Redesigning the Window Protocol:
the Block Acknowledgment Revisited

Anneke A. Schoone

RUU-CS-92-04
February 1992

Utrecht University

S[we :
< P Department of Computer Science
(-4

V& g Padualaan 14, P.O. Box 80.089,

4771 ’3\& 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Redesigning the Window Protocol:
the Block Acknowledgment Revisited

Anneke A. Schoone

Technical Report RUU-CS-92-04
February 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

Redesigning the Window Protocol:
the Block Acknowledgment Revisited

Anneke A. Schoone*

Department of Computer Science, Utrecht University,
P.O. Boz 80.089, 3508 TB Utrecht, The Netherlands

Email: anneke@cs.ruu.nl

Abstract

Brown, Gouda, and Miller [1] claim that they have redesigned the win-
dow protocol such that it tolerates both message loss and message disorder,
while using only bounded sequence numbers. They suggest to implement the
timeout condition of the protocol by means of timers. We analyze the con-
sequences of an implementation with timers and show that it is not possible
to implement the protocol as specified by means of timers. This is due to the
fact that in the original protocol it is not observable for the sender whether
the timeout condition holds or not. We slightly modify the protocol such that
an implementation with timers is possible, and prove that it is correct.

1 Introduction

Brown, Gouda, and Miller [1] redesigned the window protocol to be able to tol-
erate both message loss and message disorder, where sequence numbers are taken
from a finite domain. As the protocol tolerates message loss, it contains a possi-
bility for retransmission of messages upon “timeout”. In their article, the authors
present three versions of the protocol. The first has a simple timeout condition and
unbounded sequence numbers, the second has more sophisticated timeout condi-
tions and unbounded sequence numbers, while the third version contains bounded
sequence numbers.

The conditions derived for “timeout” in both cases ensure a correct operation of
the protocol, however, whether the Boolean expression defined as “timeout” evalu-
ates to true or not, is not directly observable for the sender process. The authors
propose implementations of the timeout conditions by means of timer(s) in the

*The work of A.A. Schoone is supported by the ESPRIT II Basic Research Actions Program of
the EC under contract no. 3075 (project ALCOM).

sender process only. We show that these implementations cannot meet the claimed
performance of the protocol and suggest implementations with additional timer(s)
in the receiver process. For the second version, we show that it is not possible to
give any implementation with timers of the protocol as specified. We also show that
any attempt at such an implementation can lead to an erroneous execution. Thus
we conclude that the protocol is not correct, in spite of the fact that the authors
give a proof of correctness in [1]. Hence we have changed the specification of the
protocol slightly by relaxing the timeout condition to arrive at a protocol that can be
implemented by means of timers. We then prove that this implementation is correct
by means of an invariant. We will use unbounded sequence numbers in this note for
clarity’s sake, as the transition to bounded sequence numbers is independent of the
implementation of “timeout” and exactly the same as in the original article.

The paper is structured as follows. Although we assume that the reader is
familiar with the original article, we give a short overview of the original protocol
together with the invariant that implies its safety in Section 2. Section 3 discusses
the first version of the protocol with a simple timeout condition and the change we
propose. Section 4 discusses the version of the protocol with sophisticated timeout
conditions, an erroneous execution which can occur if one tries to implement the
protocol with timers, and the proposed changes which lead to a slightly different
protocol. Finally, Section 5 contains a proof that the proposed implementation with
timers of the repaired protocol is correct.

2 The Block Acknowledgment Protocol

The window protocol described by Brown, Gouda, and Miller in [1] is based on a
new method of acknowledgment, called block acknowledgment: each acknowledg-
ment message has two numbers n and m to acknowledge all data messages with
sequence numbers ranging from n to m. The protocol is developed in three versions.
The first uses a simple timeout condition, while the second has more sophisticated
timeout conditions. These versions use unbounded sequence numbers and arrays
to facilitate reasoning about the protocol. The third, final, version uses bounded
sequence numbers and arrays.

