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Abstract

In this paper we study the problem of triangulating a planar graph G
while minimizing the maximum degree A(G’) of the resulting triangulated
planar graph G’. It is shown that this problem is NP-complete. Worst-case
lower bounds for A(G’) with respect to A(G) are given. We describe a linear
algorithm to triangulate planar graphs, for which the maximum degree of the
triangulated graph is only a constant larger than the lower bounds. Finally we
show that triangulating one face while minimizing the maximum degree can
be achieved in polynomial time. We use this algorithm to obtain a polynomial
exact algorithm to triangulate the interior faces of an outerplanar graph while
minimizing the maximum degree.

1 Introduction

Planarity has been deeply investigated both in combinatorics and in graph algo-
rithms research. Concerning undirected graphs, there are elegant characterizations
of the graphs that have a planar representation and efficient algorithms for testing
planarity (see, for instance, [1, 11, 7]). Also several algorithms are known to draw a
planar graph in the plane with straight lines, leading to a so-called Fary embedding.
Elegant and simple algorithms for this problem are described in [6, 9, 19, 21], which
all assume that the planar graph is triangulated. In general, this is no problem, since
every planar graph can be triangulated in linear time and space, by a modification
of the algorithm in [19]. However, this may increase the degree of any vertex by
O(n), even if the maximum degree of the given graph is bounded by a constant. As
a concequence, the resulting picture may be significantly less readable, since a high
degree implies small angles between adjacent edges.

*This work was supported by the ESPRIT Basic Research Actions of the EC under contract
No. 3075 (project ALCOM).



The problem of drawing planar graphs readable in the plane gains a lot of interest
for several other subclasses of planar graphs as well. Especially for biconnected
and triconnected planar graphs some interesting and satisfying characterizations
are known, leading to presentable drawing algorithms [3, 22, 23]. However, these
algorithms, if they can be generalized, will not always give compact and structured
pictures for a more general subclass of planar graphs.

Recently, an investigation of augmenting a planar graph minimally by adding
edges to admit these constraints has been presented in [16]. In this paper, Kant &
Bodlaender present polynomial algorithms to make a planar graph biconnected or
triconnected and still planar, working within 3/2 and 5/4 times optimal, respectively.
Similar optimal results with respect to outerplanar graphs are described in {14] and
augmentation algorithms, without preserving planarity, are described in [4, 12, 13,
20].

In this paper we consider the problem of triangulating a planar graph while
minimizing the maximum degree. We show that this problem is NP-complete in
general. Let A(G) be the maximum degree of a planar graph G and let A(G') be
the maximum degree of some triangulation G’ of G, then our goal is that A(G') <
c1A(G) + ¢, with ¢; (and ¢;) as small as possible. We present worst-case lower
bounds for ¢; and c;, when G is a biconnected or triconnected planar graph. The
added edges € G — G’ are also called augmenting.

We present a linear algorithm to triangulate a planar graph G, such that the
maximum degree in the resulting triangulated graph G’ is only an additive constant
larger than the worst-case lower bounds. To achieve this goal, a linear algorithm
is presented to biconnect a planar graph while preserving planarity, increasing the
degree of any vertex with at most 2. We also define a new ordering for the vertices
and faces of a triconnected planar graph. This ordering is based on the canonical
ordering of [6], and is interesting in its own sense. If only one face needs to be
triangulated, then a simple dynamic programming approach can be applied to find
an optimal solution. Using this technique, we present a polynomial exact algorithm
to triangulate the interior faces of an outerplanar graph while minimizing the max-
imum degree. In case the outerplanar graph is biconnected, this leads to a maximal
outerplanar graph.

This paper is organized as follows. In section 2 we prove that triangulating
planar graphs while minimizing the maximum degree is NP-complete for biconnected
planar graphs. In section 3 we give lower bounds for the maximum degree of the
triangulated graphs. In section 4 we present a linear algorithm for triangulating
planar graphs, working only an additive constant from the lower bounds. In section
5 we present an algorithm for triangulating one face. In section 6 we present an
algorithm for triangulating outerplanar graphs. Section 7 contains some concluding
remarks and some open problems.



2 NP-completeness

Triangulated planar graphs have several properties in drawing algorithms (see [19,
6, 14, 9]). A triangulated planar graph has 3n — 6 edges and adding any edge to it
destroys the planarity. Every face is a triangle. From an aesthetic point of view for
the drawing algorithms, we want to triangulate a graph G (with n vertices and m
edges) while minimizing its maximum degree. This is a hard problem, as stated in
the following main result of this section.

Theorem 2.1 Deciding whether a biconnected planar graph can be triangulated such
that the mazimum degree is < K is NP-complete.

Proof: The problem is in NP: guess 3n — 6 — m additional edges, and test in
polynomial time whether G is planar and has maximum degree < K.

To prove the NP-hardness we use a reduction from the 3-coloring problem for
triconnected planar graphs. It is well-known that deciding whether a planar graph
can be colored with three colors such that every pair of two neighbors have different
colors is NP-complete [8]. It is easy to see that the proof in [8] can be modified, such
that the NP-completeness of the 3-coloring problem also follows for triconnected
planar graphs. We omit the details here. Let a triconnected planar graph H be
given, and let K > 12A(H) be defined. H has an unique embedding and let G
be the dual graph of H: every vertex of G correspond with a face of H and there
1s an edge between two vertices in G, if and only if the corresponding faces in H
share a common edge. G is triconnected and planar as well. We change graph G
into a graph G’ as follows: we replace every edge (a,b) € G by three components
A, A3, As and two vertices ¢, d with edges to a and b as shown in figure 1(a). A; is
a triangulated component between a and b. The outerface of A; consists at each side

of a and b of ¢ consecutive vertices vy,...,v; and wy,...,w; of degree K —1 and one
vertex of degree K — i — 2. These vertices v, w with deg(v) = deg(w) = K — i — 2
are adjacent to a and b, respectively, and to vy,...,v; and wy,...,w;, respectively

(see figure 1(a)).

