Testing superperfection of k-trees

T. Kloks, H. Bodlaender

RUU-CS-92-09
February 1992

Utrecht University

S[Wwe -
< = Department of Computer Science
o«

s \z’ Padualaan 14, P.O. Box 80.089,

U 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Testing superperfection of k-trees

T. Kloks, H. Bodlaender

Technical Report RUU-CS-92-09
February 1992

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

ISSN: 0924-3275

1

Since the discovery of perfect graphs in 1960, much research has been devoted to spe-
cial classes of perfect graphs, such as comparability graphs and triangulated graphs.
The class of triangulated graphs contains well known graph classes such as interval

Testing superperfection of k-trees

T. Kloks * H. Bodlaender f
Department of Computer Science, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

An interval coloring of a weighted graph with non-negative weights, maps
each vertex onto an open interval on the real line with width equal to the
weight of the vertex, such that adjacent vertices are mapped to disjoint in-
tervals. The total width of an interval coloring is defined as the width of the
union of the intervals. The interval chromatic number of a weighted graph is
the least total width of an interval coloring. The weight of a subset of vertices
is the sum of the weights of the vertices in the subset. The clique number of
a weighted graph is the weight of the heaviest clique in the graph. A graph
is called superperfect if, for every non-negative weight function, the clique
number is equal to the interval chromatic number.

A k-tree is a graph which can be recursively defined as follows. A clique
with k 4+ 1 vertices is a k-tree. Given a k-tree with n vertices, a k-tree with
n+ 1 vertices can be obtained by making a new vertex adjacent to all vertices
of a k-clique in the k-tree.

In this paper we present, for each constant k, a linear time algorithm to
test if a k-tree is superperfect. We also give, for each constant k, a con-
stant time algorithm to produce a complete characterization of superperfect
k-trees. Finally we present a complete list of critical non-superperfect 2-trees.
Answering a question of Golumbic ([11]), this shows the existence of triangu-
lated graphs which are superperfect but not comparability graphs.

Introduction

*This author is supported by the foundation for Computer Science (S.1.0.N) of the Netherlands

Organization for Scientific Research (N.W.0.), Email: ton@cs.ruu.nl.

YThis author is partially supported by the ESPRIT II Basic Research Actions Program of the

EC under contract no. 3075 (project ALCOM), Email: hansb@cs.ruu.nl.

graphs, split graphs, k-trees, and indifference graphs. The class of comparabil-
ity graphs contains complements of interval graphs, permutation graphs, threshold
graphs and P,-free graphs (or cographs). Much work has been done in character-
izing these graph classes and in finding relations between them. Interest has only
increased since Lovasz settled the perfect graph conjecture in 1972 ([13]). An ex-
planation for this interest, from a theoretical point of view, might be the, as yet un-
settled, strong perfect graph conjecture. From an algorithmic point of view, perfect
graphs have become of great interest since the discovery of polynomial time algo-
rithms (by Grotschel, Lovasz and Schrijver) for NP-complete problems like Clique,
Stable set and the Coloring problem, when restricted to perfect graphs (see [4]).
From a practical point of view, special classes of perfect graphs have proven their
importance by the large amount of applications (see for example [11] for applications
in general and [6] for an overview of applications of interval graphs).

For computer science, the class of partial k-trees, which are subgraphs of k-
trees, plays an increasingly important role. One reason for this is the existence
of polynomial time algorithms for many NP-complete problems when restricted to
partial k-trees for some constant k (see for example [2] and [1]). This has become
even more interesting since the discovery of fast algorithms for the recognition of
partial k-trees for constant k& ([12], [3], [14], [17]). Of theoretical great importance is
the work of Robertson and Seymour (see [18]), who showed that, for each k, there
exists a finite set of forbidden minors for partial k-trees.

Most classes of perfect graphs can be recognized in polynomial time ([19], [5], [11],
[16], [10]). An exception seems to be the class of superperfect graphs. Determining
the interval chromatic number of a weighted interval graph with weights 1 and 2 is
NP-complete. When restricted to weighted partial k-trees, for some constant k, and
with weights bounded by some constant, it can be seen that the interval chromatic
number can be determined in linear time, when the embedding of the graph in a
k-tree is given. Until now we have not been able to find a polynomial algorithm
to test superperfection on partial k-trees. In this paper we present our results for
testing superperfection on k-trees.