The window protocol is used to control the message exchange between two pro-
cesses over two unidirectional channels that may lose or reorder messages. The
process named S sends data messages to the process named R, which then sends
back acknowledgments. The channel from S to R, Csg, is modeled as a multiset
of messages, to which messages are added when sent by S, and from which mes-
sages are deleted when lost or received by R. Likewise, the channel from R to S is
modeled by the multiset Crs. Each new data message is assigned a new sequence
number from the natural numbers, and as we are not interested in the actual data
transferred, a data message is identified with its sequence number. We assume that
S has an infinite boolean array ackd[0...] in which it records which data messages

have been acknowledged by R. We assume that R has an infinite boolean array
rcvd[0...] in which it records which data messages it has received. The sender S
maintains a window of messages in transit, which has a maximum size of w. It is
bounded by na, the next message to be acknowledged, and ns, the next message to
send. An acknowledgment message consists of two numbers (n,m) to acknowledge
all data messages between n and m, inclusive. The receiver R maintains the number
of the next message to rceive and acknowledge in nr. The variable vr is used to
determine how many data messages can be acknowledged in one acknowledgment
message.

The code of a process consists of a set of actions with the syntax: begin action
[action [action end . An action has the following form: guard — command. If
the guard evaluates to true, the action is enabled, otherwise it is disabled. Enabled
actions are executed atomically and in a fair way. A guard of the form rcv evaluates
to true if there is a message to receive in the channel. The protocol is as follows:

process S;
const w : integer val; /*w > 0*/
var ackd : array[integer] of Boolean init false;
na,ns,t,j : integer init 0;
0: begin ns < na + w — send ns;
ns:=ns+1

1: | rev(s,) — do i < j— ackd[i] := true;
ti=1+1
| ackd[na]—na := na + 1
od
2: | timeout — send na
end

For the case of sophisticated timeout conditions, action 2 is replaced by action 2':
2’: | timeout(z) — send 1

process R;
var rcvd : array[integer] of Boolean init false;
nr,vr,v : integer init 0;
3: begin rcv v — if v < nr — send (v,v)
[v>nr - revd[y] := true
fi
4: | revdlor] —wvri=or+1
5 [nr<wvr - send (nr,vr—1); nr:=vr
end

The boolean expressions timeout and timeout(:) are defined as follows:

def

timeout (na # ns) A (Csp = Crs = {}) A =revd[nr]

3

timeout(z) = (na <iA7< nsA-ackdi]) A (SR =0) A
(¢ <nrV-revd[i]) A (#RS' = 0)
where

i def . ..
#SR' = npumberof messages with sequence number: in Csp

#*RS' ¥ Jumberof messages (n,m) withn < i < m in Cgg.

For the proof of correctness of the protocol, safety, progress, and fault-tolerance
are proved separately. The safety of the protocol follows from the invariant which
is the conjunct of assertions 6, 7, and 8.

6: na<nr<vr<ns<na+uw

7: (Vm: —ackd[m] : m > na) A (Vm : ackd[m] : m < nr) A mackd[na] A
(Vm : revd[m] : m < ns) A (Vm : =~revd]m] : m > or)

8: (Vm:: (¥SR™ + #RS™) < 1) A
(Vm:#SR™ >0:m < ns A —ackd[m] A (m < nr V ~revd[m])) A
(Vm: #RS™ > 0:m < nr A —ackd[m])

Assertion 9 establishes that it is safe to use sequence numbers and arrays modulo n
if n > 2w:

9: (Vm:#SRm>0:nr—w§m<nr+w)/\
(Vm:#¥RS™ > 0:na < m < na + w)

The authors suggest that the timeout conditions mentioned in the protocol be
implemented by means of timers. They claim that the proposed protocol tolerates
message loss and message disorder while maintaining the same data transmission
capability of the traditional window protocols.

3 A Simple Timeout Condition
3.1 The Original Version

In the original version, the simple timeout condition is defined as follows:
timeout % (na # ns) A (Csgp = Crs = {}) A ~revd[nr]

If this condition holds, the sender process S may resend the message with sequence
number na. However, while this condition ensures correct operation of the protocol,
as is shown in [1], only the test na # ns can be evaluated directly by S. Hence it
is necessary to supply S with a test which implies timeout if it evaluates to true.
The authors suggest

. a local timer for the sender and a mechanism for aging messages in
transit, i.e., ensuring that they are eventually discarded if not received.

