such that they are adjacent
siblings, and add the edge e € G — G, to G,p, without binding partial nodes and
leaves to new places. The following lemma is crucial for our algorithm.

Lemma 5.1 An edge e € G — Gp can only be added to G, without destroying pla-

narity, if and only if at some step the corresponding potential leaf 1 is near its
sequence indicator si(l) in the PQ-tree.

11
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Figure 6: Two intersecting near pairs I, si(I) and I' , si(l").

Proof: Assume first that a potential leaf [ is near its sequence indicator si(l) in
the PQ-tree T;. This means that by deleting empty nodes between [ and si(!) and
reducing T; without binding partial nodes to new places, ! and si(l) are adjacent
siblings. Hence the corresponding edge of [ can be added to G, without destroying
planarity and without removing edges of Gp.

Suppose now an edge e = (k,1) € G—Gp can be added to G, without destroying
planarity, while the corresponding leaf [ is never near its sequence indicator si(l) =<
i > in the PQ-tree. This means that in every tree Tj,7 > i, there is always at least
one partial leaf I; between I and si(l). If (k,:) could be added to Gp, then it
must be adjacent to its maximal pertinent sequence in some step, by the algorithm
PLANARITY TEST of Booth & Lueker [2]. Hence ! and si(!) must be adjacent in
some step. But to obtain this, we have to delete at least one partial leaf [; of Tj,
which means that when adding e to G, at least one other edge, corresponding with
l;, must be removed from G,, to preserve the planarity. This contradicts with the
fact that e could be added to G, without destroying planarity.

Finally we notice that we test for near pairs /, si(1), when they are part of another
maximal pertinent sequence. By definition, there will be no partial nodes inside
the pertinent sequence, because otherwise we had to remove edges of G, to admit
planarity.

This completes the proof. 0O

Between two elements of a near pair several potential leaves and sequence indi-
cators may occur. Two near pairs [, si(l) and /' ,si(l'), are said to be intersecting
in T}, if either I or si(l') is between I and si(!) in all equivalent PQ-trees of T;. In
figure 6, an example of two intersecting near pairs is given.

Lemma 5.2 If two near pairs I, si(l) and U, si(l') are intersecting, then only one
corresponding edge of | or I' can be added to Gy, without destroying the planarity.

Proof: Suppose I occurs between the elements I' and si(I') of a near pair. But

when reducing near pair I, si(l'), I will be removed from the PQ-tree, hence does
not form a near pair with si(l) after reducing near pair ', si(l'). By lemma 5.1, 1
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cannot be added to G, without destroying planarity. o

Hence the order of inspecting the near pairs and applying the necessary reduc-
tions is essential for constructing the augmented planar graph Gp. All potential
leaves and sequence indicators are once element of a maximal pertinent sequence,
thus during the algorithm we can inspect for near pairs. The maximal planarization
algorithm MAX_PLANARIZE2 can now be described at a high level as follows:

MAX_PLANARIZE2
assign st-numbers to all the vertices of G;
PLANARIZE(G);
construct the PQ-tree T} corresponding to G;
fori:=1ton—1do
{compute step}
compute the maximal pertinent sequence in tree T; of incoming
edges of node ¢ + 1 in Gp;
{reduction step}
apply the template matchings in the PQ-tree,
and apply an additional reduce step to reduce near pairs
in the maximal pertinent sequence;
{vertex addition step}
for all deleted sequence indicators < 3 >,
remove the corresponding potential leaves from Tj;
replace all the full nodes in T; by a P-node X with all
outgoing edges of node i + 1 appearing as children of X;

add the sequence indicator < i + 1 > as a sibling of X in Tj;
od;

In the compute step in MAX_PLANARIZE2, potential leaves and sequence indi-
cators can be included in the maximal pertinent sequence in T}, but a suitable
version of BUBBLE-UP [2] can easily take care of this. In the vertex addition step,
we additionally have to add a sequence indicator in the PQ-tree, as a sibling of
the new P-node, and remove potential leaves of deleted sequence indicators, but its
implementation is straightforward and omitted here.

5.2 Reducing the near pairs

We now focus our attention on the reduction step of MAX_PLANARIZEZ, to obtain a
maximal planar subgraph Gp. In this reduction step we reduce T; by using template
replacements (see Booth & Lueker [2]), but when applying this for a current node
X, we now have to apply an additional reduction operation on near pairs, with least
common parent X. Reducing a near pair means that we reduce the PQ-tree T; such
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U-types:

SEAR TAKRAL - A

P-node: Except one unknown Q-node: From one special marked

child, all other children must be child to one unknown endmost child,

removed in a later step. all children must be removed ina
later step.