The class of superperfect graphs contains that of the comparability graphs, but
these classes are not equal as has been pointed out by Golumbic who showed the ex-
istence of an infinite class of superperfect graphs which are not comparability graphs
(see [11]). However all these graphs are neither triangulated nor co-triangulated, and
in [11] the question is therefore raised whether for triangulated graphs the classes
of superperfect and comparability graphs coincide. For split graphs this equivalence
has been shown. Our results show this is not the case in general. We show the
existence of triangulated graphs which are superperfect but are not comparability
graphs.

The results presented in this paper can be summarized as follows. We give
a complete characterization, by means of forbidden induced subgraphs, of 2-trees
which are superperfect. For each constant k we give a constant time algorithm which
produces a complete characterization of superperfect k-trees, by means of forbidden

2

configurations. With the aid of this characterization we find, for each constant &, a
linear time algorithm to test superperfection of k-trees.

2 Preliminaries

We start with some definitions and easy lemmas. Most definitions and results in this
section are taken from [11]. For further information on perfect graphs the reader is
referred to this book or to [4].

Definition 2.1
An undirected graph G = (V, E) is called a comparability graph, or a transitively
orientable graph, if there exists an orientation (V, F') satisfying

FNF1'=0AF+F'=EAF*CF
Such an orientation is called a transitive orientation.

So if F is a transitive orientation then (a,b) € F and (b,¢) € F imply (a,c) € F.

It is easily checked that if a graph G is a comparability graph, then this also
holds for every induced subgraph of G. A comparability graph can not contain an
induced odd cycle of length at least 5, or the induced complement of a cycle with
length at least 5. This last part can be seen as follows: consider the complement of
a cycle with length at least 6 and assume there is a transitive orientation. Since the
orientation is acyclic, there must exist at least one sink node s. Consider the square
which contains exactly two neighbors of s but not s itself. The subgraph induced by
the square and s can not be transitively oriented such that s is a sink node. In [11] it
is shown that comparability graphs are perfect (i.e. for every induced subgraph the
chromatic number is equal to the maximum size of a clique) and can be recognized
in polynomial time (see also [19]). Comparability graphs share all these properties
with triangulated graphs. ‘

Definition 2.2
A graph is triangulated if it contains no chordless cycle of length greater than three.

Definition 2.3

Let G = (V,E) be a graph. A simplicial vertex of G is a vertex of which the
neighborhood forms a clique. An ordering of the vertices o = [vy,...,v,] is called a
perfect elimination scheme if each v; is a simplicial vertex in G[{v;,...,v,}], which
is the subgraph induced by {v;,...,v,}.

Fulkerson and Gross ([8]) characterized triangulated graphs by means of a perfect
elimination scheme.

Lemma 2.1 A graph is triangulated if and only if there exists a perfect elimination
scheme.

A special type of triangulated graphs are k-trees.

Definition 2.4

A k-tree is defined recursively as follows: A clique with k + 1 vertices is a k-tree;
given a k-tree T,, with n vertices, a k-tree with n + 1 vertices is constructed by
making a new vertex z,41 adjacent to a k-clique of T,,, and nonadjacent to the n — k
other vertices of T;,.

A triangulated graph is a k-tree if it is connected, every maximal clique contains
k + 1 vertices and every minimal vertex separator is a k-clique. It is clear that for
k-trees there exists a perfect elimination scheme o = [vy,...,v,] such that for each
1 <1 £ n -k, the neighborhood of v; is a clique with k vertices in the subgraph
induced by {vi41,...,v,}. Notice that for k = 1, k-trees are just ordinary trees. So
k-trees are a natural generalization of trees.

A weighted graph is a pair (G, w), where G is a graph and w is a weight function
which associates to every vertex z a non-negative weight w(z). For a subset S of

the vertices we define the weight of S, w(.S) as the sum of the weights of the vertices
in S.

Definition 2.5

An interval coloring of a weighted graph (G,w) maps each vertex x to an open
interval I, on the real line, of width w(z), such that adjacent vertices are mapped
to disjoint intervals. The total width of an interval coloring is defined to be ||, I.|.

The interval chromatic number \(G,w) is the least total width needed to color the
vertices with intervals.