A formal modeling of this statement in a notation which fits the rest of the protocol,
is the following.

The implementation. We add to the code of § a local timer tms which is a
variable of type real, with the meaning that the “timer goes off” in case tms < 0.
Thus we get

in action 2: timeout isreplaced by (na # ns) A (tms < 0)

To set the timer tms when it sends a message (either in action 0 or in action 2), S
needs a (real) constant tp, the timeout period. To implement the aging of messages
in transit, we add to each message a timer field #f as first field, which is set when the
message is sent. Thus both S and R need a constant mds and mdr (not necessarily
the same) to set the timer field in the messages they send. These values mds and
mdr can be thought of as the maximum delay of a message from S to R, and from
R to §, respectively. Thus we get

in action 0: send ns is replaced by send (mds,ns); tms 1= tp
in action 2: send na is replaced by send (mds,na); tms:=tp
in action 3: send (v,v) is replaced by send (mdr,v,v)

in action 5: send (nr,ur—1) is replaced by send (mdr,nr,vr —1)

To simulate the progress of time, we add an action Time which decreases all
timers, in process(es) and messages, with the same positive amount. This can be
interpreted as: during this amount of time no actions of the protocol were exe-
cuted. Note that we thus assume that all timers run at exactly the same rate. This
assumption is not necessary, but clarifies the exposition. The extension to timers
with p-bounded drift is straightforward, see for example Tel [3]. To discard messages
that are “too old”, we test the decreased timer field in messages and delete outdated
messages from the channels in the action Time. This now becomes as follows:

Time: begin choose § € IR*;
forall messages (tf,n) € Csr
do tf := tf - §;
if tf < 0— delete (tf,n) from Cgsp fi
od;
forall messages (tf,n,m) € Crs
do tf :=tf — §;
if ¢f < 0— delete (#f,n,m) from Cgs fi
od;
tms:=tms—§
end

Note that it is not the case that the new guard of action 2 (i.e., (na # ns)A(tms <
0)) implies timeout. First we have to derive what the relation is between the
constants we defined. It is clear that the condition Csg = {} is implied by tms < 0
if we choose the constants tp and mds such that tp > mds. However, the condition
Crs = {} is not implied by tms < 0 if we choose tp, mds, and mdr such that
tp > mds + mdr. This is the case because although messages sent in action 3 are
sent “immediately” upon receipt of a message from S (action 3 is defined as an
atomic action), messages sent in action 5 may be sent an arbitrary time after the
last receipt action. Thus we cannot derive any bound on the value of tp. To enable
S to use a timer anyway, we demand that if R sends a message in action 5, it does
so immediately upon receipt of a message from S. (Without a timer, R cannot
measure any other time than “0”.)

Second, there is a comparable problem with the conjunct —rcvd[nr] of timeout.
Its value is directly observable only for R. What we can do is to take care that this
conjunct always holds, by formulating action 4 as a loop, always adding action 5,
and doing this as soon as a new message is received in 3. The result is that the
protocol for R now consists of only one atomic action:

345: begin rcv v — if v < nr — send (mdr,v,v)
| v > nr — revd[v] := true;
do rcvd[vr] — vr ;= vr +1 od;
if nr < or
— send (mdr,nr,vr — 1); nr := or

fi

end

If we now choose tp such that tp > mds + mdr, one can show that
(na # ns)A(tms < 0) implies timeout.

The problem. The consequence of the implementation of the protocol as derived
above is that R is forced to send an acknowledgment for each new message that
arrives in order. Hence if almost all messages arrive in the right order (and they are
sent almost all in the right order if there is a low error rate), almost all messages
have to be acknowledged by a separate acknowledgment: If the “next” message (i.e.,
with n = nr) is received by R, rcvd[nr] is set to true, (mdr,nr,nr) is sent to S,
and nr increased. It is not possible to try to save on acknowledgments by sending
one only for every second message that arrives, for example, as we have to take care
that —rcvd[nr] continues to hold. Thus nr has to be increased, but this is only
done when an acknowledgment is sent. That it is indeed necessary for a correct
operation of the protocol to demand —rcvd[nr] follows from a slight adaptation in
the counterexample provided in Subsection 4.1.

