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for
incremental attribute evaluation

Maarten Pennings, Doaitse Swierstra and Harald Vogt*

Abstract

This paper presents a technique for the efficient incremental evaluation of Attribute
Grammars. Through its generality, the applied approach may be affective too in the
evaluation of Higher-order Attribute Grammars.

Our approach is an extension of a simpler algorithm for incremental evaluation, where
functions, corresponding to visit sequences, are cached. Consequently, attributes are now
either found in the cache or they are recomputed, so there is no longer need to represent
the attributed tree explicitly. We may share common subtrees, avoiding repeated attribute
evaluation, thus solving a typical HAG problem.

We propose the following change: instead of explicitly representing the tree and calling
visit sequence functions to compute the attributes, the tree is represented through a set
of visit functions corresponding to the successive visits. These functions are constructed
using the visit sequences as building blocks.

This technique has two major advantages. Firstly, a visit function characterizes pre-
cisely that part of the tree that would actually have been visited in the previous approach,
thus increasing the number of cache hits. Secondly, copy rules may be removed during
the construction phase. This results in shortcircuiting copychains and in minimizing the
number of recomputed functions.

1 Introduction

Attribute Grammars (AGs) [Kn68, Kn71] describe the computation of attributes: values
associated with the nodes of a tree. Trees are described with a context free grammar and the
attribute computation is defined through semantic functions. Attribute grammars are used to
define languages and form the basis of compilers, language-based editors and other language
based tools [DeJoLo88, DeJo90, Alg1].

Higher order attribute grammars (HAGs) [VoSwKu89] remove the artificial distinction be-
tween the syntactic level (context free grammar) and the semantic level (attributes) in attri-
bute grammars. This strict separation is removed in two ways: trees can be defined through
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attribution, and such trees may be instantiated (and attributed!). Trees defined through at-
tribution are known as non-terminal attributes. A non-terminal attribute occurs both as a
non-terminal on the right hand side of a production rule and as an attribute on the left hand
side of an attribution rule of that production, thus promoting trees to first class citizens.

Our new evaluation technique is based on an efficient algorithm for ordered HAGs which is
presented in the next section. In Section 3 the new technique is explained with an informal
example. Section 4 presents a detailed example using the old algorithm and in Section 5 the
new technique is applied to it. Finally, Section 6 contains the conclusions.

2 Introduction to the old algorithm

The new algorithm presented in this paper resulted from our research on efficient incremental
evaluators for higher order attribute grammars. Typical HAG features make the approaches
for normal AGs unsuitable for evaluating them.

Attribute evaluators for ordered AGs [Ka80, Ye83, TeCh90] can be trivially adapted to handle
ordered HAGs [VoSwKu89]. The adapted evaluator, however, attributes instances of non-
terminal attributes with the same inherited attributes separately. This leads, amongst others,
to a non-optimal incremental behavior after a change to such an attribute, as can be seen in
the recently published algorithm of [TeCh90]. A better technique is the evaluation algorithm
for OHAGs in [VoSwKu91, SwVo91]. It handles multiple occurrences of the same subtree
efficiently. This algorithm is based on the combination of the following ideas:

Visit sequence functions. Attribute values are computed by visit sequence functions. Such
functions take as parameter a tree and a subset of inherited attributes of the root of
that tree and they return a subset of the synthesized attributes (of the root). The entire
evaluator consists of visit sequence functions that recursively call each other in order to
attribute the tree.

Caching. In a conventional incremental treewalk evaluator a partially attributed tree can be
considered as a very efficient caching mechanism—where cashing is replaced by explicit
navigation—for the semantic functions. Instead of using a separate cache for the results
of semantic functions, as was done in [Pu88] only visit sequence functions are cached:
one uniform treatment of semantic functions and attribute evaluation. Furthermore, we

have no seperate administration on whether attributes have changed and further visits
are necessary.

This approach is more efficient because a cache hit of a visit sequence function means
that the entire visit to the (possibly large) tree can be skipped. Furthermore, a visit
sequence function may return the results of several semantic functions at a time.

Memoed constructors. Since attributes may be found in the cache, there is no longer need
to store them in the tree. This allows us to share multiple instances of the same tree.

As in [TeCh90], we use memoed treeconstructors. A memoed (cached) constructor is
called a ‘hashing cons’ in [Hu85).

Bindings. Although the above ideas seem appealing at first sight, a complication is that
attributes computed in an earlier visit may have to be preserved for use in later visits.