Figure 7: The U-Types for a P- and Q-node.

that the elements [, si() of the near pair are adjacent siblings of a common parent,
not binding partial nodes to new places, and deleting only empty nodes. Then the
corresponding edge e € G — Gy is added to G,, and the leaf [ is removed from T;.

However, as explained in more detail in case (b) of section 4, there occur instances
for which every full child of the root of a pertinent subtree can be made Type H,
and making an arbitrary choice for fixing one node Type H will not necessarily lead
to a maximal planar subgraph. But here again we use the principle of “delaying
the questions” by introducing a special Type U for P- and Q-nodes (U stands for
unknown), defined as follows:

P-node: Except one child (unknown yet) with its descendants, all other children
with its descendants must be removed from the PQ-tree in a later step.

Q-node: It has one special marked child Y, and from Y to one of its endmost
children (unknown yet), all children of the Q-node including descendants must
be removed from the PQ-tree in a later step.

For a P-node only one child can be “saved” and for a Q-node only one side of
descendants from the special marked child to one endmost child can be “saved”; all
other children, including their descendants must be removed from the tree in a later
step (see figure 7).

Using a P-node of Type U, case (b) of section 4 is solved as follows: Let Py,..., Pk
be the new full children of R, the root of the pertinent subtree which has exactly
one partial pertinent child. Hence exactly one set L; of empty leaves, unknown yet,
need not be destroyed from the PQ-tree. Delaying the question which set L; can be
saved is solved by introducing a P-node X of Type U, which we make child of R.
We make all full nodes Py, ..., P child of X and in the vertex addition step, only
the pertinent children of Py,..., P are removed from the PQ-tree. This implies
that all the sets Li,..., L of empty leaves are descendants of X. As soon when
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one empty leaf of Ly,..., Lg-1 or Ly, say L;, forms a near pair with another leaf,
not a descendant of X, then the corresponding child P; of X is saved, i.e., should
be made Type H, and all other children of X are removed. We then replace node
X by P;.

Similar we have the situation that in T; R has no partial children, then two full
children of R can be made Type H. We introduce two P-nodes X, X, of Type U
and make all full children Pi,..., P children of X; and X,. We introduce a Q-
node Y with endmost children X; and X,. In the vertex addition step, the P-node
with outgoing edges comes between X and X, as child of Y. As soon when one
descendant leaf of Py, ... Pi_y or Py, say B, forms a near pair with another leaf not
in the frontier of Y, then we replace X; by F; and remove P; as child from X;. This
means that we should make node P; Type H in T.. Therefore X; is changed by P;
and the reduction of the near pair can be done accordingly. The other node of Type
H is one of the sons of X of Type U, similar to case (b) of section 4, where R had
only one partial child.

A similar argument can be applied when P is a full Q-node, with at both sides
from the pertinent sequence to the endmost children only empty leaves, say the
sets L; and L,. When we make P; Type H, one (arbitrary) set L, or L, must be
deleted, but (as above) this may not always lead to a maximal planar subgraph. This
question of deleting L or L can be delayed by making P; Type U and replacing the
pertinent sequence of children by one special marked child. When in a later step a
descendant leaf of P;, say a leaf of Ly, forms a near pair with an empty leaf, not a
descendant of P;, we remove the set L, of empty leaves and Y from the tree. F; is
not of Type U anymore.

We introduce two arrays PLx and SIx for every node X in the maximal per-
tinent sequence. PLx[i] will contain those children of X which are ancestors of
some potential leaves of edges (j,1), and similar for ST with respect to the sequence
indicators. These arrays can easily be filled as follows:

COMPUTE_ARRAY(X,Y)
for every non-empty entry SIy(i] (or PLy[z]) do add Y to SIx|[i] (or PLx][i]);
if Y is a potential leaf (j,¢) then add Y to PLx[i]
if Y is a sequence indicator < ¢ > then add Y to SIx[i]

Using a linked list PLSI(X) for every node X, with pointers to the non-empty
entries of node X, we can find these entries in |[PLSI(X )| time.