However, since the protocol is now forced to send an acknowledgment upon

almost every message, its performance will be greatly reduced, as stated by the
authors themselves in discussing the protocol of Stenning [2]:

For instance, the selective-repeat protocol in [2] requires that every data
message be acknowledged by a distinct acknowledgment message. .
this is a severe restriction over the behavior of a regular window protocol,
and can greatly reduce the protocol’s performance.

We conclude that the suggested implementation with one timer for the sender only

is not sufficient to achieve the claimed performance of the block acknowledgment
protocol.

3.2 The Proposed Changes

It is quite obvious what we can do to alleviate the problem described above. The
receiver R must be enabled to accumulate a number of acknowledgments in one block
acknowledgment, and the sender § must wait longer for this accumulation before
deciding upon a timeout. Thus we demand that if R sends an acknowledgment, it
does so within a fixed time since receiving the last data message. Hence R needs a
timer to measure this. We will call this timer tmr, and the constant to which it is
set when R receives a message, mrt (maximum reply time). Hence we can make the
sending of an acknowledgment a separate atomic action again, with an additional
guard tmr > 0. The actions of R now are as follows:

34: begin rev v — tmr := mrt;
if v < nr — send (mdr,v,v)
J v > nr — revd[v] := true;
do revd[vr] = vr:=vr +1 od
fi

5. [(nr <wr) A (tmr > 0) — send (mdr,nr,vr — 1); nr = vr
end

Of course, in the action Time we have to decrease tmr with the same amount as
all other timers, hence we add the statement “tmr := tmr — §”.

It is now clear that if we choose tp > mds + mdr + mrt, the condition tms < 0
implies (Csg = Crs = {}) A =rcvd|[nr].

4 Sophisticated Timeout Conditions

The versions of the protocol with a simple timeout condition (both the original
version and our adaptation) have the drawback that if a number of consecutive
data messages are lost, the retransmissions of those data messages all have to be
separated by a full timeout period. Hence the authors developed a second version
of the protocol with sophisticated timeout conditions to alleviate this.

4.1 The Original Version

Recall that in the first version, only the data message with sequence number na
could be resent. In this version it will be possible to resend all unacknowledged data
messages, 1.e., with sequence numbers from na to ns. The timeout condition for a
message with sequence number ¢ is given ([1]) as:

timeout(;) %

(na <iNi < nsA-ackd[i]) A (¥SR' =0) A

(¢ <nrV-revd[d]) A (¥RS' =0)

where

#SR ¥ pumberof messages with sequence number 7 in Csp
#*RS* ¥ number of messages (n,m) withn < i < m in Cgs.

Again, only the tests whether the number ¢ lies in the right range and is not acknowl-
edged yet can be performed directly by S, while the other conjuncts of timeout()
must be deduced from timer values. We quote the authors about this sophisticated
timeout condition:

. its implementation requires that process S has one independent timer
for each outstanding message. However, the gain is in the speed of
recovery: successive resendings of different messages do not have to be
separated by any specific time period.

The implementation. Instead of one timer tms, process S now has an infinite
array of timers, one (tms[i]) for each data message. (In the version with bounded
sequence numbers, this reduces to w timers for S.) Thus we get the following changes
in action Time and in the protocol for S as given in [1]:

in Time: tms:=tms—§ isreplaced by forall i >0 do tms[i] := tms[i] — § od
in S: send ns is replaced by send (mds,ns); tms[ns] := tp

action 2 is replaced by action 2':
2": | (na < i < ns) A (tmsli] < 0) A ~ackd[i] — send (mds,q); tms[i] := tp

For process R we begin by taking the original protocol consisting of the three
actions 3, 4, and 5. We will now derive what timing constraints we have to impose
to ensure that if the guard of action 2’ is enabled for some ¢, this implies condition
timeout(i). (Unfortunately, this will not be possible.) First of all, tp > mds is
sufficient to achieve that if the guard holds for ¢, # SR* = 0. For acknowledgments
(¢,2) sent in action 3 immediately upon receipt of a data message with number
¢ < nr, we know that they have disappeared from CFS within mds +mdr time since
the data message was sent. Hence we demand tp > mds + mdr. However, in the
absence of any timers for R, we have no other choice than to require that R sends
any acknowledgments immediately upon receipt of a data message. Thus action 5
must be included in the same atomic action as action 3, and the protocol for R now
again consists of one atomic action 345, as given in Subsection 3.1.

