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Abstract

This report presents methods for speeding up parallelism detection for attribute
grammars. For large existing attribute grammars these methods speed up parallelism
detection with factors ranging from 8 to 160. The optimizations exploit the ability
to efficiently predict whether a graph introduces useful dependencies and skipping
all computations with useless graphs. These predictions are based on an abstract
interpretation of dependency graphs.

1 Introduction

This report presents an efficient parallelism detector for attribute grammars that analyses
existing attribute grammars 8 to 160 times faster than a non-optimized version. It achieves
these improvements by skipping useless computations. It predicts whether a computation
is useless by using an abstract interpretation of dependency graphs. When analysing
attribute grammars for Pascal and occam, more than 99% of all useless computations are
skipped.

This research shows that parallelism detection for attribute grammars, even for large
grammars, is practical. We present the results of various detailed measurements that
illustrate the effectiveness of our optimizations.

The remainder of this report is structured as follows. Section 2 defines some notions
related to attribute grammars. Then, sections 3 through 5 introduce the non-optimized
algorithm for parallelism detection. Section 6 defines our optimizations and sections 7
and 8 discuss the effects of these optimizations. Section 9 discusses the possibility of
further improvements. Section 10 discusses related work on attribute grammar analysis.



2 Attribute grammars

We assume that the reader is familiar with attribute grammar terminology. We use the
notation of attribute grammars from {12], with the following peculiarities.

The graph D(pr) contains the attribute dependencies from the attribute equations asso-
ciated with production pr.

A structure tree is a tree derived from a nonterminal (not necessarily the root) of the un-
derlying context-free grammar. Nodes in a structure tree are labelled with the production
applied at them. If u is a node then prod u is the production applied at u, and nont u is
the left-hand side nonterminal of prod u. The dependency graph of a structure tree S is
denoted by DG(S) = (XG(S), E(S)); XG(S) is the set of all attribute instances attached
to S and E(S) contains an edge from a to § if § depends on a. An edge from a to  is
depicted as a — S.

To shorten the explanations, a tree is sometimes associated with its root and vice versa.
For example, the dependency graph of a node u, DG(u), is the dependency graph of
the tree rooted at u. Similarly, the label of a tree is the label of the root of the tree.
We use the convention that nodes of structure trees are named with lower case letters.

The nonterminal labelling a node is the corresponding upper case letter. Thus node z is
labelled with X.

3 Parallelism detection

To be able to build parallel attribute evaluators we must know which attribute instances
are independent. We can, however, not compute in-dependencies. To conclude that
the instances of one or more attributes are independent requires the computation of all
possible dependencies between attributes. The absence of a possible dependency is proof of
independence. For this reason, our parallelism detectors compute all possible dependencies
between attribute instances attached to different and possibly remote nodes.

As an illustration of our parallelism detectors consider a structure tree S with two interior
nodes u and v, labelled with nonterminals U and V, respectively, as illustrated in figure 1.
Neither of the two nodes u and v is an ancestor of the other. We call such nodes cousins.

From this example tree and its dependency graph we conclude the following fact:

there exists a tree S labelled with X and with two interior cousin nodes u
and v so that u.3 depends on v.a. In particular, the path from v.a to u.8 in
DG(S) does not contain a part that runs through DG(u) or DG(v).

The dependency of u.3 upon v.c is called a remote dependency. Remote dependencies are
represented with so called dependency patterns. The above dependency is represented as
((X,U,V],{V.a > U.B}). This dependency pattern, called a triple, consists of a list of
three nonterminals and a set of attribute dependencies. It must be read as a shorthand
notation for the above fact. The list of three nonterminal [X, U, V] says that there exists
a structure tree S whose root is labelled with X and that contains two interior cousin



Figure 1: A tree fragment illustrating a remote dependency from an instance of V.a to an
instance of U.. White dots represent tree nodes; black dots represent attribute instances.

nodes that are labelled with U and V, respectively. The set of dependencies says that
the dependency graph of S contains a path from v.a to u.3. Dependency patterns, as
introduced above, can be either true or false. Parallelism detection for attribute grammars

amounts to the computation of all true dependency patterns, without computing a false
one.