The idea to recognize and reduce near pairs is the following when X is a Q-
node. We first apply the replacement step Q2 or Q3 of [2], which gives us exactly
one sequence of pertinent children Y3,..., Y, of X, which are all full. We visit Y3,
which is not endmost, and walk to the endmost child Yy (say right of Y1) of X,
thereby updating PLx,SIx and testing for near pairs. If two leaves of two nodes
Y; and Y; form a near pair (e.g., ¥i € PLx[k] and SIx[k] = {Y;},¢ < j), then no
node Y, can be pertinent of course, but also descendants of Y; cannot form a near
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pair with descendants of ¥, (s < r), because then we would detect and reduce this
before visiting ¥;. To reduce ¥; and Y;, we have to delete all nodes Yy, (i < r < j),
and we have to reduce the children of ¥; and Y; such that the near pair become
adjacent siblings of a common parent. The algorithm for computing SIx, PLx and
computing the near pairs is described by Q-NEAR(X) and the reduction of near
pairs is formally given by REDUCE.

Q-NEAR(X);
initialize PLx and SIx to be empty;
fori:=1topdo
for all non-empty entries PLy,[k] do
add Y; to PLx[k);
if SIx[k] points to a child, say ¥j of X then REDUCE(L, Y;, Y;, X);
od;
for all non-empty entries SIy;[k] do
add Y; to SIx[k);
if PLx[k] is not nil then REDUCE(k, Y;, Y;, X), Y; € PLx[k] with smallest j;
od;
if Y; is pertinent then
initialize PLx and SIx to be empty;
COMPUTE_ARRAY(X, Y});
od;

REDUCE(s, Y, Z, X);
{ Y and Z are children of Q-node X and ancestors of a near pair [, si(l), respectively,
with si(l) =<i>. }

1. Delete all children and their descendants of X between Y and Z from the tree.
if a deleted leaf is an edge (j',7) then add it to G;

2. Let Y;,...,Y;: be the path of nodes between [ and X (k>1);
for i := 1 to k do case Y; of the following Types:
Type U : save this side, where Y;_; belongs to (Y; a Q-node)
or child Y;_; (Y; a P-node);
delete all other children and remove Type U;
pertinent: if Y; is a P-node then
include all empty children between near pair;
empty: if Y; is a P-node then
let PLy,[k] = {Y{,...,Y;}; make Y{,..., Y}
children of a new P-node Y’ of Type U;
make Y’ and Y; child of a new Q-node Z, child of Yi4..
else
let Y{,...,Y] be the smallest consecutive sequence
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of children of Y;, containing incoming edges (j',7)
and the pertinent children in their frontier;
replace this sequence Y7,...,Y, by a special
marked child Y’; make Y; Type U;

3. Do step 2. for Y;,...,Y: the path of nodes between si(l) and X (k>1).

4. For all empty leaves between the rightmost incoming edge of : and sequence
indicator si(l) =< i >, check whether there exist other near pairs, by checking
SIy, PLz, PLy and SIz accordingly. If this is the case, reduce correspond-

ingly.

5. Delete all (empty) nodes between the leftmost incoming edge (j¢) and <2 >
from the tree. If a deleted leaf is an edge (j',7) then add it to G,.

6. for all deleted nodes Y’ of the tree, remove their presence in the arrays PLy
and SIy of their parent Y of Y'.

Notice that empty leaves left from a pertinent node Y; can never form a near
pair, since Y; should be deleted by the corresponding reduction. Therefore the
entries STx and PLx are initialized when visiting a pertinent node. The following
lemma shows that Q-NEAR reduces the near pairs in a correct way.

Lemma 5.3 When there is a near pair |, si(l) with least common parent X, then the
edge e of | is added to G, and the PQ-tree is correctly updated, when no intersecting
near pair of I, si(l) is reduced by Q-NEAR.

Proof: Assume w.l.o.g. that [ is a descendant leaf of ¥ and si([) is a descendant
leaf of Y, i > j. When there is an intersecting near pair of [, si(l) already reduced by
Q-NEAR, then Yj is already deleted, hence we would not detect the near pair I, si(1).
Otherwise we detect the near pair when visiting ¥;. We delete the other children Y,
(j < r < 4) from the PQ-tree. When ¥; (or Y;) is of Type U, then we update Y; (or
Y;) as defined for U-Types. If Yj is pertinent, then it has some pertinent children.
These children may not come between the near pair, hence come left from I. We add
the other (empty) children of ¥; between the near pair (if ¥j is a P-node), because
there may be other potential leaves, which can form a near pair with si(l). If Yj is a
Q-node, then the order is already fixed, so we only have to test for the empty leaves
in between, whether they form a near pair with si(l).

Finally, if Y; is empty, then we introduce the U-Type nodes, as defined before,
because Y; may have several children, which can form a near pair with si(l). Only
one of these children can be leftmost; all other children must be removed. This is
exactly done by REDUCE.

