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Abstract

In this paper we present a linear algorithm to draw triconnected planar
graphs of degree 3 planar on a linear-sized hexagonal grid such that in at most
one edge are bends. This algorithm can be used to draw this class of graphs
planar with straight lines on a n/2 x n/2 grid, improving the best known grid
bounds by a factor 4. We also show how to draw planar graphs of degree
at most 3 planar with straight lines such that the minimum angle is > 7 /6,
thereby answering a question of Formann et al.

1 Introduction

Embedding a graph in the rectilinear grid has several applications, like VLSI cir-
cuit design, architectural floor plan layout and aesthetic layout of diagrams used in
information system design. This problem has been extensively studied for planar
graphs of degree at most four such that the vertices are grid points and the edges are
alternating sequences of horizontal and vertical segments (which is called orthogo-
nal grid drawings). Storer [10] presented three heuristic algorithms to minimize the
number of bends, and requiring an O(n?) grid. (n denote the number of vertices.)
Tamassia & Tollis [13] gave linear implementations of these. These algorithms ob-
tain solutions, whose number of bends is only a constant from the lower bounds.
Some tighter existential lower bounds on the minimum number of bends required by
layouts are presented by Tamassia, Tollis & Vitter [14]. Tamassia showed that the
problem of minimizing bends is polynomially solvable, by presenting an O(n?logn)
algorithm to draw a planar graph of degree < 4 orthogonal on an O(n?) grid with a
minimum number of bends [11]. The resulted drawings are of reasonable aesthetic

quality, due to the large size of the angles (here rectangles) and a small number of
bends.

*This work was supported by the ESPRIT Basic Research Actions of the EC under contract
No. 3075 (project ALCOM).




(a) input graph (b) orthogonal drawing (c) straight-line convex drawing

Figure 1: An orthogonal and a straight-line drawing of a planar graph.

However, even for graphs with maximum degree 3 this can imply 7 bends on a
rectilinear grid ([10], see also figure 1(b)). On the other side, if we want to draw
the graph with straight lines, then the minimum angle can be very small (see figure
1(b)). In this paper we try to find a trade-off between the number of bends and
the size of the angles. Hereto we inspect the triangled (or so-called hexagonal grid
in VLSI-design), as shown in figure 2. All angles of an hexagonal grid have size
7/3 and we want to draw connected planar graphs of degree at most 3 (here also
called 3-planar graphs) on this grid, such that the number of bends is minimized.
We first inspect triconnected planar graphs of degree 3. Triconnectivity means that
deleting any pair of vertices u, v does not destroy the planarity. Using the interesting
characteristics of this class of planar graphs, in which every vertex has degree exactly
three, we obtain a linear time algorithm to draw a triconnected 3-planar graph on a
linear-sized hexagonal grid, such that there is at most one bent edge. This algorithm
can easily be modified such that we can draw any triconnected 3-planar graph with
straight lines on a rectilinear grid of size at most n/2 x n/2. The best known grid
bound for these graphs was n — 2 X n — 2 (see Schnyder [9]), hence we improve the
total size by a factor 4. A small area is important for the finite resolution of display
and printing devices (and of the human eye), in which the dimensions cannot be
arbitrarily scaled down. Other polynomial algorithms to draw a planar graph on a
grid of size O(n?) are described in [2, 3, 4, 6, 10, 11].

We can generalize the algorithm such that all connected 3-planar graphs can be
drawn on a hexagonal grid with at most one bent edge. Finally we show how we
can use this algorithm to draw a connected 3-planar graph with straight lines in the
plane, such that the minimum angle is at least 7 /6 for at most 4 angles, and at least
w/3 for all remaining angles (n > 4). This solves an open problem of Formann et
al. [5].

The paper is organized as follows: In section 2 we show how we can draw a



Figure 6: Drawing the 3-planar graph with wide angles.

Theorem 4.2 There is a straight-line drawing of a connected 3-planar graph in
which every angle has size > n /6. If n = 4 then 6 angles have size < 7/3; if n > 4
then at most 4 angles have size < 7 /3.

By using the grid as shown in figure 5 we can achieve a straight-line drawing of
a connected 3-planar graph with smallest angle > 7 /6, for n > 6. We apply the
drawing algorithm as described above. Let again k; > k1 and assume k;/k; = C.
After moving v,—; and v, to (ky,—k1) and (2k; + k3, k2), respectively, it follows
that all angles, except 71 = ZvaUn-1vg and y3 = ZVUp_1VnUn_2, have size at least
7 /4. For v, holds that tan(yy) = k2/(k1 + k2) = C/(C + 1). For 7, holds that
tan(yz) = (k1 + k2)/(2k1 + k2) = (C +1)/(C + 2). For C large enough we achieve
that 7, and 4, come arbitrary close to w/4. However, this enlarges the size of the
grid. We are not able to prove a lower bound of > /4 for n > 6 in general and
remains as an open problem.