Normally, this is no problem since attributes are stored in the tree. Now these val-
ues, called bindings, must be passed explicitly to the future visits. Each visit sequence
function therefore not only computes synthesized attributes but also bindings for sub-
sequent visits. Bindings computed by earlier visits are passed as parameters to later
visit sequence functions.

3 Introduction to the new algorithm

The original visit sequences of [Ka80] were designed with the goal to minimize the number
of visits to each node. In the case of incremental evaluation, however, one’s goal will be to
maximize the number of cache hits for the visit sequence functions. The parameters of these

functions—the tree, the inherited attributes and the bindings—form the cache key. Let us
examine them.

An essential property of the construction of bindings is that when calling a visit sequence
function with its bindings, these bindings contain precisely that information that will be used
in this visit. This is a direct result of the fact that these bindings were constructed during
earlier visits, at which time it was known what productions had been applied and what actual
dependencies are occurring in the subtrees. Thus there is little room for improvement here.

The situation is different however when we inspect the role of the tree parameter to the visit
sequence functions. Always the complete tree is passed and not only those parts that will
actually be traversed by the called visit sequence function. Since the complete tree is used
as part of the key in the function cache, unnecessary visit calls may be performed. Our
new technique eliminates the above mentioned shortcoming by modifying the [VoSwKu91]
algorithm as follows: instead of first constructing the tree followed by applying the visit
sequence function associated with the root to the entire tree, we represent the tree through a
set of large visit functions. These functions are constructed by composing the visit sequence
functions of each treenode. As a result, the number of cache hits increases since the visit
functions now only depend on that part of the tree that will actually be visited.

Let us have a look at an example where we have visits which pass through different parts
of the subtree. We model a language which does not demand identifiers to be declared
before they are used. This naturally leads to a two-pass algorithm: one pass for constructing
the environment and a second pass for actually compiling the statements. In Figure 1 an
example tree is given. The dashed arrows indicate the dataflow: the leftmost for collecting the
declarations, the middle one for distributing the environment and the rightmost for computing
the code. Notice that for collecting the declarations only the identifiers of the declaration
nodes are passed whereas for computing the code only the identifiers of the statement nodes
are visited.

What happens when we change a using occurrence? Suppose we change the N-node labeled
with Change. Due to constructor memoing, the newly constructed tree shares the lower part
(the four L-nodes and three N-nodes) with the old tree. But there is more: since the first
visit subsequence of a stat production does not refer to the N-son (a stat production doesn’t
add a declaration), the first visit function isn’t changed. So the entire first visit of the new
tree (called from the root-function) is found in the cache and hence may be skipped.

Not only doesn’t the first visit function to a stat node refer to its N-son, it doesn’t do much



Figure 1: Dataflow analyses.

at all. It simply copies values, or rephrased, it consists of so called copy rules only. So, If
we add another statement just above the one we just changed, a useless identity function is
inserted in the first visit function. Hence this function is changed, so no cache hit will occur.
But, if we are able to identify copy rules (identity functions) and eliminate them, there will
be a cache hit again. In this way, we not only get a smaller (and faster) visit function, but
we will also get more cache hits.

The next section explains the old algorithm by using the above example in detail. This
example will also be used in the explanation of the new algorithm in Section 5.

4 The old algorithm: an example

We present a simple grammar implementing the “programming language” from the previous
section. To illustrate all aspects of the algorithm we made the grammar two-pass. In pass
one the definitions will be collected, so that in pass two the actual translation may take place.
Thus the “main” non-terminal (L) has two visits, so that the visit sequences [Ka80] associated
with the production rules that may be applied to L (stat, decl and empty) consist of two
subsequences.

We now define visit sequence functions corresponding to these visit subsequences. For each
non-terminal we construct one function for each visit. The ith visit sequence function of a
non-terminal is applied to the inherited attributes which have newly become available for
visit ¢ and it returns the synthesized attributes for that visit.

This doesn’t differ too much from Kastens’ approach. But Kastens uses the abstract tree as



a repository in which attributes are stored between defining and using visits. As we do not
have an explicit tree representation we must store these intermediate results somewhere else.
The problem is solved by introducting so called bindings, their usage is illustrated further on.