We add vertices inside some A;-components with edges to a and b in such way
that the degree for all vertices a and b € G is K in G’ and the degree of the other
vertices on the outerface of the triangulated A;-components does not change. We
call the vertices v € G’ with deg(v) < K — 1 white, with deg(v) = K — 1 grey and
with deg(v) = K black, and they are drawn accordingly in figure 1. Notice that the
vertices of G are black in G’ and the other relevant vertices in G’ are grey or white.
All vertices in an A;-component have degree < K; all faces inside an A;-component
are triangulated. (It is not hard to find the precise constructions for A;, Az, As;
although a little tedious. We omit the precise construction.)

Suppose G has a triangulation with maximum degree < K. Fix such a triangu-
lation, and a planar embedding of the triangulated graph.



(a) The replacement of edge (b) Every component in one face must
‘ have the same orientation.

(a,b) in the graph,

(c) Every face must have the same (d) If a face consists of one type of
kind of components. components, then a triangulation
exists with degree at most K,

Figure 1: Figures for the NP-completeness proof.

Lemma 2.2 Between every two components A;, A; with common vertices a, b there
must be a vertez c or d.

Proof: Suppose not, i.e., there are two components A;, A;, assume j > 7, ad-
jacent to each other between two vertices a and bin G’. Let F be the face between
these components. If there are two grey vertices adjacent to a or b in F, then one
of these grey vertices must get two extra edges by the triangulations, hence will
get degree > K, which is not allowed. So assume that adjacent to @ and b there
is a white and a grey vertex. If we want to triangulate F' such that every vertex
has degree < K, then each consecutive sequence of grey vertices must get incident
edges to a common white vertex. Let v,w be the white vertices and v,,...,v;,
Wi, ..., w; be the grey vertices of Fy, then we must assign ¢ + 2 edges between v
and wy, ..., w42 and 7 edges between w and v1,...,v;. After this assignment, v and
wiy2 are now both black, but since j > i + 2, F is not completely triangulated yet.
But v and w;;; are now neighbors in F, and one of them must get an extra incident
edge. Contradiction with the assumption that we can triangulate F' such that the
maximum degree is < K. Thus between every two components A;, A; of vertices a
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and b, there must be a vertex c or d. a

This means that for every edge (a,b) € G, belonging to faces F}, Fy, we have
to assign one A;-component of a,b to F; and one A;-component of a,b to F;, with
t # j. Assigning means that this component lies at the outside at the corresponding
face. Triangulating these inside faces can simply be done by adding edges from
vertex c or d to all other vertices of these faces.

Lemma 2.3 To every face F € G', only one type of component A; can be assigned
to it.

Proof:  Suppose we can triangulate a face F, where different components
Ai, Aj,j > ¢ are assigned to it, such that the maximum degree is still < K. First we
notice that every black vertex v € F may not get an augmenting edge, hence there
must come an edge between its two neighbors vy,v; € F. Since for any triangula-
tion vy or v, must get in total at least two augmenting edges, one of them must be
white. This means that every component in F' must have the same orientation, i.e.,
when walking around F' we visit alternatingly a black vertex, a white vertex and a
sequence of grey vertices (see figure 1(b)). Notice that after adding (v;,v;) for every
black vertex v in F, the size of F' decreases, but since v; or vy, say v1, was grey, v;
is black now, and we repeat our argument for all black vertices v;. Inspect the two
adjacent components A;, A;,j > ¢, of a black vertex v, where after assigning ¢ + 2
edges from the white vertex w of A; to the grey vertices wy, ..., Wiy of A;, w and
Wi, ..., Witz are all black now. But similar as in Lemma 2.2, since j > i + 2, F is
not completely triangulated yet, thus w or w;;; must receive at least one extra edge
(see figure 1(c)). Contradiction with the assumption that we could triangulate F
such that the maximum degree is < K. 0

If only one type of components A; is assigned to a face F € G’ then we can
triangulate F' as follows: from every white vertex we add s edges to the grey vertices
of the next component in the circular order of F. In the reduced face F we assign
edges between every two consecutive white vertices. This triangulates F' completely
and the degree of every vertex v € F becomes K. An example is given in figure
1(d).

From the two lemmas and the construction in figure 1(d) it follows that we can
triangulate G’ with maximum degree < K if and only if we can assign to every face
F € G' only one type of components A;, i = 1,3, 5, i.e., if and only if we can assign
one number ¢,z = 1,3,5, to every face in G such that every two faces, sharing a
common edge in G, have a different number, i.e, if and only if there exists a coloring
of H with three colors such that every pair of two neighbors v, w, have a different
color. As G and G’ can be constructed in time polynomial in K,n and m, there
is a polynomial time transformation from the NP-complete problem of 3-coloring
triconnected planar graphs to the problem of triangulating a planar graph while



(a) Example of theorem 2.1 with A =35. (b) Example of theorem 2.2 with A = 5.

Figure 2: Examples of the lower bounds for the maximum degree.

minimizing the maximum degree, hence the latter is NP-complete. O

3 Lower bounds for A(G')

Regarding the problem of triangulating G into G’ such that A(G') < 6 A(G) + c,
we present here lower bounds for ¢; and c;, when G is a biconnected or triconnected
planar graph.

Theorem 3.1 For every A = A(G) > 5, there exist triconnected planar graphs G
such that for every triangulation G' of G: A(G') > A(G) + 3.

Proof: Construct a triconnected planar graph G as follows. V = {v,v;, v;;|1 <
1 <A,1<j <A-1}, thus |[V| = A2+ 1. Connect v to the A vertices vy, ..., va.
Connect v; to A — 1 vertices v;;, 1 < j < A — 1. Connect vij to vy if J <A -1
and to v(;41); otherwise (see figure 2(a)). Suppose we can triangulate G such that
A(G') £ A(G) + 2, then v must get at most two augmenting edges. Let Fi, ..., Fa
be the faces adjacent to v. F; consists of 5 vertices, thus every triangulation of
F; consists of two augmenting edges, incident to one vertex w € F;, which we call
marked, to its non-neighbors of F;. Hence except for at most two neighbors v;, v; of
v, all other A — 2 neighbors of v must be marked. But marking both v; and v;y,
increases deg(v;) by 3. Hence only half of the neighbors of v can be marked, which
is > A —2for A > 5. Thus A(G') > A + 3, for A > 5. ]

Theorem 3.2 For every A > 1 there ezists a biconnected planar graph G for which
for every triangulation G',G C G': A(G') > [3A(G)].