5 Optimizations

In the original algorithm, described in section 2, we always go from the startpoint
in Y-direction and from the endpoint in Z-direction to the same height, even when
there is no reason to go upwards. For example, assume y(¢;) > y(c;) and (ci, €ig1)
is in Z-direction downwards, then we can place the new vertices wy,...,w, of face
F}. on a horizonal line on height y(¢;) instead of y(c;) + 1. To obtain this we change
the two lines with (*) both as follows in HEXA-DRAW:

if (y(c)) > y(c;) and y() > y(ein)) or (y(es) > y(c:) and y(c;) > y(c;-1)) then
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(a) (b)

Figure 5: Drawing the triconnected 3-planar graph on gridcoordinates.

an angle of degree 37 /4 with the X-axis. See figure 5(a). We now again do the
algorithm HEXA-DRAW. The coordinates again follow the X- and Y-direction. We
finally move vertex v, to the point (—k; — 1,k; — 1), as shown in figure 5(b). Now
v, has straight lines to v,,v, and v;. The gridsize in X- and Y-direction is still the
same, thereby proving the following theorem.

Theorem 2.7 There is a simple linear time algorithm to draw a triconnected 3-
planar graph planar with straight lines on an § x 5 grid.

3 Drawing Graphs with degree at most 3

In this section we show how we can extend the results of section 2 to planar graphs G
of degree at most 3. In this case the dual graph H is not necessarily triangulated and
may contain several multiple edges. We assume that G is biconnected. If not, then
we start with drawing a biconnected component and draw this component inside or
outside another biconnected component later.

Assume first that all vertices in G have degree three. Inspect the dual graph
H. H is triangulated, but has possibly several multiple edges. If deleting two
vertices vy, v, disconnects G into one component V' and one or more components
G'—V', then we call V' a 2-subgraph with cutting pair vy, v;. Notice that since every
vertex has degree 3 in G, every pair of multiple edges in H uniquely corresponds
with a 2-subgraph V'’ of G. Using this observation we can construct in linear time
the 2-subgraph-tree T (introduced in [8]): every node v’ in T corresponds with a
2-subgraph V' in G. v’ is an ancestor of w’ in T, if W’ C V'. The leaves of T

9



(a) The structure of Fy. (b) Adding a face with one ver-

tex to the current drawing.

V.
X

(c) Adding a face with two ver- :
tices to the current drawing. (d) The completed drawing.

Figure 3: Outline of the outerface.

Let v, be the unique vertex € F;y N F; N F;. Let v, and v, be the neighbors
of v, in Fy. We start with drawing v, on (0,0). From v, we place v, k; steps in
Y-direction and v, k; steps in Z-direction. All other vertices of Fy are placed on
the horizontal line (of length k;) between v, and vy (see figure 3(a)), such that these
horizontal edges e of Fy have length th(e). The horizontal line between vy and v,
forms the basis for adding the faces Fy_y, Fy_s, ..., F3s. When adding a face Fi by
adding vertices and edges of E(Fy) to the current drawing of Fiy,..., Fy, we call
the added vertices and edges new. Let Cj4; be the outerface of the current drawing
of Fi41,...,Fy, consisting of the vertices v, v, = c1,¢2,¢3,...,0 = vy. Let ¢; and
¢; (j > i) be two vertices of Ciyy, incident to the new edges of Fi, then we call ¢
the startpoint, c; the endpoint and the vertices viy1,...,v-1 internal. We also call
the edges (¢, Cit1),. .-, (¢j-1,¢;) internal.

Adding a face goes as follows: if we add one vertex then we walk from c; upwards
in Y-direction and from ¢; upwards in Z-direction. The crossing point is the place
for the new vertex (see figure 3(b)). If we add the vertices wy,...,wp (p > 2),
then we go from c; one unit in Y-direction and from ¢; in Z-direction to the same



H. Every vertex v in G has degree 3, thus every face in H has three edges. Since
G is triconnected, H is triconnected as well, thus H is a triangulated planar graph
with f vertices. In [6] there is a canonical numbering defined for triangulated planar
graphs, which can be described as follows:

Assume H is a triangulated planar graph embedded in the plane with
exterior face u,v,w. Then there exists a numbering of the vertices v; =

u,mz = v,v3,...,vy = w meeting the following requirements for every
k,4a<k<f:

e The subgraph Hy.; C H induced by v,, v, vg—; is biconnected, and
the boundary of its exterior face is a cycle Ci-; containing the edge

(u7 v);
e v is in the exterior face of H;_; and its neighbors in Hy_; form an
(at least 2-element) subinterval of the path Ck_; — (u,v).