4.1 The example grammar

A program in the example grammar is a list of “declarations” (such as var x) and “state-
ments” (like use x). They may be mixed freely, and we do not require definition before use.
In the translation process, each variable is mapped onto a number. The resulting list will con-
tain this number for each using occurrence, and the negation of it for the defining occurrence.
Hence

(use x; use y; var y; use x; use y; Use xz; var X; use X; Var x; use x;)
is mapped onto the list

3: 1: '1n 3,1, 2, -2, 3, ’3, 3

The grammar of our language has the following (labeled) production rules:

root: S-— (L)
decl: L —varN;L
stat: L —useN;L
empty: L —¢
name: N — sir

Since we are using trees as arguments for our visit sequence functions, we need a concise
notation for trees. We will follow a MIRANDA-like notation [Tu85] for terms. So, the above
grammar is transformed (leaving out the terminals (‘(’, ‘)’, ‘var’, ‘use’, and *;’) since they are
not of interest to us) to:

S = root(L)

L = decl(N, L)
| stat(N,L)
| empty()

N = name(str)

This grammar is as follows augmented with attributes. Apart from the already introduced
type str (representing identifiers) we distinguish env = [str] and code = [num] where type
num represents the natural numbers (with square brackets we denote “list-of”). The start-
symbol S has a single (synthesized) attribute returning the code whereas the listsymbol L
has three attributes: one that collects the declarations (synthesized), one that distributes the
environment (inherited) and one that synthesizes the code. See Figure 2 for the complete
attribute grammar.

4.2 Visit (sub)sequences

In Figure 3 the attribute dependencies are presented graphically. The attributes of the sym-
bols are topologically sorted according to their (indirect) dependencies. The dashed lines



Signature L<tdo, |eo, Tco> = decl( N<tn>, L<1dy, le1, Te1>)

S<fcode> do := [n] # dy;
L<{tenv, lenv, {code> €1 = €o)
N<TIstr> co := [—lookup -eo-n] + €1
| stat(N<in>, L<{dy, le1, Te1>)

S<fco> = root(L<Td, le, TC1>) do 1= dy;

e:=d; €1 = €o;

co = cy co := [lookup -€o-n] # c1
N<in> = name(str) | empty()

n = str do :=[);

co =[]

Figure 2: The attribute grammar.

Figure 3: Attribute dependencies in a production rule.

indicate a visit border: attributes to the left of it are evaluated during the first visit and
attributes to the right of it during the second.

Note that when a tree is constructed from these productions, the “pieces” fit nicely together.
This does not only hold for the non-terminals, the inherited and synthesized attributes, but
also for the visit borders: a solid disk hooks into an open circle splitting the entire tree. With
this division it is fairly simple to determine suitable visit (sub)sequences: see Figure 4 in
which name and empty are omitted for brevity.

4.3 From visit (sub)sequences to a functional program

We will not show the mapping from visit (sub)sequences to visit sequence functions. This
is a straightforward process: each visit(X,1) instruction is mapped to a visit-X-i function
call with the tree (X) as first parameter and the appropriate inherited attributes as the
next parameters. The function returns the computed synthesized attributes. In Figure 5 the
resulting functions are given.

The reader may have noticed that we use - for function application. We do this in order not



VS(root(L))
= VSS(root(L),1)
= visit(L, 1) {ret d}

VS(decl(N, L))
=VSS(decl(N, L),1)
=visit(N, 1) {ret n}

jei=d ; visit (L, 1) {ret d1}

; visit(L, 2) {ret ¢1} sdo :=[n]# dv

;C0 = ¢y ; return(1)

; return(1) ; VSS(decl(N, L), 2)
=€1 =€

; visit (L, 2) {ret 1}
; €0 := [—lookup -eo-n] + €1

VS(stat(N, L))
= VSS(stat(N, L), 1)
= visit(L, 1) {ret d1}
;do :=d1
; return(1)
; VSS(stat(N, L), 2)
= visit(N, 1) {ret n}
;€1 :=¢€g
; visit (L, 2) {ret ¢1}
; ¢o := [lookup -€o-n] ++ €1

; return(2) ; return(2)

Figure 4: The visit sequences for productions root, decl and stat.

to confuse functions and constructors. Note also that we overload the symbols S, L and N;
they are used as type identifiers as well as dummies in the patterns.

Signature visit-L-1- dec}( N, L) = do visit-L-1- stat(N, L) = do
visit-S-1 = S — code where 1= visit-N-1. N where d; := visit-L-1.L
visit-L-1 == L — env ; dy := visit-L-1.L ; doi=dh
visit-L-2 :: L x env — code ; do:=[n]+ d1

visit-N-1 == N — str

visit-S-1- root (L) = co
where d := visit-L-1.L

visit-L-2- decl(N, L)-e0 = co
where e; := €9

visit-L-2-stat(N, L)-e0 = co
where n := visit-N-1:- N

; ex=d 3 ¢1 = visit-L-2-L.¢y ; €1 :=eo
s ¢ = visit-L-2-L-e ; co:= [—lookup -eo{n]] + & ; 1 := visit-L-2-L-e;
i Cai=c1 ; co = [lookup -eo-n] + 1

Figure 5: Visit sequence functions with side-effects: attribute [n]is stored in the tree.

