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Abstract

Let S be a set of n (possibly intersecting) line segments in the plane. We
show that the arrangement of S can be stored implicitly into a data struc-
ture of size O(nlog?®n) so that the following query can be answered in time
O(nll 2]log? n): Given two query points, determine whether they lie in the same
face of the arrangement of S and, if so, return a path between them that lies
within the face. This version of the implicit point location problem is motivated
by the following motion planning problem: Given a polygonal robot R with m
vertices and a planar region bounded by polygonal obstacles with n vertices
in total, preprocess them into a data structure so that, given initial and final
positions of R, one can quickly determine whether there exists a continuous
collision-free translational motion of R from the initial to the final position.
We show that such a query can be answered in time O((mn)/2log? mn) using
O(mnlog? mn) storage.
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1 Introduction

Point location in a subdivision in R? (i.e., preprocess a given subdivision so that the
face of the subdivision containing a query point can be found efficiently) is one of the
fundamental problems in computational geometry. In two dimensions, the problem
has been studied for a long time and several optimal algorithms are known. A planar
subdivision with n edges can be preprocessed in time O(n log n) into a linear size data
structure so that a query can be answered in time O(log n) [11, 26]. If all the faces of
the subdivision are simply connected, the preprocessing time can be reduced to O(n)
[5]. The problem becomes considerably more difficult in higher dimensions. Even in
three dimensions no efficient algorithm was known until very recently [22, 25], and,
in higher dimensions, efficient solutions are known only in some special cases, e.g.,
when the subdivision is formed by an arrangement of hyperplanes [7] or of algebraic
surfaces [6], or when the subdivision is a convex polyhedron [27].

All of the above algorithms assume that the explicit representation of the subdivi-
sion is given, and most of them (more or less) store the entire subdivision in the data
structure. For example, in the plane one assumes that all vertices, edges and faces of
the planar subdivision are given explicitly. In several applications, however, the sub-
division is induced by certain geometric objects, which may increase the complexity
of the subdivision substantially. In these cases, the subdivision may be represented
more compactly by defining it implicitly in terms of the underlying objects rather than
describing it explicitly. It is an interesting question whether we really need to store
the entire subdivision explicitly, or we can answer a query efficiently without storing
the entire subdivision. For example, a planar subdivision induced by an arrangement
of n lines can be described implicitly by giving the equations of the lines. But if we
represent the entire arrangement explicitly, we need to specify Q(n?) features. The

question in this case is whether we can answer a query using a data structure of size
O(n) instead of O(n?).

Motivated by various applications, researchers have studied the implicit point
location problem in the last few years [1, 10, 12]. If the subdivision is stored implicitly,
then the question is what information is required about the face that contains the
query point. There are several possibilities depending on the application. In certain
applications, it suffices to determine whether the query point lies inside any of the
geometric objects, or to return an object that contains the query point. In some of
these cases, the range searching structures can be modified to answer a point location
query, e.g. [1, 12, 20]. On the other hand, in some applications one wants to report
all the edges of the face containing the query point. Edelsbrunner et al. [10] have
shown (see also [2]) that a set £ of lines in the plane can be preprocessed into a data
structure of size O(nlog?n) so that the face in the arrangement of £, containing a
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query point, can be reported in time O(n'/?log®n + k), where k is the number of
edges in the face. They also showed that a set S of n segments in the plane can be
processed into a data structure of size O(n*/31og®® n) so that a point location query
can be answered in time O(n'/3log®n + k). But their approach fails to give a data
structure of roughly linear size for segments. It was an open question whether one
could develop a (close to) linear size data structure for point location queries in sets
of line segments, so that a query can be answered in roughly O(y/n) time.

In this paper we develop a data structure of size O(nlog?n) to preprocess a
set of segments so that the following point location query can be answered in time
O(n'/?log?n): Given two points, determine whether they lie in the same face of
the arrangement of S. This query problem may be somewhat easier than the one
considered in [10], because their solution can be modified to solve this problem. But
we are not aware of any close-to-linear size data structure for point location in an
arrangement of line segments. Another advantage of our algorithm is that it admits
a storage/query time tradeoff. For a given parameter nlog’n < s < n?, we can
construct a data structure of size O(s) so that a query can be answered in time
0(7"-; log? 5+ log n).