Determining whether x(G,w) < ris an NP-complete problem, even if w is restricted
to values 1 and 2 and G is an interval graph, this has been shown by L. Stockmeyer
as reported in [11]. In this paper we shall only use the following alternative definition
of the interval chromatic number (see [11]).

Theorem 2.1 If (G,w) is a weighted undirected graph, then
X(G, w) = min(maxw(u))

where F' is an acyclic orientation of G and p is a path in F.

If w is a weighting and F' is an acyclic orientation, then we say that F'is a superperfect
orientation with respect to w if the weight of the heaviest path in F' does not exceed
the weight of the heaviest clique.

Definition 2.6

The cliqgue number Q(G,w) of a weighted graph (G,w) is defined as the maximum
weight of a clique in G.

We use the capital Q to avoid confusion with the weighting w. It is easy to see that
(G, w) < x(G,w) holds for all weighted graphs, since for any acyclic orientation
and for every clique there exists a path in the orientation which contains all vertices
of the clique.

Definition 2.7

A graph G is called superperfect if for every non-negative weight function w,
G, w) = x(G, w).

Notice that each induced subgraph of a superperfect graph is itself superperfect,
and also that every superperfect graph is perfect. If G is a comparability graph,
then there exists an orientation such that every path is contained in a clique. This
proves the following theorem (see also [11]).

Theorem 2.2 A comparability graph is superperfect.

The converse of this theorem is not true. In {11] an infinite class of superperfect
graphs is given that are not comparability graphs. However, none of these graphs is
triangulated. In [11] (page 214) the question is raised if the converse of the theorem
holds for triangulated graphs; is it true or false that, for triangulated graphs, G
is a comparability graphs if and only if G is superperfect? In the next section we
answer this question in the negative, and we give a complete characterization of
superperfect 2-trees.

3 2-trees and superperfection

In this section we give a characterization of 2-trees that are superperfect by means
of forbidden subgraphs. In 1967 Gallai, [9], published a complete list of critical non-
comparability graphs (this list can also be found in [4] page 78). Extracting from
this list the triangulated graphs which are subgraphs of 2-trees (or: have treewidth
at most two), we find a characterization of 2-trees which are comparability graphs.
We find two types of forbidden induced subgraphs, which we call the 2-star and
the odd wing. They are illustrated in figure 1. Notice that a 2-star and a wing are
2-trees, and that a wing has at least seven vertices. We call a wing odd (even) if
the total number of vertices is odd (even). The following lemma is easy to check.

Lemma 3.1 A wing is a comparability graph if and only if it is even.
We thus find the following characterization of 2-trees that are comparability graphs.

Theorem 3.1 A 2-tree is a comparability graph if and only if it does not contain a
2-star or an odd wing.

Figure 2: two orientations of the wing with seven vertices

The next theorem shows that the smallest odd wing, with seven vertices, (which is
not a comparability graph) is superperfect. As we shall see later, this is in fact the
only odd wing that is superperfect.

Remark. Notice that in [11] (page 212, figure 9.9) this graph is mistakenly placed
in the position of a non-superperfect graph. See also [15] and [7]; the result of [15]
i1s wrong: A wing is an interval graph.

Theorem 3.2 The odd wing with seven vertices is superperfect.

Proof:

Label the vertices of the graph as in figure 2. We consider two orientations of this
wing as illustrated in figure 2 and we show that for every weighting one of these
orientations is superperfect. Notice that both orientations are such that there is
exactly one path not contained in a triangle. In the first orientation this is the
path {a,b,e} and in the second orientation the path {c,d, f}. Consider a non-
negative weighting w of the vertices. Suppose the orientation of the first type is
not superperfect with respect to w. Then the path {a,b, e} must be heavier then
every triangle. Since {a,b,c} is a triangle, this implies that w(e) > w(c). But then
w({c,d, f}) < w({e,d, f}), and since {e,d, f} is a triangle, the second orientation
is superperfect with respect to w. (]

2 9 2 2) 3 3
2 2 1 1 1 2 2
1 3 1
2 1
1 2 1 2

Figure 3: critical non-superperfect graphs

In the last part of this section we give a complete characterization of the super-

perfect 2-trees. In figure 3 we give an (infinite) list of forbidden induced subgraphs.
The following lemma can be easily checked.