When ! and si(l) are changed, then a similar proof follows. After defining the
ordering we delete the leaves between the near pair, and the elements of the near
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pair become adjacent siblings of a common parent. This completes the proof. O

When the current node X for the reduction-step in MAX_PLANARIZE2 is a P-
node, then we apply a similar approach. We have to find an ordering of the full
pertinent children between the partial pertinent children of X. Moreover we notice
that descendants of empty children of X also may form a near pair with descendants
of pertinent children of X. Therefore we fill PLx and SIx in the following order
of the children of X: first with PLy,SIy of Y, Y an empty child of X, then with
PLy,SIy,Y a full child of X, then with PLy, SIy, Y a partial child of X. When
updating PLx and SIx, we of course test for near pairs. When descendants of Y;
and Y; form a near pair, then we make Y; and Y; the two children of a new Q-node
and do a REDUCE. If Y; (Y;) was a Q-node, then we make Y; (Y;) endmost child of
Y; (Y;), at this side where the near pair is. After reducing the near pairs we update
PLx and SIx. The algorithm can now be described as follows:

P-NEAR(X);
for all empty children Y of X do COMPUTE_ARRAY(X,Y);
let Yi,...,Y, be the pertinent children of X, with full children first;
fori:=1topdo
for all non-empty entries PLy,[k] do
add Y; to PLx[k];
if SIx[k] points to a child, say Yj of X then
make Y; and Yj siblings of a Q-node X';
REDUCE(K, Y;,Y;, X');
od;
for all non-empty entries SIy;[k] do
add Y; to SIx[k];
if PLx[k] is not nil then
make children Y; and Y; siblings of a Q-node X';
REDUCE(E, Y;, Y;, X');
od;

Lemma 5.4 When there is a near pair l, si(l) with least common parent X, then the
edge e of | is added to G, and the PQ-tree is correctly updated, when no intersecting
near pair of 1, si(l) is reduced by P-NEAR.

Proof: By testing if both PLx[k] and SI x[k] are not empty, we detect the
near pairs. By the ordering of updating PLx and SIx, we first reduce the near
pairs between the empty and full children, then between full children. Finally the
partial children are added to this ordering of the maximal pertinent sequence. By
the proof of lemma 5.3, REDUCE gives a correct reduction of the PQ-tree of a near
pair. a

This leads to the following theorem:
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Theorem 5.5 Given a spanning planar subgraph G, of G MAX_PLANARIZE2 com-
putes a mazimal planar subgraph G, with G, C G, CG.

Proof: By lemma 5.1 it follows that G, is planar. For suppose that G, is not
maximal planar, i.e., an edge e € G—Gp could be added to G}, without detroying the
planarity. But now the corresponding potential leaf | must form a near pair with its
sequence indicator by lemma 5.1, and [ and si(l) are always once part of a maximal
pertinent sequence. But now the algorithms P-NEAR and Q-NEAR are applied and
by lemma 5.3 and 5.4, this pair will be detected and reduced, if no intersecting pair
of 1, si(l) is reduced. Hence e will be added to G}, which yields a contradiction. O

Theorem 5.6 MAX_PLANARIZE2 can be implemented to run in O(n?) time and
space.

Proof: From lemma 1 of [9] it follows that the number of non-empty Q-nodes
is at most n and the number of non-empty P-nodes is at most ¢ in every PQ-tree
T,. Therefore we initialize O(n) arrays SI and PL.

Both in Q-NEAR and P-NEAR, we have to compute PLx and SIx for every
preferred node X. But using the information of its children Y, we can update these
arrays and test for near pairs in O(|PLST (Y)|) time. When X is a pertinent P-node,
then we also have to compute PLx and SIx from the arrays of the empty children
Y. But when Y is not removed after the reduction, then we have to calculate this
information for X every time when it becomes pertinent. Instead of doing this, we
keep the information of PLy and SIy stored in PLx and SIx after the reduction.

By using the pointers PLSI(X) it follows that visiting a pertinent node X
requires O(|PLSI(X)|) time, for testing for near pairs. If we reduce a near pair
1,si(l) =< i >, then this costs O(|PLyli]]) time for every node Y on the path
between ! and si(l). After the reduction |PLy [i]] = 0, because the corresponding
children are removed from the PQ-tree.