Let the f vertices of H be numbered as in the canonical numbering, then every
vertex v; in H, 1 # 1,2, f, has at least two neighbors v;, vg, with j < ¢ and k < 2
and has at least one neighbor v;, with [ > ¢. Such a numbering can be obtained in
linear time [6].

Let face F; of G correspond with the canonical numbered vertex v; of H. The
idea is to start with drawing Fy, Fy_y, ..., and finally F5, Fp, Fy. F; will be the face
of G obtained by adding the edge with bends and F; will be the outerface. But
the faces Fy_y, Fj_a, ..., influence the structure of the drawing of Fy and hereto we
start with some definitions:

Definition 2.1 E(Fy) is the set of edges e of Fy, belonging to a face Fj,j < k.

Definition 2.2 The basis-edge of Fi, be(Fy), is the edge e € Fi that among all
edges in Fy, belongs to the highest numbered face F; that is adjacent to Fy.

Let be(Fy) be the unique edge e € F; N Fy. By the canonical numbering of H it
follows that |E(Fy)| > 2 for all faces Fi,k > 3. This means that when we add any
face Fj to the current drawing of the faces Fyi4,..., Fy on the hexagonal grid, we
add at least one vertex v. The basis-edge plays an important role in the drawing
algorithm. We first assign a length to each basis-edge, which is calculated as follows:

Set lth(e) = 1 for all edges e € G;
for k :=3 to f — 1 do lth(be(Fy)) := Leer(r,) lth(e) — 1;
Ith(be(Fy)) := Teer(ry) Ithle);

For each edge e, we will show that the length of e in the resulting drawing, denoted
by length(e), is at least lth(e). Let ky = lth(be(Fy)). We construct the drawing as
follows:



Z-direction Y -direction

X-direction

Figure 2: Drawing of a K, on a hexagonal grid.

triconnected 3-planar graph on a hexagonal grid. In section 3 we extend these
results to general 3-planar graphs. In section 4 we show how we can draw 3-planar
graphs in the plane with minimum angle > 7 /6. In section 5 we give some techniques
for decreasing the grid size in most cases. Section 6 contains some final remarks and
some open problems.

2 Triconnected 3-Planar Graphs

Let G be a planar graph, i.e., G can be drawn in the plane such that there is no pair
of crossing edges. If G is triconnected (biconnected) then deleting any two (one)
vertices with incident edges preserves the connectivity. If G is triconnected then
the embedding is unique, which means that in every drawing of G, the order of the
neighbors around each vertex is equal. We assume that every vertex v in G has
degree 3. In a hexagonal grid, there are three directions of the lines (see figure 2):
0 degree lines (here called X-direction), 7/3 degree lines (here called Y-direction)
and the 27/3 degree lines (here called Z-direction). We show in this section that
in linear time we can draw any triconnected 3-planar graph on a 3 x § hexagonal
grid, such that in at most one edge are bends. This last bent edge cannot always
be avoided. For instance, consider the graph K, in figure 2.

Let G be a triconnected 3-planar graph with n vertices. Then n must be even,
the number of edges m = %n and the number of faces f = § + 2, since by Euler’s
formulae, m —n — f + 2 = 0. Let H be the dual graph of G, i.e., every face F},
in G is represented by a vertex vp, in H and there is an edge (vr,,vr,) in H if Fy
and F; share a common edge in G. Every vertex v in G corresponds with a face in



height (assume y(c;) > y(c;)) and add the new vertices on the horizontal line in
between (see figure 3(c)). Adding face F; is obtained by going from v, one step in
X-direction, k; steps in Y-direction, k; steps in Z-direction and one step in negative
X-direction to the last added vertex, say v; (see figure 3(d)). Adding the other faces
can formally be described as follows:

HEXA-DRAW
z(vz) := y(vg) := 05
let w,,...,w, be the other vertices of Fy, with w; = v, and wp = vy;
y(wr) = y(ws) := ... := y(wp) := ky;
z(wy) 1= —ky;

for | := 2 to p do z(wy) := z(wi—1) + Ith((wi, wi-1));
for k:= f — 1 downto 3 do

let wy, ..., wp, be the new vertices from startpoint c; to endpoint c¢; of Fi;
z(wy) := z(ci);
if p=1 then
*) y(w1) = y(c;) + z(c;) — =(ci)
else
*) y(wr) == y(w) := ... 1= y(wp) := max{y(c), y(c;)} + 1;

for | :=2to p— 1 do z(w) := z(wi-1) + Ith((wi, wi—1));

z(wp) 1= z(c;) + y(c;) — y(wr)
rof;

It is easy to see that the algorithm can be implemented to run in linear time and
space. To prove the correctness of the algorithm, we need the following lemma’s:

Lemma 2.1 At least one of the internal edges of a face Fy is horizontal.

Proof: Suppose not. Let ¢; and ¢; be the start- and endpoint, resp., of Fg.
¢; and c¢j had degree 2 before adding Fy and thus (¢, ¢i41) must have Z-direction
downwards and (¢;-1, ¢;) must have Y-direction upwards, if they are not horizontal.
But there cannot be a vertex c,, ¢ < a < j such that (ca—1,¢s) has Z-direction and
(Cay Cat1) has Y-direction, because then by HEXA-DRAW, ¢, would have degree 4.
Thus there must be at least one horizontal internal edge when adding Fj. 0O

Lemma 2.2 The internal edges of a new face Fy are: first > 0 edges in Z-direction
downwards, then one horizontal edge and then > 0 edges in Y -direction upwards, in
this order from left to right.

Proof: If for an internal vertex c, holds that (cs—1,¢s) is of Y-direction and
(Cas Cat1) is of Z-direction then by definition ¢, has degree 2 in G and hence cannot

be internal. Similar when one or two of these edges are horizontal. Hence there is
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correspond with the triconnected components of G and the root r of T' corresponds
with G.

Notice that adding an edge between the cutting pair of a triconnected component
V' of G makes V' triconnected and 3-planar, hence we can apply HEXA-DRAW to
all triconnected components V' of G, where the added edge between the cutting
pair is the edge with bends in HEXA-DRAW. The idea is now as follows. We start
with calculating the places of the triconnected components V' with respect to the
startvertex v, of V', by the algorithm HEXA-DRAW. We know from lemma 2.5 that
we can do it such that its size in X- and Y -direction is at most ]V2—'| —1 (because we do
not count the increase of the size by the virtual bent edge (vy,v1)). We now replace
V' by the edge (vs,v1) between the cutting pair of V', with labels Ithx((vs,v1)) and
Ithy((vz,v1)), denoting the length in X- and Y'-direction, respectively, of V.

Assume all triconnected components V' of a 2-subgraph W' are replaced by a
vertex between their cutting pair. We first eliminate vertices v € W’ of degree
two while connecting their neighbours v/, v”, with lthx((v',v")) = lthx((v,v’)) +
Ithx((v,v")) and similar for lthy. Similar we replace multiple edges by one edge e
with lthx(e) and lthy(e) the sum of lthx and [thy of the multiple edges. Notice that
after this W’ is a triconnected component and 3-planar as well, hence after adding
a virtual edge between the cutting pair (v,,v;) of W', we can apply HEXA-DRAW.

However, for every edge e we also add lthx(e) and Ithy(e) to Ith(e’), with €’ the
basis-edge of Fy, if e is a new vertex of Fi. Also in the algorithm we must have that
Ith(e) > lthx(e) + lthy(e), which can be obtained as follows:

Set lth(e) = max{l,lthx(e) + lthy(e)}, for all edges e € W';
fork:=3to f—1do

Ith(be(Fy)) := max{YT.cp(r,) Ith(e) — 1,lthx (be(Fi)) + lthy (be(Fi))};
Ith(be( Fy)) := max{ZeeE(pf) Ith(e), lthx(be(Fy)) + lthy (be(Fy))};

We now modify HEXA-DRAW as follows such that for all edges (a,b) holds that
z(vp) > z(vg) + lthx((va,vs)) and y(vs) > y(va) + lthy((ve,vs)). Suppose we add
the new vertices wy,...,wp (p > 2) of face Fj from c¢; to c;, then we place wy
on (z(c) + Ithx((ci,w1)),y(ci)+max{1,lthy((ci,w1))}). Given the coordinates of
w;, we can place wiy on (z(w;)+max{1, lthx((wi, wi+1))}, y(w;i) + lthy ((wi, witr))).
Assume y(c¢;) > y(c;). Since we added lthx((wi,wit1)) and lthy ((wi,wiy1)) to
lth(e'), with ¢’ = be(F}), we obtain that there is enough space to place wy, ws, ..., w,
between c; and c;. Similar to lemma 2.4 we can prove that for all edges e € W',
lengthx(e) > lthx(e) and lengthy(e) > lthy(e), where lengthx(e) and lengthy(e)
denote the length of € in X- and Y-direction of the drawing, respectively.