Our data structure is motivated by the following motion planning problem. We
are given a set O of polygonal obstacles with a total of n vertices and a polygonal
robot R (not necessarily simply connected) with m vertices. We want to preprocess ©
and R so that for given initial and final positions o7 and oF of R, respectively, we can
determine whether R can be translated from o to or without hitting any obstacle.
This problem can be reduced to determining whether two points lie in the same face
of a planar subdivision formed by O(mn) segments; see Section 6 for details.

One possible solution to the above motion planning problem is to compute the
entire arrangement of these segments and preprocess it for answering point location
queries. Then we can answer a query in O(log mn) time, but the storage required
is (m?n?) in the worst case. On the other hand, we can answer a query in time
O(mnlog mn) and O(mn) storage using the algorithm of Leven and Sharir [16]. So
the challenge is whether we can answer a query efficiently (in sublinear time) if we
allow only roughly O(mn) space. If R is a convex polygon, then a query can be
answered in O(log?(m +n)) time using O(m 4 n) space [15, 28]. But no efficient data
structure was known for nonconvex polygons. Using our point location structure,
we can preprocess R and O into an O(mnlog? mn) size data structure, so that the
above motion planning query can be answered in time O((mn)!/?log? mn). It can
also return a (translational) collision-free path between o; and o, if there exists one.
Furthermore, one can reduce the query time by allowing more space.

This paper is organized as follows. In Section 2 we describe certain properties of
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Figure 1: An arrangement of line segments with convex and nonconvex faces.

nonconvex faces of arrangements of segments and the basic ingredients of our solution.
Section 3 presents the data structure. In Section 4 we show how to adapt our solution
to finding a path between two query points, if they lie in the same face. We describe
the space/query-time tradeoff in Section 5 and discuss the application to the motion
planning problem in Section 6.

2 Arrangements of Line Segments

Let S be a set of n line segments in the plane. The arrangement A(S) consists of
convex faces and of nonconvex faces; some of the nonconvex faces may not even be
simply connected. It is easy to verify that each nonconvex face contains an endpoint
of some segment of S, so there are at most 2n nonconvex faces in A(S). Let A
denote the collection of nonconvex faces in A(S). Aronov et al. [3] showed that
the maximum complexity of m distinct faces in an arrangement of n segments is
O(n**m?3+ na(n) +mlogn), where a(n) is the extremely slowly growing functional
inverse of Ackermann’s function. This bound immediately implies that the total
complexity of all nonconvex faces is O(n*/). Moreover, since every reflex vertex is
an endpoint of some segment in S, there are only O(n) reflex vertices in A(S).

Due to technical reasons, we consider each segment two-sided, i.e., we expand
each edge into an infinitely thin rectangle. As a result, if both sides of an edge of the
arrangement appear in the same face, the two sides are treated as distinct edges and
if a face has a vertex of degree d > 2, then d — 1 copies of this vertex are created
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Figure 2: Expanding each edge and copying the vertices.

to ensure that each vertex has degree two (see Figure 2). Let ¢ be a nonconvex face
of A(S). The boundary of ¢ may consist of several connected components. Since
we consider the edges two-sided and copy the vertices of degree greater than 2, each
component of the boundary of ¢ is a simple cycle (see Figure 2). Let V = (vy,...,v)
be such a cycle, and let Wy = (wy, ..., w;) be the set of reflex vertices of V' plus the
vertices of V' whose y-coordinates are locally minimum or maximum, ordered in the
clockwise direction. See the left face of Figure 3 (for the sake of clarity we have not
expanded the edges of the face).

It is easily seen that there is at least one reflex vertex between two consecutive lo-
cally maximum vertices of V, and the same holds for locally minimum vertices. Hence,

the number of vertices in W is proportional to the number of endpoints appearing in
V. We thus have

Y X IVI=0(@?) and > 2 IWl=0(). (1)

c€N Vcycle of ¢ c€EN Vcycle of ¢

Without loss of generality, assume that wy = v;. Foreach 1 < i < §, let V; denote
the portion of V between w; and w;;; in the clockwise direction. By construction,
each V; is a y-monotone polygonal chain which, from w; to wi1, only makes turns
in clockwise direction. Let V; be the (geodesic) shortest path between w; and Wit1
homotopic to V;, that is, V; can be continuously deformed to V; so that the path
never leaves the face ¢ and never crosses any segment of S (see the right face of
Figure 3). We define the reduced cycle for V to be the cycle V formed by concatenating
Vi, Vo, .. V Notice that V is not necessarily a simple cycle. Let M; denote the
polygon formed by V; and V;, which we will refer to as a moon polygon. M; consists of
a convez chain V; and a concave chain V;. These two chains meet only at the topmost
and the bottommost vertices of M;. Since f/; is homotopic to V;, the interior of M;
does not intersect any segment of S, and furthermore, M; is a y-monotone polygon.
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Wsg (a)

(b)

Figure 3: (a) a nonconvex face c with five connected components, Wy, are indicated;
(b) the shortest paths of V(1) are shown dotted.