8

The problem. Unfortunately, for values of ¢ with na < ¢ < ns, it is not the case
that —ackd[i] A (tms[i] < 0) implies timeout(:). The problem lies in the clause
“(i < nr)V-revd[i]”. This more or less requires S to “know” whether data message
¢ arrived or not. Consider the following two scenarios which are indistinguishable
for S.

S sends data messages 0, 1, 2, and 3, and receives acknowledgments (0,0) and
(1,1). S resends data message 2. At this point, the variables of S have the following
values: ns =4, na =2, j =1, 1 = 2, ackd[0] = ackd[l] = true, ackd[2] = ackd[3] =
false. Let S timeout for data message 3 now.

In the first scenario, process R has received data messages 0, 1, 3, and 2 (in this
order), and thus has sent acknowledgments (0,0), (1,1), and (2,3). The variables of
R have the following values: nr = vr = 4, v = 2, revd[0] = revd[l] = revd[2] =
rcvd[3] = true. Acknowledgment (2,3) is lost. When process S timesout for data
message 3, it is indeed the case that timeout(3) holds, as 3 < nr = 4.

In the second scenario, process R has received data messages 0, 1, and 3, data
message 2 is lost, and thus R has sent acknowledgments (0,0) and (1,1). The vari-
ables of R have the following values: nr = vr = 2, v = 3, rcvd[0] = revd[l] =
revd[3] = true, and rcvd[2] = false. When process S timesout for data message 3,
it is not the case that timeout(3) holds, as 3 ¢ 2 and rcvd[3] = true. Thus the
second clause of assertion 8 ([1]): Vm : #SR™ > 0 : m < ns A —ackd[m] A (m <
nr V =rcvd[m]) is violated for m = 3. Assertion 8 is part of the invariant which
implies the safety of the block acknowledgment protocol (see Section 2).

Is it possible to prevent that a situation like this, i.e., that tms[i] < 0 while
—timeout(z), occurs in the protocol? The problem lies in the timeout condition for
the data message with number 7 in case S has not received an acknowledgment yet
for messages numbered i — 1 and higher. The condition : < nrV =rcvd]i] requires S
to decide whether the acknowledgment (i —1,¢) was lost (timeout warranted) or data
message ¢ — 1 was lost while data message ¢ was received (timeout not warranted).

One trivial solution is to prevent that message ¢ is sent if message i — 1 is not
acknowledged yet. This amounts to setting w = 1, and reduces to the alternating
bit protocol. This is not the protocol meant by the authors. The second trivial
solution is to prevent that message i is resent if message i — 1 is not acknowledged
yet. This amounts to the protocol with simple timeout conditions, and is not the
protocol meant by the authors.

We cannot force R to send an acknowledgment for ¢ if ; — 1 is not received yet,
as this is not in accordance with the specification of the protocol. We began our
attempt to implement the protocol with sophisticated timeouts with timers in S
only, but would it help to use any additional timers? The only use we can make of
timers is to prohibit the execution of an otherwise enabled action subject to a certain
condition on the value of a timer. However, both situations (all acknowledgments of
¢ and 1 —1 lost; and ¢ received but all (re)transmissions of i — 1 lost, respectively) can
exist for an arbitrary time (i.e., finite but unbounded). Note that the assumption of
fairness only states that messages that are sent infinitely often, eventually will be

9

received, not that this will happen within some bounded time. We thus conclude
that an implementation of the block acknowledgment protocol with sophisticated
timeout conditions is not possible by means of timers. Hence we do not consider it
correct.