The above dependency pattern is computed from simpler dependency patterns in which
the lists of nonterminals contain one or two elements. A dependency pattern with one
nonterminal, a singleton, has the form ([X],r), where 7 is a set of dependencies among
the attributes of X. It states that there exists a tree whose root is labelled with X and
that all dependencies in 7 occur among the attribute instances attached to the root of 5.
A dependency pattern with two nonterminals, a pair, has the form ([X,U],r). Again r
contains dependencies among attributes of X and U. This dependency pattern must be
read as:

there exists a tree S with a root labelled X and an interior u node labelled with
U. Furthermore all dependencies in r occur between the attribute instances

attached to u and the root of S, and these dependencies do not run through
DG(u).

The rules for computing dependency patterns mimic the bottom up construction of de-
pendency graphs. We illustrate how triples are computed from singletons and pairs by
considering the computation of triple ([X, U, V],{V.a — U.8}). We assume that all true
singletons and all true pairs have already been computed.



The example tree in figure 1 shows the truth of the singleton ([W],{W1.6 — Wi.a}),
since in the tree rooted at w;, w;.a depends on w;.3. The singleton ([W],0) is, of
course, vacuously true. In the tree we can further verify the truth of the following pairs:

(W;, V], {V.a - W,.a}); (X, W], {W.a —» W.8}); and ([W;, U], {W;.a — U.5}).

From these true singletons and pairs and the dependencies in D(prod w) the triple
([X,U0,V],{V.a — U.B}) is computed. Figure 2 suggest how this is done. The depen-
dency patterns are considered as if they represent a fragment of a structure tree with
associated dependencies and the same holds for production pr and the dependencies in
D(pr). The tree fragments are pasted together and the dependencies are combined. To

obtain the triple the transitive closure of the dependencies is projected on the attributes
of X, U and V.
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Figure 2: Dependencies from singletons, pairs and D(pr) are combined. Black dots rep-
resenting the same attribute are connected by a dotted line. ([Wi], {W;.8 — Wj.a}) and
([Wa], {Wn.y — W,..8}) are singletons. The dependencies in the latter singleton do not
occur on the path from V.a to U.8. The result is the triple ([X, U, V],{V.a — U.8}).

The step illustrated in figure 2 is the basic step in the computation of triples.

4 Algorithm for computing dependency patterns

The algorithm for computing dependency patterns consists of three steps. The first step
computes the set SINGLE that contains all true singletons. This step is basically Knuth’s
singularity test [4, 5]. The second step computes the set PAIR that contains all true
pairs. The third step computes the set TRIPLE that contains all triples. Finally the
dependencies from TRIPLE are used to determine which nonterminals are independent
from each other.



The algorithms for computing SINGLE and PAIR can be found in [6]. Here we only
discuss the computation of TRIPLE, because it is the most expensive of the four steps.

4.1 Computing triples

The algorithm to compute triples combines singletons, pairs and dependencies from pro-
ductions as illustrated in figure 2. The algorithm below computes all triples with first
nonterminal X, i.e. the set Triple(X) = {([X, G, H],)|([X,G, H),r) € TRIPLE}. If one
wants to compute all triples then the algorithm must be applied for all nonterminals.

The algorithm uses the notion of a selection: a selection for a production pr consists
of a singleton for each right-hand side nonterminal occurrence in pr. The set Pairs(X)
contains all pairs in PAIRS with first nonterminal X: Pairs(X) = {([X, G], ")|([X,G],7) €
PAIRS}.

algorithm : computation of triples

input : the set SINGLE, containing all true singletons
the set PAIR, containing all true pairs
a nonterminal X

output : the set Triple(X)

var TRIPLE: set of triples

(1) for all upper_pair € Pairs(X) do

(2) for all productions pr with lhs pr=X, pr: Wy — W, ... W, do
(3)  for all selections sel € selections(pr)do

(4) for all (left, right) € Pairs(W;) x Pairs(W;), i # jdo

(5) compute triple from D(pr), sel, upper_pair, left and right
(6) insert triple in TRIPLE

(7 od

(8) od

(9) od

(10)od

Line (4) of the above algorithm consists of four nested loops:

(4.a) for all ntoccO € right-hand side nonterminals pr do

(4.b) for all ntoccl! € right-hand side nonterminals pr, ntocci # ntoccO0 do
(4.¢) for all left € Pairs(ntocc0) do

(4.d) for all right € Pairs(ntoccl) do

5 The non-optimized parallelism detector

Our basic parallelism detector implements the algorithm from section 4.1 with three trivial
improvements.