Proof: We can assume w.l.o.g. that A = A(G) 2 4. (For A = 2,3 the theorem
trivially holds by constructing a graph containing a cycle of length 5.) Construct
the graph GA consisting of two vertices A and B, and 2A — 1 vertices py, . .., paa_s.
There is an edge (p;, pi+1) for 0 < : < 2A — 2. There are edges (A, p;) and (B, p;),
for ¢ even, 0 < i < 2A — 2. For A odd (implying A > 5), a separate vertex C is
inserted with edges (po,C) and (C,pza_;). See figure 2(b).

In every face F; with vertices Pi Pi+1,Pi+2, A and in every face F! with vertices
Di, Pit+1, Piv2, B, one extra edge must be added (¢ even). When we add an edge
(Pi, Pis2) in F;, then an edge (Pi+1, B) must be added in F!. Since there are A — 1
faces F;, this means that the total increase of the degree of Aand Bis A—1. f A
is odd, then an additional edge has to go from C to A or B. Hence the degree of A
or B increases by at least [4]. 0

This theorem shows that ¢; > 2 for planar graphs in general. In the following
section we will present an approximation algorithm, which will match these bounds
up to an additive constant.

4 An Approximation Algorithm

4.1 Introduction

Our algorithm in this section will lead to a proof of the following theorem:

Theorem 4.1 There is a linear algorithm to triangulate a planar graph G such that
for the triangulation G' of G, A(GQ') < [BA(G)] + 21.

A brief outline of the algorithm which obtains this result is as follows:

TRIANGULATE

make the graph biconnected;

while the entire graph is not triangulated do
determine a triconnected component G’ of G;
compute the canonical 3-ordering for G';
triangulate G’;
replace G’ by an edge between the cutting pair;

od

First we want to biconnect G such that the degree of the vertices increases as
little as possible. A degree-increase of two is sometimes necessary: for instance
consider the tree K; 3. Here we show how to make G biconnected and planar such
that every degree increases indeed by at most two.

The problem of augmenting G such that it is biconnected and planar by adding
< K edges is NP-complete [16], but there is a linear algorithm to make G bicon-
nected by adding edges while preserving planarity [19]. The algorithm of [19] can
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(a) One vertex gets n-2 extra edges. (b) Every vertex gets at most 2 extra edges.

Figure 3: Making different graphs biconnected.

be described as follows: if for any pair of consecutive neighbors u,w of v, u,w be-
long to different biconnected components (also called blocks), then the edge (u,w)
is added. Unfortunately, this may increase the degree of a single node by O(n), as
shown in figure 3(a). Therefore we modificate the algorithm of [19] by inspecting
the vertices in depth-first order. Secondly, we test during the algorithm whether an
added edge can be removed without destroying biconnectivity. The algorithm can
now be described more formally as follows:

BICONNECT
' determine an arbitrary embedding in the plane of G;
number the cutvertices v; of G in depth-first order;
for every cutvertex v; (in increasing v;-number) do
for every two consecutive neighbors u,w of v; in G do
if u and w belong to different blocks then
add an edge (u,w) to G
if (vi,u) or (v;,w) was added to G then remove this edge;
rof
rof

Lemma 4.2 Algorithm BICONNECT gives a biconnected planar graph.

Proof: For every cutvertex v; we add edges between the adjacent neighbors u, w
of v;, if they belong to different blocks, hence after this augmentation all neighbors



(a) Zigzagging one face. (b) Zigzagging the entire planar graph.

Figure 4: Example of zigzagging a face and zigzagging a planar graph.

of v; belong to one common block. Thus v; is not a cutvertex anymore. If (vi, u) was
added by BICONNECT then there was a path from v; to u initially. But then there
was initially a path from w to u. Adding (u,w) implies a cycle containing v;, hence
(u,v;) can be removed without destroying the biconnectivity. Similar for (vi,w). O

Lemma 4.3 Every verter receives at most 2 augmenting incident edges.

Proof: Assume w.l.o.g. vertex v is the only element of a block. When visiting
a neighbor w of v, v receives two incident augmenting edges, say (wy,v) and (wz,v).
Then by the depth-first order v will be visited. If v is adjacent to at least one other
block, then edges between neighbors of v are added and the edges (w;, v) and (w2, v)
are removed. Hence v receives at most two incident augmenting edges (see figure

3(b)). o

Corollary 4.4 There is a linear algorithm to augment a planar graph such that it
is biconnected and planar and increases the degree of every vertex by at most 2.

Hence we may now assume that G is biconnected. The main method of the
triangulation is the following “zigzag”-method (see also figure 4):



ZIGZAG(F, vy, v,);
(* F is a face of p vertices, numbered vy,...,v, around the ring; *)
add edges (vp, v2), (V2, Vp-1), (Vp-1,v3), (v3, Vp—2), ..., (v1g)> V1) 42)5

By this method the degree of v; and vp|;; does not increase, the degree of v,
and vig| (p even) or v|g 43 (p odd) increases by 1, all other degrees increase by 2
(see figure 4(a)).

A simple technique for triangulation is to apply ZIGZAG to all faces. However,
since a vertex v belongs to deg(v) faces and deg(v) can increase by two in every face,
this may lead to a maximum degree of 3A(G). Moreover, this algorithm may imply
multiple edges, which are not allowed (see figure 4(b)).