An Erroneous Execution. Above we have only shown that in the second sce-
nario, it is possible that the invariant of the protocol which implies its safety, is
violated. As such, this does not necessarily mean that the protocol operates incor-
rectly. In the versions of the protocol that we discussed so far, we used unbounded
sequence numbers, and hence each message is uniquely identified by its number. It is
only when we convert the protocol to a version which uses finite sequence numbers,
that we can pin—point an erroneous execution where one message is mistaken for
another. Hence we will proceed to show that this can actually happen if the second
scenario as sketched above occurs.

We define the remaining constants as follows. Let mds = mdr = 1 and tp = 3.
Let w = 2 and n = 4. It is shown in [1] that it is possible to use sequence numbers
and to do all computations mod n when n > 2w. In process R, the sequence number
v of a received data message is expected to lie between nr —w (inclusive) and nr +w
(exclusive). Thus we show an execution in Figure 1 where the illegal retransmission
of data message 3 is considered as a receipt of data message 7 by R (3 = 7 mod n).
This will be the case if nr — w = 4 and thus if nr = 6. As a consequence of the
illegal timeout, data message 3 is on its way to R, while in the mean time, when R
receives the also resent data message 2, acknowledgment (2,3) is sent to S. If it is
received, na is increased to 4 and S sends the next two data messages 4 and 5, with
as sequence numbers 0 and 1. These arrive fast at R, before the resent message 3.
As data message 3 had already been received by R before, R increments nr to 5 and
6 upon receipt of messages 0 (i.e., 4) and 1 (i.e., 5). When the resent data message 3
is received by R, nr has the value of 6, and as R expects that the sequence number
of a received message lies between nr — w and nr + w, that is, between 4 and 8 in
this case, R considers this to be the message with sequence number 7. Thus this
execution with bounded sequence numbers is erroneous. .

We conclude that it is indeed necessary to keep the assertion Vm :: (¥SR™ +
#RS™) < 1 always true.

4.2 The Proposed Changes

As we showed above that it is not observable for S whether 7 < nr V —rcvd|i] holds
in R, we will have to ensure that a situation as sketched above cannot occur any
more. Thus we will now ensure that R does not send an acknowledgment for a data
message that might be retransmitted by S because its timer goes off. Hence we
again introduce a “maximum reply time”, now for each data message separately,
and only allow R to send one block acknowledgment for several data messages at

10

“time” S channels R
action na receipt nr
0 0: send 0 0 rcv 0 1
0: send 1 0 rcvl
1: rev (0,0) 1
Time with 6 = 1
1 0: send 2 1 lost
1: rev (1,1) 2

Time with § = 1

2 |0:send 3 2 | | rev 3 2
Time with § = 2
4 |2:send?2 2 | | rev 2 4
Time with § =1
5 2': send 3 2
1: rev (2,3) 4
0: send 0 (=4) 4 rcv0(=4) 5
0:send 1 (=5) 4 rcvl(=5) 6
rev3 (#7) 6 <

Time with 6 =1
6 | 1: rcv (0,0) 5 | |

Executions of actions are ordered from top to bottom, and within one
line from left to right.

Figure 1: An Erroneous Execution.

once if the maximum reply time is not exceeded for any of them. Hence we supply
R with a timer for each possible data message.

As for the possibility to use only one timer in R instead of one for each data
message, this leads to an unexceptable performance. (We do not consider the possi-
bility to simulate n timers by one timer, which is of course possible.) If R has only
one timer, it can only measure the time since it received a specific message. For this
specific message, one has the choice between two possibilities.

First, one could choose the last message, as in the protocol with simple timeouts.
To achieve a correct protocol one then has to restrict either R to always sending
an acknowledgment for one data message at a time, or to restrict S to timeouts for
data message na only (i.e., the protocol with simple timeouts). Hence we do not get
a protocol with a performance as claimed by the authors.

Second, one could choose the timer to refer to the receipt of a data message of a
certain number, such as e.g. nr or nr + 1. The latter number is the one that would
have prevented the erroneous execution of Figure 1. However, while a timer for the

11

receipt of data message nr+1 makes it possible to send one acknowledgment (m,m +
1) if m and m +1 arrive out of order, it then forces R to send two acknowledgments
(m,m) and (m + 1,m + 1) if they arrive in order. Hence it would probably be the
best choice to set the timer for the receipt of data message nr, to enable R to send
one acknowledgment for two consecutive data messages at once, (assuming that the
probability that messages arrive in order is higher than the probability that they
arrive out of order). But this still does not give R the desired flexibility in sending
acknowledgments.