The first improvement comes from realizing that it suffices to compute, for each X, U and
V € N, either all triples of the form [X, U, V] or all triples of the form [X, V, U] since both
kinds of triples contain the same dependencies. This improvement is achieved by first
defining an arbitrary order < on nonterminals and then computing only triples [X, U, V]
where U < V.

The second improvement is to compute only mazimal relations. A dependency pattern
(p,r) is then not considered if there is a dependency pattern (p,t) with » C t. This
improvement might have as effect that not all true dependency patterns are computed. If
the above (p,r) is a true pattern then it will not be computed. This optimization can,
however, be safely applied if one is only interested in the ezxistence of remote dependencies.

The third improvement comes from not considering productions pr in line (2) that have
at most one nonterminal on their right-hand side. Such productions do not introduce a
remote dependencies.

We call the basic algorithm with the above three improvements NOOPTS.

6 Optimizing triple computation

This section presents our optimizations to algorithm NOOPTS.

6.1 Skipping productions

Computations with production pr can be skipped if D(pr) has no dependencies among
the attributes of the right-hand side nonterminals. This is, for example, the case if all
dependencies in the production run only from a right-hand side attribute to a left-hand
side attribute. This can be tested at line (2) of the algorithm.

6.2 Skipping nonterminal occurrences

Computations with the nonterminal occurrence ntocc0, see line (4.a), can be skipped if its
attributes are isolated from attributes of all other nonterminal occurrences in the produc-

tion. For example, this is the case if the nonterminal occurrence has only dependencies
with attributes of the left-hand side nonterminal.

Computations with the second nonterminal occurrence, ntocc! at line (4.b), can be skipped
if its attributes are not connected with those of ntocc0.

6.3 Skipping pairs

Algorithm NOOPTS computes many triples at line (5) that contain no remote dependen-
cies. It turns out that we can skip many of these computations by inspecting the graphs
in the pairs and the dependencies in D(pr). The tests that detect these non-productive
combinations are performed at lines (4.a) and (4.d) of the algorithm.



To predict whether a combination does not introduce a remote dependency we maintain
the kind of a pair-graph (a graph in a pair). The kind of a pair-graph is either unconnected,
up, down or general. The kind of a pair-graph ([X, U]),r) is defined as follows. The kind
of graph r is unconnected if r does not contain a dependency among the attributes of X
and U; its kind is up if all dependencies among attributes of X and U run from U to X;
its kind is down if all dependencies among attributes X and U run from an attribute of X
to an attribute of U; all other graphs have as kind general.

These graph kinds are ordered as follows. The kind unconnected is smaller than all other
kinds and the kind general is greater than all other kinds. An equivalent definition of the
order among graph kinds is: £ < ! iff a graph ¢ of kind & can be turned into a graph of
kind ! by adding edges to g.

For each combination of upper_pair (line (1) of the algorithm) and production pr (line (2))
we define the kind of dependencies among two different right-hand side nonterminal occur-
rences. Let production pr be pr: Wy — W1,..., W,,...,Wj,...,W, and let ([X, W), 7)
be the upper pair.

The kind of dependencies between W; and W; is either unconnected, LtoR, RtoL or general.
The kind is unconnected if there are no dependencies from an attribute occurrence of W;
to one of W; and if there are no no dependencies from an attribute occurrence of W; to
one of W;; the kind is LtoR if all dependencies among attribute occurrences of W; and W;
run from W; to W;; the kind is RtoL if all dependencies among attribute occurrences of
W; and W; run from W; to W;; all other dependencies have kind general.

The kinds of dependencies among right-hand side nonterminal occurrences are ordered like
those of pair-graphs. The kind unconnected is smaller than all other kinds and general is
larger than all others.

The parallelism detector is optimized by skipping combinations of graphs that do not
introduce a remote dependency. The decision to skip a combination is based solely on the
kinds of the graphs involved. Table 1 lists all combinations of pair-graph kinds that do
not introduce a remote dependency. The column labelled “line” indicates where in the
algorithm the optimization can be applied. As an example, consider the case where the
pairs left (line 4.c) and right (line 4.d) both have kind up. Combining these pairs with
those from a production introduces no remote dependencies, because at least one of the
pairs must have an edge that runs down. Stated formally one of the pairs must have the
form ([G, H),r), where r contains an edge G.ao — H.5.