To apply a more subtle technique, we recall the canonical ordering, as introduced
by De Fraysseix et al. [6]:

It is possible to order the vertices of a triangulated planar graph G in a
sequence vy, ..., U, such that for k = 3,4,...,n — 1:

e the subgraph Gy of G induced by vy,...,vx is biconnected and
the boundary of its exterior face is a cycle Cy containing the edge
(vl, ’02).

® U4y is in the exterior face of Gryy and has at least two neighbors
in Gi, which form a consecutive sequence on the path Cy — (vy,v3).

However, in our case the planar graph is not triangulated. We modify this
ordering such that it holds for triconnected planar graphs. This ordering is then
applied on the triconnected components of our biconnected planar graph G. The
following simple observation of [6] will be essential for our purpose:

Lemma 4.5 Let G be a simple planar graph embedded in the plane and u = uy, u,,
-+>uj = v be a cycle of G. Then there exists a vertez w' (w") on the cycle different
from u and v and not adjacent to any inside chord (outside chord).

Theorem 4.6 It is possible to order the vertices of a triconnected planar graph G
in a sequence vy,...,V, such that in every step k,k > 2:

1. The subgraph Gy of G induced by the vertices vy,...,vx is biconnected and the
boundary of its exterior face is a cycle C.

2. either vgyq is in the exterior face of Giy1 and has at least two neighbors in
G, which are on C

3. or there exists an | > 2 such that viyy,...,ve4 i a path in the exterior face
of Gi41 and has ezactly two neighbors in Gy, which are on Cy.
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Proof: The vertices v,,vn_1,...,v3 will be defined by reverse induction. Let
vn be an arbitrary vertex of the outerface not adjacent to v,,v, and let G,,_; denote
the subgraph of G after deleting v,,. By the triconnectivity of G, the outerface C,_;
of Gp_; is a cycle.

Let ¢ < n be fixed, and assume that v; has already been determined for every
k > 1 such that the subgraph Gi_; induced by V(G)\{vk,Vk41,-..,vn} satisfies
conditions 1., 2. and 3. Let C; denote the boundary of the exterior face of G;.
Notice that by this construction, if there are vertices v € G; of degree 2, then v € C;
and we can take any maximal path P of vertices vj, vj41,...,v; of degree 2 as the
next path P in the ordering. The subgraph G;_, induced by V(G)\{vi, viq1,...,vn}
obviously meets the requirements.

Otherwise all vertices in G; have degree > 2. Applying lemma 4.5 to the cycle
C; in G, we obtain that there is a vertex w' € Cj, not adjacent to any chord of
C;. (Observe that C; has no exterior chords.) Letting v; = w', the subgraph G;_;
induced by V(G)\{vi, vis1,--.,v,} meets the requirements. O

We call this ordering the canonical 3-ordering. The following approach can be
used to find the canonical 3-ordering of a triconnected planar graph G in linear
time. Let the faces be numbered F,..., F; and let every edge e have pointers to
the two faces, where e belongs to. Also every vertex v has pointers to the faces,
where v belongs to. Let an embedding of G be given, i.e., let the edges incident to a
vertex v be stored in a circular adjacency list in order we visit them when walking
counterclockwise around v. Similar we store to each face F' a circular list of edges,
in counterclockwise order of visiting them in F. We give all vertices and faces a
label, which can have the value (a), which means: not yet visited, (b), which means:
visited once or (%), which means: visited more than once and the visited edges form
¢ intervals in the circular edge-list of this vertex or face. Every face also contains
counters 2, and i., indicating the number of visited vertices and edges respectively,
belonging to this face. These labels are updated after we choose vertex viy; or path
Vk+1, - - - , Vk4t (implying a face Fiy1). When choosing vg41, we visit each neighbor v
of vk4y along the edge connecting them. If v has label (a), then label (b) replaces
label (a). If v has label (b) and the edge (vk41,v) is adjacent to a visited edge in
the edge-list of v, label (1) replaces label (b) and if not, label (2) replaces label (b).
Finally, if v has label (j) and the left and right neighbors of the edge (vi41,v) have
already been visited then the label (j — 1) replaces label (j). If none of these edges
have been visited then label (j + 1) replaces label (j), otherwise label (j) is not
changed. It is clear that label (j) on v means that the edges already been visited
and incident to v are composed of j intervals in the edge-list of v.

For every visited edge e we update the label for the two faces, e belongs to,
and we increase the i, label by one. When we visit a vertex v of label (a), then
we increase the iz, labels of all faces, where v belongs to. When we add a path
Vk+1, - - - , Uk4l, then for all these vertices we update the labels of their neighbors and
the incident faces.

11



It is easy to see that if there is a vertex with label (1), then we can choose this
vertex as vg42. Otherwise by theorem 4.6 there is always a face F' with label (1) and
with ¢, = i, + 1, and we can choose the consecutive sequence of not-added vertices
of F as the path vg4s,...,vry4 in the canonical 3-ordering.

Using this approach we visit every edge (u,w) exactly two times (via u and via
w). Every face will be visited once via every edge and once via every vertex of it.
Every triconnected planar graph has a linear number of edges and faces, completing
the proof of the following result:

Theorem 4.7 The canonical 3-ordering of a triconnected planar graph can be com-
puted in linear time and space.

We use the canonical 3-ordering for triangulating the interior faces of each tri-
connected component of G. If deleting two vertices a, b of G disconnects G into one
connect component V' and some components G’ — V', then we call V' a 2-subgraph,
and a,b is called the cutting pair of V'. If V' contains no other 2-subgraphs then
V' is a triconnected component. Otherwise, if we replace all 2-subgraphs of V' by
an edge between the cutting pair and eliminate the multiple edges, then V' is also a
triconnected component. Notice that adding an edge between the cutting pair of a
triconnected component V' makes V' triconnected. Hence with a small modification,
we can apply the canonical 3-ordering on the 2-subgraphs of G.