4.4 Bindings

One of the major drawbacks of the visit sequence functions presented in Figure 5 is that they
have side-effects. Some attributes must remain known over several visits. In our example
N.str—in Figure 5 these occurrences are boxed—needs to be stored in the tree.

Taking another look at the attribute dependencies of production decl in Figure 3, we observe
that one arrow—from N. str to Lo. code—is crossing a visit border. Attribute N.str is eval-
uated (and needed) in the first visit but it is also needed in the second one. Therefore it can
not be deleted when returning from the first visit. The conventional solution is to store the
attribute in the tree, but we take a different approach. The later needed values are passed
to the father, and we rely on him to pass them down for the next visit. Such a link from
visit-X-i to visit-X-j via a parent is called a binding from ¢ to j for symbol X.

In Figure 6 the production rules are enhanced with bindings, bind = stack of str. Note that
there is no need to bind N. str in production stat: N.str is not used in the first visit to L so
N is visited in Ls second visit. That an arrow is still crossing the visit border in production



Figure 6: Introduction of bindings.

stat is just a consequence of the limited possibilities of 2D drawings. The visit sequence
functions enhanced with bindings for our sample grammar are given in Figure 7.

Signature visit-L-1-decl(N, L) = (do,bo]  visit-L-1-
visit-S-1 = S — code where n := visit-N-1-N where
visit-L-1 =z L — env x bind ; (di,b1) := visit-L-1-L ;
visit-L-2 :: L % env x bind — code i doi=[n]ludy ;
visit-N-1 = N — str ; bo := push -n-b;

visit-S-1-root(L) = co

visit-L-2- decl(N, L)-eo-bo = co visit-L-2-

where (d,b] := visit-L-1-L where e :=ep where

; ei=d

; €1 = visit-L-2-L-e-b

; Co =1

; (m,b1) := pop -bo
; €1 := visit-L-2-L-e1-b1
; co := [— lookup -e0-n] + a1

Figure 7: Visit sequence functions with bindings.

5 The new algorithm, the same example

’
b}
K
3

stat(N, L) = (do, bo)
(dl N ) = visit-L-1-1

.do
.bo

= d1

= b1

stat(N, L)-eo-bo = ¢o

n:

€1
b
(£}
co

= visit-N-1-N

= €0

:=bo

:= visit-L-2-L-ey b
:= [lookup -eo-n] 4+ c1

In this section the new algorithm for evaluating (higher order) attribute grammars is ex-
plained. The explanation is based upon the example in the previous section and consists of
the following three steps. Each of these steps will be discussed in more detail in the next

sections.

1. Consider the tree T = root(decl(name(A), stat(name(A), empty()))) which describes
the program (var A; use A;). The attribute code for T can be obtained by calling
visit-S-1-T. Instead of visiting tree T we define new constructors root, decl, stat,
empty, and name which are used in constructing visit functions corresponding to
trees. These constructors take the visit functions of the subtrees as parameters and



construct the visit functions for the parent tree. Calling the parameterless visit function

root(decl(name(A), stat(name(4), empty()))) returns the attribute code for T.

2. In order to have an efficient incremental construction and evaluation of visit functions,
the visit functions constructors will be memoed.

3. During the construction of visit functions the copy rules (identity functions) may be
eliminated, resulting in faster functions and more cache hits.

Signature decl((v-N-1), (v-L-1,v-L-2)) stat((v-N-1), (v-L-1,v-L-2))
reot o L -8 = (rv-L-1,1v-L-2) = (rv-L-1,1v-L-2)
decl o NxL—L where rv-L-1 = (do, bo) where 1v-L-1 = (do, bo)
stat = NxL— L where n := v-N-1 where (d1, b1 ) := v-L-1
empty :: - L i (di1,b1):=v-1-1 ; do v=d1
name :: str — N ; do = [n]+ di ; bo:=b
; bo := push -n-by ; Tv-L-2.€0-bo = co
root((v-L-1,v-L-2)) = (xv-5-1) ; Tv-L-2-e0-bo = co where n := v-N-1
where rv-S-1 = co where e, := eo ; €1 :=é€o
where (d,b) := v-L-1 ; (n,b1) :=pop-bo ; byi=bo
; e:x=d ; €1 :=v-L-2-e1-b1 ; ¢ = v-L-2-e1-b1
; ¢y :=v-L-2-e-b ; co := [—lookup -eo-n] + c1 ; co := [lookup -eo-n] 4+ ¢1
y Co =01

Figure 8: Tuple constructors.