Note that some of the moon polygons may be degenerate in the sense that their
interiors may be empty (see e.g. the moon polygon formed by V; and V; in Figure 3).
We will discard such polygons. Let M. denote the set of moon polygons of ¢ with
nonempty interiors.

Lemma 2.1 Y Y |V|=0(n).

c€N Vcycleof ¢

Proof: Let V be a reduced formed by conca.tenatmg i, Va, .. ,V; where j = |Wy|.
Then |V| = 4, |Vi| - — j; the second term is due to the fa,ct that for each i, the
common endpoint of V; V; and V_,,l should be counted only once. We call a vertex

p€V;an interior vertex if p & {w;, wiy1}. Then |Vi| is 2 plus the number of interior
vertices in V;. Thus

~ j -~
[V| = |[Wy| + ) (# interior vertices in V).

i=1

We claim that a vertex can appear as an interior vertex of at most one V;. Suppose,
on the contrary, there is a vertex p that appears as an interior vertex of two reduced
chains V] and V;. Since the interiors of M; and M are disjoint, either V; or Vj, say
Vi, passes through p. But the only intersection points of V; and V,+1 are w; and w;4q,
which contradicts the assumption that p is an interior vertex of V.. Since each interior
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vertex is a reflex vertex, the total number of interior vertices over all reduced cycles
is O(n), therefore

X X VI=om+3Y, ¥ [Wv|=0(n)

c€N Vceycleof ¢ c€N Veycleof ¢

where the last equality follows from (1). O

Let V(,..., V() be the cycles of the boundary of c. For any cycle, we define
its interior to be the (open) bounded region enclosed by it, and the exterior is the
(open) unbounded region. If the face c is unbounded, then c lies in the exterior of all
V), ...,V and we define B, to be the portion of ¢ lying in the exterior of all the
reduced cycles V(1),... V), If ¢ is bounded, then we can assume that ¢ lies in the
interior of V(1) and in the exterior of all other cycles. We now define B, to be the
portion of ¢ that lies in the interior of V() and in the exterior of the other reduced
cycles. In order to ensure that B. is connected and does not contain any segment of
S in its interior, we add the reduced cycles of ¢ to the boundary of B.. We will refer
to B, as the body polygon of c¢. Thus every nonconvex face ¢ is partitioned into one
body polygon B, and a set M, of moon polygons. Body polygons are not necessarily
simple. See Figure 4 for the body polygon and moon polygons of the face of Figure 3.
Let B={B.|c€ N}, M =J.enx M., and let £ be the set of edges in the concave
chains of moon polygons. Since the edges of B, and the segments of £ are the edges
of the reduced cycles, we have

2 |Bl=0(n), [£]=0(n) and 3 |M|=0(n*?). (2)

ceEN Mem

3 The Data Structure

Recall that the query problem we are aiming to solve is: ‘Given two query points p
and g, do they lie in the same face of A(S)?’ If p and q lie in the same convez face of
A(S), then the segment pg does not intersect any segment of S. Conversely, if pg does
not intersect any segment of S, then p and ¢ lie in the same (not necessarily convex)
face of A(S). Consequently, we can determine whether p and ¢ lie in the same convex
face of .A(S) by preprocessing S for segment intersection detection queries, i.e., given
a query segment e determine whether e intersects any segment of S. Alternatively,
we can answer a segment intersection query by preprocessing S into a ray shooting
structure as follows. Determine the first intersection point of S and the ray emanating



Figure 4: (a) The body polygon, and (b) the nonempty moon polygons of the face of
3; M, M5, My, M7, M are the nonempty moon polygons of V(1), and the dark shaded
polygons are nonempty moon polygons of V5),

from p in direction pg. If it lies beyond ¢, then pg does not intersect any segment of
S.