Let T be a tree, where every node v’ of T corresponds with a 2-subgraph V' of G.
v’ is an ancestor of w’ in T, if W' C V. The root r of T corresponds with the entire
graph G. The leaves of T corresponds with the triconnected components of G. We
call T the 2-subgraph-tree (see figure 5). We start with triangulating the internal
faces of the triconnected components of G and then the other 2-subgraphs V' of
G, if all 2-subgraphs W’ C V' are already triangulated. To compute the canonical
3-ordering for V', we replace the 2-subgraphs W’ C V by an edge (a, b) between the
cutting pair, and we mark this edge (a,b). When we triangulate V' and we visit edge
(a,b), then we replace (a,b) by W’. We call this procedure folding and unfolding.
Actually, this means that we triangulate V", if all 2-subgraphs W', for which v’ is
an ancestor of w', are already triangulated. We start with the leaves of T and work
towards the root r of T'.

We consider the two cases of the canonical 3-ordering: either a vertex viy; or
a path vgy1,..., k4 (implying a face Fi41) will be added. When adding a vertex,
several faces need to be triangulated, for which we use the algorithm for triangulating
one face. We call in a step k the vertices vq,...,vx old and the vertices added in
step k+1 new. Let v, and v, be the leftmost and rightmost old neighbor of the new
added vertices in step k + 1, then we call the old vertices v € C; between ve and
vy internal. Notice that every vertex is exactly once new and once internal, but it
can be left- or rightmost more than once. Vertex v may receive in each phase (new,
left- or rightmost, internal) incident augmenting edges. The upper bound for the
increase of deg(v) is the sum of the upper bounds for the increases in each of the
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Figure 5: Example of a biconnected planar graph and the corresponding 2-subgraph-
tree.

three phases. The analysis for these bounds follows by inspecting the two cases (i)
adding a face and (ii) adding a vertex, in the following subsections.

4.2 Adding a face

When we add a face to Gy by adding the vertices of a path P, then we first change
the marked edges (a, b) of P into the corresponding 2-subgraphs W’ of G. Let Fiy;
be the added face with all marked edges unfolded. We want to triangulate Fiy
such that the degree of the new and internal vertices increases by a constant, and
the degree of the left- and rightmost vertex increases as little as possible.

Hereto we first assume that there is at least one internal vertex. Let wy,...,w,
be the vertices of Cj such that w, is the leftmost and w, the rightmost vertex, and
Wr41, ..., Wy 1s the new added path (numbered counterclockwise around face Fy1).

We add the edges (wi,wz) and (wy41,w,-1), hence we need to triangulate the
face with vertices wp,ws, ..., Wp_1,Wr41,...,w; and the degree of w; and w, (the
left- and rightmost vertex) does not increase. We call already existing edges (w;, w;)
2 <14,j <1 forbidden, if j > ¢ + 1. For every forbidden edge (w;, w;) we label w;_;
and wj_y, if they do not have incident forbidden edges. We renumber the labeled
vertices by v},..., vy, in order of increasing w;-number. We add the edges (v;-, V1)
(1 £ j < p), thereby introducing several faces F;'. Let F[,, be this face, containing
all labeled vertices. We triangulate the faces as follows:

for every face F}' do ZIGZAG(F/, v}, v},,);
ZIGZAG(FY 4, v1,v,);

In figure 6 an example of the triangulation is given.
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Figure 6: Example of triangulating one face.

Lemma 4.8 The triangulation of Fyy, implies no multiple edges.

Proof: Notice that if (w;, w;) is a forbidden edge, then there must be a vertex
Ws,1 < z < j, which is labeled. Let v} = w,, then by adding the edges (v}_,,v!) and
(vi, v{41), there is no face F' anymore with both w;, w; € F. Hence the edge (w;, w;)
will never be added by z1GZAG to G. O

Lemma 4.9 If there is an internal vertez, then the degree of the internal and new
vertices increases by at most 5.

Proof: Degrees of not labeled vertices increase by two by zigzagging F,,.
A labeled vertex v} gets two edges (v}_;,v}) and (vjyvj41). Furthermore, v/ gets
two incident edges by zigzagging F}.,, one incident edge by ZIGZAG(F/, v}, v}, 1),

but no incident edges by ZIGZAG(FY,v)_,,v}). Hence the degree of the labeled ver-

tices increases by at most 5; the degree of the other vertices increases by at most 2. O

The problem arises when there is no internal vertex, because then at least one
outgoing edge has to go to a left- or rightmost vertex, since they are neighbors on C.
Let Fi41 be the added face with left- and rightmost vertex w; and w,, respectively.
w; and w, cannot be labeled, thus w; and w, are both element of F{,,. Calling
ZIGZAG(Fy,,, w1, w;) increases deg(w;) by 1 and does not increase deg(w;). We
introduce a counter eztra(v) for every vertex v, counting the augmenting incident
edges of v, added when v was left- or rightmost. When there is no internal vertex,
we add an edge to the left- or rightmost vertex, according to the lowest eztra-value,
by ZIGZAG(Fy,,, w2, w1) or ZIGZAG(F},,, w1, w;), respectively. Initially extra(v) =
OforallveV.

Lemma 4.10 For every four consecutive vertices vy, vy, v3, v4 0N Ck, the following

holds:
If extra(vz) = 2 then either extra(v,) = extra(vs) = 0 or eztra(vy) = extra(vy) = 0
and extra(vs) = 1. If estra(v;) = extra(vs) = 1 then extra(v,) = extra(vy) = 0.
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Proof: By induction. When starting the algorithm eztra(v;) = extra(vq) =
0. Assume the lemma holds for G¢. We prove that the lemma also holds for Grt1,
when adding at least two vertices w;, w; to two consecutive old neighbors v, and vs,
and the lowest eztra-value of v, and vs, say vy, increases by 1.

If extra(v,) = 1, then we obtain the following extra-values from v, to v4 on Crt1:
0, 2, 0, 0, extra(vs), 0. If eztra(v;) = 0, then we obtain: 0, 1, 0, 0, eztra(vs), 0.
Hence also on Cj4; the lemma holds. a

Lemma 4.11 For every pair of consecutive vertices vy,vs on Ck, extra(vy) +
extra(v;) < 3.