Lemma 3.2 The graphs illustrated in figure 3 are not superperfect. The weight
function that is shown is such that for any acyclic orientation, there exists a path
which is heavier than the heaviest clique.

Theorem 3.3 A 2-tree is superperfect if and only if it does not contain an induced
subgraph isomorphic to one of the graphs shown in figure 3.

Proof:

Assume the 2-tree G has no induced subgraph from this list. Then the graph can not
have an induced odd wing with 9 or more vertices. We may assume the graph is not
a comparability graph, hence it contains an odd wing with 7 vertices. Consider the
labeled wing of figure 2. Let H be the subgraph obtained from this wing by removing
the vertices a and g. Let (z,y) be an edge of H. We say that C is a component at
(z,y) if C is a maximal connected subgraph of G[V \ {z,y}] containing no vertices
of H. If C is a component at (z,y), we say that z is a degenerate vertex of this
component if = is adjacent to all vertices of C. Notice that there are only four
edges of H at which there can be components, namely (b, ¢), (b,d), (d, e) and (e, f),
otherwise the 2-star would be an induced subgraph. The following remarks restrict
the possible components.

1. If C is a component at (z,y), then either = is degenerate or y is degenerate.

2. For components at (b, d), b must be degenerate and for components at (d,),
e must be degenerate, otherwise the second graph in the list is an induced
subgraph.

. Consider components at (b,c) with at least two vertices. Either b or ¢ is
degenerate for all these components, otherwise the second graph from list 3 is
an induced subgraph.

. If there is a component at (b, ¢) with at least two vertices for which ¢ is degen-
erate, then for all components at (e, f), e must be degenerate, otherwise the
fourth graph in the list is an induced subgraph. If there is a component at (b, c)
with at least two vertices for which b is degenerate then for all components
at (e, f), f must be degenerate, otherwise the third subgraph is an induced
subgraph. Without loss of generality, we assume that for all components at
(b, ¢), ¢ is degenerate and for all components at (e, f), e is degenerate.

. If there is a component at (b, d) and one at (d, e), then the third graph in the
list is an induced subgraph, hence this can not be the case.

. If there is a component at (e, f) with at least two vertices (for which e is
degenerate) then there can be no component at (b,d), otherwise the third
graph from the list is an induced subgraph.

. If there is a component at (b, c) with at least two vertices, then all components
at (b,d) can have only one vertex, otherwise the second graph of the list is an
induced subgraph.

. Suppose there is a component at (b, d). Then all components at (b, c) can have
at most two vertices. Furthermore, if there is a component at (b, ¢) with two
vertices, then it is the only component at (b, c). Otherwise, the third subgraph
of the list is an induced subgraph.

It follows that only one of two cases can occur.

o There is a component at (b,d). Then there is no component at (d,e). All
components at (b,d) and at (e, f) have one vertex. Either all components at
(b, ¢) have one vertex or there is only one component at (b, ¢), in which case it
can have at most two vertices and ¢ is degenerate.

e There are only components at (b,c), (d,e) and (e, f). For all components at
(b, ¢), cis degenerate. For all components at (d, e) and at (e, f), e is degenerate.

It is easily checked (e.g. by methods described in the next section), that both types
are superperfect. O

Notice that the list of forbidden induced subgraphs is infinite. In the next section

we show that for each k there is a finite characterization of superperfect k-trees, by
means of forbidden configurations. Furthermore we give for each k a constant time
algorithm to find this characterization. As a consequence we find a linear time
algorithm to check if a k-tree is superperfect.

8

4 k-trees and superperfection

In this section, let k¥ be some constant, and let G be a k-tree. We start by showing
that we can restrict the set of orientations to test if G is superperfect.

Definition 4.1
A coloring of a triangulated graph G(V, E) with k + 1 colors is a function C : V —
{1,...,k + 1}, such that C(z) # C(y) whenever z and y are adjacent.

In this paper we only use colorings with k + 1 colors; we do not always mention the
number of colors. Notice that a coloring of a k-tree is unique up to a permutation
of the colors:

Lemma 4.1 If C and C’ are two colorings of a k-tree G = (V, E) then there exists
a permutation 7 of the colors {1,...,k + 1} such that for every vertexr z, C(z) =

7(C'(z)).