Hence we assume that process R has an infinite array of timers ¢tmr. (This
reduces to 2w timers in the version with bounded sequence numbers.) The timer
tmrlz] is used to measure whether the maximum reply time mrt has elapsed or not
since R received (the last occurrence of) data message ¢, in order to decide whether
R can send an acknowledgment for 7 or not. Thus tmr[i] has to be set upon receipt
of data message ¢ and action 3’ of R becomes as follows:

3: rev v — tmrv] := mrt;
if v < nr — send (mdr,v,v)
| v > nr — revd[v] := true

fi

We have to choose the timeout period tp in S accordingly, such that tp > mds +
mdr + mrt. As we now have to check all timer values ¢tmr[i] of those values 7 that
are candidates to be included in a block acknowledgment sent in action 5, we include
action 4 in the new action 45', subject to the values in the relevant timers. (As a
consequence nr always equals vr outside an action.) Thus we have to change the
guard of the action to the condition that ensures that vr will indeed be increased
inside the new action 45'. This condition is rcvd[nr] A tmr[nr] > 0. Hence action
45’ of R becomes as follows:

45': revdnr] A tmrnr] > 0 — do revd[vr] A tmr[vr] > 0 — vr = vr + 1 od;
send (mdr,nr,vr — 1); nr := vr

Of course, in the action Time we have to decrease tmr[i] with the same amount as
all other timers, hence we add the statement “forall : > 0 do tmr[i] := tmr[i] — §
od”.

For ease of reference, we now give the complete code of the protocol as derived
above.

process S;
const w : integer val; /*w > 0%/
tp, mds : real val; /*tp > mds + mdr + mrt, mds > 0%/
var ackd : array[integer] of Boolean init false;
na,ns,t,j : integer init 0;
tms : array[integer] of Timer /*real*/ init 0;
0: begin ns < na + w — send (mds, ns); tms[ns] := tp;

12

ns:=ns+1

1: [rev(s,y) — do i < j — ackd[i] := true;
ti=1t41
| ackd[na] — na :=na +1
od
2": [(na <t < ns) A (tms[i] < 0) A ~ackd[i] — send (mds,?); tms[i] == tp
end
process R;

const mrt, mdr : real val /*> 0%/

var rcvd : array[integer] of Boolean init false;
nr,vr,v : integer init 0;
tmr : array[integer] of Timer /*real*/ init 0;

3': begin rcv v — tmrv] := mrt;
if v < nr — send (mdr,v,v)
| v > nr — revd[v] := true
fi

45': | revd[nr] A tmrlnr] > 0 — do revd[vr] A tmrfor] > 0 — vr := vr + 1 od;
send (mdr,nr,vr — 1); nr := vr
end

Time;
var ¢ : real;
begin choose § € Rt;
forall messages (if,n) € Csp
do tf ;= tf - §;
if tf < 0 — delete (¢f,n) from Csp fi
od;
forall messages (tf,n,m) € Crs
do tf :=tf — §;
if ¢f < 0 — delete (¢f,n,m) from Cgg fi
od;
forall : > 0 do tms[i] := tms[i] — § od;
forall 7 > 0 do tmr[i] := tmr[i] — § od
end

Loss;
var Csgr, Crs : multiset of messages init {};
begin choose a message € Csg U Cgg; delete it
end

13

5 Correctness Proof

Although we now have formulated a correct protocol as we will show below, it
i1s not a strict implementation of the protocol with sophisticated timeouts from
[1] as our timeout condition for action 21 (na < i < ns) A (tms[i] < 0) does
not imply timeout(:). It is however based on the same principle, namely to keep
the assertion Vm :: (¥SR™ + #RS™) < 1 always true. If we consider again the
erroneous execution in Subsection 4.1, S still “illegally” timesout for data message 3
(as (3 £ nr) A rcvd[3]), but the acknowledgment (2,3) would not have been sent (in
the execution of Figure 1, as tp = 3, mrt must be choosen < 1 and thus tmr[3] < —1
at the moment R receives data message 2 and considers sending acknowledgment
(2,3)), and hence #¥SR™ + # RS™ remains < 1 for m = 3.