Proof: Suppose not. Let k be the smallest possible integer such that for two
consecutive vertices v, v3 on Ci: ezxtra(vs) + extra(vs) > 3, thus extra(vz) + extra(vs)
= 4 and on Cy_1, eztra(vz) + eztra(vs) = 3. But then on Cy_1, eztra(v;) = eztra(v,)
= 0, and on C} both v, and vz have neighbors with smaller eztra-value. The added
face in Cj cannot have leftmost vertex v, and rightmost vertex v3, because then
vertices with eztra-value 0 come between them. Hence eztra(vs) and extra(vs) are
not increased in step k. Contradiction with the assumption that in step k, extra(v,)
+ extra(vs) > 3. o

Corollary 4.12 For every vertez v, extra(v) < 2.

This implies that in every step when we add a face, the increase of deg(v) is at
most 5 when v is new or internal. Moreover, during all steps when adding a face, the
increase of deg(v), with v the left- or rightmost vertex, is totally at most 2. Hence
in all phases of v, the increase of deg(v) is bounded by a constant.

4.3 Adding a vertex

When we add a vertex vg;1 to Gy by the canonical 3-ordering, then we first replace
the marked incident edges of vk4; by the corresponding 2-subgraph. Assume there
are t faces Fy,..., F, to be triangulated, numbered from left to right. We do not
want to increase the degree of the leftmost vertex v € Fy and the rightmost vertex
w € F;. Therefore we add an edge between the two neighbors of v in F; and between
the neighbors of w in F; (only if F; and F; are not triangles already). Due to these
edges, deg(v) and deg(w) will not increase by triangulating F; and F..

Moreover, to increase deg(vi41) as little as possible, we add in each face F; an
edge (w;,w;) between the two neighbors w; and w, of viy; in face F; (if Fj is not
a triangle already). These newly added edges may imply multiple edges. In section
4.4 it is shown how this can happen and remedied. Remains now ¢ reduced faces F;
to be triangulated. Hereto we apply the algorithm of section 4.2 to every face F;.
Doing this sequentially for j = 1 upto ¢, this will not imply multiple edges. It is easy
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(@) (b)

Figure 7: Reducing the faces may yield multiple edges.

to prove that an involved vertex v, belonging to two faces, Fj, Fj41, can never be
labeled, hence its degree will increase by at most 4. The degree of vg4; will increase
by at most 2 and the degree of the other vertices of F; will increase by at most 5.
Hence this increases the degree of the new vertex by at most 2 and the degree of
the internal vertices by at most 5.

4.4 Eliminating multiple edges

Applying the algorithms for triangulating one face in section 4.2 does not imply
multiple edges, as proved in theorem 4.8. Hence applying this algorithm sequentially

to the reduced faces Fy,..., F; when adding a vertex does not imply multiple edges.
However, reducing the faces F, ..., F; may imply multiple edges, as can be seen as
follows:

1. We first add edges between the two neighbors of v and w in F; and Fj, respec-
tively. If ¢ = 2, then possibly these two neighbors of v and w are equal, say
vr4+1 and v'. Hence we have a multiple edge. To eliminate one of these two
edges, an edge has to go to v or w. But when this occurs several times for v
or w, the increase of deg(v) or deg(w) is not bounded by a constant.

2. Suppose there was already an edge between the neighbors w; and w; of vey
in F;, hence adding such an edge implies a multiple edge. To eliminate this,
an edge can go from vi4; in Fj. But when this occurs for several faces Fj, the
increase of deg(vi+1) is not bounded by a constant.

To eliminate all multiple edges, obtained by reducing the faces Fy,..., F;, we
construct a bipartite planar graph H. (One set of vertices in H corresponds to a
subset of the vertices in G, one set corresponds to 2-subgraphs that must have an
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extra outgoing edge to remove one pair of multiple edges.) For case 1. and case 2.
we do the following:

case 1. We represent the 2-subgraph V" between viy; and v' by a vertex v” in H.
To eliminate the multiple edge, there has to go an edge from V" to v or w.
Hereto we add v and w to H (if not present already) with edges to v".

case 2. Suppose we have the multiple edge (w;, w;) with the 2-subgraph V* between
these two edges. Let vryy and v, be the other vertices, not part of V", which
have both w; and w; as neighbors (as in figure 7(b)). Then an edge has to go
from v, or vg4y to V. Hereto we represent V” by a vertex v” in H. Add the
vertices v, and vg4; to H (if not present already) with edges to v".

H will be constructed during all steps of the triangulation of the entire graph G. H
is planar and bipartite. Call vertices v” representing the 2-subgraphs V*” white and
the other vertices of H black (see figure 8(a)). We have to find a subset M C Ey
such that every white vertex v’ has one incident edge (v',v) € M and the black
vertices have as little as possible incident edges in M. These edges in M correspond
with the edges, which will be added to eliminate the multiple edges. To obtain
this, we do the following: using a simple modification of Eulers technique to find
an Eulerian cycle in a graph, we can extract the elementary cycles Ceeyn from H.
An elementary cycle is a cycle that uses each edge at most once. Thus H — Cejen
consists of paths P with disjoint begin- and endpoints (see figure 8(b)). From Ceiem
and every path P we add alternatingly one edge to M and one not. Recall that H is
bipartite, and all white vertices have degree 2. Hence for every vertex in Ceern and
every internal vertex of a path P, one incident edge e is in M and the other is not.
But also for every white vertex, exactly one incident edge is in M, hence satisfying
the constraints (see figure 8(c)). For every vertex v € H with degy(v) > 2, at most
f%ﬂ] neighbors are in M.

For each white vertex v” exactly one incident edge, say (v”,v), is in M. We
remove the corresponding multiple edge (w1, ws) or (vk41,v’) in G’ and we add the
edge from a vertex in V” to v. This can easily be constructed in linear time. This
removes all multiple edges and gives a triangulated planar graph G'.