Hence the total time for MAX_PLANARIZE2 is O(n® + m + ¥x |PLSI(X)|) time,
for all pertinent nodes X, visited in all steps of MAX_PLANARIZE2. |PLSI(X)|is
equal to the sum of all sizes of all pertinent children in PLANARIZE. Since by lemma
1 of [9] the sum of all pertinent nodes in Ty,. .., Tn-1 is O(n?), this completes the
proof. ]

6 Concluding Remarks

In this paper we showed that the maximal planarization algorithm of Jayakumar
et al [9] is not correct. We corrected and generalized the algorithm by describing a
maximal planarization algorithm MAX_PLANARIZE2, based on the “vertex addition”
planarity-testing algorithm of Booth & Lueker [2]. Our algorithm MAX_PLANARIZE2
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is the first maximal planarization algorithm based on PQ-trees that is working faster
than O(mn).

However, the best time bound for maximal planarization is still O(mlogn) by
algorithms of Cai et al. [3] and Di Battista & Tamassia [6]. It is an open problem
whether there exists a maximal planarization algorithm based on PQ-trees, which
also works in O(m logn) time, or whether there is a general maximal planarization
algorithm that is faster than O(mlogn) time. From first experimental results we
learned that in the maximal planarization phase of our algorithm, only a very few
edges were added. Therefore, we only implemented the planarization algorithm
described in section 3 in more detail (originally due to Jayakumar et al. [9]). We
call this algorithm v-TEST, because it tests for every vertex, which set of incident
edges must be deleted to preserve the planarity. We compared the results with the
algorithm of Di Battista & Tamassia (here called e-TEST, because this algorithm
tests for every edge whether it can be added to G, the planar subgraph). We applied
this approach to two kinds of graphs: (i) random graphs and (ii) triangulated planar
graphs augmented with a number k of random edges. The results can be found in
figure 8 and 9, respectively.

From figure 8 we conclude that for random graphs with m < 2n the planariza-
tion algorithm of section 3 (v-TEST) is better than the algorithm of Di Battista &
Tamassia (e-TEST). For more dense graphs (m > 2n) the approach of e-TEST seems
to be better. Further experiments on this and larger graphs confirm this. However,
for “planar-like” graphs, which are graphs that are almost planar, the approach of
v-TEST is by far better than e-TEST. In figure 9 a clear difference is given. A trian-
gulated planar graph with n nodes has 3n — 6 edges, hence for n = 400 and k =190
we have 1484 edges, of which 820 remain by v-TEST, compared with 638 of e-TEST.
Notice also that when k increases, v-TEST deletes more edges in general, while the
number of edges of e-TEST remains constant. Similar results are suspected when ap-
plying the algorithm of Cai, Han & Tarjan [3]. We conclude that for planar-like and
sparse (which are essentially planar-like) graphs the planarization algorithm based
on the PQ-tree algorithm of Booth & Lueker [2] is preferred above the algorithm of
Di Battista & Tamassia [6], when we search for a minimal number of deleted edges.

The PQ-trees are also used for checking whether a given inputgraph is an interval
graph [2]. Hence it seems that our maximal planarization algorithm can be used in
this context as well, to compute a subgraph G’ of G such that G’ is an interval graph.
This area is a nice topic for further research on algorithms, based on PQ-trees.
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nodes | edges | v-TEST | e-TEST
100 50 50 50
100 100 98 92
100 150 114 114
100 200 129 131
100 250 134 152
200 100 100 100
200 200 180 168
200 300 216 210
200 400 238 247
200 500 247 287
300 150 150 150
300 300 277 260
300 450 322 304
300 600 350 372
300 750 363 434
400 200 200 200
400 400 362 328
400 600 414 379
400 800 441 476
400 | 1000 458 555
500 250 250 250
500 500 438 401
500 750 514 504
500 | 1000 546 580
500 | 1250 559 682

Figure 8: Comparison between v-TEST and e-TEST, when applied to random graphs.

k 100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

v-TEST e-TEST v-TEST e-TEST v-TEST e-TEST v-TEST e-TEST v-TEST e-TEST

as 189 187 504 325 731 480 730 656 1189 804
75 207 293 438 326 683 474 917 637 1147 438
115 203 238 428 318 644 482 894 746 1107 763
155 205 239 421 324 630 487 829 635 1073 800
190 212 161 396 319 668 472 820 638 1037 391
230 222 163 387 318 624 471 823 636 1020 778
265 226 162 412 319 606 476 815 632 1048 769
305 232 162 405 325 606 467 805 633 1011 250
345 245 162 409 319 615 470 789 634 1008 786
375 234 166 398 317 567 480 795 617 965 804

Figure 9: Comparison between v-TEST and e-TEST on “planar-like” graphs.
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