Next, we describe another structure that can determine whether p and ¢ lie in
the same nonconvex face of A(S). If a point p lies in a nonconvex face ¢, then it
lies either in B, or in one of the moon polygons of M,. Therefore, to determine the
face of N containing p (if any), we will do point location in B, the set of all body
polygons, and in M, the set of all nonempty moon polygons. Since the polygons in B
are pairwise disjoint and the total complexity of B is O(n), we can apply any efficient
point location structure to preprocess B, see [11, 26]. But the complexity of M is
O(n*/3), so we cannot preprocess it explicitly if we allow only close-to-linear storage.
The following lemma suggests how to preprocess M implicitly.

Let e be an edge of a moon polygon M. We distinguish between two sides of e;
the one that lies in the interior (exterior) of M is denoted by et (resp. e~). If we
think of e as expanded into a very thin rectangle and of et, e~ as denoting the sides
of the rectangles that lie inside and outside M, respectively, then a ray p hits e from
the inside if it first intersects et and then e—.

Lemma 3.1 A point p lies inside a moon polygon M if and only if one of the two
horizontal rays emanating from p intersects an edge of a concave chain of M from
the inside before intersecting any other segment of SUE.



Proof: Follows immediately from the facts that the interior of M does not intersect
any segment of S, and that M is a y-monotone polygon. O

In view of the above lemma, we can determine the moon polygon that contains a
query point by answering ray shooting queries. We will preprocess S and £ separately.
Since we query £ with only horizontal rays, we need a structure that, given a query
point, can determine the segments that lie immediately to its left and to its right.
Recall that the segments in £ are nonintersecting except at their endpoint, so we can
use a persistent data structure to answer ray shooting queries [26].

In summary, we construct a data structure that consists of the following three
substructures.

1. A data structure ¥, for efficient ray shooting in the set S of n line segments in
the plane [1, 8].

2. A data structure ¥, for efficient (horizontal) ray shooting in the set £ of O(n)
edges of the nonempty moon polygons [26]. For each edge e of £ we also
distinguish which of its sides is e*, and we store with e in which nonconvex face
it lies.

3. A data structure ¥; for efficient point location in the planar subdivision induced
by B.

3.1 Answering a query

In this subsection we describe how the above data structure is used to decide whether

two query points p and q lie in the same face of A(S). A query is answered in three
steps.

Let p be the ray emanating from p in the direction pg. We query ¥, with p and
determine the first intersection point of p and S, if there exists one. If p does not
intersect S or the first intersection point lies beyond ¢, then p and q lie in the same
face of A(S) and we are done. Otherwise, we can conclude that p and ¢ do not lie in
the same convex face of A(S).

Next, we determine in O(log n) time by a point location query in ¥3 whether p
lies in any body polygon. If p € B, then we can conclude that p lies in the nonconvex
face c. Otherwise, p lies either in a moon polygon or in a convex face. Let A~ and
ht be the leftward and rightward directed horizontal rays emanating from p. By
Lemma 3.1, p lies in a moon polygon if and only if one of A~ and h* intersects a



segment of £ from the inside before intersecting any other segment of S U £. Thus
by querying ¥; and ¥, with both A~ and ht+ (four ray shooting queries), we can
determine whether p lies in a moon polygon. If the answer is ‘yes’, the edge e € £
that is hit by the ray also gives us the nonconvex face c that contains p. If p does
not lie in a moon polygon, then p lies in some convex face of A(S). Since we already
know that p and ¢ do not lie in the same convex face, we can conclude that p and ¢
do not lie in the same face of A(S).

Finally, if p lies in a nonconvex face c, we repeat the above steps for ¢ and deter-
mine whether g lies in a nonconvex face of A(S). If the answer is ‘yes’, then the label
c’ of the face that contains q is returned, so we can check whether it is the same as
the label of the one containing p. Otherwise, p and g do not lie in the same face of
A(S). This finishes the description of the query answering procedure.