Theorem 4.13 A(G') < [3A(G)] + 21.

Proof: Every vertex v receives at most 2 edges to admit biconnectivity. v
receives at most 5 edges when it is new, at most 2 edges when it is left- or right-
most, and at most 5 edges when it is internal. Thus in G v receives at most 14
extra incident edges. In H from every vertex v at most [ %ﬂ] incident edges are
in M, implying [%’—Q] augmenting edges in G to destroy the multiple edges. Since
deg'(v) < A(G) + 14, the theorem follows. 0

Theorem 4.14 G’ can be constructed in linear time.
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(a) example of H with white (b) The elementary cycles and (c) The set M of edges.
and black vertices. the disjoint paths.

Figure 8: The construction of H and M.

Proof: The algorithm BICONNECT can be implemented to run in linear time.
Finding the triconnected components can be done in linear time by the well known
algorithm of Hopcroft & Tarjan [11], but also by the planar embedding algorithm
of Chiba et al. [2]. Both algorithms can easily be modified such that it outputs
all 2-subgraphs. From this we can construct the 2-subgraph-tree T in linear time.
Computing the canonical 3-ordering for all triconnected components can also be
achieved in linear time.

For triangulating a face F' we have to unfold the marked edges. Then we have
to find the forbidden edges by inspecting the adjacency lists of the vertices of F,
except its leftmost and rightmost vertex. If F has np vertices, then triangulating
F requires O(nr) time, since O(nr) edges are added by zIGZAG. Every vertex is
exactly once new and once internal, so we inspect every adjacency list at most twice.
The sum of all lengths of all adjacency lists is O(n).

Constructing the graph H can be done in linear time. Finding M in H is equal
to finding the elementary cycles and disjoint paths, which can be executed in linear
time. Eliminating the multiple edges can be done in linear time by maintaining
pointers between v” in H and V" in G. |

This completes the proof of theorem 4.1.

This algorithm matches the lower bound by only an additive constant in the
biconnected case. If G is already triconnected, then multiple edges cannot occur. In
this case by a simple analysis of the algorithm the following theorem can be proved:

Theorem 4.15 There is a linear algorithm to triangulate a triconnected planar
graph G such that for the triangulation G', A(G’) < A(G) + 5 holds.
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Figure 9: The triangulation of one face while minimizing the maximum degree can
recursively be defined.

5 Triangulating one face

In this section we inspect the following problem: given a planar graph G with some
embedding, triangulate one face F of G while minimizing the maximum degree.
Each vertex v; of F' has degree > 2 and ‘forbidden’ edges (v;,v;), vi,v; € F, may
occur. We show that by using dynamic programming this problem can be solved
exactly in polynomial time.

Let the face F of G on n vertices vy,. .., v, be given (numbered clockwise around
the ring). We notice that in every triangulation the vertices v; and v,, have a common
neighbor vx (2 < k£ < n — 1) inside face F, which splits the face F into two faces
Fy (with vertices vq,...,v;) and Fy (with vertices v, .. s Un). I (v1,v) or (vk,vy)
is already present outside F, then this triangulation is not possible, since it would
imply multiple edges. We recursively triangulate the faces F; and F,. Let F! and
F} denote the triangulated faces, then the highest degree in F} and F} is important,
but moreover, since F; and F; share v, the increase of deg(vx) in F] and F} must
be added to deg(vr) in F. When we examine triangulations of a face F;;, formed by
vertices v;, Vi1, . - - , Uj, we inspect the different values of increases of deg(v;), deg(v;)
and deg(vx) in F; and F3. See figure 9.

Notice that when & = 2 (or n —1) then the edge (v1,v3) (or (vn-1,v,)) is already
present, hence need not to be added. To deal with this, we delete the edges (v;, viy1)
(1 £ ¢ < n) and decrease deg(v;) by 2. Let inc(v;) denote the increase of deg(v;)
when triangulating F; to F| (assuming v; € F}). For a triangulation of a face F;;
with vertices v;, . .., v; we have to store the different increases of deg(v;) and deg(v;)
in a table. Let D[i,j,:1,51] be the maximum degree of F;; by a triangulation
such that inc(v;) = i1 and inc(v;) = j1. If such a triangulation does not exist,
D[i,j,41,5j1] = oo. A simple analysis shows the following recursive formulae if
1<y —1:
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D[4, 4,41, 51] := min {max { D[, k,:1 — 1, k1], D[k, 5, k2,1 — 1],
i<k<j deg(vi) +11 + 1,
k1, k2 deg(v;) +j1 + 1,
(4, k) and (4, k) deg(ve) + k1 + k2 + 2
not forbidden  }

}

If : = j — 1 then for all 11,51 > 0: D[i, j,:1,j1] =max{deg(v;), deg(v;)}. We
want to compute min;; ;1{D[1,n,11, j1},deg(v1) + i1 + 1,deg(v,) + j1 + 1}. We do
this by using dynamic programming, based on the above formulaes, and some other
ideas which help to decrease the running time of the algorithm.

Theorem 5.1 There is an ezact O(n*A(G)log A(G)) algorithm to triangulate one
face of n vertices of a graph G such that the mazimum degree of the triangulation
G’ is minimized.

Proof: Let aface F be given. By theorem 4.1, we know that we can triangulate
F such that the maximum degree is at most [3A(G)] + 21. We do not compute
all values of D¢, j,i1,71] as this would be too time-consuming, but instead apply
binary search on the maximum degree. So we must test for O(log A(G)) values of
K whether a triangulation with maximum degree < K exists. Let Dili, 7,41, 51} =
true <= DI[i, j,i1,51] < K. Suppose K is fixed. Note that it is sufficient to know:
for all 41, 1 <41 < K — deg(v;), the smallest value of j1 such that Di[s, 7,1, 51]
is true and for all j1, 1 < j1 < K — deg(v;), the smallest value of i1 such that
Dkl[i, j,41,41] is true. Denote these smallest values with Fk[i, §,1] and Gkl[s, 7, j1].
(If such j1 or i1 not exist, Fk[z, j,71] = oo, or Gkli, j,j1] = 00.)