5.1 Safety

In view of the fact that the changed protocol is not a strict implementation of the
original version, it perhaps not surprising that we need a slightly different invariant
to prove the safety of the changed protocol. In [1], this invariant is the conjunct of
three assertions 6, 7, and 8. Of these three, we can slightly strengthen assertion 6
to 6/, while assertion 7 remains the same:

6:na<nr=vr<ns<natw
7. (Vm: —ackd[m] : m > na) A (Vm : ackd[m]: m < nr) A =ackd[na] A
(Vm : revd[m] : m < ns) A (VYm : -revd[m] : m > vr)

We have to weaken assertion 8 to 8, because in assertion 8 the clause m < nr Vv
—rcvd[m] which ensures that R will not send an acknowledgment for data message
m, does not hold any more. It is replaced by tmr[m] < 0 in assertion &, which has
the same effect.

8: (Vm:u (*SR™ +#RS™) <1)A
(Vm :#SR™ > 0: m < ns A ~ackd[m] A tmr[m] < 0) A
(Vm :#RS™ > 0:m < nr A -ackd[m))

For a safe transition to bounded sequence numbers and finite arrays, we need as-
sertion 9, which is invariant in conjunction with the other assertions. This assertion
again holds for both the original and the changed protocol.

9: (Vm:#SR™ >0:nr—w<m<nr+w)A
(Vm : #¥RS™ > 0:na < m < na + w)

For the proof of the safety of the changed protocol we need an additional assertion
(10) that relates the values of the timers in the protocol to the other variables. Let
tf™ denote the value of the timer field of the message in transit concerning m if it
exists. We know with assertion 8 that there is at most one message concerning m.

14

10: (Vm:tms[m] <0: (¥SR™ = 0) A (tmr[m] < 0) A (¥RS™ = 0)) A
(Vm : #SR™ > 0 : tms[m] > mrt + mdr + tf™) A
(Ym : tmr[m] > 0: (¥SR™ = 0) A (tms[m] > mdr + tmr[m])) A
(Vm : #¥RS™ > 0 : tms[m] > tf™)

For the proof of the safety of the changed protocol, one can easily check that the
conjunction of assertions 6'-10 is invariant under all possible actions of the system,
that is, actions 0, 1, 2’ of S, actions 3’ and 45’ of R, action Time, and action Loss.
The latter deletes a message from a channel. As channels are modeled as multisets of
messages, we do not need to model the reordering of messages by a separate action.
Hence the proof of fault tolerance is included in the proof of safety.

5.2 Progress

To prove progress, it is sufficient to show that na is incremented infinitely often.
This is the case because nr and ns remain within a distance w of na by assertion
6'. First consider the case that there are no losses of messages. We then have the
following sequence of enabled actions whose execution enables other actions:

enabled action 0(na) V 2'(na) V Time; 2'(na)
execution results in #SRre= 1
enabled action 3 (na)
execution case 1: na = nr | case 2: na < nr
results in tmrnr] > 0 #RSma=1
enabled action 45'(na) :
execution results in #RSM=1
enabled action 1(na)
execution results in na:=na+1

Note that the sending of data message na is enabled infinitely often. By actions
Loss and Time the actions 3’ and 1 can be disabled, but with the assumption of
fairness they will be eventually executed, and na increased. Thus na is increased
infinitely often. As we know by assertions 6’ and 7 that all messages < na are
received by R, infinitely many (new) messages are received.

References
[1] BROWN, G. M., M. G. GOUDA, AND R. E. MILLER. Block acknowledgment:

redesigning the window protocol. IEEE Trans. on Commun., vol. 39-4, 524-532,
1991.

[2] STENNING, N. V. A data transfer protocol. Computer Networks, vol. 1, 99-110,
1976.

15

(8] TEL, G. Topics in Distributed Algorithms, vol. 1 of Cambridge International

Series on Parallel Computation. Cambridge University Press, Cambridge, UK.,
1991.

16