After computing the coordinates of all 2-subgraphs V' C G, for which ¢/ is a
child of w' in T, we replace them by an edge between its cutting pair in W'. After
eliminating multiple edges and vertices of degree two, we compute the coordinates
of the vertices in W’. We repeat this until we are at the root r of T. Computing
the final coordinates of all vertices in the 2-subgraph V' is now straightforward:
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exactly one horizontal edge e and all left internal edges of e are of Z-direction and
all edges right from e are of Y-direction. o

Lemma 2.3 ¢ is drawn horizontal <> e is a basis-edge.

Proof: = Let (c4,Cat1) be the horizontal internal edge when adding Fj to
Gi41. By lemma 2.1, such an edge exists. All internal edges of Fy left (right) from
co have Z-direction (Y -direction) upwards by lemma 2.2. But these edges are added
after co, because cq is the rightmost vertex of the face when adding (ca—1,ca) by the
algorithm HEXA-DRAW. Similar for co41. But then (ca,Cas1) belongs to the highest
numbered adjacent face of F, hence (cq, Ca+1) is the basisedge.

<= Suppose e is a horizontal edge, belonging to F; and Fj,j > ¢. Suppose
be(F;) = ¢/, with ¢’ # e. We know already that €’ is horizontal, but then there are
two horizontal internal edges when adding F;. But this contradicts with lemma 2.2.0

Lemma 2.4 For each edge e, length(e) > lth(e).

Proof: By reverse induction on the faces Fx. The basis-edge of Fy is drawn
with length k;. The distance between v, and v, is equal to k;, which is equal to the
sum of Ith(e) for all edges e between v, and vy, hence the lemma is correct for Fy.

Suppose the lemma is correct for 1 = k + 1,...,f. We show that we add
Fi. by HEXA-DRAW such that length(e) > Ith(e) for all edges in Gi. Let €' =
(CayCat+1) = be(Fy). From c, we have > 0 edges in Z-direction upwards to ¢;
(startpoint) and from c,+1 we have > 0 edges in Y-direction upwards to c; (end-
point). Assume w.l.o.g. that y(c;) > y(c;) and that we add at least two vertices
wy,...,w,. From ¢; we go one step in Y-direction to place w;. From ¢; we go in
Z-direction to the same height to place w,. (¢;,w1) and (wp, ¢;) are not basis-edges,
thus lth(e) = 1 and thus length(e) > lth(e) for (ci,w;) and (wp,c;). Moreover,
(wp)—z(wr) = z(c;)+y(c;)—y(w)—z(wy) = z(c;)—z(ei)—(y(ci)+1-y(c;)). Notice
that from c, to c; we go in Z-direction upwards, thus z(c¢;)+y(c;) = z(ca)+y(ca), and
from co41 to c; we go in Y-direction upwards, thus z(¢;) +y(c;) = z(ca+1) +¥(Cas1)-
Note also that y(ce41) = y(ca), as (Ca,Ca+1) = be(Fi), hence horizontal. Thus
z(wp)—z(w1) = z(¢;)~x(c:) — (y(c:) +1-y(c;)) = z(catr) —z(ca) =1 2 Ith(e') —1 by
induction. 1th((ci, w1)) = lth((wp, ¢;)) = 1, thus ¥y <icp Ith((wi, wisa)) = Ith(€') -1,
hence also in G} all edges e have length at least Ith(e). a

Since Ith(e) > 1, this lemma proves the correctness of the algorithm HEXA-DRAW.
Lemma 2.5 The size of the hexagonal grid is 5 X 3.

Proof: There are $n edges and 2 + 2 faces. F; and F} do not have basis-edges,
hence there are % basis-edges. Each edge, except two incident edges of v, are added

7
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Figure 4: A graph with canonical numbered faces and the corresponding drawing
by HEXA-DRAW.

to lth of a basis-edge. The initial length of the % basis-edges is ignored when calcu-
lating Ith(e). In the calculation, 3 — 1 times the value 1 is subtracted from lth(e).
Thus ky = lth(be(Fy)) = 3n —2 - % — (3 —1) = % — 1. Adding the edge from v,
to v, increases the size of both the Y- and Z-direction by one. From v, we can now

visit all other points by walking at most £ in Y- and Z-direction, thereby proving
the lemma. o

In figure 4 an example is given of a drawing of a triconnected 3-planar graph.