The overhead of computing the kinds of pair-graphs is negligible. First, the cost of com-
puting the kind of a pair-graph is linear in the number of edges in the graph. Second, the
kind can be stored with the graph, thereby making it unnecessary to recompute it each
time the graph is used.

6.4 Skipping dependent nonterminals

The last optimization is applicable if one only wants to compute remote dependencies
among nonterminals instead of computing all triples. In that case combinations of pairs
left = ([F,G],r) and right = ([K, L}, s) can be skipped once it has been determined that



left right deps | line
< uncon - - 4.c
- < uncon - 4.d
down down - 4.d
up up - 4d

< down - < LtoR | 4.c
< up - < RtoL | 4.c

- < down | <RtoL | 4.d

- < up <LtoR | 4d

Table 1: Table with useless combinations, based on the kinds of graphs. Columns “left”
and “right” are the kinds of the pair-graphs in the algorithm; column “deps” is the kind
of dependency between ntoccO0 and ntoccl. Column “line” gives the line-number in the
algorithm where this optimization can be applied.

there exist a remote dependency among G and L. This optimization can be applied at
line (4.d).

7 Effects of optimizations

We implemented three parallelism detectors, which we call NOOPTS, HALFOPTS and
ALLOPTS. NOOPTS is the parallelism detector as defined in section 5. HALFOPTS
is the parallelism detector that applies all optimizations from section 6, but that does
not skip dependent nonterminals, i.e. it does not apply the optimization from section 6.4.
ALLOPTS applies all optimizations, including the one from section 6.4.

We applied the three parallelism detectors to three existing attribute grammars. The
grammars are an attribute grammar for the semantic analysis of Pascal, an attribute
grammar for the semantic analysis of occam [8] and one for the semantic analysis of
LOTOS [11]. All three grammars have a respectable size. The following table lists, for
each grammar, the number of nonterminals and productions in the abstract syntax ! and
the number of lines of the ssl sources.

| grammar | [N| | |P| | #lines |

Pascal 79 | 203 7025
LOTOS 96 | 201 | 22125
occam 83 | 292 6947

We measured the effects of the optimizations in three ways. For each combination of
grammar and parallelism detector we measured the execution time of the triple compu-
tations and we counted the number of computed triples. We also counted the number of
computed triples without a remote dependency, since the optimization try to reduce this
number.

1 A nonterminal is part of the abstract syntax if it is derivable from the root of the attribute grammar.
A production is part of the abstract syntax if its left-hand side nonterminal occurs in the abstract syntax.



We measured the time for computing triples on an otherwise unloaded Hewlett Packard
9000/750. Table 2 gives the execution times for the computation of triples.

time speedup
grammar | NOOPTS ] HALFOPTS l ALLOPTS | HALFOPTS | ALLOPTS
Pascal 154.5s 35.6s 3.25 4.3 48.3
LOTOS 346.7s 256.58 42.6s8 1.3 8.1
occam 418.3s 44 4s 2.6s 9.4 160

Table 2: Times in seconds for the computation of triples. Speedups are with respect to
NOOPTS

We counted the number of triples computed by each of the parallelism detectors, i.e. the
number of times that line (5) of the algorithm was executed. Table 3 gives the number

of computed triples and the relative improvement of HALFOPTS and ALLOPTS over
NOOPTS.

#computed triples relative improvement

grammar | NOOPTS | HALFOPTS | ALLOPTS | HALFOPTS | ALLOPTS
Pascal 306570 39926 4154 7.7 73.8
LOTOS 131310 85802 16889 1.5 7.8
occam 1293032 120207 4051 10.8 319.2

Table 3: Number of computed triples

We also counted the number of computed triples that do not contain a remote dependency.
The aim of the optimizations is to detect such triples without executing line (5) of the
algorithm. Table 4 gives the number of these nonproductive combinations. It can be seen

#nonproductive computations

as percentage of NOOPTS
| NOOPTS | HALFOPTS | ALLOPTS

HALFOPTS | ALLOPTS

Pascal 275243 8599 2183 3.1% 0.8%
LOTOS 90965 45457 13915 49.9% 15.3%
occam 1229717 56892 2497 4.6% 0.2%

Table 4: The number of nonproductive combinations computed by the three algorithms.
For HALFOPTS and ALLOPTS the table also lists the number of nonproductive combi-
nations as a percentage of the same number of NOOPTS.

that a large percentage of nonproductive combinations is skipped by the optimized algo-
rithms. For the Pascal and occam grammar algorithm HALFOPTS computes less than 5%
of the useless combinations computed by NOOPTS; algorithm ALLOPTS even computes
less than 1% of NOOPTS’ combinations. Even for the LOTOS grammar, ALLOPTS skips
almost 85% of the non-productive combinations of NOOPTS.