5.1 Removing the tree

How do we “remove” the tree? As stated in the introduction to this section, we are looking,
for example, for a structure [ representing a tree ! of type L for which we have the property

J = (visit-L-1+1 , visit-L-2.1)

so that we may call (m,-[)-e-b instead of visit-L-2-l-e-b (operator = is the tuple-projection:
Ti-(v1,.. .»Va] = v;; note also that we use “straight” brackets (...]) for tuples). In general
a tree is represented by a tuple of its partially parameterised visit functions. We call such a
tuple a lifted tree. We denote lifting with the symbol _. In the table below we show how to
determine the signatures of the lifted trees.

[ Tree | Function | Signature | Lifted signature [ Lifted tree |
S visit-S5-1 | S — code S = — code S =8,
L visit-L-1 | L —envxbind | L, := —envx bind | L =L, x L,
visit-L-2 | L x env x bind — code Lo :=env x bind — code
N visit-N-1 [ N — str N, = ~— str N:=N,

The last column of the table shows that the type of the / tree introduced at the begining of
this section is L, (thus [ :: L) so that my-f :: L, and mo- [ :: L,.

How do we compute those lifted trees? We have to lift the original tree constructors for that.
For example constructor stat :: N x L — L is lifted to constructor stat :: N x L — L.



Hence, stat constructs a two-tuple of visit functions to an L-tree, by combining the visit
functions of its sons: an N-tree (represented by a one-tuple N) and an L-tree (represented
by a two-tuple L). The definition of this construction is given in Figure 8.

5.2 Memoing constructors

Terms are often implemented by means of pointer structures. In order to save space, mem-
oconstructors can be used: equal structures are shared. This has another major advantage:
the term equality test reduces to fast pointer comparison. The effect of memoing constructors
on the Pascal-like program fragment

X!=X XOY ¥; Y:!™=X XOr ¥; X:*X XO0r Y

is illustrated in Figure 9. This figure just illustrates the basic idea. The main advantage of
memoing constructors is not the sharing of subtrees within a single tree (for example caused
by multiple instances of a non-terminal attribute), but the sharing of subtrees between the
old version and the updated version of the tree in an incremental environment.

Figure 9: Memoing constructors for statements and expressions.

Memoing is implemented as a “shell” around the constructor functions. Each constructor has
its own memoconstructor; for efficiency reasons, the caches (hash tables) may be merged. As
an example, see the memoed concat constructor on statements below:

function memo—concat(so : stat; s1 : stat) : stat
var sz : stat
begin
if InHashtable(“ concat”, so, 51)
then s2 := GetFromHashtable(“concat”, 30, 31)
else s; := concat(so, s1); InsertInHashtable(sz)
fi;
return(sz)
end

Figure 10.a represents a sample tree for our grammar. Each circle represents a treenode and
the names below it label the tree constructors used. Figure 10.b shows an equivalent but lifted

10



version. Each circle now represents a treenode that encapsulates a tuple of visit functions
which, in turn, are represented by the (lines and) solid discs. The names label the tuple
constructors used. Although a lifted tree constructor generates a tuple of functions (instead

of one term), equal terms in the old case yield equal tuples in the lifted case. Memoing is not
spoiled by lifting.

Jame; cmpty; cmpty, Jaame; cmpty; cmpiy;

a Tree constructors b Tuple constructors ¢ Function constructors  d Function constructors
lift split copy rule elimination

Figure 10: The different constructors.

Our goal, exploiting the independence of separate visits, is not yet reached however. We
have to split the tuples into the visit functions they consist of: instead of memoing the tuple
constructors we memo the visit function constructors. This is depicted in Figure 10.c; solid
discs are still visit function nodes, the names label visit function constructors.

The result of this transformation is a better incremental behaviour. Changing the identifier
of a stat-production imposes no changes on the first visit function because stat, has no
name;-son. So S is granted with a cache hit when calling this function. When changing the
identifier of a decl production the second visit function doesn’t change either. Note however
that when this visit function is called after the edit action, both its (input)parameters are
likely to differ from the previous call, since they both depend on the identifiers declared; so
a cache hit is unlikely in this case.