We can use the algorithm HEXA-DRAW as follows to draw triconnected planar
graphs of degree at most 6 on a hexagonal grid: replace every vertex v by a cycle
C(v) of length deg(v) where every vertex of C(v) has an edge to a neighbor of v.
Applying HEXA-DRAW to the augmented graph and finally replacing every cycle
C(v) by vertex v, one can easily prove the following result:

Theorem 2.6 There is a linear algorithm to draw a triconnected planar graph of
degree < 6 on an O(n?) hezagonal grid such that there are at most O(n) bends.

In [13] a linear algorithm is presented to draw a 4-planar graph on an O(n?)
rectilinear grid with at most O(n) bends, hence theorem 2.6 extends this result in a
positive way to 6-planar graphs.

We can use a modification of HEXA-DRAW, such that we obtain straight line
drawings of a triconnected 3-planar graph G with vertices on an % x 2 rectilinear
grid. For this take the Y-axis perpendicular to the X-axis, and let the Z-axis make

8



assume V' C W’ and we already know the final coordinates of vertices € W' — V',
then we replace the virtual edge (v,,v:) in W’ by the corresponding 2-subgraph
V', and adding z(v,) and y(v,) to the coordinates of each vertex in V” implies
the final coordinates. It follows that we can place v, and v, such that z(v;) =
z(vg) + lthx((vz,v1)) and y(v1) = y(vs) + lthy((ve,v1)). It is not hard to find the
precise construction, but a little tedious. We omit the details here. Hence we can
place V' inside W' with edges of correct length and without crossing edges.

Notice finally that vertices of degree two are no problem in G, because we can
eliminate them while connecting their neighbors and updating lthx(e) and lthy(e).
This completes the following theorem:

Theorem 3.1 There is a linear algorithm to draw a connected 3-planar graph on a
hexagonal grid with at most one bent edge.

One may observe that for connected 3-planar graphs, the size of the hexagonal
grid is not necessarily polynomially bounded. Hereto we define a class of 3-planar
graphs as follows: G, consists of four vertices p;, ¢, 1 and t;; an edge (p1,q:) and
edges from s; and t; to both p; and ¢;. Gpny1 is obtained from G, by adding four
vertices Pni1, Gns1, Sn+1 and t,41; the edges (Pnt1, Sn), (gn41,tn) and edges from s,,44
and t,4; to both p,41 and ¢,41 (see the drawing of figure 8(a)).

Theorem 3.2 Any drawing of G, with at most one bent edge on a heragonal grid
requires an n2") hexagonal grid.

Proof: Let X(G,) and Y(G,) be the required distance in X- and Y-direction
of any hexagonal drawing of G,. By geometric considerations we can prove that
X(Gny1) 2 2X(Gp) + 2 and Y(Grt1) 2 Y(G,) + 2. Since X(G1) =Y (G1) =1, we
have X(G,) > Q(2") and Y(G,) =2n — 1. 0

4 Drawings with straight lines

In this section we answer the following question, posted by Michael Formann et al.

[5]:

Does every degree 3 planar graph have a planar embedding with smallest
angle at least a constant, independent of the number of vertices?

The algorithm HEXA-DRAW does not give a direct answer to this problem, since there
is one edge in which bends may occur. But we will show here how the algorithm
can be used to draw every 3-planar graph with smallest angle > 7 /6. This angle is
also best possible, since a K, can only be drawn with smallest angle equal to /6.

Lemma 4.1 There erists a canonical numbering of a triangulated planar graph H
with f vertices such that vs_, is a neighbor of both v, and vy.