In Section 4 we show how to adapt the data structure and the query algorithm
so that if p and ¢ lie in the same face, then we can also report a path between them
that does not cross any segment of S

3.2 The preprocessing

Next, we show how to construct the above data structure in O(n*/log? n) time. ¥,
stores S using O(nlog?n) space, so that a ray shooting query can be answered in
time O(n'/?log?n). ¥, can be constructed using the algorithm of Agarwal [1] or of
Cheng and Janardan [8]. Both of these algorithms are based on a data structure
called ‘spanning paths with low stabbing number’ (i.e., a spanning path of n points
such that every line intersects at most O(/n) edges of the path). The preprocessing
time of these algorithms is bounded by the time required for constructing such a
spanning path. The best known algorithm for constructing such a spanning path of
n points in the plane is O(n/3log? n) [18, 20].1

The structures ¥, and ¥; require additional work. First, we compute the set
of nonconvex faces in A(S). Since each nonconvex face contains at least one end-

point, these O(n) faces can be computed in time O(n*/3log?n), using the algorithm
described in [2].2

Let ¢ be a nonconvex face. For each cycle V of its boundary, we determine the
subset Wy = {wy,...,w;} of reflex vertices plus the vertices whose y-coordinates are

In [18], Matousek gave an algorithm for computing a spanning path with low stabbing whose
time complexity was O(n*/2log® n). But its running time can be improved to O(n*/3log? n) using
a result described in [20}.

2The algorithm described in [2] is slightly worse than the stated bound, but in combination with
the more recent results of Matousek [19] the bound follows.
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locally minimum or maximum. Next, for each 1 < i < j, we apply the algorithm of de
Berg et al. [4] or of Hershberger and Snoeyink [14] to compute the (geodesic) shortest
path V; between w; and w;y; homotopic to V; (relative to c). Roughly speaking, both
of these algorithm triangulate the nonconvex face, traverse all triangles adjacent to
V;, and maintain the shortest path V;. This gives the reduced cycle V for V. The
total time spent in computing shortest paths over all cycles of ¢ is proportional to
the number of edges in ¢, because each triangle is traversed only a constant number
of times; see [4, 14] for a proof.

After having computed reduced cycles for all components of the boundary of ¢,
the body polygon B. and the set of (nonempty) moon polygons M. can be easily
obtained. Let M be a nonempty moon polygon of M.. For each edge e of its concave
chain, we determine which side of e is et. We also record the information that e
belongs to the face c.

Repeating these steps for all nonconvex faces, we obtain the sets B and £. We
preprocess the planar subdivision induced by B into a point location data structure,
V3, using the algorithm of Sarnak and Tarjan [26]. Finally, we preprocess € into a
ray shooting data structure ¥,. Since |€] = O(n), ¥, requires O(n log?®n) space and
O(n*31og® n) prepocessing time. Putting everything together, we can conclude

Lemma 3.2 Given a set S of n segments in the plane, we can preprocess it in time
O(n*/3log’ n) into a data structure of size O(nlog®n) so that we can determine in
O(n'/?log? n) whether two query points lie in the same face of A(S).

4 Reporting a Path

The data structure and the query procedure described above can be easily modified
to compute—in case p and ¢ lie in the same face c—a path II,, between them that
does not intersect any segment of S properly.

For the sake of simplicity, we assume that all the faces of A are bounded. This
assumption does not restrict the problem, because we can enclose the entire arrange-
ment by a big rectangle and the points lying outside the rectangle can be handled
easily. In order to return a path, we further preprocess each body polygon B.. We
triangulate B, using an standard algorithm, e.g., using a sweep-line algorithm [24].
Let B} denote the resulting subdivision. ¥3 can be modified so that it returns the
triangle containing a query point if it lies in one of the body polygons. We view B*
as a connected planar graph whose nodes are the vertices of B, and whose edges are
the edges of B;. We compute a spanning tree T of BZ, choose an arbitrary node to
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be the root ¢, and direct all edges of T towards the root ¢, see Figure 5.

Figure 5: (a) The triangulated subdivision B? of the body polygon of Figure 4 and
two query points, (b) solid lines denote the spanning tree T, and bold lines denote

the path II,, ;; the vertices inside the dotted oval are two copies of a single vertex of
C.