The effect of our optimizations is further illustrated by counting the number of productive
combinations, i.e. computations of triples with a remote dependency. Table 5 gives these

| Grammar | Algorithm | #computed | #productive | %productive |

Pascal NOOPTS 306570 31327 10.2
Pascal HALFOPTS 39926 31327 78.5
Pascal ALLOPTS 4154 1971 47.4
LOTOS NOOPTS 131310 40345 30.7
LOTOS HALFOPTS 85802 40345 47.0
LOTOS ALLOPTS 16889 2974 17.6
occam NOOPTS 1293032 63315 49
occam HALFOPTS 120207 63315 52.7
occam ALLOPTS 4051 1554 38.4

Table 5: Number of computed and number of productive triples.

numbers. Algorithm HALFOPTS illustrates the effects of using the kinds of pair-graphs.
Not only does HALFOPTS compute much less triples than NOOPTS, it is also much
more effective. Analysing Pascal, for example, only 22.5% of the triples computed by
HALFOPT does not contain a remote dependency.

8 Differences among the grammars

Our optimizations work remarkably well for the Pascal and the occam grammar. They
work reasonably for the LOTOS grammar. The LOTOS grammar is probably one of the
largest attribute grammars that were ever written. Its nonterminals contain much more
attributes than the grammars for Pascal and occam. Table 6 lists the average size of the
parameter to the transitive closure operation. These sizes influence the number of triples

[ Grammar I NOOPTS I HALFOPTS | ALLOPTS l

Pascal 36.5 48.5 314
LOTOS 92.1 98.1 79.1
occam 23.8 24.6 13.7

Table 6: Average size of relations whose transitive closure is computed. Size is given in
the number of elements in the underlying set.

computed per second. Parallelism detector ALLOPTS, for example, computes more then

1500 triples per second when analysing the occam grammar and less than 400 triples per
second when analysing the LOTOS grammar.
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9 Further improvements?

It seems unlikely that we can reduce the number of computed triples in a significant way
without using costly operations. More clever ways of predicting whether a triple will
contain a remote dependency probably requires computing a transitive closure, the very
operation we want to avoid.

Improving the time for parallelism detection with another order of magnitude is not pos-
sible for all three grammars. When analysing the Pascal grammar, ALLOPTS spends
only one third of her time on computing triples, and the computation of triples for occam
takes only one sixth of the analysis time. The remainder of the time is used for parsing,
semantic analysis and the computation of singletons and pairs. The LOTOS grammar is
different in this respect because triple computation takes 84% of total analysis time. As
can be seen in table 5, only 17% of the computed triples contain a remote dependency.

We have implemented versions of the parallelism detectors that compute less precise single-
tons, pairs and triples. These versions compute at most one singleton for each nonterminal.
The singleton ([X],7) contains the union of all dependencies that would be computed by
the precise versions of the parallelism detectors. Likewise they also compute at most one
pair and one triple for each combination of two and three nonterminals. Surprisingly, for
all three example grammars, the imprecise version of ALLOPTS computes the same set of
remote dependencies among nonterminals. Table 7 lists the number of triples computed
by the imprecise version of ALLOPTS.

#computed triples relative improvement

grammar | NOOPTS | ALLOPTS ALLOPTS
imprecise imprecise

Pascal 306570 2942 104.2
LOTOS 131310 6754 19.4
occam 1293032 2091 618.4

Table 7: Number of computed triples by an imprecise version of ALLOPTS

10 Related work

Efficient implementations of the circularity test for attribute grammars have been widely
studied [1, 2]. Our experience is that a relative straightforward implementation of the cir-
cularity test is fast enough. Our implementation, that uses the weak stability optimization
from [1], takes from 0.2 seconds for occam to 0.5 seconds for LOTOS.

Moncke and Wilhelm [9] have developed a general framework for grammar analysis. Their
framework, however, is concerned with computing properties for a single nonterminal.
They do not discuss cases, like our algorithms, where one computes relations for pairs and
triples of nonterminals.
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