11



Proof: Assume we have a canonical numbering in which deg(vy) is as small
as possible, thus deg(vs) < 5. If deg(vy) = 3, then vs_, is a neighbor of v;. If
deg(vy) = 4 then vy_, is a neighbor of v, or v;. Swapping v; and v, if necessary gives
the result. Suppose further that deg(vy) = 5. The neighbors of v; are vy, v;, v, vk
and v, respectively in counterclockwise order. If f — 1 = ¢ or k then by swapping
v, and v, if necessary we obtain that vs_; is a neighbor of vy, so assume that we
cannot number the vertices such that ¢ = f—1or k = f—1, thus j = f - 1.
Assume max{i,k} = ¢, then vertex v;4; must have only vertex v; and v as lower
numbered neighbors. Suppose not, then we could add v;4; before v; in the canonical
numbering. If § # ¢ + 1, then since v;;; is not a neighbor of vy, v;y; and vx have
a common higher numbered neighbor v;, which can be added before v;. Repeat
the argument with j # [, etc., and it follows that we can add v; before v; by the
canonical numbering which means that i = f — 1. Contradiction, thus v;;; has v;
and vy as only lower numbered neighbors, thus there is an edge (vi,v;) in H. Hence
H contains a K on the vertices v;, vj, v, vy.

Do now again the canonical numbering v},v},..., v} such that vi = v;,v; = v;
and v} = vy. v} again has degree 5, viz., the neighbors v;, v}, v}, vk and vj, in this
order. If v} or v = v}_, then v}_, is a neighbor of vj, so assume 8 = f — 1,
and vi = v!. Then all vertices v3,...,v}_; are inside triangle v}, v}, v} and these
numbers are independent from the numbering of v/ ,,,...,v;_;. We now renumber
the vertices of triangle v}, v}, v/, such that v} and v/, are swapped, i.e., the outerface
is now v, vj,vs. But we did not change the numbers v! ,,,...,v}_;, thus vg = vi
is a neighbor of v{. Thus there exists a numbering such that vs_, is a neighbor of
both v, and vy. ]

We may assume w.l.o.g. that the planar graph is triconnected. If not, then we
can apply the generalization of section 3. Let a canonical numbering of the faces
of G be given, satisfying lemma 4.1. Such a numbering can be achieved in linear
time. Let k; = lth(be(Fy_1)) and let ky = 2 — 1 — k;. We assume that k; > k,
otherwise we simply put k; = k; (this only enlarges the drawing somewhat). Let
v, € Fy,F; and Fy, with neighbors v,_; and v,_; in Fy, such that v,y € Fy_,.
Let v, and vg be the other neighbors of v,_1, with vg also € Fy. Then we draw
vn—1 and v, on positions (0,0) and (k;,0), resp., and the vertices vq,vg and vy-z on
positions (—ky, k2), (0, k2) and (k1, k2), resp., as shown in figure 6(a). We draw the
remaining vertices of Fy_; and Fy on the horizontal line between v, and v,—; with
respect to the length of the basisedges. We now apply HEXA-DRAW to draw the
faces Fy_,..., Fs, F5. This gives a hexagonal drawing with only in (v;,v,) bends.
To remove these bends, we move v,_; and v, to (ki, —k1) and (2k; + k2, k;), resp., as
shown in figure 6(b). As we used the underlying hexagonal grid, it follows that all
angles have size at least 7 /6, and only the angles Zv,_2v10pn, L0102, £Vn_2VnUn-1
and Zvgv,_1v, can have size < 7/3 (see the marked angles in figure 6(b)). If n = 4,
then 6 angles have size 7 /6. This completes the following result:
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| y(wy) := y(wa) == ... := y(wp) := max{y(c:),y(c;)}

In case we add one vertex w; and (y(c;) > y(c;) and y(¢;) > y(ciy1)) holds, then
z(wy) = z(¢;) + y(c;) — y(¢i). To prove that the drawing algorithm HEXA-DRAW
works correct after this modification, we prove the following variant of lemma 2.2.
(Notice that lemma 2.1 still holds and that still holds: e is a basis-edge = e is
drawn horizontal.)

Lemma 5.1 All internal edges of a face Fy left from be(F) are horizontal or up-
wards in Z-direction. All internal edges of Fy right from be(F}) are horizontal or
upwards in Y -direction.

Proof: Suppose there are edges (ca,Cat+1) and (¢, cs41) in Y- and Z-direction
on one side of a horizontal edge, with o + 1 < 3. If a + 1 =  then by definition
cp has degree 2 in Giy41 and hence must be a start- or endpoint. If a +2 = f3
then there is only one horizontal edge between the edges of Y- and Z-direction,
thus c,41 or cg must have degree 2 in Giy1. If B > a + 2 then there are more
horizontal consecutive edges. If these edges belong to one face of Giyi then the
internal vertices co42, - . -, cg—1 have degree 2 in Gy, otherwise again cq41 or cg has
degree 2 in Ggqy,.