The query algorithm is adapted as follows. If the segment pq lies in ¢, we return
the segment itself as the desired path II,,. Otherwise, we do the following. If p lies
in a body polygon B, for some nonconvex cell ¢, ¥3 returns the triangle A of B, that
contains p. In this case we define v, to be a vertex of A, say, the topmost vertex. If, on
the other hand, p lies in a moon polygon, then ¥; returns the edge e (of the concave
chain) that one of the two horizontal rays, emanating from p, intersects from the
inside. Now we define v, to be one of the endpoints of e, say, the lower endpoint. The
point v, can be computed by spending O(1) additional time. Similarly, we compute
vy for the point q. Observe that both v, and v, are vertices of B. and thus nodes of
T. Ipq, the path between p and ¢ that we return, consists of four parts: the segment
PUp, the path from v, to the root ¢ in T, the path from ¢ to v, in T, and the segment
7,9. The path from v, (resp. vy) to £ can be computed by following the edges of
T from v, to t. By construction, neither PUp, TUqq, nor any of the edges of T cross
any segment of S. Furthermore, since each edge of c is considered two sided and the
vertices of degree > 2 are split, it is easily seen that the we do not cross any segment
of S as we cross a node of T. Thus, II,, does not cross any segment of S. Note that
II, , may touch the segments of S.

The additional preprocessing required for reporting a path involves triangulating
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the body polygons and computing T'. Since 3, |B.| = O(n), these operations can be
performed in O(nlogn) time using any standard algorithm for these problems, see
e.g. [21, 24]. We thus have

Theorem 4.1 For a set S of n line segments in the plane, there erists a data struc-
ture of size O(nlog®n), such that it takes O(n'/?log? n) time to decide whether two
query points lie in the same face of the arrangement A(S). If two query points lie
in the same face, a path between them that consists of k segments can be reported in
O(k) additional time. The preprocessing time of the structure is O(n*/3log?n).

Remark 4.2: The above data structure can be modified to report a path that does
not touch any segment of S. One possibility is compute the Voronoi diagram of B, and
compute a spanning tree of the Voronoi diagram. This approach, called ‘retraction’
has been used earlier in motion planning algorithms, e.g., see [23] for details.

5 Space/Query-Time Tradeoff

We now describe how to reduce the query time by allowing more space. The basic
approach is similar to the one used in [1] for answering ray shooting queries, therefore
we will only describe the main idea.

Let r < n be some fixed parameter. A l-cutting of S is the set of the triangles of
= with pairwise disjoint interiors, such that it covers the entire plane, and that the
interior of each triangle intersects at most 2 segments of S. It is known that there
exists a I-cutting of size O(r?) [19]. Let = be such a l-cutting. For each triangle
A € E, let So C S denote the set of segments that intersect the interior of A. For
the sake of simplicity, we assume that the segments of Sa are clipped to within A.
Let fa denote the unbounded face of A(Sa).

If a face ¢ of A(S) does not intersect the boundary of any triangle in =, then it
lies completely inside one triangle A, in which case cis a face of A(Sp). On the other
hand, if c intersects the boundary of some triangle, then c is a connected component
of Uaez AN fa. Let C denote the set of faces in A(S) that intersect the boundary of
some triangle. C can be constructed by first computing fa for each triangle A, and
then gluing them together. By a result of Guibas et al. [13], fa has O(2a(2)) edges,
so the total complexity of C is O(r?) x O(2a(2)) = O(nra(2)).

The overall data structure now consists of the following parts:
1. A point location structure for Z, where = is a 1-cutting of S.
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2. A point location structure for C, where C is the set of faces of A(S) that
intersect the boundary of some triangle A € =.

3. A structure, as described in Section 3, on Sa for each A € =.

The cutting = and the subsets Sa, for each A € =, can be computed in O(nr)
time by the algorithm of Matousek [19], and = can be preprocessed for point location
queries in O(r?logr) time [11, 26]. Next, using the algorithm of Guibas et al. {13],
fa can be computed in time O(2a(2)log?2). Therefore, C can be computed and
preprocessed for point location in time O(nra(n)log? 2). Finally, by Theorem 4.1,
the total time spent in preprocessing Sa over all A € = is O((2)*/31og? 2) x O(r?) =
O(n#/3r?/31og? 2). If we assume that r < n/a®(n) (which is the case, see below), then
the total preprocessing time is O(n*/3r?/3log? 2). A similar analysis shows that the
total space required by the structure is O(nrlog? 2).

Next, we explain how to answer a point location query. Let p and g be two query
points, and let ¢, and ¢, denote the face of A(S) containing p and g, respectively. We
first determine, in O(logn) time, by locating p in C whether ¢, € C. If the answer
is ‘yes’, we locate ¢ in C' to determine if ¢, = ¢;. The points p and q lie in the same
face of A(S) if and only if ¢, = c,.