Constructors of visit functions may be thought of as an incomplete data flow graphs. These
graphs have holes, where other graphs need to be pasted in. For example, in production stat
(Figure 8) the graph for the second visit sequence function, rv-L-2, has two holes. One hole
for v-N-1 and one for v-L-2. Formulated differently, rv-L-2 = gtat,(v-N-1, v-L-2) where visit

11



function constructor gtat, is the graph of the combinator:

stat,(f,9) = [Av-N-1:: N, , v-L-2 :: L, eo :: env, bo :: bind
: co where n := v-N-1; €, := eo; by := bo; ¢1 1= v-L-2-€1-b1; €o := [lookup -eo-n] + 1

1f9

Since we have eight function bodies (visit subsequences) we will get eight visit function con-
structors: roat;, decl,, decl,, stat,, stat,, empty,, empty,, and name,. The signatures
of these constructors vary depending on the functions they bind. As we saw before, construc-
tor gtat, binds the first (and only) visit to N (typed N,) and a second visit to L (typed Lj).
Hence gtat, :: N, x L, — L,. Likewise we find

ail:m.l(.Ld’.La)
L, = decl, (N, L;)
| stat, (L,)
| empty,()
L, = declo(L,)
| stats(N,,L.)
| empty,()
N, = name, (str)

Another way of looking at it is the following transformation of constructor stat.

stat : NxL—> L
{ lifting }
stat = NxL—L
{ encapsulation }
staty = NxL— L
stat, :: N X L — L,
{ abbreviation }
stat; = Ny X(Ly x Ly) = Ly
stat, = Ny X(Ly X Lg) = La
{ split (each visit function is called exactly once) }
stat, = Ly - L
stat, :: IV, X Ly — L

The original tree constructors have been replaced by the tuple constructors which encapsulate
the visit function constructors. In Figure 11 this is made explicit. These visit function
constructors are the “smallest” constructors, hence they form the ideal “grain of memoing”.

reot =L o5 root((v-L-1,v-L-2)) = (raot, (v-L-1,v-L-2))

decl  NxL—L  decl((v-N-1),(v-I-1,v-L-2)) = (decl, (v-N-1,v-L-1), decl,(v-L-2))
stat, ¢ NxL—L  stat((v-N-1), (v-I-1,v-L-2)) = (stat, (v-L-1), stat,(v-N-1,v-1-2))
empty, : - L empty() = (empty, (), empty,())

name ::str  — N name(i) = (name, ({))

Figure 11: Tuple constructors encapsulating the visit function constructors.
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5.3 Removing copy rules

In the previous section we noticed that a change to an N-son of a stat node doesn’t change
the first visit function: a stat production adds nothing to the first visit. It inserts the identity
function; the functional equivalent of copy rules.

The final improvement we achieve is the elimination of such copy rules. In our example, visit
function constructor gtat, is such a copy rule. To see this, we derive

stat,(f)
= { see Figure 8 }
[Av-L-1 2 L,
: (do,bo) where (dy,b;) 1= v-L-1; dg :=dy; bo := b,
I-f
= { pairing }
(Av-L-1 =2 L,
: (do,bo) where (dy,b,]) := v-L-1; (do,bo) := (di,b1)
I-f
= { substitution }
[Av-L-1 2 L
¢ (do, bo) where (do,bo) := v-1-1
)-f
= { substitution }
(Av-L-1 =2 L
: v-L-1
1-f
= { B-reduction }

f

Since this constructor is nothing but the identity constructor, tuple constructor stat may be
changed to:

stat((v-N-1), (v-L-1,v-L-2)) = (v-L-1, stat,(v-N-1, v-L-2))

incorporating the elimination of copy rules. Figure 10.d shows the resulting tree. We now
not only have cache hits for the first visit function when we change the identifier of a stat
node; we even have cache hits for the first visit function after adding new stat productions!
And in addition to this speed up, we also gain in memory usage.

6 Conclusions

We have presented a new evaluation technique for attribute grammars based on a functional
approach. One large evaluation function is constructed for a given tree. This evaluation func-
tion can be efficiently incrementally updated using memoed constructors for visit functions.
Efficient incremental evaluation is achieved by caching these functions. Furthermore, since
visit functions now only depend on that part of the tree which is actually visited by them,
more cache hits are expected. A second advantage of our approach is that copy rules may be
removed automatically, thus saving visits and maximizing cache hits.
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