Hence there is a horizontal edge (ca,Ca+1) such that left from c, all internal
edges are horizontal or upwards in Z-direction. Right from c,41 all internal edges
are horizontal or upwards in Y-direction. Similar to lemma 2.3 we can prove that
we can choose a such that (ca, Ca+1) is the basis-edge. 0

This lemma implies that in some cases we can decrease the total height consid-
erably. Another optimization is the following. Let a canonical numbering of H be
given such that vs_; is a neighbor of v; and vy (satisfying lemma 4.1) and the hexag-
onal drawing as defined in section 4. Let ki, k2,v, and v,_; as defined in section 4.
If k, is small, then the first horizontal line between v, and v,_z is on lower height.
Hence we have to find a canonical numbering of H such that in G the length k; is
as small as possible. Though this is not easy in general, it becomes solvable when
there is a triangle F; in G. Thus there is a vertex v, € H with degree 3. Number
H using lemma 4.1 such that ¢ = f — 1. v; has vy,vs-2 and vy as neighbors. This
implies that no vertex v € H has vy_; as highest numbered neighbor, because vy,
has both vs_; and v as neighbors. Using the modified hexagonal drawing algorithm
of section 4 this leads to a hexagonal drawing in which k; = 1. Hence this decreases
the height of the drawing considerably.

The last optimization we notice is when z(wp) — z(w1) > T1<icp [EA((wi, wis1))
when adding face Fi. This is the case when y(c;) > y(Cat1), With (Ca,Cas1) the
basis-edge of Fi. In HEXA-DRAW this leads to a drawing with length((wp—1,wp)) >
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Figure 7: Optimizing the drawing of the graph in figure 4.

Ith((wp_1,wp)). We can now subtract length((wp—1,wp)) — Ith((wp-1,wp)) from
1th((Cq» Cas1))- Weupdate Ith((a, b)) for all basis-edges (a, b) by visiting F3, Fy, ..., Fy,
in this order after HEXA-DRAW. Using the new [th’s of the basis-edges we again apply
HEXA-DRAW to draw G in linear time on a hexagonal grid of smaller size.

In figure 7, these optimizations have been applied to the example, given in figure
4.

6 Final Remarks

In this paper we considered drawings of planar graphs with degree at most 3 on a
hexagonal grid. A simple linear algorithm HEXA-DRAW for this problem is described,
leading to a linear-sized grid in the case of triconnected 3-planar graphs. Using
HEXA-DRAW we can draw every triconnected 3-planar graph with straight lines on
a 2 x % grid, improving the best bound known by a factor 4. Whether there exists
triconnected 3-planar graph for which any straight-line drawing requires an 3 X 3
grid remains as an open problem. In figure 8(a) an example of a planar graph of
degree 3 is given, requiring an (2 + 1) x (§ + 1) grid for a straight-line embedding
(n = 8k, for some integer k > 0), but it is not triconnected. In figure 8(b) a planar
graph of degree at most 4 is shown, for which every straight-line drawing requires an
2(n—1)x %(n—1) grid, if this embedding is used, and ntl x 221 otherwise (n = 6k+1,
for some integer k > 0). This gives some indication of the tightness of our algorithm.
The triconnected 3-planar graph of figure 8(c) requires an (25* +2) x (23* 4 2) grid,
if this embedding is used, and (23 +4) x (%5 + 3) grid otherwise (n = 12k +1, for
some integer k > 0).

Recently it has been shown that this canonical numbering can be generalized to
triconnected planar graphs. This leads to a general method, working in linear time
for drawing planar graphs in several ways, dealing with the grid size, minimum angle
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Figure 8: Examples of planar graphs for grid size lower bounds.

and number of bends [7]. This also leads to several improvements for orthogonal
grid drawings and convex straight-line drawings.
Open problems include:

¢ Devise a dynamic algorithm to draw a triconnected 3-planar graph hexago-
nal. Recently a framework for dynamic graph drawing is presented, requiring
O(log n) amortized time for insertions and output-sensitive time for drawing
queries in the case of undirected planar graphs [1].

e Devise a fast algorithm to draw planar graphs planar on the octagonal grid: the
rectilinear grid plus the /4 and 37 /4 axis. We conjecture that triconnected
planar graphs of degree 4 can be drawn on an octagonal grid such that at most
K edges have bends, with K constant, independent of n. We are able to prove
K < n/2on an n X n/2 octagonal grid.

e Develop algorithms that draw planar graphs orthogonal or hexagonal with
the minimum number of bends and are simpler or faster than the O(n?logn)
algorithm of Tamassia [11].
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