If ¢, € C, then ¢, lies completely inside a single triangle A, and it is a bounded face
of A(Sa). We therefore locate p and ¢ in = and determine the triangles containing
them. If they are different, then obviously ¢, and ¢, are different. If, on the other
hand, p and g lie in the same triangle A, we query the structure constructed on Sp
with p and ¢ in order to determine whether they lie in the same face of A(SA).

The correctness of the algorithm is obvious. As for the query time, the first two
steps require only O(logn) query time, and, by Theorem 4.1, the last step requires

1/2
0 ((-’}) / log? %) time. Thus, choosing r = W, we obtain:

Theorem 5.1 Given a set S of n segments in the plane and a parameter nlog’n <
s < n?, one can preprocess S in time O(s*/3n?/3(log?/® J5+1)) into a data structure of

size O(s), so that given two points p and q, we can determine in time O(-\’/‘—;log2 Tt
log n) whether they lie in the same face of A(S).

6 Application to Motion Planning

We now apply Theorem 4.1 to the following version of the motion planning prob-
lem: Let R be a polygonal body (not necessarily simply connected) with m ver-
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tices, free to translate (but not to rotate) in a planar region bounded by a collection
O = {0, ... ,0} of polygonal obstacles with n vertices in total. We want to pre-
process them into a data structure, so that, given initial and final positions® oy and
o, respectively, of R, we can quickly determine whether there exists a (purely trans-
lational) continuous collision free motion of R from o; to o and, if so, return a
path.

In the more general problem, R is also allowed to rotate, but then the problem
becomes much harder. In most pragmatic applications, however, it is sufficient to find
a purely translational motion, or a translational motion with at most one rotation
(particularly when the environment is not cluttered with obstacles). This simplified
version was first considered by Lozano-Pérez and Wesley [17] (see also [13, 16]). They
observed that one can replace the problem by that of a collision-free path for a single
point between o7 and or amidst ezpanded obstacles K; = O;—R,i =1, ... , k, where
A — R denotes the Minkowski difference, which is defined as {p — ¢ | p € 4,q € R};
see [17] for details.

Hence R can be translated from oy to o without hitting an obstacle if and only
if o7 and oF lie in the same connected component of K¢ = ( f=l K;)c. It is easy to
check that K is bounded by a collection I' of O(mn) segments, each of which is of the
form e — p, where e is an edge of some obstacle and p is a vertex of R, or vice versa.
Each connected component of K¢ is a face of A(T'). However, each face of A(T) is
not necessarily a component of K°. The above motion planning problem reduces to

determining whether o7 and oF lie in the same face of A(T'), which is a component

of Ke.

A possible solution is to preprocess the faces of A(T') that lie in K* for planar point
location. If R is a convex polygon, then the complexity of these faces is O(mn), so
one can store them explicitly and can answer a query in time O(log mn). (In fact, as
mentioned in the introduction, one can do even better.) But if R is nonconvex, then
K¢ can have as many as Q(m?n?) edges in the worst case, so it is space consuming
to store K¢ explicitly. However, by Theorem 4.1, we can store A(T) implicitly in
a data structure of size O(mnlog?mn), so that a query can be answered in time
O(v/mnlog? mn). We also have to ensure that the face of .A(S) containing 6; and o
is a component of K°. Using a result of [1], we can preprocess I into a data structure
of size O(mn log mn), so that we can determine in time O(y/mn log mn) time whether
a given placement of R is free with respect to ©. Hence, putting everything together,
we obtain

3Here we assume that we have a standard placement of R, and that the origin coincides with a

point p of (this placement of) R. We describe a placement of R by specifying the coordinates of the
reference point p.
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Theorem 6.1 Let O be a set of obstacles in the plane, consisting of n vertices in
total, and let R be a robot modeled by a simple m-gon. There erists an O(mnlog? mn)
size data structure which can be constructed in O((mn)*3log? mn) time, such that
it takes O(y/mnlog? mn) time to decide whether the robot can be translated from a
given position to another without colliding with any obstacle.

7 Conclusions

The main result of this paper is to show that the arrangement of a set of n segments
can be stored implicitly in a data structure of size O(nlog®n), so that one can de-
termine in time O(y/nlog? n) time whether the two query points lie in the same face
of the arrangement. We applied it to obtain an efficient solution for a translational
motion planning problem. We conclude by mentioning two open problems:

1. Can the preprocessing time be improved to roughly linear (within a polyloga-
rithmic factor)?

2. Can the above data structure be dynamized efficiently?
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