Since a coloring of a k-tree is unique up to a permutation of the colors, the following
set of orientations is uniquely defined for each k-tree.

Definition 4.2

Let G be a graph and let C be a coloring of G with k+1 colors. For each permutation
7 of the colors we define an orientation F, as follows. Direct the edge (z,y) from z

to y if 7(C(z)) < 7(C(y)). We define F.(G) as the set of orientations obtained in
this way.

The following lemma follows immediately from definition 4.2.
Lemma 4.2 If G is a k-tree then:

1 1F] = (k+1).

2. Each F € F. is acyclic.

3. If F € F, then each path pn in F has at most k + 1 vertices.

Definition 4.3
Let G be a k-tree. We define F* as the set of acyclic orientations of G, of which
every path contains at most k + 1 vertices.

Notice that F, C F>.
Lemma 4.3 F, = F*.

Proof:

We proof that |F*| = (k+1)!. Let F € F*. Let S be a k-clique in G, and let z and
y be two vertices which are adjacent to all vertices of S. Since S is a clique and F
is acyclic, there is a unique ordering of the vertices of S, say s, s2,. .., Sk, such that
s; — s; if and only if ¢ > j. Since x is adjacent to all vertices of S, there exists an
index 0 < t; < k such that ¢ — s;forall 1 <i<t,and s; >z forallt, <j <k
The same holds for y with index ¢,. Consider the case t, < t,. Then F has a path
of length k + 2:

(Skask-——l’ ce s Sty41s Y Sty - o9 St 415 T, Sty .- 331)

Since F € F*, we find that ¢, = t,. Now consider the recursive construction of G as
a k-tree. Start with an acyclic orientation of a (k + 1)-clique. This can be done in
(k + 1)! manners. If we add a new vertex v and make it adjacent to a k-clique, by
the argument above, the orientations of the edges incident with v are determined.

Hence |F*| = (k + 1)!. O

Definition 4.4

Let F' be an acyclic orientation. A path y in F is contained in a path y', if all
vertices of u are also vertices of p'.

Lemma 4.4 Let F € F.. Then any path y in F is contained in a path y' with k+1
vertices.

Proof:

Let C be a coloring and let F = F,. The colors in the path p must appear in the
same order as in the permutation. Assume there is a gap between adjacent colors
c1 and c; in the path (i.e. there is a color in the permutation between ¢; and c;).
Since the edge of the path with colors ¢; and ¢, is contained in a (k + 1)-clique, the
missing colors can be put between ¢; and ¢;. Thus we can make a longer path '
containing 4. a

Theorem 4.1 Let G be a k-tree. Then G is superperfect if and only if

Vo[min maxw(u) = UG, w)]
Proof:
Assume G is superperfect. Let w be a non-negative weighting. There is an orien-
tation F, such that max, w(y) = Q(G,w). If every path in F has at most k¥ + 1
vertices, we are done. Assume F' has a path with more than k + 1 vertices. Now
increase all weights with some constant L > (G, w). Let w’ be this new weighting.
Notice that Q(G,w’) = Q(G,w) + (k + 1)L. Since G is superperfect, there must

10

be an orientation F' for this new weighting w’. Suppose F' also has a path g with
more than k + 1 vertices. Then (with |¢| the number of vertices of y):

QUG W) =G w)+ (k+1)L > w'(p)

w(p) + [p|L
wipe) + (k +2)L
(k+2)L

ALY

Since L > Q(G, w), this is a contradiction. We may conclude that F' € F* = F..
We show that F” is also a good orientation for the weighting w. Let v be a path in
F'. By lemma 4.4, v is contained in a path v* with k + 1 vertices. Hence

w(v) w(v*) =w'(r*) - (k+ 1)L < QG,w') - (k+ 1)L = G, w)

The converse is trivial. a

Definition 4.5

Let G be a triangulated graph and let C be a coloring of G with k£ + 1 colors. For
each permutation 7 of the colors, let P(n) be the set of paths in F, which are not
contained in a clique, and which have k + 1 vertices. If Q is a set of paths in G, we
say that Q forms a cover if, for every permutation =, there is a path g4 € @ which
can be oriented such that it is in P(x). A cover is called minimal if it contains

3(k + 1)! paths.