Now Dkli, 7,11, j1] = true, if and only if there exists a k, i < k < 7, (v;,v) and
(vj,vk) not forbidden and Fk[k, j, K — deg(vx) — Fx|[i, k,i1] — 2] < j2. (The increase
of the degree of vi in face Fi; may not be larger than K — deg(vi) — Fxl[i, k,i1] —
2. Fkli, k,i1] edges are used for face Fi, also there are edges (i, k), (k,j).) So
Fk[i,j,11] = min{Fk[k,j, K — deg(vi) — F[i,k,i1] — 2]|i < k < 34,(5,k), (k,7)
not forbidden}. The latter formulae allows us to compute all values of Fx[s, j,41]
(1£¢<n,0<i<k)in O(nPK) time. When Fi is computed, one easily de-
termines whether a triangulation with maximum degree < K exists. Using binary
search on K, the total runtime becomes O(nA(G)log A(G)). o

This algorithm can be used in combination with the algorithm in section 3 to
get an approximation algorithm. We use the canonical 3-ordering as described in
section 3 and in each step we add a vertex or face to G. Instead of applying the
linear approximation algorithm of section 3 we can use this algorithm. Though this
seems to give a good approximation, there are inputs (see figure 2(b)), for which
this algorithm will imply A(G') = 2A(G) + O(1).
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6 Triangulating outerplanar graphs

In this section we inspect the problem of triangulating the internal faces of an out-
erplanar graph G. An outerplanar graph is a planar graph in which all vertices
share one common face, the outerface. When G is biconnected, then the obtained
triangulated graph is called a maximal outerplanar graph (or mop) and has several
properties: a mop has 2n — 3 edges and adding any edge to it destroys the outer-
planarity. Every triangulated polygon is a mop [17]. Also recognizing outerplanar
graphs is based on recognizing mops [18].

First, we remark that we can treat all 2-edge-connected components separately.
The only relevant information for a 2-edge-connected component about the rest of
the graph is the number of bridges, adjacent to each vertex in the component, as
these count for the degree of the vertex. For each 2-edge-connected component, we
make a tree H = (Viy, Ey) with each internal face F; in this biconnected component
represented by a vertex vr,. We have two types of edges:

o take an edge between two vertices if the corresponding faces share an edge.
By outerplanarity, this gives a tree for each set of faces of a biconnected com-
ponent.

e Make a rooted tree T of the biconnected components of G, such that each
child component shares a vertex in G with its father component. Now, for
each edge of T, take a face in the father component and a face in the child
component that share a vertex, and add an edge in H between the vertices
representing these faces.

We now have a tree where each vertex represents a face. Take a node X, repre-
senting a face in the biconnected component representing a face in the biconnected
component represented by the root of T, and root H at face node X. The parent-
face of face F; is the face, represented by the node that is the parent of the node that
represents F; in H. If F; shares edge (va,vs) (vertex v,) with its parent-face, then
(va,Ub) (va) is called the parent-edge (parent-vertez) of F;. For every edge (vay b) of
face F.: that is a parent-edge of some other face Fj, define D[va,vs,11,51] to be the
maximum degree if F;j and all their descendants in H are triangulated, such that
the degree increase of v, is at most i1, and the degree increase of v is most j1. For
every vertex v, of face F; that is parent-vertex of at least one other face Fj, define
Dlv,, al] to be the maximum degree, if these faces F; and all their descendants in
H are triangulated, such that the degree increase of v, is at most ¢1.

We now use a procedure, similar to the one, described in section 5. Use bi-
nary search on the maximum degree K. For a fixed K, define Fk[va,vb,11] and
Gx[va, Vb, j1] as in the proof of theorem 5.1. Define Hyx(va) = min{al|D[v,,al] <
K}. Compute the tables or values for Fg,Gg and Hg bottom up in the tree H.
When we deal with a face, we add Hi(vg) to the degree of v,, and let the tables
Fx[va, s, a1] and Gkl[va,ve, bl] play the same role as they played in the proof of
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theorem 5.1. With minor modifications of this algorithm, one can compute the ta-
ble Fi[v’,v},al] and Gk[v., v}, b1] for the father-edge (v}, v;) of F;, or compute the
contribution to Hg[v)] for the father-vertex v, of F;. We have omitted some easy

details here. Applying a similar proof as in theorem 5.1, the following result can be
obtained:

Theorem 6.1 There is an O(nA(G)log A(G)) algorithm to triangulate all interior
faces of an outerplanar graph while minimizing the mazimum degree.

7 Final Remarks

In this paper we inspected the problem of triangulating a planar graph such that
the maximum degree is minimized. It is shown that this problem is NP-complete for
biconnected planar graphs. A linear approximation algorithm is presented, working
only a constant from the presented lower bounds. This algorithm is heavily based on
the canonical 3-ordering for triconnected planar graphs, which is a modification of
the canonical ordering of [6]. This ordering can also be determined in linear time and
leads to a good approximation algorithm. This comes from the observation that only
information of vertices on the outerface is sufficient in every step. This technique
also already lead to a linear implementation of the grid drawing algorithm of De
Fraysseix et al. [15]. It is interesting to inspect related problems on planar graphs, for
which the canonical 3-ordering also can lead to simple linear time approximations,
by only maintaining local information in the vertices of the outerface.

This paper also gives more insight in the augmentation problems, which seems
to be quite popular nowadays [4, 5, 12, 13, 14, 16, 20]. However, we were not able
to prove that the algorithm in this paper works only an additive constant from
optimal in the biconnected case. We conjecture that the algorithm in section 4 is
only an additive constant worse than optimal, in case the input graph is biconnected.
This conjecture is still open and interesting for further study. The NP-completeness
result presented in this paper only holds for biconnected planar graphs and is open
for triconnected planar graphs. It is interesting to inspect this problem, to come to
a more combinatorial insight in planar graphs.
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