Lemma 4.5 Let G be a k-tree. If for some permutation =, P(r) = 0, then G is a
comparability graph (hence superperfect).

Proof:

Suppose P(w) = @. Consider the orientation F,. If there is a path in F; which is
not contained in a clique then, by lemma 4.4, P(7) can not be empty. Hence, every
path in F; is contained in a clique. Since Fy is acyclic, the lemma follows. O

Definition 4.6
Let G be a k-tree and let C be a coloring of G. Let S be a maximal clique of G, and
let Q be a minimal cover. Define LP(G, S, Q) as the following set of inequalities:

1. For each vertex z: w(z) > 0.
2. For each maximal clique S’ # S: w(S’) < w(S).
3. For each path u of Q: w(p) > w(S).

We call the second type of inequalities, the clique inequalities. The inequalities of
the third type are called the path inequalities.

11

Lemma 4.6 There aren —k —1 clique inequalities and 1(k + 1)! path inequalities.

Proof:
Notice that a k-tree has n — k cliques with k£ + 1 vertices. 0O

Theorem 4.2 Let G be a k-tree with a coloring C. G is not superperfect if and

only if there is a mazimal cligue S and a minimal cover Q such that LP(G, S, Q)
has a solution.

Proof:

Suppose LP(G, S, Q) has a solution. Take this solution as a weighting. Then, clearly,
for any orientation F; there is a path (in Q and in P(7)) which is heavier than the
heaviest clique S. By theorem 4.1 G is not superperfect. On the other hand, if G is
not superperfect, there exists a weighting w such that for every orientation F, there
is a path which is heavier than the heaviest clique (hence it can not be contained
in a clique). By lemma 4.4 we may assume this path has k + 1 vertices, hence it is
in P(r). Take S to be the heaviest clique and let Q be a minimal cover for these
paths. a

Notice that we could use theorem 4.2 to make a polynomial time algorithm to test
superperfection on k-trees: There are at most n*+! different paths of length k, hence
the number of minimal covers is at most (n*+1)3(*+1)!_ Since the number of maximal
cliques of G is at most n — k, we only have to check for a polynomial number of
sets of inequalities if it has a solution. This checking can be done in polynomial
time, e.g. by the ellipsoid method. We now show that there also exists a linear time
algorithm.

Consider a set of inequalities LP(G, S, Q) which has a solution. Notice that if
some vertex y does not appear in the path inequalities then we can set the weight

w(y) = 0. This new weighting is also a solution. Hence we can transform the set of
inequalities as follows:

Definition 4.7

Let G be a k-tree and let C be a coloring of G. Let S be a maximal clique, and let
Q be a cover. Let H be the subgraph of G induced by the vertices of S and of all
paths in Q. Define LP'(H, S, Q) as the following set of inequalities:

1. For each vertex z of H: w(z) > 0.
2. For each maximal clique S’ # S of H: w(S5’) < w(S).
3. For each path g in Q: w(p) > w(S).
The following lemma follows directly from the definitions 4.6 and 4.7.
Lemma 4.7 LP(G, S, Q) has a solution if and only if LP'(H, S, Q) has a solution.

12

Lemma 4.8 The number of inequalities of LP'(H, S, Q) is bounded by a constant.

Proof:

There are 1(k+1)! paths in Q, each involving k + 1 variables. The clique S has also
k+1 vertices, hence it follows that the subgraph H, has at most (3(k+1)!+1)(k+1)
vertices. Since H is triangulated, the number of maximal cliques in H is bounded
by the number of vertices. Hence the number of clique inequalities is bounded by

Ak + 1)+ 1)(k+1). o

Notice that we now have the following algorithm to test superperfection of k-trees.
Algorithm to check superperfection of G

e Generate all (k + 1)-colored triangulated graphs H, with at most (1 + 1(k +
(K + 1) vertices, for which there exists:

1. A maximal clique S with k£ + 1 vertices

2. A set Q of 2(k + 1)! paths, which is a minimal cover,
such that LP'(H, S, Q) has a solution.
e Make a coloring of G (with k + 1 colors).

o Check if a graph H from this list is an induced subgraph of G (preserving col-
ors). If G does have a subgraph from the list, G is not superperfect, otherwise
it 1s.

Notice that generating the list takes constant time (if k is a constant). Since the

subgraphs have constant size, we can check if such a subgraph is an induced subgraph
of G in linear time, using standard techniques for (partial) k-trees (see [1]).

Theorem 4.3 The algorithm correctly determines if G is superperfect, and does so
in linear time.

Proof:

Assume G is not superperfect. Let C be a coloring of G. By theorem 4.2,
LP(G,S,Q) has a solution for some maximal clique S and some minimal cover
Q. Take H the colored subgraph induced by vertices of S and of paths in Q. By
lemma 4.7, LP'(H, S, Q) has a solution, so the subgraph H is in the list. Conversely,
suppose the colored graph G has a colored induced subgraph H from the list. Then
H has a clique S with k + 1 vertices and a minimal cover Q such that LP'(H, S, Q)
has a solution. Since H is an induced subgraph of G preserving colors, the clique S is
also a maximal clique in G and the cover @ is also a cover for G. Since LP(G, S, Q)
has a solution, G can not be superperfect.]

Notice that the list only has to contain those subgraphs H, of which every vertex is
either in the maximal clique S or on some path in @ (with S and Q as defined in
the algorithm). For reasons of simplicity, we left this detail out of the algorithm.

13

5 Conclusions

In this paper we presented a linear time algorithm to test superperfection of k-
trees, for some constant k. We also showed there exists a list of constant size, of
forbidden colored triangulated graphs, such that G is superperfect if and only if
the colored graph G does not have an induced subgraph (preserving colors) from
this list. Finally, we completely characterized the 2-trees which are superperfect, by
means of forbidden induced subgraphs. To test superperfection on partial k-trees
remains an open problem.

6 Acknowledgements

We like to thank Prof. D. Seese for valuable suggestions.

References

[1] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, J. Algorithms, 12, 308-340, 1991.

[2] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees. Disc. Appl. Math., 23, 11-24, 1989.

[3] H.L. Bodlaender and T. Kloks, Better algorithms for the pathwidth and
treewidth of graphs, Proceedings of the 18th International colloquium on Au-
tomata, Languages and Programming, 544-555, Springer Verlag, Lecture Notes
in Computer Science, vol. 510, 1991.

[4] C. Berge and C. Chvatal, Topics on perfect graphs, Annals of Discrete Mathe-
matics 21 1984.

[5] K.S. Booth and G.S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms, Journal of Computer
and System Sciences 13, 335 — 379, 1976.

[6] J.E. Cohen, J. Komldés and T. Mueller, The probability of an interval graph,
and why it matters, Proc. of Symposia in Pure Math. 34, 97 — 115, 1979.

[7] P.C. Fishburn, An interval graph is not a comparability graph, J. Combin.
Theory 8, 442 — 443, 1970.

[8] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific
J. Math. 15, 835 — 855, 1965.

[9] T. Gallai, Transitiv orientierbaren Graphen, Acta Math. Sci. Hung. 18, 25— 66,
1967.

14

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs
and of interval graphs, Canad. J. Math. 16, 539 — 548, 1964.

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

J. Lagergren and S. Arnborg, Finding minimal forbidden minors using a fi-
nite congruence, Proceedings of the 18th International colloguium on Automata,
Languages and Programming, 532-543, Springer Verlag, Lecture Notes in Com-
puter Science, vol. 510, 1991.

L. Lovasz, Normal hypergraphs and the perfect graph conjecture, Discrete
Math., 2, 253 — 267, 1972.

J. Matousek and R. Thomas, Algorithms finding tree-decompositions of graphs,
Journal of Algorithms 12, 1-22, 1991.

M. Jean, An interval graph is a comparability graph, J. Combin. Theory 7,
189 — 190, 1969.

A. Pnuelli, A. Lempel, and S. Even, Transitive orientation of graphs and iden-
tification of permutation graphs, Canad. J. Math. 23, 160 — 175, 1971.

B.A. Reed, Finding approximate separators and computing treewidth quickly,
To appear in STOC’92.

N. Robertson and P.D. Seymour, Graph minors — a survey. In I. Anderson,
editor, Surveys in Combinatorics 153-171. Cambridge Univ. Press 1985.

J. Spinrad, On comparability and permutation graphs, STAM J. Comp. 14, No.
3, August 1985.

15

